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Formulas for area A, circumference C, and volume V:
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Distance and Midpoint Formulas

Distance between P1sx1, y1d and P2sx2, y2d:
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Midpoint of P1P2: S x1 1 x2

2
, 

y1 1 y2

2 D
Lines

Slope of line through P1sx1, y1d and P2sx2, y2d:
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Point-slope equation of line through P1sx1, y1d with slope m:
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Slope-intercept equation of line with slope m and y-intercept b:
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Exponents and Radicals
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Factoring Special Polynomials

x 2 2 y2 − sx 1 ydsx 2 yd

x 3 1 y3 − sx 1 ydsx 2 2 xy 1 y2d

x 3 2 y3 − sx 2 ydsx 2 1 xy 1 y2d

Binomial Theorem
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Quadratic Formula

If ax 2 1 bx 1 c − 0, then x −
2b 6 sb 2 2 4ac

2a
.

Inequalities and Absolute Value

If a , b and b , c, then a , c.

If a , b, then a 1 c , b 1 c.

If a , b and c . 0, then ca , cb.

If a , b and c , 0, then ca . cb.

If a . 0, then

               | x | − a    means    x − a    or    x − 2a

               | x | , a    means     2a , x , a

               | x | . a    means    x . a    or    x , 2a
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The Law of Cosines
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Spotted owl populations are analyzed 
using matrix models (Exercise 8.5.22).

The fitness of a garter snake is a function 
of the degree of stripedness and the 
number of reversals of direction while 
fleeing a predator (Exercise 9.1.7).

The project on page 297 asks how birds 
can minimize power and energy by 
flapping their wings versus gliding.

The population size of some species, like this 
sea urchin, can be measured by evaluating a 
certain integral, as explored in Exercise 5.3.49.

The interaction between Daphnia 
and their parasites is analyzed in 
Case Study 2 (page xlvi).

Populations of blowflies are modeled 
by chaotic recursions (page 430).

The energy needed by an iguana to 
run is a function of two variables, 
weight and speed (Exercise 9.2.47).

Dinosaur fossils can be dated using 
potassium-40 (Exercise 3.6.12).

The project on page 222 illustrates how 
mathematics can be used to minimize 
red blood cell loss during surgery.

Jellyfish locomotion is modeled by a 
differential equation in Exercise 10.1.34.

The screw-worm fly was effectively 
eliminated using the sterile insect 
technique (Exercise 5.6.24).

The growth of a yeast population leads 
naturally to the study of differential 
equations (Section 7.1).

The doubling time of a population of the 
bacterium G. lamblia is determined in  
Exercise 1.4.29.

The Speedo LZR Racer reduces drag 
in the water, resulting in dramatically 
improved performance. The project 
on page 603 explains why.

In Example 9.4.2 we use the Chain 
Rule to discuss whether tuna biomass 
is increasing or decreasing.

The optimal foraging time for bumblebees 
is determined in Example 4.4.2.

The vertical trajectory of zebra finches is 
modeled by a quadratic function (Figure 1.2.8).

The size of the gray-wolf population depends 
on the size of the food supply and the 
number of competitors (Exercise 9.4.21).

Example 4.4.4 investigates the time 
that loons spend foraging.

The area of a cross-section of a human 
brain is estimated in Exercise 6.Review.5.

The project on page 479 determines 
the critical vaccination coverage 
required to eradicate a disease.

Natural killer cells attack pathogens and  
are found in two states described by a pair  
of differential equations developed in  
Section 10.3.

In Example 4.2.6 a junco has a choice 
of habitats with different seed densities 
and we determine the choice with 
the greatest energy reward.

The project on page 467 investigates 
logarithmic spirals, such as those 
found in the shell of a nautilus.
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xv

In recent years more and more colleges and universities have been introducing calculus 
courses specifically for students in the life sciences. This reflects a growing recognition 
that mathematics has become an indispensable part of any comprehensive training in the 
biological sciences. 

Our chief goal in writing this textbook is to show students how calculus relates to 
biology. We motivate and illustrate the topics of calculus with examples drawn from 
many areas of biology, including genetics, biomechanics, medicine, pharmacology, 
physiology, ecology, epidemiology, and evolution, to name a few. We have paid par-
ticular attention to ensuring that all applications of the mathematics are genuine, and we 
provide references to the primary biological literature for many of these so that students 
and instructors can explore the applications in greater depth.

We strive for a style that maintains rigor without being overly formal. Although our 
focus is on the interface between mathematics and the life sciences, the logical structure 
of the book is motivated by the mathematical material. Students will come away from a 
course based on this book with a sound knowledge of mathematics and an understanding 
of the importance of mathematical arguments. Equally important, they will also come 
away with a clear understanding of how these mathematical concepts and techniques are 
central in the life sciences, just as they are in physics, chemistry, and engineering.

The book begins with a prologue entitled Mathematics and Biology detailing how the 
applications of mathematics to biology have proliferated over the past several decades 
and giving a preview of some of the ways in which calculus provides insight into biologi-
cal phenomena.

Alternate Versions

There are two versions of this textbook. The first, Biocalculus: Calculus for the Life Sci-
ences, focuses on calculus, although it also includes some elements of linear algebra that 
are important in the life sciences. An alternate version entitled Biocalculus: Calculus, 
Probability, and Statistics for the Life Sciences contains all of the content of the first ver-
sion as well as three additional chapters titled Descriptive Statistics, Probability, and 
Inferential Statistics (see Content on page xviii).

Features

■ Real-World Data
We think it’s important for students to see and work with real-world data in both numeri-
cal and graphical form. Accordingly, we have used data concerning biological phenom-
ena to introduce, motivate, and illustrate the concepts of calculus. Many of the examples 
and exercises deal with functions defined by such numerical data or graphs. See, for 
example, Figure 1.1.1 (electrocardiogram), Figure 1.1.23 (malarial fever), Exercise 
1.1.26 (blood alcohol concentration), Table 2 in Section 1.4 (HIV density), Table 3 in 
Section 1.5 (species richness in bat caves), Example 3.1.7 (growth of malarial parasites), 
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Exercise 3.1.42 (salmon swimming speed), Exercises 4.1.7–8 (influenza pandemic), 
Exercise 4.2.10 (HIV prevalence), Figure 5.1.17 (measles pathogenesis), Exercise 5.1.11 
(SARS incidence), Figure 6.1.8 and Example 6.1.4 (cerebral blood flow), Table 1 and 
Figure 1 in Section 7.1 (yeast population), and Figure 8.1.14 (antigenic cartography).

■ Graded Exercise Sets
Each exercise set is carefully graded, progressing from basic conceptual exercises and 
skill-development problems to more challenging problems involving applications and 
proofs.

■ Conceptual Exercises
One of the goals of calculus instruction is conceptual understanding, and the most impor-
tant way to foster conceptual understanding is through the problems that we assign. 
To that end we have devised various types of problems. Some exercise sets begin with 
requests to explain the meanings of the basic concepts of the section. (See, for instance, 
the first few exercises in Sections 2.3, 2.5, 3.3, 4.1, and 8.2.) Similarly, all the review 
sections begin with a Concept Check and a True-False Quiz. Other exercises test concep-
tual understanding through graphs or tables (see Exercises 3.1.11, 5.2.41–43, 7.1.9–11, 
9.1.1–2, and 9.1.26–32).

Another type of exercise uses verbal description to test conceptual understanding (see 
Exercises 2.5.12, 3.2.50, 4.3.47, and 5.8.29).

■ Projects
One way of involving students and making them active learners is to have them work 
(perhaps in groups) on extended projects that give a feeling of substantial accomplish-
ment when completed. We have provided 24 projects in Biocalculus: Calculus for the 
Life Sciences and an additional four in Biocalculus: Calculus, Probability, and Statistics 
for the Life Sciences. Drug Resistance in Malaria (page 78), for example, asks students 
to construct a recursion for the frequency of the gene that causes resistance to an anti-
malarial drug. The project Flapping and Gliding (page 297) asks how birds can minimize 
power and energy by flapping their wings versus gliding. In The Tragedy of the Com-
mons: An Introduction to Game Theory (page 298), two companies are exploiting the 
same fish population and students determine optimal fishing efforts. The project Disease 
Progression and Immunity (page 394) is a nice application of areas between curves. Stu-
dents use a model for the measles pathogenesis curve to determine which patients will 
be symptomatic and infectious (or noninfectious), or asymptomatic and noninfectious. 
We think that, even when projects are not assigned, students might well be intrigued by 
them when they come across them between sections.

■ Case Studies
We also provide two case studies: (1) Kill Curves and Antibiotic Effectiveness and  
(2) Hosts, Parasites, and Time-Travel. These are extended real-world applications from 
the primary literature that are more involved than the projects and that tie together mul-
tiple mathematical ideas throughout the book. An introduction to each case study is pro-
vided at the beginning of the book (page xli), and then each case study recurs in various 
chapters as the student learns additional mathematical techniques. The case studies can 
be used at the beginning of a course as motivation for learning the mathematics, and they 
can then be returned to throughout the course as they recur in the textbook. Alternatively, 
a case study may be assigned at the end of a course so students can work through all com-
ponents of the case study in its entirety once all of the mathematical ideas are in place. 
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Case studies might also be assigned to students as term projects. Additional case studies 
will be posted on the website www.stewartcalculus.com as they become available.

■ Biology Background
Although we give the biological background for each of the applications throughout the 
textbook, it is sometimes useful to have additional information about how the biological 
phenomenon was translated into the language of mathematics. In order to maintain  
a clear and logical flow of the mathematical ideas in the text, we have therefore included 
such information, along with animations, further references, and downloadable data on 
the website www.stewartcalculus.com. Applications for which such additional informa-
tion is available are marked with the icon BB  in the text.

■ Technology
The availability of technology makes it more important to clearly understand the con-
cepts that underlie the images on the screen. But, when properly used, graphing calcula-
tors and computers are powerful tools for discovering and understanding those concepts. 
(See the section Calculators, Computers, and Other Graphing Devices on page xxvi for 
a discussion of these and other computing devices.) These textbooks can be used either 
with or without technology and we use two special symbols to indicate clearly when a 
particular type of machine is required. The icon ; indicates an exercise that definitely 
requires the use of such technology, but that is not to say that it can’t be used on the other 
exercises as well. The symbol CAS  is reserved for problems in which the full resources 
of a computer algebra system (like Maple, Mathematica, or the TI-89/92) are required. 
But technology doesn’t make pencil and paper obsolete. Hand calculation and sketches 
are often preferable to technology for illustrating and reinforcing some concepts. Both 
instructors and students need to develop the ability to decide where the hand or the 
machine is appropriate.

■ Tools for Enriching Calculus (TEC)
TEC is a companion to the text and is intended to enrich and complement its contents. (It 
is now accessible in Enhanced WebAssign and CengageBrain.com. Selected Visuals and 
Modules are available at www.stewartcalculus.com.) Developed in collaboration with 
Harvey Keynes, Dan Clegg, and Hubert Hohn, TEC uses a discovery and exploratory 
approach. In sections of the book where technology is particularly appropriate, marginal 
icons  TEC  direct students to TEC Visuals and Modules that provide a laboratory environ-
ment in which they can explore the topic in different ways and at different levels. Visuals 
are animations of figures in text; Modules are more elaborate activities and include 
exercises. Instructors can choose to become involved at several different levels, ranging 
from simply encouraging students to use the Visuals and Modules for independent explo-
ration, to assigning specific exercises from those included with each Module, to creating 
additional exercises, labs, and projects that make use of the Visuals and Modules.

■ Enhanced WebAssign
Technology is having an impact on the way homework is assigned to students, particu-
larly in large classes. The use of online homework is growing and its appeal depends on 
ease of use, grading precision, and reliability. We have been working with the calculus 
community and WebAssign to develop a robust online homework system. Up to 50% of 
the exercises in each section are assignable as online homework, including free response, 
multiple choice, and multi-part formats.
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The system also includes Active Examples, in which students are guided in step-by-
step tutorials through text examples, with links to the textbook and to video solutions. 
The system features a customizable YouBook, a Show My Work feature, Just in Time 
review of precalculus prerequisites, an Assignment Editor, and an Answer Evaluator that 
accepts mathematically equivalent answers and allows for homework grading in much 
the same way that an instructor grades.

■ Website
The site www.stewartcalculus.com includes the following.

■  Algebra Review

■ �	 Lies My Calculator and Computer Told Me

■ �	 History of Mathematics, with links to the better historical websites

■ �	 Additional Topics (complete with exercise sets): The Trapezoidal Rule and 
Simpson’s Rule, First-Order Linear Differential Equations, Second-Order Linear 
Differential Equations, Double Integrals, Infinite Series, and Fourier Series

■ �	 Archived Problems (drill exercises and their solutions)

■ �	 Challenge Problems

■ �	 Links, for particular topics, to outside Web resources

■ �	 Selected Tools for Enriching Calculus (TEC) Modules and Visuals

■ �	 Case Studies

■ �	 Biology Background material, denoted by the icon BB  in the text

■ �	 Data sets

Content

Diagnostic Tests�  The books begin with four diagnostic tests, in Basic Algebra, Ana-
lytic Geometry, Functions, and Trigonometry.

Prologue�  This is an essay entitled Mathematics and Biology. It details how the appli-
cations of mathematics to biology have proliferated over the past several decades and 
highlights some of the applications that will appear throughout the book.

Case Studies�  The case studies are introduced here so that they can be used as moti-
vation for learning the mathematics. Each case study then recurs at the ends of various 
chapters throughout the book.

1  Functions and Sequences�  The first three sections are a review of functions from 
precalculus, but in the context of biological applications. Sections 1.4 and 1.5 review 
exponential and logarithmic functions; the latter section includes semilog and log-
log plots because of their importance in the life sciences. The final section introduces 
sequences at a much earlier stage than in most calculus books. Emphasis is placed on 
recursive sequences, that is, difference equations, allowing us to discuss discrete-time 
models in the biological sciences.

2  Limits�  We begin with limits of sequences as a follow-up to their introduction in 
Section 1.6. We feel that the basic idea of a limit is best understood in the context of 
sequences. Then it makes sense to follow with the limit of a function at infinity, which 
we present in the setting of the Monod growth function. Then we consider limits of 
functions at finite numbers, first geometrically and numerically, then algebraically. (The 
precise definition is given in Appendix D.) Continuity is illustrated by population har-
vesting and collapse.
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3 D erivatives�  Derivatives are introduced in the context of rate of change of blood 
alcohol concentration and tangent lines. All the basic functions, including the exponen-
tial and logarithmic functions, are differentiated here. When derivatives are computed in 
applied settings, students are asked to explain their meanings.

4 A pplications of Derivatives�  The basic facts concerning extreme values and shapes 
of curves are deduced using the Mean Value Theorem as the starting point. In the sec-
tion on l’Hospital’s Rule we use it to compare rates of growth of functions. Among the 
applications of optimization, we investigate foraging by bumblebees and aquatic birds. 
The Stability Criterion for Recursive Sequences is justified intuitively and a proof based 
on the Mean Value Theorem is given in Appendix E.

5  Integrals�  The definite integral is motivated by the area problem, the distance prob-
lem, and the measles pathogenesis problem. (The area under the pathogenesis curve up 
to the time symptoms occur is equal to the total amount of infection needed to develop 
symptoms.) Emphasis is placed on explaining the meanings of integrals in various con-
texts and on estimating their values from graphs and tables. There is no separate chapter 
on techniques of integration, but substitution and parts are covered here, as well as the 
simplest cases of partial fractions.

6 A pplications of Integrals�  The Kety-Schmidt method for measuring cerebral blood 
flow is presented as an application of areas between curves. Other applications include 
the average value of a fish population, blood flow in arteries, the cardiac output of the 
heart, and the volume of a liver. 

7 D ifferential Equations�  Modeling is the theme that unifies this introductory treat-
ment of differential equations. The chapter begins by constructing a model for yeast pop-
ulation size as a way to motivate the formulation of differential equations. We then show 
how phase plots allow us to gain considerable qualitative information about the behavior 
of differential equations; phase plots also provide a simple introduction to bifurcation 
theory. Examples range from cancer progression to individual growth, to ecology, to 
anesthesiology. Direction fields and Euler’s method are then studied before separable 
equations are solved explicitly, so that qualitative, numerical, and analytical approaches 
are given equal consideration. The final two sections of this chapter explore systems of 
two differential equations. This brief introduction is given here because it allows students 
to see some applications of systems of differential equations without requiring any addi-
tional mathematical preparation. A more complete treatment is then given in Chapter 10.

8  Vectors and Matrix Models�  We start by introducing higher-dimensional coordi-
nate systems and their applications in the life sciences including antigenic cartography 
and genome expression profiles. Vectors are then introduced, along with the dot product, 
and these are shown to provide insight ranging from influenza epidemiology, to cardiol-
ogy, to vaccine escape, to the discovery of new biological compounds. They also provide 
some of the tools necessary for the treatment of multivariable calculus in Chapter 9. 
The remainder of this chapter is then devoted to the application of further ideas from 
linear algebra to biology. A brief introduction to matrix algebra is followed by a section 
where these ideas are used to model many different biological phenomena with the aid 
of matrix diagrams. The final three sections are devoted to the mathematical analysis of 
such models. This includes a treatment of eigenvalues and eigenvectors, which will also 
be needed as preparation for Chapter 10, and a treatment of the long-term behavior of 
matrix models using Perron-Frobenius Theory.

9  Multivariable Calculus�  Partial derivatives are introduced by looking at a specific 
column in a table of values of the heat index (perceived air temperature) as a function of 
the actual temperature and the relative humidity. Applications include body mass index, 
infectious disease control, lizard energy expenditure, and removal of urea from the blood 
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in dialysis. If there isn’t time to cover the entire chapter, then it would make sense to 
cover just sections 9.1 and 9.2 (preceded by 8.1) and perhaps 9.6. But if Section 9.5 is 
covered, then Sections 8.2 and 8.3 are prerequisites.

10 S ystems of Linear Differential Equations�  Again modeling is the theme that uni-
fies this chapter. Systems of linear differential equations enjoy very wide application in 
the life sciences and they also form the basis for the study of systems of nonlinear dif-
ferential equations. To aid in visualization we focus on two-dimensional systems, and we 
begin with a qualitative exploration of the different sorts of behaviors that are possible 
in the context of population dynamics and radioimmunotherapy. The general solution to 
two-dimensional systems is then derived with the use of eigenvalues and eigenvectors. 
The third section then illustrates these results with four extended applications involving 
metapopulations, the immune system, gene regulation, and the transport of environmen-
tal pollutants. The chapter ends with a section that shows how the ideas from systems 
of linear differential equations can be used to understand local stability properties of 
equilibria in systems of nonlinear differential equations. To cover this chapter students 
will first need sections 8.1–8.4 and 8.6–8.7.

The content listed in the shaded area appears only in

Biocalculus: Calculus, Probability, and Statistics  
for the Life Sciences.

11 D escriptive Statistics�  Statistical analyses are central in most areas of biology. The 
basic ideas of descriptive statistics are presented here, including types of variables, mea-
sures of central tendency and spread, and graphical descriptions of data. Single variables 
are treated first, followed by an examination of the descriptive statistics for relationships 
between variables, including the calculus behind the least-square fit for scatter plots. A 
brief introduction to inferential statistics and its relationship to descriptive statistics is 
also given, including a discussion of causation in statistical analyses.

12  Probability�  Probability theory represents an important area of mathematics in the 
life sciences and it also forms the foundation for the study of inferential statistics. Basic 
principles of counting and their application are introduced first, and these are then used 
to motivate an intuitive definition of probability. This definition is then generalized to 
the axiomatic definition of probability in an accessible way that highlights the meanings 
of the axioms in a biological context. Conditional probability is then introduced with 
important applications to disease testing, handedness, color blindness, genetic disorders, 
and gender. The final two sections introduce discrete and continuous random variables 
and illustrate how these arise naturally in many biological contexts, from disease out-
breaks to DNA supercoiling. They also demonstrate how the concepts of differentiation 
and integration are central components of probability theory. 

13  Inferential Statistics�  The final chapter addresses the important issue of how one 
takes information from a data set and uses it to make inferences about the population 
from which it was collected. We do not provide an exhaustive treatment of inferential 
statistics, but instead present some of its core ideas and how they relate to calculus. Sam-
pling distributions are explained, along with confidence intervals and the logic behind 
hypothesis testing. The chapter concludes with a simplified treatment of the central ideas 
behind contingency table analysis.
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Student Resources

Enhanced WebAssign®    
Printed Access Code ISBN: 978-1-285-85826-5 
Instant Access Code ISBN: 978-1-285-85825-8

Enhanced WebAssign is designed to allow you to do your homework online. This proven 
and reliable system uses content found in this text, then enhances it to help you learn 
calculus more effectively. Automatically graded homework allows you to focus on your 
learning and get interactive study assistance outside of class. Enhanced WebAssign for 
Biocalculus: Calculus for the Life Sciences contains the Cengage YouBook, an inter-
active ebook that contains animated figures, video clips, highlighting and note-taking 
features, and more!

CengageBrain.com 
To access additional course materials, please visit www.cengagebrain.com. At the Cen-
gageBrain.com home page, search for the ISBN of your title (from the back cover of 
your book) using the search box at the top of the page. This will take you to the product 
page where these resources can be found.

Stewart Website
www.stewartcalculus.com

This site includes additional biological background for selected examples, exercises, and 
projects, including animations, further references, and downloadable data files. In addi-
tion, the site includes the following:

■  Algebra Review

■  Additional Topics

■  Drill exercises

■  Challenge Problems

■  Web Links

■  History of Mathematics

■  Tools for Enriching Calculus (TEC)

Student Solutions Manual 
ISBN: 978-1-285-84252-3

Provides completely worked-out solutions to all odd-numbered exercises in the text, giv-
ing you a chance to check your answers and ensure you took the correct steps to arrive 
at an answer.

A Companion to Calculus
By Dennis Ebersole, Doris Schattschneider, Alicia Sevilla, and Kay Somers
ISBN 978-0-495-01124-8
Written to improve algebra and problem-solving skills of students taking a calculus 
course, every chapter in this companion is keyed to a calculus topic, providing concep-
tual background and specific algebra techniques needed to understand and solve calculus 
problems related to that topic. It is designed for calculus courses that integrate the review 
of precalculus concepts or for individual use. Order a copy of the text or access the 
eBook online at www.cengagebrain.com by searching the ISBN.
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Linear Algebra for Calculus
by Konrad J. Heuvers, William P. Francis, John H. Kuisti, 
Deborah F. Lockhart, Daniel S. Moak, and Gene M. Ortner
ISBN 978-0-534-25248-9
This comprehensive book, designed to supplement a calculus course, provides an intro-
duction to and review of the basic ideas of linear algebra. Order a copy of the text or 
access the eBook online at www.cengagebrain.com by searching the ISBN.

Instructor Resources

Enhanced WebAssign®   
Printed Access Code ISBN: 978-1-285-85826-5 
Instant Access Code ISBN: 978-1-285-85825-8

Exclusively from Cengage Learning, Enhanced WebAssign offers an extensive online 
program for Biocalculus: Calculus for the Life Sciences to encourage the practice that 
is so critical for concept mastery. The meticulously crafted pedagogy and exercises in 
our proven texts become even more effective in Enhanced WebAssign, supplemented by 
multimedia tutorial support and immediate feedback as students complete their assign-
ments. Key features include:

■  Thousands of homework problems that match your textbook’s end-of-section 
exercises

■  Opportunities for students to review prerequisite skills and content both at the 
start of the course and at the beginning of each section

■  Read It eBook pages, Watch It videos, Master It tutorials, and Chat About It links

■  A customizable Cengage Learning YouBook with highlighting, note-taking, and 
search features, as well as links to multimedia resources

■  Personal Study Plans (based on diagnostic quizzing) that identify chapter topics 
that students will need to master

■  A WebAssign Answer Evaluator that recognizes and accepts equivalent math-
ematical responses in the same way an instructor grades

■  A Show My Work feature that gives instructors the option of seeing students’ 
detailed solutions

■  Lecture videos and more!

Cengage Customizable YouBook
YouBook is an eBook that is both interactive and customizable! Containing all the content 
from Biocalculus: Calculus for the Life Sciences, YouBook features a text edit tool that 
allows instructors to modify the textbook narrative as needed. With YouBook, instructors 
can quickly reorder entire sections and chapters or hide any content they don’t teach to 
create an eBook that perfectly matches their syllabus. Instructors can further customize 
the text by adding instructor-created or YouTube video links. Additional media assets 
include animated figures, video clips, highlighting and note-taking features, and more! 
YouBook is available within Enhanced WebAssign.

Complete Solutions Manual 
ISBN: 978-1-285-84255-4

Includes worked-out solutions to all exercises and projects in the text.
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Instructor Companion Website (login.cengage.com)
This comprehensive instructor website contains all art from the text in both jpeg and 
PowerPoint formats.

Stewart Website
www.stewartcalculus.com

This comprehensive instructor website contains additional material to complement the 
text, marked by the logo BB . This material includes additional Biological Background 
for selected examples, exercises, and projects, including animations, further references, 
and downloadable data files. In addition, this site includes the following:

■  Algebra Review

■  Additional Topics

■  Drill exercises

■  Challenge Problems

■  Web Links

■  History of Mathematics

■  Tools for Enriching Calculus (TEC)
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To the Student

Reading a calculus textbook is different from reading a 
newspaper or a novel, or even a physics book. Don’t be 
discouraged if you have to read a passage more than once in 
order to understand it. You should have pencil and paper and 
calculator at hand to sketch a diagram or make a calculation.

Some students start by trying their homework problems 
and read the text only if they get stuck on an exercise. We 
suggest that a far better plan is to read and understand a sec-
tion of the text before attempting the exercises. In particular, 
you should look at the definitions to see the exact meanings 
of the terms. And before you read each example, we suggest 
that you cover up the solution and try solving the problem 
yourself. You’ll get a lot more from looking at the solution if 
you do so.

Part of the aim of this course is to train you to think logi-
cally. Learn to write the solutions of the exercises in a con-
nected, step-by-step fashion with explanatory sentences—
not just a string of disconnected equations or formulas.

The answers to the odd-numbered exercises appear at the 
back of the book. Some exercises ask for a verbal explana-
tion or interpretation or description. In such cases there is no 
single correct way of expressing the answer, so don’t worry 
that you haven’t found the definitive answer. In addition, 
there are often several different forms in which to express 
a numerical or algebraic answer, so if your answer differs 
from ours, don’t immediately assume you’re wrong. For 
example, if the answer given in the back of the book is 
s2 2 1 and you obtain 1y(1 1 s2 ), then you’re right and 
rationalizing the denominator will show that the answers are 
equivalent.

The icon ; indicates an exercise that definitely requires 
the use of either a graphing calculator or a computer with 
graphing software. (Calculators, Computers, and Other 

Graphing Devices discusses the use of these graphing 
devices and some of the pitfalls that you may encounter.) 
But that doesn’t mean that graphing devices can’t be used to 
check your work on the other exercises as well. The symbol 
CAS  is reserved for problems in which the full resources of a 
computer algebra system (like Derive, Maple, Mathematica, 
or the TI-89/92) are required.

You will also encounter the symbol , which warns you 
against committing an error. We have placed this symbol in 
the margin in situations where we have observed that a large 
proportion of students tend to make the same mistake.

Applications with additional Biology Background avail-
able on www.stewartcalculus.com are marked with the icon 
BB  in the text.

Tools for Enriching Calculus, which is a companion to 
this text, is referred to by means of the symbol  TEC  and 
can be accessed in Enhanced WebAssign (selected Visuals 
and Modules are available at www.stewartcalculus.com). It 
directs you to modules in which you can explore aspects of 
calculus for which the computer is particularly useful.

We recommend that you keep this book for reference 
purposes after you finish the course. Because you will likely 
forget some of the specific details of calculus, the book will 
serve as a useful reminder when you need to use calculus in 
subsequent courses. And, because this book contains more 
material than can be covered in any one course, it can also 
serve as a valuable resource for a working biologist.

Calculus is an exciting subject, justly considered to be 
one of the greatest achievements of the human intellect. 
We hope you will discover that it is not only useful but also 
intrinsically beautiful.

james stewart
troy day
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Calculators, Computers, and  
Other Graphing Devices

Advances in technology continue to bring a wider variety of tools for 
doing mathematics. Handheld calculators are becoming more power-
ful, as are software programs and Internet resources. In addition, many 
mathematical applications have been released for smartphones and tab-
lets such as the iPad.

Some exercises in this text are marked with a graphing icon ;, 
which indicates that the use of some technology is required. Often this 
means that we intend for a graphing device to be used in drawing the 
graph of a function or equation. You might also need technology to find 
the zeros of a graph or the points of intersection of two graphs. In some 
cases we will use a calculating device to solve an equation or evaluate 
a definite integral numerically. Many scientific and graphing calcula-
tors have these features built in, such as the Texas Instruments TI-84 or 
TI-Nspire CX. Similar calculators are made by Hewlett Packard, Casio, 
and Sharp.
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You can also use computer software such as 
Graphing Calculator by Pacific Tech (www.
pacifict.com) to perform many of these func-
tions, as well as apps for phones and tablets, 
like Quick Graph (Columbiamug) or Math-
Studio (Pomegranite Software). Similar func-
tionality is available using a web interface at 
WolframAlpha.com.

xxvi
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In general, when we use the term “calculator” in this book, we 
mean the use of any of the resources we have mentioned.

The CAS  icon is reserved for problems in which the full resources 
of a computer algebra system (CAS) are required. A CAS is capable 
of doing mathematics (like solving equations, computing derivatives or 
integrals) symbolically rather than just numerically.

Examples of well-established computer algebra systems are the com-
puter software packages Maple and Mathematica. The WolframAlpha 
website uses the Mathematica engine to provide CAS functionality via 
the Web.

Many handheld graphing calculators have CAS capabilities, such as 
the TI-89 and TI-Nspire CX CAS from Texas Instruments. Some tablet 
and smartphone apps also provide these capabilities, such as the previ-
ously mentioned MathStudio.
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xxviii

Diagnostic Tests

Success in calculus depends to a large extent on knowledge of the mathematics 
that precedes calculus. The following tests are intended to diagnose weaknesses 
that you might have. After taking each test you can check your answers against 
the given answers and, if necessary, refresh your skills by referring to the review 
materials that are provided.

A Diagnostic Test: Algebra

		  1.	� Evaluate each expression without using a calculator.

	 (a)	 s23d4	 (b)	 234	 (c)	 324

	 (d)	
523

521 	 (e)	 S 2

3D
22

	 (f)	 1623y4

		  2.	�� Simplify each expression. Write your answer without negative exponents.

	 (a)	 s200 2 s32 	

	 (b)	 s3a3b3ds4ab2d2

	 (c)	 S 3x 3y2y 3

x 2y21y2D22

		  3.	� Expand and simplify.

			   (a)	 3sx 1 6d 1 4s2x 2 5d	 (b)	 sx 1 3ds4x 2 5d

			   (c)	 ssa 1 sb dssa 2 sb d	 (d)	 s2x 1 3d2

			   (e)	 sx 1 2d3

		  4.	� Factor each expression.

	 (a)	 4x 2 2 25	 (b)	 2x 2 1 5x 2 12

	 (c)	 x 3 2 3x 2 2 4x 1 12	 (d)	 x 4 1 27x

	 (e)	 3x 3y2 2 9x 1y2 1 6x21y2	 (f)	 x 3y 2 4xy

		  5.	� Simplify the rational expression.

			   (a)	
x 2 1 3x 1 2

x 2 2 x 2 2
	 (b)	

2x 2 2 x 2 1

x 2 2 9
?

x 1 3

2x 1 1

			   (c)	
x 2

x 2 2 4
2

x 1 1

x 1 2
	 (d)	

y

x
2

x

y

1

y
2

1

x
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		  6.	� Rationalize the expression and simplify.

	 (a)	
s10 

s5 2 2
	 (b)	

s4 1 h 2 2

h

		  7.	� Rewrite by completing the square.

	 (a)	 x 2 1 x 1 1	 (b)	 2x 2 2 12x 1 11

		  8.	� Solve the equation. (Find only the real solutions.)

	 (a)	 x 1 5 − 14 2 1
2 x	 (b)	

2x

x 1 1
−

2x 2 1

x

	 (c)	 x 2 2 x 2 12 − 0	 (d)	 2x 2 1 4x 1 1 − 0

	 (e)	 x 4 2 3x 2 1 2 − 0	 (f)	 3| x 2 4 | − 10

	 (g)	 2xs4 2 xd21y2 2 3s4 2 x − 0

		  9.	�� Solve each inequality. Write your answer using interval notation.

	 (a)	 24 , 5 2 3x < 17	 (b)	 x 2 , 2x 1 8

	 (c)	 xsx 2 1dsx 1 2d . 0	 (d)	 | x 2 4 | , 3

	 (e)	
2x 2 3

x 1 1
< 1

		 10.	� State whether each equation is true or false.

	 (a)	 sp 1 qd2 − p2 1 q 2	 (b)	 sab − sa sb 

	 (c)	 sa2 1 b2 − a 1 b	 (d)	
1 1 TC

C
− 1 1 T

	 (e)	
1

x 2 y
−

1

x
2

1

y
	 (f)	

1yx

ayx 2 byx
−

1

a 2 b

■  Answers to Diagnostic test A: Algebra

	 1.	� (a)	 81		  (b)	 281	 (c)	 1
81

		� (d)	 25		  (e)	 9
4	 (f)	 1

8

	 2.	� (a)	 6s2	 (b)	 48a5b7	 (c)	
x

9y7

	 3.	� (a)	 11x 2 2	 (b)	 4x 2 1 7x 2 15

		� (c)	 a 2 b	 (d)	 4x 2 1 12x 1 9

		� (e)	 x 3 1 6x 2 1 12x 1 8

	 4.	� (a)	 s2x 2 5ds2x 1 5d	 (b)	 s2x 2 3dsx 1 4d
		 (c)	 sx 2 3dsx 2 2dsx 1 2d	 (d)	 xsx 1 3dsx 2 2 3x 1 9d
		 (e)	 3x21y2sx 2 1dsx 2 2d	 (f)	 xysx 2 2dsx 1 2d

	 5.	� (a)	
x 1 2

x 2 2
	 (b)	

x 2 1

x 2 3

		 (c)	
1

x 2 2
	 (d)	 2sx 1 yd

	 6.	� (a)	 5s2 1 2s10 	 (b)	
1

s4 1 h 1 2

	 7.	� (a)	 sx 1 1
2d2

1 3
4	 (b)	 2sx 2 3d2 2 7

	 8.	� (a)	 6		  (b)	 1	 (c)	 23, 4

		 (d)	 21 6 1
2s2 	 (e)	 61, 6s2 	 (f)	 2

3, 22
3

		 (g)	 12
5

	 9.	� (a)	 f24, 3d	 (b)	 s22, 4d
		 (c)	 s22, 0d ø s1, `d	 (d)	 s1, 7d
		 (e)	 s21, 4g

	10.	� (a)	 False	 (b)	 True	 (c)	 False
		 (d)	 False	 (e)	 False	 (f)	 True

If you had difficulty with these problems, you may wish to consult the  
Review of Algebra on the website www.stewartcalculus.com.

DIAGNOSTIC TESTS    xxix
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B Diagnostic Test: Analytic Geometry

		  1.	� Find an equation for the line that passes through the point s2, 25d and

	 (a)	 has slope 23

	 (b)	 is parallel to the x-axis

	 (c)	 is parallel to the y-axis

	 (d)	 is parallel to the line 2x 2 4y − 3

		  2.	� Find an equation for the circle that has center s21, 4d and passes through the point s3, 22d.

		  3.	� Find the center and radius of the circle with equation x 2 1 y 2 2 6x 1 10y 1 9 − 0.

		  4.	� Let As27, 4d and Bs5, 212d be points in the plane.

	 (a)	� Find the slope of the line that contains A and B.

	 (b)	� Find an equation of the line that passes through A and B. What are the intercepts?

	 (c)	 Find the midpoint of the segment AB.

	 (d)	 Find the length of the segment AB.

	 (e)	 Find an equation of the perpendicular bisector of AB.

	 (f)	 Find an equation of the circle for which AB  is a diameter.

		  5.	� Sketch the region in the xy-plane defined by the equation or inequalities.

	 (a)	 21 < y < 3	 (b)	 | x | , 4 and | y | , 2

	 (c)	 y , 1 2 1
2 x	 (d)	 y > x 2 2 1

	 (e)	 x 2 1 y 2 , 4	 (f)	 9x 2 1 16y 2 − 144

■  Answers to Diagnostic test B: Analytic Geometry

	 5.	

6et-dtba05a-f
5.20.06

y

x1 2
0

y

x0

y

x0 4

3

_1

2

y

x
0

y

x0 4_4

y

x0 2

1

(a) (b) (c)

(d) (e) (f)

_1

3
2

_2

y=≈-1

≈+¥=4

 

y=1-   x1
2

If you had difficulty with these problems, you may wish to consult  
the review of analytic geometry in Appendix B.

	 1.	� (a)	 y − 23x 1 1	 (b)	 y − 25

		 (c)	 x − 2	 (d)	 y − 1
2 x 2 6

	 2.	 sx 1 1d2 1 sy 2 4d2 − 52

	 3.	� Center s3, 25d, radius 5

	 4.	� (a)	 24
3

		 (b)	 4x 1 3y 1 16 − 0; x-intercept 24, y-intercept 216
3

		 (c)	 s21, 24d
		 (d)	 20

		 (e)	 3x 2 4y − 13

		  (f)	 sx 1 1d2 1 sy 1 4d2 − 100
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C Diagnostic Test: Functions

	 	 1.	� The graph of a function f  is given at the left.
	 (a)	 State the value of f s21d.
	 (b)	 Estimate the value of f s2d.
	 (c)	 For what values of x is f sxd − 2?
	 (d)	 Estimate the values of x such that f sxd − 0.
	 (e)	 State the domain and range of f .

		  2.	 If f sxd − x 3, evaluate the difference quotient 
f s2 1 hd 2 f s2d

h
 and simplify your answer.

		  3.	 Find the domain of the function.

	 (a)	 f sxd −
2x 1 1

x 2 1 x 2 2
	 (b)	 tsxd −

s3 x 

x 2 1 1
	 (c)	 hsxd − s4 2 x 1 sx 2 2 1

		  4.	 How are graphs of the functions obtained from the graph of f ?

	 (a)	 y − 2f sxd	 (b)	 y − 2 f sxd 2 1	 (c)	 y − f sx 2 3d 1 2

		  5.	 Without using a calculator, make a rough sketch of the graph.

	 (a)	 y − x 3	 (b)	 y − sx 1 1d3	 (c)	 y − sx 2 2d3 1 3

	 (d)	 y − 4 2 x 2	 (e)	 y − sx 	 (f)	 y − 2sx 

	 (g)	 y − 22x	 (h)	 y − 1 1 x21

		  6.	 Let f sxd − H1 2 x 2

2x 1 1

if x < 0

if x . 0

	 (a)	 Evaluate f s22d and f s1d.	 (b)	 Sketch the graph of f.

		  7.	� If f sxd − x 2 1 2x 2 1 and tsxd − 2x 2 3, find each of the following functions.
	 (a)	 f 8 t	 (b)	 t 8 f 	 (c)	 t 8 t 8 t

y

0 x

1

1

Figure For Problem �1

■  Answers to Diagnostic test C: Functions

	 5.	

6et-dtCa05a-h
5.20.06

y

x0

(a)

1

1

y(b)

x0

1

_1

(c) y

x0

(2, 3)

y(d)

x0

4

2

(e) y

x0 1

(f ) y

x0 1

(g) y

x
0

1
_1

y(h)

x0

1

1

	 1.	� (a)	 22		 (b)	 2.8
		�  (c)	 23, 1	 (d)	 22.5, 0.3
		 (e)	 f23, 3g, f22, 3g

	 2.	 12 1 6h 1 h 2

	 3.	� (a)	 s2`, 22d ø s22, 1d ø s1, `d
		 (b)	 s2`, `d
		 (c)	 s2`, 21g ø f1, 4g

	 4.	� (a)	 Reflect about the x-axis
		 (b)	� Stretch vertically by a factor of 2, then shift 1 unit  

downward
		 (c)	 Shift 3 units to the right and 2 units upward
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If you had difficulty with these problems, you should look at  
sections 1.1–1.3 of this book.

   	6.	� (a)	 23, 3		  (b)	

4c3DTCax06b
10/30/08

y

x0_1

1

d Diagnostic Test: Trigonometry

		  1.	 Convert from degrees to radians.

	 (a)	 3008 	 (b)	 2188

		  2.	 Convert from radians to degrees.

	 (a)	 5�y6	 (b)	 2

		  3.	� Find the length of an arc of a circle with radius 12 cm if the arc subtends a central angle  
of 308.

		  4.	 Find the exact values.

	 (a)	 tans�y3d	 (b)	 sins7�y6d	 (c)	 secs5�y3d

	 	 5.	� Express the lengths a and b in the figure in terms of �.

		  6.	� If sin x − 1
3 and sec y − 5

4, where x and y lie between 0 and �y2, evaluate sinsx 1 yd.

		  7.	 Prove the identities.

	 (a)	 tan � sin � 1 cos � − sec �	 (b)	
2 tan x

1 1 tan2x
− sin 2x

		  8.	� Find all values of x such that sin 2x − sin x and 0 < x < 2�.

		  9.	� Sketch the graph of the function y − 1 1 sin 2x without using a calculator.

a

¨
b

24

Figure For Problem �5

■  Answers to Diagnostic test D: Trigonometry

	 6.	 1
15 s4 1 6s2 d

	 8.	 0, �y3, �, 5�y3, 2�

	 9.	

4c3DTDax09
10/30/08

_π π x0

2
y

If you had difficulty with these problems, you should look at  
Appendix C of this book.

	 1.	� (a)	 5�y3	 (b)	 2�y10

	 2.	� (a)	 1508 	 (b)	 3608y� < 114.68

	 3.	 2� cm

	 4.	� (a)	 s3 	 (b)	 21
2	 (c)	 2

	 5.	� (a)	 24 sin �	 (b)	 24 cos �

	 7.	(a)	 s f 8 tdsxd − 4x 2 2 8x 1 2	

		 (b)	 st 8 f dsxd − 2x 2 1 4x 2 5

		 (c)	 st 8 t 8 tdsxd − 8x 2 21

xxxii    Diagnostic Tests
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xxxiii

Galileo was keenly aware of the role of mathematics in the study of nature. In 1610 he 
famously wrote:

Philosophy [Nature] is written in that great book which ever lies before our eye—I mean the 
universe—but we cannot understand it if we do not first learn the language and grasp the 
symbols in which it is written. The book is written in the language of mathematics and the 
symbols are triangles, circles, and other geometrical figures, without whose help it is impos-
sible to comprehend a single word of it; without which one wanders in vain through a dark 
labyrinth.1

Indeed, in the seventeenth and later centuries Newton and other scientists employed 
mathematics in trying to explain physical phenomena. First physics and astronomy, and 
later chemistry, were investigated with the methods of mathematics. Most of the applica-
tions of mathematics to biology, however, occurred much later. 

A connection between mathematics and biology that was noticed at an early stage 
was phyllotaxy, which literally means leaf arrangement. For some trees, such as the elm, 
the leaves occur alternately, on opposite sides of a branch, and we refer to 12 phyllotaxis 
because the next leaf is half of a complete turn (rotation) beyond the first one. For beech 
trees each leaf is a third of a turn beyond the preceding one and we have 1

3 phyllotaxis. 

Oak trees exhibit 25 phyllotaxis, poplar trees 38 phyllotaxis, and willow trees 5
13 phyllotaxis. 

These fractions
1

2
 

1

3
 

2

5
 

3

8
 

5

13
  ∙ ∙ ∙

are related to the Fibonacci numbers

1  1  2  3  5  8  13  21  34  . . .

which we will study in Section 1.6. Each of the Fibonacci numbers is the sum of the two 
preceding numbers. Notice that each of the phyllotaxis fractions is a ratio of Fibonacci 
numbers spaced two apart. It has been suggested that the adaptive advantage of this 
arrangement of leaves comes from maximizing exposure to sunlight and rainfall.

The Fibonacci numbers also arise in other botanical examples of phyllotaxis: the 
spiral patterns of the florets of a sunflower, the scales of a fir cone, and the hexagonal 
cells of a pineapple. Shown are three types of spirals on a pineapple: 5 spirals sloping up 
gradually to the right, 8 spirals sloping up to the left, and 13 sloping up steeply.

5 parallel spirals 13 parallel spirals

	 5 parallel spirals	 8 parallel spirals	 13 parallel spirals
5 parallel spirals 8 parallel spirals 13 parallel spirals13 parallel spirals

Prologue: Mathematics and Biology

1. Galileo Galilei, Le Opere di Galileo Galilei, Edizione Nationale, 20 vols., ed. Antonio Favaro (Florence: 
G. Barbera, 1890–1909; reprinted 1929–39, 1964–66), vol. 4, p. 171.
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xxxiv    prologue

Another early application of mathematics to biology was the study of the spread of 
smallpox by the Swiss mathematician Daniel Bernoulli in the 1760s. Bernoulli formu-
lated a mathematical model of an epidemic of an infectious disease in the form of a 
differential equation. (Such equations will be studied in Chapter 7.) In particular, Ber-
noulli showed that, under the assumptions of his model, life expectancy would increase 
by more than three years if the entire population were inoculated at birth for smallpox. 
His work was the start of the field of mathematical epidemiology, which we will explore 
extensively in this book.

Aside from a few such instances, however, mathematical biology was slow to develop, 
probably because of the complexity of biological structures and processes. In the last few 
decades, however, the field has burgeoned. In fact, Ian Stewart has predicted that “Biol-
ogy will be the great mathematical frontier of the twenty-first century.”2

Already the scope of mathematical applications to biology is enormous, having led 
to important insights that have revolutionized our understanding of biological processes 
and spawned new fields of study. These successes have reached the highest levels of 
scientific recognition, resulting in Nobel Prizes to Ronald Ross in 1902 for his work on 
malaria transmission dynamics, to Alan Lloyd Hodgkin and Andrew Fielding Huxley 
in 1963 for their work on the transmission of nerve impulses, and to Alan Cormack and 
Godfrey Hounsfield in 1979 for the development of the methodology behind the now- 
common medical procedure of CAT scans. You will learn some of the mathematics 
behind each of these fundamental discoveries throughout this book.

Perhaps even more telling of the importance of mathematics to modern biology is the 
breadth of biological areas to which mathematics contributes. For example, mathemati-
cal analyses are central to our understanding of disease, from the function of immune 
molecules like natural killer cells and the occurrence of autoimmune diseases like lupus, 
to the spread of drug resistance. Likewise, modern medical treatments and techniques, 
from drug pharmacokinetics and dialysis, to the lung preoxygenation and hemodilution 
techniques used for surgery, have all been developed through the use of mathematical 
models.

The reach of mathematics in modern biology extends far beyond medicine, however, 
and is fundamental to virtually all areas of biology. Mathematical models and analyses 
are now routinely used in the study of physiology, from the growth and morphological 
structure of organisms, to photosynthesis, to the emergence of ordered patterns during 
cell division, to the dynamics of cell cycles and genome expression. Mathematics is used 
to understand organism movement, from humans to jellyfish, and to understand popula-
tion and ecological processes, as well as the roles of habitat destruction and harvesting 
in the conservation of endangered species. 

All of these applications are just a few of those explored in this book (a complete list 
can be found at the back of the book). But this book is just the beginning of the story. 
Modern biology and mathematics are now connected by a two-way street, with bio-
logical phenomena providing the impetus for advanced mathematical and computational 
analyses that go well beyond introductory calculus, probability, and statistics. High-
tech research companies like Microsoft now have computational biology departments 
that examine the parallels between biological systems and computation. And these, in 
turn, are providing critical insight into a broad array of questions. From the dramatic 
failure and subsequent discontinuation of the breast cancer drug bevacizumab (Avastin) 
in 2011,3 to the very nature of life itself, mathematics and biology are now moving for-

2�. I. Stewart, The Mathematics of Life (New York: Basic Books, 2011).
3. N. Savage, “Computing Cancer,” Nature (2012) 491: S62.
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ward hand in hand. Techniques in advanced geometry are being developed to quantify 
similarities between different biological patterns, from electrical impulses in the neural 
cortex, to peptide sequences and patterns of protein folding. And these analyses have 
very close mathematical connections to other kinds of pattern matching as well, includ-
ing those used by Web search engines like Google. Likewise, seemingly abstract topics 
from advanced algebra are being used in the statistical analysis of the reams of DNA 
sequence data that are now available and such biological questions are, in turn, reinvigo-
rating these abstract areas of mathematics.4

This textbook provides the first steps into this exciting and fast-moving area that 
combines mathematics with biology. As motivation for our studies, we conclude this 
prologue with a brief description of some of the areas of application that will be covered.

Calculus and Biology

Living organisms change: they move, they grow, they reproduce. Calculus can be 
regarded as the mathematics of change. So it is natural that calculus plays a major role in 
mathematical biology. The following highlighted examples of applications are some of 
the recurring themes throughout the book. As we learn more calculus, we repeatedly 
return to these topics with increasing depth.

■ Species Richness
It seems reasonable that the larger the area of a region, the larger will be the 
number of species that inhabit that region. To make scientific progress, however, 
we need to describe this relationship more precisely. Can we describe such 
species–area relationships mathematically, and can we use mathematics to better 
understand the processes that give rise to these patterns?

In Examples 1.2.6 and 1.5.14 we show that the species–area relation for bats in Mexican 
caves is well modeled using functions called power functions. Later, in Exercise 3.3.48, 
we show the same is true for tree species in Malaysian forests and then use the model  
to determine the rate at which the number of species grows as the area increases. When 
we study differential equations in Chapter 7, we show how assumptions about rates  
of increase of species lead naturally to such power-function models. In Example 4.2.5  
we also see, however, that for very large areas the power-function model is no longer 
appropriate. 

■ Vectorcardiography
Heartbeat patterns can be used to diagnose a variety of different medical 
conditions. These patterns are usually recorded by measuring the electrical 
potential on the surface of the body using several (often 12) wires, or “leads.” How 
can we use the measurements from these leads to diagnose heart problems?

In Section 1.1 and Example 4.1.4 we introduce the idea of using functions to describe 
heartbeats. We then consider, in Exercises 4.1.5–6, how the shapes of their graphs are 
diagnostic of different heart conditions. In Chapter 8 we introduce vectors and show how 
the direction of the voltage vector created by a heartbeat can be measured with ECG 
leads using the dot product (Example 8.3.7) and how this can be used to diagnose spe-

4. L. Pachter and B. Sturmfels, Algebraic Statistics for Computational Biology (Cambridge: Cambridge 
University Press, 2005).
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xxxvi    prologue

cific heart conditions (Exercises 8.2.39, 8.3.40, and 8.7.7). We also show how the tech-
niques of matrix algebra can be used to model the change in the heartbeat voltage vector 
(Exercises 8.5.16, 8.6.30, and 8.6.35).

■ Drug and Alcohol Metabolism
Biomedical scientists study the chemical and physiological changes that result 
from the metabolism of drugs and alcohol after consumption. How does the level 
of alcohol in the blood vary over time after the consumption of a drink, and can 
we use mathematics to better understand the processes that give rise to these 
patterns?

In Exercise 1.1.26 we present some data that we use to sketch the graph of the blood 
alcohol concentration (BAC) function, illustrating the two stages of the reaction in the 
human body: absorption and metabolism. In Exercises 1.4.34 and 1.5.69 we model the 
second stage with a decaying exponential function to determine when the BAC will be 
less than the legal limit. In Chapter 3 we model the entire two-stage process with a surge 
function and use it to estimate the rate of increase of the BAC in the first stage and the 
rate of decrease in the second stage (Exercise 3.5.59). Later we find the maximum value 
of the BAC (Example 4.1.7), the limiting value (Example 4.3.9), and the average value 
(Exercise 6.2.16).

■ Population Dynamics
One of the central goals of population biology and ecology is to describe the 
abundance and distribution of organisms and species over time and space. 
Can we use mathematical models to describe the processes that alter these 
abundances, and can these models then be used to predict population sizes?

In Section 1.1 we begin by using different representations of functions to describe the 
human population. Section 1.4 then illustrates how exponential functions can be used to 
model population change, from humans to malaria. Section 1.6 introduces recursion 
equations, which are fundamental tools used to study population dynamics. Several 
examples and exercises in Chapters 3 and 4 use calculus to show how derivatives of 
functions can tell us important information about the rate of growth of populations, while 
Chapters 5 and 6 illustrate how integration can be used to quantify the size of popula-
tions. Chapters 7, 8 and 10 then use differential equations and techniques from matrix 
algebra to model populations and show that populations can even exhibit chaotic behav-
ior (see the project on page 430). 

■ Antigenic Cartography and Vaccine Design
Cartography is the study of mapmaking. “Antigenic cartography” involves making 
maps of the antigenic properties of viruses. This allows us to better under-
stand the changes that occur from year to year in viruses such as influenza. 
How can we describe these changes? Why is it that flu vaccines need to be 
updated periodically because of vaccine escape, and can we use mathematics to 
understand this process and to design new vaccines?

In Exercises 4.1.7 and 4.1.8 we use calculus to explore the epidemiological consequences 
of the antigenic change that occurs during an influenza pandemic. In the project on page 
479 we model these processes using differential equations and determine the vaccine 
coverage needed to prevent an outbreak. Chapter 8 introduces the ideas of vectors and 
the geometry of higher-dimensional space and uses them in antigenic cartography (Exam-
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ples 8.1.3, 8.1.6, and 8.1.8 and Exercise 8.1.39) and in vaccine design (Exercise 8.1.38). 
Vectors are then used to quantify antigenic evolution in Example 8.2.1 and Exercises 
8.2.46, 8.3.37, 8.5.17, 8.6.31, and differential equations are used in the project on page 
514 to understand vaccine escape. 

■ Biomechanics of Human Movement
When you walk, the horizontal force that the ground exerts on you is a function of 
time. Understanding human movement, and the energetic differences between 
walking, running, and other animal gaits, like galloping, requires an understanding 
of these forces. Can we quantify these processes using mathematical models?

The description of these forces when you are walking is investigated in Exercises 1.1.16 
and 3.2.14. If you now start walking faster and faster and then begin to run, your gait 
changes. The metabolic power that you consume is a function of your speed and this is 
explored in Examples 1.1.10 and 3.2.7. In the project on page 40 we use trigonometric 
functions of time to model the vertical force that you exert on the ground with different 
gaits. In Chapter 8 we then introduce a three-dimensional coordinate system, enabling us 
to analyze the trajectory of the center of a human walking on a treadmill. Vectors are 
introduced in Section 8.2 and so we can then talk about the force vectors, such as those 
that sprinters exert on starting blocks (Example 8.2.6 and Exercise 8.2.38).

■ Measles Pathogenesis
Infection with the measles virus results in symptoms and viral transmission in 
some patients and not in others. What causes these different outcomes, and can 
we predict when each is expected to occur?

The level of the measles virus in the bloodstream of a patient with no immunity peaks 
after about two weeks and can be modeled using a third-degree polynomial (Exercise 
4.4.8). The area under this curve for the first 12 days turns out to be the total amount of 
infection needed for symptoms to develop (see the heading Pathogenesis on page 325 
and Exercises 5.1.9 and 5.3.45). In the project on page 394 we consider patients with 
partial immunity, and by evaluating areas between curves we are able to decide which 
patients will be symptomatic and infectious (or noninfectious), as well as those who will 
be asymptomatic and noninfectious.

■ Blood Flow
The heart pumps blood through a series of interconnected vessels in your 
body. Several medical problems involve abnormal blood pressure and flow. 
Can we predict blood pressure and flow as a function of various physiological 
characteristics?

In Example 3.3.9 and Exercises 3.3.49 and 3.5.92 we use Poiseuille’s law of laminar 
flow to calculate the rate at which the velocity of blood flow in arteries changes with 
respect to the distance from the center of the artery and with respect to time. In Exer-
cise 6.3.10 we show how blood pressure depends on the radius of an artery. In the section 
Cerebral Blood Flow on page 390 we explain the Kety-Schmidt method, which is a 
diagnostic technique for measuring cerebral blood flow using inhaled nitrous oxide as a 
tracer. This method depends on knowing the area between two curves representing the 
concentration of nitrous oxide as blood enters the brain and the concentration as blood 
leaves the brain in the jugular vein. (See Example 6.1.4 and Exercises 6.1.21–22.) 
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■ Conservation Biology
Human impacts arising from natural resource extraction and pollution are 
having devastating effects on many ecosystems. It is crucial that we be able to 
forecast these effects in order to better manage our impact on the environment. 
Mathematics is playing a central role in this endeavor. 

Exercise 3.1.41 shows how derivatives can be used to study thermal pollution, while 
Exercises 3.5.91 and 3.8.43 use derivatives to determine the effect of habitat fragmenta-
tion on population dynamics. The project on page 239, as well as Example 4.4.5 and 
Exercises 4.4.21 and 4.5.21, use derivatives to explore the effect of harvesting on popu-
lation sustainability. The project on page 298 then extends these ideas with an introduc-
tion to game theory. In Exercises 7.4.32–34 and Section 10.3 we use differential equa-
tions to model the effects of habitat destruction and pollution, while in Example 8.5.1 
and Exercise 8.5.22 techniques from matrix algebra are used to model the conservation 
biology of right whales and spotted owls, respectively. The stability of coral reef ecosys-
tems is explored using differential equations in Exercise 10.4.34.

The content listed in the shaded areas appears only in

Biocalculus: Calculus, Probability, and Statistics  
for the Life Sciences.

Probability, Statistics, and Biology

The mathematical tools of probability and statistics (both of which rely on calculus) are 
also fundamental to many areas of modern biology. Many biological processes––like 
species extinctions, the inheritance of genetic diseases, and the likelihood of success of 
medical procedures––involve aspects of chance that can be understood only with the use 
of probability theory. Furthermore, the statistical analysis of data forms the basis of all 
of science, including biology, and the tools of statistics are rooted in calculus and prob-
ability theory. Although this book is not the place for a thorough treatment of statistics, 
you will be introduced to some of the central concepts of the subject in Chapters 11  
and 13.

Performance-enhancing Drugs
Erythropoietin (EPO) is a hormone that stimulates red blood cell production. 
Synthetic variants of EPO are sometimes used by athletes in an attempt to 
increase aerobic capacity during competition. How effective is EPO at increasing 
performance?

In Exercise 11.1.19 we summarize data for the performance of athletes both before 
and after they have been given EPO, using various summary statistics. In Exercises 
11.3.7 and 11.3.18 we then explore these data graphically. After learning some prob-
ability theory in Chapter 12, we can then begin to analyze the effects of EPO more rig-
orously using statistical techniques. Examples 13.3.2, 13.3.3, and 13.3.6 illustrate how 
we can use these techniques to test the hypothesis that EPO alters athletic performance.
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DNA Supercoiling
When DNA is packaged into chromosomes, it is often coiled and twisted to make it 
more compact. This is called supercoiling. Some of these coils are very dynamic, 
repeatedly forming and disappearing at different locations throughout the genome. 
What causes this process?

One hypothesis is that the coils form and disappear randomly over time, as a result of 
chance twisting and untwisting of the DNA. To explore whether this hypothesis provides 
a reasonable explanation, we need to determine the pattern of supercoiling that it would 
cause. In Chapter 12 we introduce the necessary ideas of probability theory to model this 
process. The project after Section 12.4 then uses these ideas to model the random twist-
ing and untwisting of supercoils. You will see that the available supercoiling data match 
the model predictions remarkably well.

Huntington’s Disease
Huntington’s disease is a genetic disorder causing neurodegeneration and 
eventual death. Symptoms typically appear in a person’s thirties and death occurs 
around 20 years after the onset of symptoms. What causes the variability in the 
age of onset, and how likely are you to inherit this disease if one of your parents 
has it? 

In Exercise 11.1.14 we summarize data for the age of onset, and Exercises 11.2.15 and 
11.2.29 explore the data graphically. Exercises 13.1.14 and 13.1.23 then use so-called 
“normal curves” to estimate the fraction of cases having different ages of onset. In Exer-
cises 13.2.7 and 13.3.7 we use confidence intervals and hypothesis testing, respectively, 
to better understand the mean age of onset. Exercises 11.3.14 and 11.3.20 use statistical 
techniques to explore how the age of onset is related to different DNA sequences, and 
Examples 12.3.3 and 12.3.9 illustrate how probability theory can be used to predict the 
likelihood of a child inheriting the disease from its parents.
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A mathematical model is a mathematical description (often 

by means of a function or an equation) of a real-world phe-

nomenon, such as the size of a population, the speed of a 

falling object, the frequency of a particular gene, the concen-

tration of an antibiotic in a patient, or the life expectancy of 

a person at birth. The purpose of the model is to understand 

the phenomenon and perhaps to make predictions about 

future behavior.

Figure 1 illustrates the process of mathematical modeling. 

Given a real-world problem, the first task is to formulate a 

mathematical model by identifying and naming the relevant 

quantities and making assumptions that simplify the phe-

nomenon enough to make it mathematically tractable. We 

use our knowledge of the biological situation and our math-

ematical skills to obtain equations that relate the quantities. 

In situations where there is no physical law to guide us, we 

may need to collect data (either from a library or the Internet 

or by conducting our own experiments) and examine the data 

to discern patterns.

The second stage is to apply the mathematics that we 

know (such as the calculus that will be developed throughout 

this book) to the mathematical model that we have formu-

lated in order to derive mathematical conclusions. Then, in 

the third stage, we take those mathematical conclusions and 

interpret them as information about the original biological 

phenomenon by way of offering explanations or making pre-

dictions. The final step is to test our predictions by checking 

them against new real data. If the predictions don’t compare 

well with reality, we need to refine our model or to formulate 

a new model and start the cycle again.

A mathematical model is never a completely accurate 

representation of a physical situation—it is an idealization. 

Picasso once said that “art is a lie that makes us realize 

truth.” The same could be said about mathematical models. 

A good model simplifies reality enough to permit mathemati-

cal calculations, but is nevertheless realistic enough to teach 

us something important about the real world. Because mod-

els are simplifications, however, it is always important to keep 

their limitations in mind. In the end, Mother Nature has the 

final say.

Throughout this book we will explore a variety of different 

mathematical models from the life sciences. In each case we 

provide a brief description of the real-world problem as well 

as a brief mention of the real-world predictions that result 

from the mathematical analysis. Nevertheless, the main body 

of this text is designed to teach important mathematical con-

cepts and techniques and therefore its focus is primarily on 

the center portion of Figure 1.

To better illustrate the entirety of the modeling process, 

however, we also provide a pair of case studies in math-

ematical modeling. Each case study is an extended, self- 

contained example of mathematical modeling from the scien-

tific literature. In the following pages the real-world problem 

at the center of each case study is introduced as motivation 

for learning the mathematics in this book. Then, throughout 

subsequent chapters, these case studies are periodically 

revisited as we develop our mathematical skills further. In 

doing so, we illustrate how these mathematical skills help to 

address real-world problems. Additional case studies can be 

found on the website www.stewartcalculus.com.

xli  

Case Studies in  
Mathematical Modeling

Figure �1  The modeling process
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Case Study 1  Kill Curves and Antibiotic Effectiveness

Antibiotics are often prescribed to patients who have bacterial infections. 
When a single dose of antibiotic is taken, its concentration at the site of 
infection initially increases very rapidly before slowly decaying back to zero as 
the antibiotic is metabolized.1 The curve shown in Figure 1 illustrates this pattern and is 
referred to as the antibiotic concentration profile.

The clinical effectiveness of an antibiotic is determined not only by its concentration 
profile but also by the effect that any given concentration has on the growth rate of the 
bacteria population. This effect is characterized by a dose response relationship, which is 
a graph of the growth rate of the bacteria population as a function of antibiotic concentra-
tion. Bacteria typically grow well under low antibiotic concentrations, but their growth 
rate becomes negative (that is, their population declines) if the antibiotic concentration is 
high enough. Figure 2 shows an example of a dose response relationship.2
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Figure �1
Antibiotic concentration profile in plasma of a 
healthy human volunteer after receiving 500 mg 
of ciprofloxacin

Figure 2
Dose response relationship for ciprofloxacin with 
the bacteria E. coli

Together, the antibiotic concentration profile and the dose response relationship deter-
mine how the bacteria population size changes over time. When the antibiotic is first 
administered, the concentration at the site of infection will be high and therefore the 
growth rate of the bacteria population will be negative (the population will decline). As 
the antibiotic concentration decays, the growth rate of the bacteria population eventually 
changes from negative to positive and the bacteria population size then rebounds. The 
plot of the bacteria population size as a function of time after the antibiotic is given is 
called the kill curve. An example is shown in Figure 3.

To determine how much antibiotic should be used to treat an infection, clinical 
researchers measure kill curves for different antibiotic doses. Figure 4 presents a family 
of such curves: Notice that as the dose of antibiotic increases, the bacteria population 
tends to decline to lower levels and to take longer to rebound.

When developing new antibiotics, clinical researchers summarize kill curves like 
those in Figure 4 into a simpler form to see more clearly the relationship between the 

xlii  

1. Adapted from S. Imre et al., “Validation of an HPLC Method for the Determination of Ciprofloxacin in 
Human Plasma,” Journal of Pharmaceutical and Biomedical Analysis 33 (2003): 125–30.

2. Adapted from A. Firsov et al., “Parameters of Bacterial Killing and Regrowth Kinetics and Antimicrobial 
Effect Examined in Terms of Area under the Concentration-Time Curve Relationships: Action of Ciprofloxa-
cin against Escherichia coli in an In Vitro Dynamic Model,” Antimicrobial Agents and Chemotherapy 41 
(1997): 1281–87.
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FIGURE �3
The kill curve of ciprofloxacin for E. coli when measured in a  
growth chamber. A dose corresponding to a concentration of  
0.6 mgymL was given at t − 0.

FIGURE �4
The kill curves of ciprofloxacin for E. coli when measured in 
a growth chamber. The concentration of ciprofloxin at t − 0 is 
indicated above each curve (in mgymL).

magnitude of antibiotic treatment and its effectiveness. This is done by obtaining both a 
measure of the magnitude of antibiotic treatment, from the antibiotic concentration pro-
file underlying each kill curve, and a measure of the killing effectiveness, from the kill 
curve itself. These measures are then plotted on a graph of killing effectiveness against 
the magnitude of antibiotic treatment.

As an example, Figure 5 plots the magnitude of the drop in population size before the 
rebound occurs (a measure of killing effectiveness) against the peak antibiotic concen-
tration (a measure of the magnitude of antibiotic treatment). Each of the eight colored 
points corresponds to the associated kill curve in Figure 4. (Peak concentration is mea-
sured in dimensionless units, as will be explained in Case Study 1a.) The points indicate 
that, overall, as the peak concentration increases, the magnitude of the drop in population 
size increases as well. This  relationship can then be used by the researchers to choose an 
antibiotic dose that gives the peak concentration required to kill the bacterial infection.
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This approach for choosing a suitable antibiotic dose may seem sensible, but there are 
many different measures for the killing effectiveness of an antibiotic, as well as many 
different measures for the magnitude of antibiotic treatment. Different measures capture 
different properties of the bacteria–antibiotic interaction. For example, Figure 4 shows 
that many different antibiotic doses produce approximately the same magnitude of drop 
in bacteria population despite the fact that the doses result in large differences in the time 
necessary for population rebound to occur. Thus the magnitude of the drop in population 
size before rebound occurs does not completely capture the killing effectiveness of the 
different antibiotic doses.

For this reason, researchers typically quantify antibiotic killing effectiveness in sev-
eral ways. The three most common are (1) the time taken to reduce the bacteria popula-
tion to 90% of its initial value, (2) the drop in population size before rebound occurs, as 
was used in Figure 5, and (3) a measure that combines the drop in population size and 
the duration of time that the population size remains small (because effective treatment 
not only produces a large drop in bacteria population but maintains the population at a 
low level for a long period of time). 

Similarly, there are many measures for the magnitude of antibiotic treatment. The 
most commonly used measures include (1) peak antibiotic concentration, as was used 
in Figure 5, (2) duration of time for which the antibiotic concentration is high enough to 
cause negative bacteria growth, and (3) a measure that combines both peak concentration 
and duration of time that the concentration remains high.

The conclusions clinical researchers obtain about suitable antibiotic doses can differ 
depending on which measures are used. For example, Figure 6 shows the relationship 
between the time taken to reduce the bacteria population to 90% of its initial value plotted 
against the same measure of peak antibiotic concentration as was used in Figure 5 for the 
kill curves shown in Figure 4. Unlike Figure 5, Figure 6 shows no consistent relationship 
between effectiveness (as measured by the speed of the population decline) and strength 
of treatment.
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To use appropriate measures to formulate effective antibiotic doses, we therefore need 
to understand what determines the shape of the relationships between measures, and 
when and why these relationships will differ depending on the measures used. This is 
where mathematical modeling can play an important role: By modeling the biological 
processes involved, we can better understand what drives the different patterns, and we 
can then use models to make predictions about what we expect to observe in other situa-
tions. Making such predictions is the goal of this case study.

The order in which mathematical tools are used by researchers is not always the same 
as the order in which they are best learned. For example, when analyzing the problem in 

Figure �6

xliv    case study 1  |  Kill Curves and Antibiotic Effectiveness
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case study 1  |  Kill Curves and Antibiotic Effectiveness    xlv

this case study, researchers would first use techniques from Chapter 3 and then Chapter 6 
to model the dynamics of the drug and bacteria and to quantity the strength of treatment 
and effectiveness of killing. They would then analyze these models using the techniques 
of Chapters 1 and 2.

For our learning objectives, however, this case study will be developed in the opposite 
order: In Case Study 1a we will use a given model for the effect of antibiotics on bacteria 
growth to draw conclusions about the differences in the relationships shown in Figures 
5 and 6. In Case Study 1b we will begin to fill in the gaps by deriving the model used 
in Case Study 1a. In Case Study 1c we will continue to fill in gaps from Case Study 1a 
by deriving different measures for the magnitude of antibiotic treatment. We will also 
show how a process called dose fractionation can be used to alter various aspects of these 
measures. Finally, in Case Study 1d we will use the model derived in Case Study 1b to 
make new predictions about the effectiveness of antibiotics and compare these predic-
tions to data.
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Case Study 2  Hosts, Parasites, and Time-Travel

By definition, a parasite has an antagonistic relationship with the host it 
infects. For this reason we might expect the host to evolve strategies that 
resist infection, and the parasite to evolve strategies that subvert this host resis-
tance. The end result might be a never-ending coevolutionary cycle between host and 
parasite, with neither party gaining the upper hand. Indeed, we might expect the ability 
of the parasite to infect the host to remain relatively unchanged over time despite the fact 
that both host and parasite are engaged in cycles of evolutionary conflict beneath this 
seemingly calm surface.

This is an intriguing idea, but how might it be examined scientifically? Ideally we 
would like to hold the parasite fixed in time and see if its ability to infect the host declines 
as the host evolves resistance. Alternatively, we might hold the host fixed in time and see 
if the parasite’s ability to infect the host increases as it evolves ways to subvert the host’s 
current defenses. 

Another possibility would be to challenge the host with parasites from its evolution-
ary past. In this case we might expect the host to have the upper hand, since it will have 
evolved resistance to these ancestral parasites. Similarly, if we could challenge the host 
with parasites from its evolutionary future, then we might expect the parasite to have the 
upper hand, since it will have evolved a means of subverting the current host defenses.

Exactly this sort of “time-travel” experiment has been done using a bacterium as 
the host and a parasite called a bacteriophage.1 To do so, researchers let the host and 
parasite coevolve together for several generations. During this time, they periodically 
took samples of both the host and the parasite and placed the samples in a freezer. After 
several generations they had a frozen archive of the entire temporal sequence of hosts 
and parasites. The power of their approach is that the host and parasite could then be 
resuscitated from this frozen state. This allowed the researchers to resuscitate hosts from 
one point in time in the sequence and then challenge them with resuscitated parasites 
from their past, present, and future.

The results of one such experiment are shown in Figure 1. The data show that hosts 
are indeed better able to resist parasites from their past, but are much more susceptible to 
infection by those from their future.

This is a compelling experiment but, by its very nature, it was conducted in a highly 
artificial setting. It would be interesting to somehow explore this idea in a natural host–
parasite system. Incredibly, researchers have done exactly that with a species of fresh-
water crustacean and its parasite.2

Daphnia are freshwater crustacea that live in many lakes. They are parasitized by 
many different microbes, including a species of bacteria called Pasteuria ramosa. These 
two organisms have presumably been coevolving in lakes for many years, and the ques-
tion is whether or not they too have been undergoing cycles of evolutionary conflict.

Occasionally, both the host and the parasite produce dormant offspring (called propa-
gules) that sink to the bottom of the lake. As a time passes, sediment containing these 
propagules accumulates at the bottom of the lake. Over many years this sediment builds 
up, providing a historical record of the host and parasite (see Figure 2). A sediment core 
can then be taken from the bottom of the lake, giving an archive of the temporal sequence 
of hosts and parasites over evolutionary time (see Figure 3). And again, as with the first 
experiment, these propagules can be resuscitated and infection experiments conducted.
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Horizontal axis is the time from which 
the parasite was taken, relative to the 
host’s point in time.

Figure �2
Sedimentation

1.� A. Buckling et al. 2002. “Antagonistic Coevolution between a Bacterium and a Bacteriophage.” Proceedings 
of the Royal Society: Series B 269 (2002): 931–36.

2. �E. Decaestecker et al. “Host-Parasite ‘Red Queen’ Dynamics Archived in Pond Sediment.” Nature 450 
(2007): 870–73.xlvi  
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The results of the second experiment are shown in Figure 4: The pattern is quite dif-
ferent from that in Figure 1, with hosts being able to resist parasites from their past and 
their future, more than those taken from a contemporary point in time.

How can we understand these different patterns? Is it possible that this Daphnia– 
parasite system is also undergoing the same dynamic as the bacteriophage system, but 
that the different pattern seen in this experiment is simply due to differences in con-
ditions? More generally, what pattern would we expect to see in the Daphnia experi-
ment under different conditions if such coevolutionary conflict is actually occurring? To 
answer these questions we need a more quantitative approach. This is where mathemati-
cal modeling comes into play. 

Models begin by simplifying reality (recall that a model is “a lie that makes us realize 
truth”). Thus, let’s begin by supposing that there are only two possible host genotypes 
(A and a) and two possible parasite genotypes (B and b). Suppose that parasites of type 
B can infect only hosts of type A, while parasites of type b can infect only hosts of type 
a. Although we know reality is likely more complicated than this, these simplifying 
assumptions capture the essential features of an antagonistic interaction between a host 
and its parasite.

Under these assumptions we might expect parasites of type B to flourish when hosts 
of type A are common. But this will then give an advantage to hosts of type a, since they 
are resistant to type B parasites. As a result, type a hosts will then increase in frequency. 
Eventually, however, this will favor the spread of type b parasites, which then sets the 
stage for the return of type A hosts. At this point we might expect the cycle to repeat.

In this case study you will construct and analyze a model of this process. As is com-
mon in modeling, the order in which different mathematical tools are used by scientists 
is not always the same as the order in which they are best learned. For example, when 
scientists worked on this question they first used techniques from Chapter 7 and then 
Chapter 10 to formulate the model. They then used techniques from Chapter 6 and then 
Chapter 2 to draw important biological conclusions.3 To fit with our learning objectives, 
however, this case study is developed the other way around. Following Chapter 2, in 
Case Study 2a, we will use given functions to draw biological conclusions about host–
parasite coevolution. Following Chapter 6, in Case Study 2b, we will then begin to fill in 
the gaps by deriving these functions from the output of a model. Following Chapter 7, in 
Case Study 2c, we will then formulate this model explicitly, and following Chapter 10, 
in Case Study 2d, we will derive the output of the model that is used in Case Study 2b.

Figure �3
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Horizontal axis is the time from which 
the parasite was taken, relative to  
the host’s point in time.
Source: Adapted from S. Gandon et al., “Host-

Parasite Coevolution and Patterns of Adaptation 

across Time and Space,” Journal of Evolutionary 

Biology 21 (2008): 1861–66.

3. S. Gandon et al., “Host–Parasite Coevolution and Patterns of Adaptation across Time and Space,” Journal of 
Evolutionary Biology 21 (2008): 1861–66.
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CASE STUDY 1a: Kill Curves and Antibiotic Effectiveness

Often a graph is the best way to 

represent a function because it 

conveys so much information at a 

glance. The electrocardiograms 

shown are graphs that exhibit 

electrical activity in various parts 

of the heart (See Figure 1 on 

page 2.) They enable a cardiolo-

gist to view the heart from differ-

ent angles and thereby diagnose 

possible problems.

© Vydrin / Shutterstock.com
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2    Chapter 1  |  Functions and Sequences

The fundamental objects that we deal with in calculus are functions. 

This chapter prepares the way for calculus by discussing the basic ideas concern-

ing functions, their graphs, and ways of transforming and combining them. We 

stress that a function can be represented in different ways: by an equation, in a table, 

by a graph, or in words. We look at the main types of functions that occur in calculus 

and describe the process of using these functions as mathematical models in biology.  

A special type of function, namely a sequence, is often used in modeling biological 

phenomena. In particular, we study recursive sequences, also called difference equa-

tions, because they are useful in describing cell division, insect populations, and other 

biological processes.

1.1 Four Ways to Represent a Function

Functions arise whenever one quantity depends on another. Consider the following four 
situations.

A.	 The area A of a circle depends on the radius r of the circle. The rule that connects 
r and A is given by the equation A − �r 2. With each positive number r there is 
associated one value of A, and we say that A is a function of r.

B.	 The human population of the world P depends on the time t. Table 1 gives esti-
mates of the world population Pstd at time t, for certain years. For instance,

Ps1950d < 2,560,000,000

	� But for each value of the time t there is a corresponding value of P, and we say that 
P is a function of t.

C.	 The cost C of mailing an envelope depends on its weight w. Although there is no 
simple formula that connects w and C, the post office has a rule for determining C 
when w is known.

D.	� Figure 1 shows a graph called an electrocardiogram (ECG), or rhythm strip, one of 
12 produced by an electrocardiograph. It measures the electric potential V  (mea-
sured in millivolts) as a function of time in a certain direction (toward the positive 
electrode of a lead) corresponding to a particular part of the heart. For a given 
value of the time t, the graph provides a corresponding value of V .

t 
(seconds)

V

0
1

1

2 3 4

(millivolts)

Each of these examples describes a rule whereby, given a number (r, t, w, or t), another 
number (A, P, C, or V) is assigned. In each case we say that the second number is a func-
tion of the first number.

Definition � A function f  is a rule that assigns to each element x in a set D 
exactly one element, called f sxd, in a set E.�

Table �1

Year
Population 
(millions)

1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6080
2010 6870

Figure �1
Electrocardiogram

Source: Courtesy of Dr. Brian Gilbert
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Section 1.1  |  Four Ways to Represent a Function    3

We usually consider functions for which the sets D and E are sets of real numbers. 
The set D is called the domain of the function. The number f sxd is the value of f at x 
and is read “ f  of x.” The range of f  is the set of all possible values of f sxd as x varies 
throughout the domain. A symbol that represents an arbitrary number in the domain of a 
function f  is called an independent variable. A symbol that represents a number in the 
range of f  is called a dependent variable. In Example A, for instance, r is the indepen-
dent variable and A is the dependent variable.

It’s helpful to think of a function as a machine (see Figure 2). If x is in the domain of 
the function f, then when x enters the machine, it’s accepted as an input and the machine 
produces an output f sxd according to the rule of the function. Thus we can think of the 
domain as the set of all possible inputs and the range as the set of all possible outputs.

The preprogrammed functions in a calculator are good examples of a function as a 
machine. For example, the square root key on your calculator computes such a function. 
You press the key labeled s   (or sx ) and enter the input x. If x , 0, then x is not in the 
domain of this function; that is, x is not an acceptable input, and the calculator will indi-
cate an error. If x > 0, then an approximation to sx  will appear in the display. Thus the 
sx  key on your calculator is not quite the same as the exact mathematical function f  
defined by f sxd − sx .

Another way to picture a function is by an arrow diagram as in Figure 3. Each arrow 
connects an element of D to an element of E. The arrow indicates that f sxd is associated 
with x, f sad is associated with a, and so on.

f
D E

ƒ

f(a)a

x

The most common method for visualizing a function is its graph. If f  is a function 
with domain D, then its graph is the set of ordered pairs

hsx, f sxdd | x [ Dj

(Notice that these are input-output pairs.) In other words, the graph of f  consists of all 
points sx, yd in the coordinate plane such that y − f sxd and x is in the domain of f .

The graph of a function f  gives us a useful picture of the behavior of a function. Since 
the y-coordinate of any point sx, yd on the graph is y − f sxd, we can read the value of 
f sxd from the graph as being the height of the graph above the point x (see Figure 4). 
The graph of f  also allows us to picture the domain of f  on the x-axis and its range on 
the y-axis as in Figure 5.

{x, ƒ}

ƒ

f(1)
f(2)

0 1 2 x x

y

        
0

y � ƒ(x)

domain

range

x

y

Figure �4           Figure �5

Figure �2
Machine diagram for a function f

x
(input)

ƒ
(output)

f

Figure �3
Arrow diagram for f
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4    Chapter 1  |  Functions and Sequences

 Example 1   |  The graph of a function f  is shown in Figure 6.
(a)  Find the values of f s1d and f s5d.
(b)  What are the domain and range of f ?

Solution
(a)	 We see from Figure 6 that the point s1, 3d lies on the graph of f , so the value of f   
at 1 is f s1d − 3. (In other words, the point on the graph that lies above x − 1 is 3 units 
above the x-axis.)

When x − 5, the graph lies about 0.7 units below the x-axis, so we estimate that 
f s5d < 20.7.

(b)	 We see that f sxd is defined when 0 < x < 7, so the domain of f  is the closed inter-
val f0, 7g. Notice that f  takes on all values from 22 to 4, so the range of f  is

	 hy | 22 < y < 4j − f22, 4g	 ■

 Example 2   |  Sketch the graph and find the domain and range of each function.
(a)  fsxd − 2x 2 1	 (b)  tsxd − x 2

Solution
(a)	 The equation of the graph is y − 2x 2 1, and we recognize this as being the equa-
tion of a line with slope 2 and y-intercept 21. (Recall the slope-intercept form of the 
equation of a line: y − mx 1 b. See Appendix B.) This enables us to sketch a portion 
of the graph of f  in Figure 7. The expression 2x 2 1 is defined for all real numbers, so 
the domain of f  is the set of all real numbers, which we denote by R. The graph shows 
that the range is also R.
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Figure �7
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y

1

x1

y=≈

Figure �8

(b)  Since ts2d − 22 − 4 and ts21d − s21d2 − 1, we could plot the points s2, 4d and 
s21, 1d, together with a few other points on the graph, and join them to produce the 
graph (Figure 8). The equation of the graph is y − x 2, which represents a parabola (see 
Appendix B). The domain of t is R. The range of t consists of all values of tsxd, that is, 
all numbers of the form x 2. But x 2 > 0 for all numbers x and any positive number y is a 
square. So the range of t is hy | y > 0j − f0, `d. This can also be seen from Figure 8.	■

 Example 3   |  Antihypertension medication � Figure 9 shows the effect of 
nifedipine tablets (antihypertension medication) on the heart rate Hstd of a patient as a 
function of time.
(a)  Estimate the heart rate after two hours.
(b)  During what time period is the heart rate less than 65 beatsymin?

x

y

0

1

1

Figure �6

The notation for intervals is given in  
Appendix A.
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Section 1.1  |  Four Ways to Represent a Function    5

Solution
(a)	 If Hstd is the rate at time t, we estimate from the graph in Figure 9 that

Hs2d < 62.5 beatsymin

(b)	 Notice that the curve lies below the line H − 65 for 1 < t < 5. In other words,  
the heart rate is less than 65 beatsymin from 1 hour to 5 hours after the tablet is  
administered.	 ■

 Example 4   |  If f sxd − 2x 2 2 5x 1 1 and h ± 0, evaluate 
f sa 1 hd 2 f sad

h
.

Solution � We first evaluate f sa 1 hd by replacing x by a 1 h in the expression  
for f sxd:

f sa 1 hd − 2sa 1 hd2 2 5sa 1 hd 1 1

  − 2sa2 1 2ah 1 h2d 2 5sa 1 hd 1 1

  − 2a2 1 4ah 1 2h2 2 5a 2 5h 1 1

�Then we substitute into the given expression and simplify:

f sa 1 hd 2 f sad
h

−
s2a2 1 4ah 1 2h2 2 5a 2 5h 1 1d 2 s2a2 2 5a 1 1d

h

  −
2a2 1 4ah 1 2h2 2 5a 2 5h 1 1 2 2a2 1 5a 2 1

h

−
4ah 1 2h2 2 5h

h
− 4a 1 2h 2 5

■

■ Representations of Functions
There are four possible ways to represent a function:

■  verbally	 (by a description in words)

■  numerically	 (by a table of values)

■  visually	 (by a graph)

■  algebraically	 (by an explicit formula)

If a single function can be represented in all four ways, it’s often useful to go from 
one representation to another to gain additional insight into the function. (In Example 
2, for instance, we started with algebraic formulas and then obtained the graphs.) But 
certain functions are described more naturally by one method than by another. With this 
in mind, let’s reexamine the four situations that we considered at the beginning of this 
section.

A.	 The most useful representation of the area of a circle as a function of its radius is 
probably the algebraic formula Asrd − �r 2, though it is possible to compile a table 
of values or to sketch a graph (half a parabola). Because a circle has to have a posi-
tive radius, the domain is hr | r . 0j − s0, `d, and the range is also s0, `d.

The expression

f sa 1 hd 2 f sad
h

in Example 4 is called a difference 
quotient and occurs frequently in 
calculus. As we will see in Chapter 2, it 
represents the average rate of change of 
f sxd between x − a and x − a 1 h.

1
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H

H=65
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Figure �9
Source: Adapted from M. Brown et al., “Formula-

tion of Long-Acting Nifedipine Tablets Influences 

the Heart Rate and Sympathetic Nervous System 

Response in Hypertensive Patients,” British Jour-

nal of Clinical Pharmacology 65 (2008): 646–52.
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6    Chapter 1  |  Functions and Sequences

B.	 We are given a description of the function in words: Pstd is the human population 
of the world at time t. Let’s measure t so that t − 0 corresponds to the year 1900. 
The table of values of world population provides a convenient representation of 
this function. If we plot these values, we get the graph (called a scatter plot) in 
Figure 10. It too is a useful representation; the graph allows us to absorb all the 
data at once. What about a formula? Of course, it’s impossible to devise an explicit 
formula that gives the exact human population Pstd at any time t. But it is possible 
to find an expression for a function that approximates Pstd. In fact, using methods 
explained in Section 1.2, we obtain the approximation

Pstd < f std − s1.43653 3 109d ∙ s1.01395dt

	 Figure 11 shows that it is a reasonably good “fit.” The function f  is called a mathe-
matical model for population growth. In other words, it is a function with an 
explicit formula that approximates the behavior of our given function. We will see, 
however, that the ideas of calculus can be applied to a table of values; an explicit 
formula is not necessary.

		  The function P is typical of the functions that arise whenever we attempt to apply 
calculus to the real world. We start with a verbal description of a function. Then 
we might be able to construct a table of values of the function, perhaps from 
instrument readings in a scientific experiment. Even though we don’t have com-
plete knowledge of the values of the function, we will see throughout the book that 
it is still possible to perform the operations of calculus on such a function.

C.	 Again the function is described in words: Let Cswd be the cost of mailing a large 
envelope with weight w. The rule that the US Postal Service used as of 2014 is as 
follows: The cost is 92 cents for up to 1 oz, plus 20 cents for each additional ounce 
(or less) up to 13 oz. The table of values shown in the margin is the most conve-
nient representation for this function, though it is possible to sketch a graph (see 
Example 11).

D.	 The graph shown in Figure 1 is the most natural representation of the voltage 
function Vstd that reflects the electrical activity of the heart. It’s true that a table of 
values could be compiled, and it is even possible to devise an approximate formula. 
But everything a doctor needs to know—amplitudes and patterns—can be seen 
easily from the graph. (The same is true for the patterns seen in polygraphs for 
lie-detection and seismographs for analysis of earthquakes.) The waves represent 

5x10'

20 40 60 80 100 120

P

t0

Years since 1900

Figure �11

5x10'

P

t20 40 60 80 100 1200

Years since 1900

Figure �10

A function defined by a table of values 
is called a tabular function.

	 w (ounces)	 Cswd (dollars)

	 0 , w < 1	 0.92
	 1 , w < 2	 1.12
	 2 , w < 3	 1.32
	 3 , w < 4	 1.52
	 4 , w < 5	 1.72
	 ∙	 ∙
	 ∙	 ∙

	
∙	 ∙

t 
(years since 1990)

Population 
(millions)

	 0 1650
	 10 1750
	 20 1860
	 30 2070
	 40 2300
	 50 2560
	 60 3040
	 70 3710
	 80 4450
	 90 5280

100 6080
110 6870
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Section 1.1  |  Four Ways to Represent a Function    7

the depolarization and repolarization of the atria and ventricles of the heart. They 
enable a cardiologist to see whether the patient has irregular heart rhythms and 
help diagnose different types of heart disease.

In the next example we sketch the graph of a function that is defined verbally.

 Example 5   |  When you turn on a hot-water faucet, the temperature T  of the water  
depends on how long the water has been running. Draw a rough graph of T  as a func-
tion of the time t that has elapsed since the faucet was turned on.

Solution � The initial temperature of the running water is close to room temperature 
because the water has been sitting in the pipes. When the water from the hot-water tank 
starts flowing from the faucet, T  increases quickly. In the next phase, T  is constant at 
the temperature of the heated water in the tank. When the tank is drained, T  decreases  
to the temperature of the water supply. This enables us to make the rough sketch of T  
as a function of t in Figure 12.	 ■

 Example 6   |  BB   Bone mass � A human femur (thighbone) is essentially a 
hollow tube filled with yellow marrow (see Figure 13). If the outer radius is r and the 
inner radius is r in, an important quantity characterizing such bones is 

k −
r in

r

The density of bone is approximately 1.8 gycm3 and that of marrow is about 1 gycm3. 
For a femur with length L, express its mass as a function of k.

Solution � The mass of the tubular bone is obtained by subtracting the mass of the 
inner tube from the mass of the outer tube:

1.8�r 2L 2 1.8�r 2
inL − 1.8�r 2L 2 1.8�srkd2L

�Similarly, the mass of the marrow is

1 3 s�r 2
inLd − �srkd2L

So the total mass as a function of k is

mskd − 1.8�r 2L 2 1.8�srkd2L 1 �srkd2L

 − �r 2Ls1.8 2 0.8k 2d
	

■

 Example 7   |  Find the domain of each function.

(a)	 f sxd − sx 1 2 	 (b)  tsxd −
1

x 2 2 x

Solution �
(a)	 Because the square root of a negative number is not defined (as a real number),  
the domain of f  consists of all values of x such that x 1 2 > 0. This is equivalent to 
x > 22, so the domain is the interval f22, `d.
(b)	 Since

tsxd −
1

x 2 2 x
−

1

xsx 2 1d

and division by 0 is not allowed, we see that tsxd is not defined when x − 0 or x − 1. 

Figure �12

t

T

0

nutrient canal

compact
bone tissue

spongy
bone
tissue

location of
yellow marrow

Figure �13
Structure of a human femur
Source: From Starr. Biology, 8E © 2011 Brooks/

Cole, a part of Cengage Learning, Inc. Reproduced 

by permission. www.cengage.com/permissions

Domain Convention
If a function is given by a formula and 
the domain is not stated explicitly, the 
convention is that the domain is the set 
of all numbers for which the formula 
makes sense and defines a real number.
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8    Chapter 1  |  Functions and Sequences

Thus the domain of t is

hx | x ± 0, x ± 1j

which could also be written in interval notation as

s2`, 0d ø s0, 1d ø s1, `d
	

■

The graph of a function is a curve in the xy-plane. But the question arises: Which 
curves in the xy-plane are graphs of functions? This is answered by the following test.

The Vertical Line Test � A curve in the xy-plane is the graph of a function of x 
if and only if no vertical line intersects the curve more than once.

The reason for the truth of the Vertical Line Test can be seen in Figure 14. If each 
vertical line x − a intersects a curve only once, at sa, bd, then exactly one function value 
is defined by f sad − b. But if a line x − a intersects the curve twice, at sa, bd and sa, cd,  
then the curve can’t represent a function because a function can’t assign two different 
values to a.

a

x=a

(a, b)

0 a

(a, c)

(a, b)

x=a

0 x

y

x

y

For example, the parabola x − y 2 2 2 shown in Figure 15(a) is not the graph of a func-
tion of x because, as you can see, there are vertical lines that intersect the parabola twice. 
The parabola, however, does contain the graphs of two functions of x. Notice that the equa-
tion x − y 2 2 2 implies y 2 − x 1 2, so y − 6sx 1 2 . Thus the upper and lower halves 
of the parabola are the graphs of the functions f sxd − sx 1 2  [from Example 7(a)] and 
tsxd − 2sx 1 2 . [See Figures 15(b) and (c).] We observe that if we reverse the roles of x 
and y, then the equation x − hsyd − y 2 2 2 does define x as a function of y (with y as the 
independent variable and x as the dependent variable) and the parabola now appears as  
the graph of the function h.

(b) y=œ„„„„x+2

_2 0 x

y

(_2, 0)

(a) x=¥-2

0 x

y

(c) y=_œ„„„„x+2

_2
0

y

x

■ Piecewise Defined Functions
The functions in the following four examples are defined by different formulas in different 
parts of their domains. Such functions are called piecewise defined functions.

Figure �14

Figure �15
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Section 1.1  |  Four Ways to Represent a Function    9

 Example 8   |  A function f  is defined by

f sxd − H1 2 x

x 2

if  x < 21

if  x . 21

Evaluate f s22d, f s21d, and f s0d and sketch the graph.

Solution � Remember that a function is a rule. For this particular function the rule is 
the following: First look at the value of the input x. If it happens that x < 21, then the 
value of f sxd is 1 2 x. On the other hand, if x . 21, then the value of f sxd is x 2.

Since 22 < 21, we have f s22d − 1 2 s22d − 3.

	 Since 21 < 21, we have f s21d − 1 2 s21d − 2.

	 Since 0 . 21, we have f s0d − 02 − 0.

How do we draw the graph of f ? We observe that if x < 21, then f sxd − 1 2 x, so  
the part of the graph of f  that lies to the left of the vertical line x − 21 must coincide 
with the line y − 1 2 x, which has slope 21 and y-intercept 1. If x . 21, then 
f sxd − x 2, so the part of the graph of f  that lies to the right of the line x − 21 must 
coincide with the graph of y − x 2, which is a parabola. This enables us to sketch the 
graph in Figure 16. The solid dot indicates that the point s21, 2d is included on the 
graph; the open dot indicates that the point s21, 1d is excluded from the graph.	 ■

The next example of a piecewise defined function is the absolute value function. 
Recall that the absolute value of a number a, denoted by | a |, is the distance from a to 0 
on the real number line. Distances are always positive or 0, so we have

| a | > 0        for every number a

For example,

| 3 | − 3      | 23 | − 3      | 0 | − 0      | s2 2 1 | − s2 2 1      | 3 2 � | − � 2 3

In general, we have

	 | a | − a	 if  a > 0

	 | a | − 2a	 if  a , 0

(Remember that if a is negative, then 2a is positive.)

 Example 9   |  Sketch the graph of the absolute value function f sxd − | x |.
Solution � From the preceding discussion we know that

| x | − Hx

2x

if  x > 0

if  x , 0

Using the same method as in Example 8, we see that the graph of f  coincides with the 
line y − x to the right of the y-axis and coincides with the line y − 2x to the left of 
the y-axis (see Figure 17).	 ■

2

y

_1

1

x

Figure �16

For a more extensive review of absolute 
values, see Appendix A.

x

y=| x |

0

y

Figure �17
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10    Chapter 1  |  Functions and Sequences

 Example 10   |  BB   Metabolic power in walking and running � Suppose 
you are walking slowly but then increase your pace and start running more and more 
quickly to catch a bus. When you start running, your gait (manner of movement) 
changes. Figure 18 shows a graph of metabolic power consumed by men walking 
and running (calculated from measurements of oxygen consumption) as a function of 
speed. Notice that it is a piecewise defined function and the second piece starts when 
you begin to run.

0 4 521 3

500

1000

1500

Running

Walking

Po
w

er
 (

W
)

Speed (m/s) ■

 Example 11   |  In Example C at the beginning of this section we considered the cost 
Cswd of mailing a large envelope with weight w. In effect, this is a piecewise defined 
function because, from the table of values on page 6, we have

Cswd −

 
0.92

1.12

1.32

1.52

if  0 , w < 1

if  1 , w < 2

if  2 , w < 3

if  3 , w < 4
	 ∙
	

∙

	
∙

The graph is shown in Figure 19. You can see why functions similar to this one are 
called step functions—they jump from one value to the next. Such functions will be 
studied in Chapter 2.	 ■

■ Symmetry
If a function f  satisfies f s2xd − f sxd for every number x in its domain, then f  is called 
an even function. For instance, the function f sxd − x 2 is even because

f s2xd − s2xd2 − x 2 − f sxd

The geometric significance of an even function is that its graph is symmetric with respect 
to the y-axis (see Figure 20). This means that if we have plotted the graph of f  for x > 0, 
we obtain the entire graph simply by reflecting this portion about the y-axis.

0 x_x

f(_x) ƒ

An even function 

x

y

C

0.50

1.00

1.50

0 1 2 3 54 w

Figure �19

Figure �20
An even function

Figure �18
Metabolic power is a piecewise defined 

function of speed
Source: Adapted from R. Alexander,  

Optima for Animals, 2nd ed. (Princeton, NJ:  

Princeton University Press, 1996), 53.
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Section 1.1  |  Four Ways to Represent a Function    11

If f  satisfies f s2xd − 2f sxd for every number x in its domain, then f  is called an odd 
function. For example, the function f sxd − x 3 is odd because

f s2xd − s2xd3 − 2x 3 − 2f sxd

The graph of an odd function is symmetric about the origin (see Figure 21). If we already 
have the graph of f  for x > 0, we can obtain the entire graph by rotating this portion 
through 1808 about the origin.

 Example 12   |  Determine whether each of the following functions is even, odd, or  
neither even nor odd.
(a)  f sxd − x 5 1 x	 (b)  tsxd − 1 2 x 4	 (c)  hsxd − 2x 2 x 2

Solution
(a)	 f s2xd − s2xd5 1 s2xd − s21d5x 5 1 s2xd

	  − 2x 5 2 x − 2sx 5 1 xd

	  − 2f sxd

Therefore f  is an odd function.

(b)	 ts2xd − 1 2 s2xd4 − 1 2 x 4 − tsxd

So t is even.

(c)	 hs2xd − 2s2xd 2 s2xd2 − 22x 2 x 2

Since hs2xd ± hsxd and hs2xd ± 2hsxd, we conclude that h is neither even nor odd.	 ■

The graphs of the functions in Example 12 are shown in Figure 22. Notice that the 
graph of h is symmetric neither about the y-axis nor about the origin.

(a) Odd function (b) Even function (c) Neither even nor odd 

1

1

y

x

g 1

1 x

y

h1

_1

1

y

x

f

_1

■ Periodic Functions
Many phenomena in the life sciences display a recurring type of behavior: from breath-
ing, to the beating of the heart, to the cycling of female reproductive hormones, to sea-
sonal migration of butterflies. Such phenomena are referred to as periodic. To describe 
such processes mathematically we need functions that display this behavior.

Definition � A function f  is called periodic if there is a positive constant T  such 
that f sx 1 Td − f sxd for all values of x in the domain of f . The smallest value of 
T  for which this is true is called the period of f.

Figure �22

0
x

_x ƒ
x

y

Figure �21
An odd function
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12    Chapter 1  |  Functions and Sequences

The electrocardiogram shown in Figure 1 on page 2 is an example of an approxi-
mately periodic function. The period of the function V  appears to be about 0.9 seconds: 
Vst 1 0.9d < Vstd. The trigonometric functions are also periodic and are discussed in 
the next section.

 Example 13   |    BB   Malarial fever � Figure 23 shows a typical temperature 
chart for a fever in humans induced by a species of malaria called P. vivax. Notice that 
the temperature approximately satisfies

Tst 1 48d − Tstd

so the temperature function has a period of about 48 hours.

48 9672240

38

37

39

40

t (hours)

T (°C)

	 ■

■ Increasing and Decreasing Functions
The graph shown in Figure 24 rises from A to B, falls from B to C, and rises again from C 
to D. The function f  is said to be increasing on the interval fa, bg, decreasing on fb, cg, and 
increasing again on fc, dg. Notice that if x1 and x2 are any two numbers between a and b  
with x1 , x2, then f sx1 d , f sx2 d. We use this as the defining property of an increasing  
function.

Definition � A function f  is called increasing on an interval I if

f sx1 d , f sx2 d        whenever x1 , x2 in I

It is called decreasing on I if

f sx1 d . f sx2 d        whenever x1 , x2 in I

In the definition of an increasing function it is important to realize that the inequality 
f sx1 d , f sx2 d must be satisfied for every pair of numbers x1 and x2 in I with x1 , x2.

You can see from Figure 25 that the function f sxd − x 2 is decreasing on the interval 
s2`, 0g and increasing on the interval f0, `d.

Figure �23
Temperature chart for  

P. vivax infection 
Source: Adapted from L. Bruce-Chwatt,  

Essential Malariology (New York: Wiley, 1985).
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Figure �24
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Figure �25
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	 7.	 y

x0

1

1

	 8.	 y

x0 1

1

	 9.	��� Global temperature  Shown is a graph of the global 
average temperature T during the 20th century.

		  (a)	 What was the global average temperature in 1950?
		  (b)	 In what year was the average temperature 14.28?
		  (c)	 When was the temperature smallest? Largest?
		  (d)	 Estimate the range of T.

		
t

T (•C)

1900 1950 2000

13

14

Source: Adapted from Globe and Mail [Toronto] 5 Dec. 2009. Print.

	 10.	��T ree ring width�  Trees grow faster and form wider rings 
in warm years and grow more slowly and form narrower 
rings in cooler years. The figure shows ring widths of a 
Siberian pine from 1500 to 2000.

		  (a)	 What is the range of the ring width function?
		  (b)	� What does the graph tend to say about the temperature 

of the earth? Does the graph reflect the volcanic erup-
tions of the mid-19th century?

		

R
in

g 
w

id
th

 (
m

m
)

1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0
1500 1600 1700 1800 1900

Year

2000 t

R

	� Source: Adapted from G. Jacoby et al., “Mongolian Tree Rings and 

20th-Century Warming,” Science 273 (1996): 771–73.

	 1.	�� �If f sxd − x 1 s2 2 x  and tsud − u 1 s2 2 u , is it true  
that f − t?

	 2.	�� �If

f sxd −
x 2 2 x

x 2 1
        and        tsxd − x

		��  �is it true that f − t?

	 3.	�� �The graph of a function f  is given.
		  (a)	 State the value of f s1d.
		  (b)	 Estimate the value of f s21d.
		  (c)	 For what values of x is f sxd − 1?
		  (d)	 Estimate the value of x such that f sxd − 0.
		  (e)	 State the domain and range of f .
		  (f)	 On what interval is f  increasing?

y

0 x1

1

	 4.	�� �The graphs of f  and t are given.
		  (a)	 State the values of f s24d and ts3d.
		  (b)	 For what values of x is f sxd − tsxd?
		  (c)	 Estimate the solution of the equation f sxd − 21.
		  (d)	 On what interval is f  decreasing?
		  (e)	 State the domain and range of f.
		  (f)	 State the domain and range of t.

g

x

y

0

f
2

2

	� 5–8 � Determine whether the curve is the graph of a function  
of x. If it is, state the domain and range of the function.

	 5.	 y

x0 1

1

	 6.	 y

x0 1

1

EXERCISES 1.1
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14    Chapter 1  |  Functions and Sequences

		  (b)	� If you found about 100 ant species at a certain location, 
at roughly what latitude would you be?

		  (c)	� What symmetry property does this function possess?

		

200

100

90°N 60 30 0 30 60°S
0

Latitude

N
um
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r 

of
 s

pe
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es

	�Source: Adapted from P. Russell et al., Biology: The Dynamic Science 

(Belmont, CA: Cengage Learning, 2011), 1190.

	 14.	�� �In this section we discussed examples of ordinary, every-
day functions: Population is a function of time, postage 
cost is a function of weight, water temperature is a function 
of time. Give three other examples of functions from 
everyday life that are described verbally. What can you say 
about the domain and range of each of your functions? If 
possible, sketch a rough graph of each function.

	 15.	��� The graph shown gives the weight of a certain person as 
a function of age. Describe in words how this person’s 
weight varies over time. What do you think happened when 
this person was 30 years old?

		
Age

(years)

Weight
(pounds)

0

150

100

50

10

200

20 30 40 50 60 70

	 16.	�� Ground reaction force in walking�  The graph shows the 
horizontal force exerted by the ground on a person during 
walking. Positive values are forces in the forward direction 
and negative values are forces in the backward direction. 
Give an explanation for the shape of the graph of the force 
function, including the points where it crosses the axis.

		

0 t

Horizontal
ground

reaction
force (seconds)

(kN)

	 11.	��E sophageal pH�  A healthy esophagus has a pH of about 
7.0. When acid reflux occurs, stomach acid (which has pH 
ranging from 1.0 to 3.0) flows backward from the stomach 
into the esophagus. When the pH of the esophagus is less 
than 4.0, the episode is called “clinical acid reflux” and can 
cause ulcers and damage the lining of the esophagus. The 
graph shows esophageal pH for a sleeping patient with acid 
reflux. During what time interval is the patient considered 
to have an episode of clinical acid reflux?

		

8
7
6
5
4
3
2
1

 AM

Time

AM AM AM

pH

Asleep

0
12:10 12:40 1:10 1:40

	�Source: Adapted from T. Demeester et al., “Patterns of Gastroesophageal 

Reflux in Health and Disease,” Annals of Surgery 184 (1976): 459–70.

	 12.	��T adpole weights�  The figure shows the average body 
weights of tadpoles raised in different densities. The 
function f  shows body weights when the density is 
10 tadpolesyL. For functions t and h the densities are 80 
and 160 tadpolesyL, respectively. What do these graphs tell 
you about the effect of crowding?

		

1.0

0.8

0.6

0.4

0.2

2 4 6 8 100

Time (weeks)

M
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n 
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dy
 w

ei
gh

t (
g)

f g h

	�Source: Adapted from P. Russell et al., Biology: The Dynamic Science 

(Belmont, CA: Cengage Learning, 2011), 1156.

	 13.	�� Species richness�  Tropical regions receive more rainfall 
and intense sunlight and have longer growing seasons than 
regions farther from the equator. As a result, they enjoy 
greater species richness, that is, greater numbers of species. 
The graph shows how species richness varies with latitude 
for ants.

		  (a)	� How many species would you expect to find at 308S? 
At 208N?
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		  (a)	� Use the data to sketch a rough graph of the bird count as 
a function of time.

		  (b)	� Use your graph to estimate the count in 1997.

	 26.	�� Blood alcohol concentration � Researchers measured the 
blood alcohol concentration (BAC) of eight adult male sub-
jects after rapid consumption of 30 mL of ethanol (corre-
sponding to two standard alcoholic drinks). The table shows 
the data they obtained by averaging the BAC (in mgymL) of 
the eight men.

t (hours) 0.0 0.2 0.5 0.75 1.0 1.25 1.5

BAC 0 0.25 0.41 0.40 0.33 0.29 0.24

t (hours) 1.75 2.0 2.25 2.5 3.0 3.5 4.0

BAC 0.22 0.18 0.15 0.12 0.07 0.03 0.01

		  (a)	� Use the readings to sketch the graph of the BAC as a 
function of t.

		  (b)	� Use your graph to describe how the concentration of 
alcohol varies with time.

Source: Adapted from P. Wilkinson et al., “Pharmacokinetics of Ethanol after 

Oral Administration in the Fasting State,” Journal of Pharmacokinetics and 

Biopharmaceutics 5 (1977): 207–24.

	 27.	�� �If f sxd − 3x 2 2 x 1 2, find f s2d,   f s22d,   f sad,   f s2ad, 
f sa 1 1d, 2 f sad,   f s2ad,   f sa2d, [ f sad]2, and   f sa 1 hd.

	 28.	��� A spherical balloon with radius r inches has volume 
Vsrd − 4

3 �r 3. Find a function that represents the amount of 
air required to inflate the balloon from a radius of r inches 
to a radius of r 1 1 inches.

	� 29–32 � Evaluate the difference quotient for the given function.  
Simplify your answer.

	 29.	 f sxd − 4 1 3x 2 x 2,      
f s3 1 hd 2 f s3d

h

	 30.	� f sxd − x 3,      
f sa 1 hd 2 f sad

h

	 31.	� f sxd −
1

x
,      

f sxd 2 f sad
x 2 a

	 32.	� f sxd −
x 1 3

x 1 1
,      

f sxd 2 f s1d
x 2 1

	� 33–39 � Find the domain of the function.

	 33.	 f sxd −
x 1 4

x 2 2 9
	 34.	 f sxd −

2x 3 2 5

x 2 1 x 2 6

	 35.	 f std − s3 2t 2 1 	 36.	 tstd − s3 2 t 2 s2 1 t 

	 37.	 hsxd −
1

s4 x 2 2 5x 
	 38.	 f sud −

u 1 1

1 1
1

u 1 1

	 39.	 Fspd − s2 2 sp  

	 17.	��� You put some ice cubes in a glass, fill the glass with cold 
water, and then let the glass sit on a table. Describe how 
the temperature of the water changes as time passes. Then 
sketch a rough graph of the temperature of the water as a 
function of the elapsed time.

	 18.	�� �Three runners compete in a 100-meter race. The graph 
depicts the distance run as a function of time for each run-
ner. Describe in words what the graph tells you about this 
race. Who won the race? Did each runner finish the race?

		
0

y (m)

100

Time (seconds)20

A B C

D
is

ta
nc

e 
(m

et
er

s)

	 19.	�� Bacteria count�  Shown is a typical graph of the number  
N of bacteria grown in a batch culture as a function of time 
t. Describe what you think is happening during each of the 
four phases.

		

N

t0

	 20.	�� �Sketch a rough graph of the number of hours of daylight as 
a function of the time of year.

	 21.	����� Sketch a rough graph of the outdoor temperature as a func-
tion of time during a typical spring day.

	 22.	��� You place a frozen pie in an oven and bake it for an hour. 
Then you take it out and let it cool before eating it. Describe 
how the temperature of the pie changes as time passes. Then 
sketch a rough graph of the temperature of the pie as a func-
tion of time.

	 23.	��� Sketch the graph of the amount of a particular brand of cof-
fee sold by a store as a function of the price of the coffee.

	 24.	�� �Sketch a rough graph of the market value of a new car as a 
function of time for a period of 20 years. Assume the car is 
well maintained.

	 25.	�� Bird count�  The table shows the number of house finches, 
in thousands, observed in the Christmas bird count in  
California.

Year 1980 1985 1990 1995 2000 2005 2010

Count 74 92 88 107 70 61 78
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16    Chapter 1  |  Functions and Sequences

	 60.	�� �The function in Example 11 is called a step function 
because its graph looks like stairs. Give two other examples 
of step functions that arise in everyday life.

	 61.	��T emperature chart�  The figure shows the temperature 
of a patient infected with the malaria species P. malariae. 
Estimate the period of the temperature function.

t
(hours)

T

96240 48 72

37

38

39

40

(°C)

Source: Adapted from L. Bruce-Chwatt, Essential Malariology (New York: 

Wiley, 1985).

	 62.	�� Malarial fever�  A temperature chart is shown for a patient 
with a fever induced by the malaria species P. falciparum. 
What do you think is happening?

24 48 72 96 120 144 168 192 216 240 264 t
(hours)

T

37

38

39

40

41
(°C)

Source: Adapted from L. Bruce-Chwatt, Essential Malariology (New York: 

Wiley, 1985).

	� 63–64 � Graphs of f  and t are shown. Decide whether each func-
tion is even, odd, or neither. Explain your reasoning.

	 63.	 y

x

f

g
	 64.	 y

x

f

g

	 40.	��� Find the domain and range and sketch the graph of the  
function hsxd − s4 2 x 2 .

	� 41–52 � Find the domain and sketch the graph of the function.

	 41.	 f sxd − 2 2 0.4x	 42.	 F sxd − x 2 2 2x 1 1

	 43.	 f std − 2t 1 t 2 	 44.	 Hstd −
4 2 t 2

2 2 t

	 45.	 tsxd − sx 2 5 	 46.	 Fsxd − | 2x 1 1 |

	 47.	�� Gsxd −
3x 1 | x |

x
	 48.	 tsxd − | x | 2 x

	 49.	 f sxd − Hx 1 2

1 2 x

if  x , 0

if  x > 0

	 50.	 f sxd − H3 2 1
2 x

2x 2 5

if  x < 2

if  x . 2

	 51.	 f sxd − Hx 1 2

x 2

if  x < 21

if  x . 21

	 52.	 f sxd − Hx 1 9

22x

26

if x , 23

if | x | < 3

if x . 3

	� 53–57 � Find a formula for the described function and state its 
domain.

	 53.	�� �A rectangle has perimeter 20 m. Express the area of the 
rectangle as a function of the length of one of its sides.

	 54.	�� �A rectangle has area 16 m2. Express the perimeter of the 
rectangle as a function of the length of one of its sides.

	 55.	�� �Express the area of an equilateral triangle as a function of 
the length of a side.

	 56.	��� Express the surface area of a cube as a function of its  
volume.

	 57.	�� �An open rectangular box with volume 2 m3 has a square 
base. Express the surface area of the box as a function of the 
length of a side of the base.

	 58.	��� A cell phone plan has a basic charge of $35 a month. The 
plan includes 400 free minutes and charges 10 cents for 
each additional minute of usage. Write the monthly cost C 
as a function of the number x of minutes used and graph C 
as a function of x for 0 < x < 600.

	 59.	�� �A hotel chain charges $75 each night for the first two nights 
and $50 for each additional night’s stay. Express the total 
cost T as a function of the number of nights x that a guest 
stays.
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Section 1.2  |  A Catalog of Essential Functions    17

	� 67–72 � Determine whether f  is even, odd, or neither. If you 
have a graphing calculator, use it to check your answer  
visually.

	 67.	 f sxd −
x

x 2 1 1
	 68.	 f sxd −

x 2

x 4 1 1

	 69.	 f sxd −
x

x 1 1
	 70.	 f sxd − x | x |

	 71.	 f sxd − 1 1 3x 2 2 x 4	 72.	 f sxd − 1 1 3x 3 2 x 5

	 73.	�� �If f  and t are both even functions, is f 1 t even? If  f  and 
t are both odd functions, is f 1 t odd? What if f  is even 
and t is odd? Justify your answers.

	 74.	�� �If f  and t are both even functions, is the product ft even? 
If f  and t are both odd functions, is ft odd? What if f  is 
even and t is odd? Justify your answers.

	 65.	� (a)	� If the point s5, 3d is on the graph of an even function, 
what other point must also be on the graph?

		  (b)	� If the point s5, 3d is on the graph of an odd function, 
what other point must also be on the graph?

	 66.	�� �A function f  has domain f25, 5g and a portion of its graph 
is shown.

		  (a)	 Complete the graph of f  if it is known that f  is even.
		  (b)	 Complete the graph of f  if it is known that f  is odd.

		

x0

y

5_5

1.2 A Catalog of Essential Functions

In Case Studies in Mathematical Modeling (page xli), we discussed the idea of a math-
ematical model and the process of mathematical modeling. There are many different 
types of functions that can be used to model relationships observed in the real world. In 
this section we discuss the behavior and graphs of these functions and give examples of 
situations appropriately modeled by such functions.

■ Linear Models
When we say that y is a linear function of x, we mean that the graph of the function is 
a line, so we can use the slope-intercept form of the equation of a line to write a formula 
for the function as

y − f sxd − mx 1 b

where m is the slope of the line and b is the y-intercept.
A characteristic feature of linear functions is that they grow at a constant rate. For 

instance, Figure 1 shows a graph of the linear function f sxd − 3x 2 2 and a table of 
sample values. Notice that whenever x increases by 0.1, the value of f sxd increases by 
0.3. So f sxd increases three times as fast as x. Thus the slope of the graph y − 3x 2 2, 
namely 3, can be interpreted as the rate of change of y with respect to x.

x f sxd − 3x 2 2

1.0 	 1.0

1.1 	 1.3

1.2 	 1.6

1.3 	 1.9

1.4 	 2.2

1.5 	 2.5

The coordinate geometry of lines is 
reviewed in Appendix B.

x

y

0

y=3x-2

_2

1

Figure �1
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18    Chapter 1  |  Functions and Sequences

A special case of a linear function occurs when we talk about direct variation. If the 
quantities x and y are related by an equation y − kx for some constant k ± 0, we say that 
y varies directly as x, or y is proportional to x. The constant k is called the constant 
of proportionality. Equivalently, we can write f sxd − kx, where f  is a linear function 
whose graph has slope k and y-intercept 0.

 Example 1 
(a)	 As dry air moves upward, it expands and cools. If the ground temperature is 20°C 
and the temperature at a height of 1 km is 10°C, express the temperature T (in °C) as a 
function of the height h (in kilometers), assuming that a linear model is appropriate.
(b)	 Draw the graph of the function in part (a). What does the slope represent?
(c)	 What is the temperature at a height of 2.5 km?

Solution �
(a)  Because we are assuming that T  is a linear function of h, we can write

T − mh 1 b

We are given that T − 20 when h − 0, so

20 − m ? 0 1 b − b

In other words, the y-intercept is b − 20.
We are also given that T − 10 when h − 1, so

10 − m ? 1 1 20

��The slope of the line is therefore m − 10 2 20 − 210 and the required linear function 
is

T − 210h 1 20

(b)  The graph is sketched in Figure 2. The slope is m − 210°Cykm, and this repre-
sents the rate of change of temperature with respect to height.

(c)  At a height of h − 2.5 km, the temperature is

T − 210s2.5d 1 20 − 258C ■

If there is no physical law or principle to help us formulate a model, we construct an 
empirical model, which is based entirely on collected data. We seek a curve that “fits” 
the data in the sense that it captures the basic trend of the data points.

 Example 2   |  BB   Carbon dioxide in the atmosphere � Table 1 lists the 
average carbon dioxide level in the atmosphere, measured in parts per million at Mauna 
Loa Observatory from 1980 to 2012. Use the data in Table 1 to find a model for the 
carbon dioxide level.

Solution � We use the data in Table 1 to make the scatter plot in Figure 3, where t 
represents time (in years) and C represents the CO2 level (in parts per million, ppm).

T=_10h+20

T

h0

10

20

1 3

Figure �2
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C (ppm)

340

350

360

370

380

390

400

1980 1985 t1990 1995 2000 2005 2010

Figure �3  Scatter plot for the average CO2 level

Notice that the data points appear to lie close to a straight line, so it’s natural to 
choose a linear model in this case. But there are many possible lines that approximate 
these data points, so which one should we use? One possibility is the line that passes 
through the first and last data points. The slope of this line is

393.8 2 338.7

2012 2 1980
−

55.1

32
− 1.721875 < 1.722

We write its equation as

C 2 338.7 − 1.722st 2 1980d
or

(1)	 C − 1.722t 2 3070.86	

Equation 1 gives one possible linear model for the carbon dioxide level; it is graphed 
in Figure 4.

C (ppm)

340

350

360

370

380

390

400

1980 1985 t1990 1995 2000 2005 2010

Figure �4
Linear model through  

first and last data points

		  CO2 level		  CO2 level
	 Year	 (in ppm)	 Year	 (in ppm)

	 1980	 338.7	 1998	 366.5
	 1982	 341.2	 2000	 369.4
	 1984	 344.4	 2002	 373.2
	 1986	 347.2	 2004	 377.5
	 1988	 351.5	 2006	 381.9
	 1990	 354.2	 2008	 385.6
	 1992	 356.3	 2010	 389.9
	 1994	 358.6	 2012	 393.8
	 1996	 362.4

Table �1
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20    Chapter 1  |  Functions and Sequences

Notice that our model gives values higher than most of the actual CO2 levels. A better 
linear model is obtained by a procedure from statistics called linear regression. If we use  
a graphing calculator, we enter the data from Table 1 into the data editor and choose the 
linear regression command. (With Maple we use the fit[leastsquare] command in the 
stats package; with Mathematica we use the Fit command.) The machine gives the slope 
and y-intercept of the regression line as

m − 1.71262            b − 23054.14

So our least squares model for the CO2 level is

(2)	 C − 1.71262t 2 3054.14	

In Figure 5 we graph the regression line as well as the data points. Comparing with 
Figure 4, we see that it gives a better fit than our previous linear model.

	

C (ppm)

340

350

360

370

380

390

400

1980 1985 t1990 1995 2000 2005 2010 	 ■

 Example 3   |  Interpolating and extrapolating the CO2 level � Use the 
linear model given by Equation 2 to estimate the average CO2 level for 1987 and to 
predict the level for the year 2020. According to this model, when will the CO2 level 
exceed 420 parts per million?

Solution � Using Equation 2 with t − 1987, we estimate that the average CO2 level 
in 1987 was

Cs1987d − s1.71262ds1987d 2 3054.14 < 348.84

This is an example of interpolation because we have estimated a value between 
observed values. (In fact, the Mauna Loa Observatory reported that the average CO2 
level in 1987 was 348.93 ppm, so our estimate is remarkably accurate.)

With t − 2020, we get

Cs2020d − s1.71262ds2020d 2 3054.14 < 405.35

So we predict that the average CO2 level in the year 2020 will be 405.4 ppm. This is an 
example of extrapolation because we have predicted a value outside the time frame of 
observations. Consequently, we are far less certain about the accuracy of our prediction.

Using Equation 2, we see that the CO2 level exceeds 420 ppm when

1.71262t 2 3054.14 . 420

Figure �5
The regression line

A computer or graphing calculator 
finds the regression line by the method 
of least squares, which is to minimize 
the sum of the squares of the vertical 
distances between the data points and 
the line. 	 The details are explained in  
Section 11.3.
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Section 1.2  |  A Catalog of Essential Functions    21

Solving this inequality, we get

t .
3474.14

1.71262
< 2028.55

We therefore predict that the CO2 level will exceed 420 ppm by the year 2029. This 
prediction is risky because it involves a time quite remote from our observations. In 
fact, we see from Figure 5 that the trend has been for CO2 levels to increase rather 
more rapidly in recent years, so the level might exceed 420 ppm well before 2029.	 ■

■ Polynomials
A function P is called a polynomial if

Psxd − an xn 1 an21 xn21 1 ∙ ∙ ∙ 1 a2 x 2 1 a1 x 1 a0

where n is a nonnegative integer and the numbers a0, a1, a2, . . . , an are constants called 
the coefficients of the polynomial. The domain of any polynomial is R − s2`, `d. If the 
leading coefficient an ± 0, then the degree of the polynomial is n. For example, the  
function

Psxd − 2x 6 2 x 4 1 2
5 x 3 1 s2 

is a polynomial of degree 6.
A polynomial of degree 1 is of the form Psxd − mx 1 b and so it is a linear function.  

A polynomial of degree 2 is of the form Psxd − ax 2 1 bx 1 c and is called a quadratic 
function. Its graph is always a parabola obtained by shifting the parabola y − ax 2, as we 
will see in the next section. The parabola opens upward if a . 0 and downward if a , 0.  
(See Figure 6.)

0

y

2

x1

(a) y=≈+x+1

y

2

x1

(b) y=_2≈+3x+1

A polynomial of degree 3 is of the form

Psxd − ax 3 1 bx 2 1 cx 1 d        a ± 0

and is called a cubic function. Figure 7 shows the graph of a cubic function in part (a) 
and graphs of polynomials of degrees 4 and 5 in parts (b) and (c). We will see later why 
the graphs have these shapes.

(a) y=˛-x+1

x

1

y

10

(b) y=x$-3≈+x

x

2

y

1

(c) y=3x%-25˛+60x

x

20

y

1

Figure �6
The graphs of quadratic  
functions are parabolas.

Figure �7
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22    Chapter 1  |  Functions and Sequences

Polynomials are commonly used to model various quantities that occur in biology. 
Figure 8 shows a quadratic model of the vertical trajectory of zebra finches. (Digi-
tized points representing the position of the bird’s eye were used in fitting the curve.) 
Such birds use “flap-bounding.” This means that they flap their wings rapidly to gain 
dynamic energy and then fold their wings into their body for a period of time and act as a  
projectile.

0.1 0.2

y=_4.3958≈+1.5355x+0.0344
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)
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Figure �8  Zebra finch trajectory
Source: Adapted from B. Tobalske et al., “Kinematics of Flap-Bounding Flight in the 

Zebra Finch Over a Wide Range of Speeds,” Journal of Experimental Biology 202 (1999): 

1725–39.

In the following example we use a quadratic function to model the fall of a ball.

 Example 4   |  A ball is dropped from the upper observation deck of the CN Tower, 
450 m above the ground, and its height h above the ground is recorded at 1-second 
intervals in Table 2. Find a model to fit the data and use the model to predict the time at 
which the ball hits the ground.

Solution � We draw a scatter plot of the data in Figure 9 and observe that a linear 
model is inappropriate. But it looks as if the data points might lie on a parabola, so we 
try a quadratic model instead. Using a graphing calculator or computer algebra system 
(which uses the least squares method), we obtain the following quadratic model:

(3)	 h − 449.36 1 0.96t 2 4.90t 2	

2

200

400

4 6 8 t0

200

400

t
(seconds)

0 2 4 6 8

hh (meters)

	

Figure �9
Scatter plot for a falling ball

	

Figure �10
Quadratic model for a falling ball
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Table 2

Time 
(seconds)

Height 
(meters)

0 450
1 445
2 431
3 408
4 375
5 332
6 279
7 216
8 143
9 	 61
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Section 1.2  |  A Catalog of Essential Functions    23

In Figure 10 we plot the graph of Equation 3 together with the data points and see that 
the quadratic model gives a very good fit.

The ball hits the ground when h − 0, so we solve the quadratic equation

24.90t 2 1 0.96t 1 449.36 − 0

The quadratic formula gives

t −
20.96 6 ss0.96d2 2 4s24.90d s449.36d

2s24.90d

The positive root is t < 9.67, so we predict that the ball will hit the ground after about 
9.7 seconds.	 ■

If a scatter plot of data has a single peak, then it may be appropriate to use a quadratic 
polynomial as a model (as in Figure 8). But the more fluctuation the data exhibit, the 
higher the degree of the polynomial needed to model the data. In particular, marine 
biologists sometimes use cubic polynomials to model the length of fish as a function of 
age in order to track fish populations. (See Exercise 27.) Then the model can be used to 
estimate the age of fish whose length has been measured.

■ Power Functions
A function of the form f sxd − xp, where p is a constant, is called a power function. We 
consider several cases.

(i)  p − n, where n is a positive integer

The graphs of f sxd − xn for n − 1, 2, 3, 4, and 5 are shown in Figure 11. (These are 
polynomials with only one term.) We already know the shape of the graphs of y − x  
(a line through the origin with slope 1) and y − x 2 [a parabola, see Example 1.1.2(b)].

The general shape of the graph of f sxd − xn depends on whether n is even or odd. If  
n is even, then f sxd − xn is an even function and its graph is similar to the parabola 
y − x 2. If n is odd, then f sxd − xn is an odd function and its graph is similar to that of  
y − x 3. Notice from Figure 12 (on page 24), however, that as n increases, the graph of 
y − xn becomes flatter near 0 and steeper when | x | > 1. (If x is small, then x 2 is smaller, 
x 3 is even smaller, x 4 is smaller still, and so on.)

Figure �11  Graphs of f sxd − xn for n − 1, 2, 3, 4, 5
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(_1, _1)

(1, 1)

0
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x

x

y

0

y=x#

y=x%

(ii)  p − 1yn, where n is a positive integer

The function f sxd − x 1yn − sn x is a root function. For n − 2 it is the square root  
function f sxd − sx  , whose domain is f0, `d and whose graph is the upper half of the  
parabola x − y 2. [See Figure 13(a).] For other even values of n, the graph of y − sn x  is 
similar to that of y − sx . For n − 3 we have the cube root function f sxd − s3 x  whose 
domain is R (recall that every real number has a cube root) and whose graph is shown 
in Figure 13(b). The graph of y − sn x  for n odd sn . 3d is similar to that of y − s3 x .

(b) ƒ=Œ„x

x

y

0

(1, 1)

(a) ƒ=œ„x

x

y

0

(1, 1)

(iii)  p − 21

The graph of the reciprocal function f sxd − x21 − 1yx is shown in Figure 14. Its graph 
has the equation y − 1yx, or xy − 1, and is a hyperbola with the coordinate axes as its 
asymptotes. This function arises in many areas of the life sciences; one such area is 
described in the following example.

 Example 5   |  BB   Anesthesiology1 � Anesthesiologists often put patients on 
ventilators during surgery to maintain a steady state concentration C of carbon dioxide 
in the lungs. If P is the rate of production of CO2 by the body (measured in mgymin)  
and V  is the ventilation rate (measured as lung volume exchanged per minute, 
mLymind, then at steady state the production of CO2 exactly balances removal by 
ventilation:

P 
mg

min
− SC 

mg

mLD SV 
mL

minD
Thus the steady state concentration of CO2 is inversely proportional to the ventilation 
rate:

C −
P

V

where P is a constant. The graph of C as a function of V  is shown in Figure 15 and has 
the same general shape as the right half of Figure 14.	 ■

A family of functions is a collection of 
functions whose equations are related. 
Figure 12 shows two families of power 
functions, one with even powers and 
one with odd powers.

Figure �12

Figure �13
Graphs of root functions
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Figure �14
The reciprocal function

V 
(mL/min)

C (mg/mL)

0

Figure �15
Concentration of CO2 as a function of 
ventilation rate

1. Adapted from S. Cruickshank, Mathematics and Statistics in Anaesthesia (New York: Oxford University 
Press, USA, 1998).
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 Example 6   |  BB    Species richness in bat caves � It makes sense that the 
larger the area of a region, the larger the number of species that inhabit the region. 
Many ecologists have modeled the species–area relation with a power function and, in 
particular, the number of species S of bats living in caves in central Mexico has been 
related to the surface area A of the caves by the equation S − 0.14A0.64. (In Example 
1.5.14 this model will be derived from collected data.)
(a)	 The cave called Misión Imposible near Puebla, Mexico, has a surface area of
A − 60 m2. How many species of bats would you expect to find in that cave?
(b)	 If you discover that four species of bats live in a cave, estimate the area of the 
cave.

Solution � A graph of the power function model is shown in Figure 16.
(a)	 According to the model S − 0.14A0.64, the expected number of species in a cave 
with surface area A − 60 m2 is

S − 0.14s60d0.64 < 1.92

So we would expect there to be two species of bats in this cave.

(b)	 For a cave with four species of bats we have

S − 0.14A0.64 − 4    ?    A0.64 −
4

0.14
 

So	 A − S 4

0.14D
1y0.64

< 188

We predict that a cave with four species of bats would have a surface area of about 
190 m2.	 ■

Power functions are also used to model other species–area relationships (Exercise 25), 
the weight of a bird as a function of wingspan (Exercise 24), illumination as a function 
of distance from a light source (Exercise 23), and the period of revolution of a planet as 
a function of its distance from the sun (Exercise 26).

■ Rational Functions
A rational function f  is a ratio of two polynomials:

f sxd −
Psxd
Qsxd

where P and Q are polynomials. The domain consists of all values of x such that Qsxd ± 0.  
A simple example of a rational function is the function f sxd − 1yx, whose domain is 
hx | x ± 0j; this is the reciprocal function graphed in Figure 14. The function 

f s pd −
p2 2 2p

p2 2 2

arises in models for the spread of drug resistance (see the project on page 78) and is a 
rational function with domain h p | p ± 6s2 j. Its complete graph is shown in Figure 17, 
though when we use the model we will restrict this domain.

■ Algebraic Functions
A function f  is called an algebraic function if it can be constructed using algebraic 
operations (such as addition, subtraction, multiplication, division, and taking roots) start-
ing with polynomials. Any rational function is automatically an algebraic function. Here 
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Figure �16
The number of different bat species in a 
cave is related to the size of the cave by 
a power function.
Source: Derived from A. Brunet et al., “The 

Species–Area Relationship in Bat Assemblages 

of Tropical Caves,” Journal of Mammalogy 82 

(2001): 1114–22.
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are two more examples:

f sxd − sx 2 1 1            tsxd −
x 4 2 16x 2

x 1 sx 
1 sx 2 2ds3 x 1 1

When we sketch algebraic functions in Chapter 4, we will see that their graphs can 
assume a variety of shapes. Figure 18 illustrates some of the possibilities.

x

2

y

1

(a) ƒ=xœ„„„„x+3

x

1

y

50

(b) ©=$œ„„„„„„≈-25

x

1

y

10

(c) h(x)=x@?#(x-2)@

_3

An example of an algebraic function occurs in the theory of relativity. The mass of a 
particle with velocity v is

m − f svd −
m0

s1 2 v 2yc 2 

where m0 is the rest mass of the particle and c − 3.0 3 105 kmys is the speed of light in a  
vacuum.

■ Trigonometric Functions
Trigonometry and the trigonometric functions are reviewed on Reference Page 2 and also 
in Appendix C. In calculus the convention is that radian measure is always used (except 
when otherwise indicated). For example, when we use the function f sxd − sin x, it is  
understood that sin x means the sine of the angle whose radian measure is x. Thus the 
graphs of the sine and cosine functions are as shown in Figure 19.

Notice that for both the sine and cosine functions the domain is s2`, `d and the range 
is the closed interval f21, 1g. Thus, for all values of x, we have

21 < sin x < 1            21 < cos x < 1

or, in terms of absolute values,

| sin x | < 1            | cos x | < 1

Figure �18

(a) ƒ=sin x
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Figure �19

The Reference Pages are located at the 
front of the book.

Curves with this general shape are 
sometimes called sinusoidal.
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Also, the zeros of the sine function occur at the integer multiples of �; that is,

sin x − 0        when        x − n�    n an integer

The sine and cosine functions are periodic functions and have period 2�; that is, for  
all values of x,

sinsx 1 2�d − sin x            cossx 1 2�d − cos x

Although the sine and cosine functions are simple periodic functions, they can be man-
ipulated and combined in ways described in Section 1.3 to model a wide variety of 
periodic phenomena. For instance, in Example 1.3.4 we will see that a reasonable model 
for the number of hours of daylight in Philadelphia t days after January 1 is given by the 
function

Lstd − 12 1 2.8 sinF 2�

365
st 2 80dG

The tangent function is related to the sine and cosine functions by the equation

tan x −
sin x

cos x

and its graph is shown in Figure 20. It is undefined whenever cos x − 0, that is, when 
x − 6�y2, 63�y2, . . . . Its range is s2`, `d. Notice that the tangent function has per
iod �:

tansx 1 �d − tan x        for all x

The remaining three trigonometric functions (cosecant, secant, and cotangent) are  
the reciprocals of the sine, cosine, and tangent functions. Their graphs are shown in  
Appendix C.

■ Exponential Functions
The exponential functions are the functions of the form f sxd − bx, where the base b is 
a positive constant. The graphs of y − 2x and y − s0.5dx are shown in Figure 21. In both 
cases the domain is s2`, `d and the range is s0, `d.
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Exponential functions will be studied in detail in Section 1.4, and we will see that they  
are useful for modeling many natural phenomena, such as population growth (if b . 1)  
and radioactive decay (if b , 1d.

■ Logarithmic Functions
The logarithmic functions f sxd − logb x, where the base b is a positive constant, are 
the inverse functions of the exponential functions. They will be studied in Section 1.5.  
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Figure �20
y − tan x

Figure �21
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EXERCISES 1.2

	� 1–2 � Classify each function as a power function, root function, 
polynomial (state its degree), rational function, algebraic func-
tion, trigonometric function, exponential function, or logarith-
mic function.

	 1.	 (a)	 f sxd − log2 x	 (b)	 tsxd − s4 x 

		  (c)	 hsxd −
2x 3

1 2 x 2 	 (d)	 ustd − 1 2 1.1t 1 2.54t 2

		  (e)	 vstd − 5 t	 (f)	 ws�d − sin � cos2�

	 2.	 (a)	 y − � x	 (b)	 y − x�

		  (c)	 y − x 2s2 2 x 3d	 (d)	 y − tan t 2 cos t

		  (e)	 y −
s

1 1 s
	 (f)	 y −

sx 3 2 1

1 1 s3 x 

	� 3–4 � Match each equation with its graph. Explain your choices. 
(Don’t use a computer or graphing calculator.)

	 3.	�� (a)	y − x 2          (b)  y − x 5          (c)  y − x 8

	

f

0

g
h

y

x

	 4.	�� (a)	 y − 3x	 (b)	 y − 3x

		  (c)	 y − x 3	 (d)	 y − s3 x 

	 G

f

g

F
y

x

	 5.	� (a)	� Find an equation for the family of linear functions with 
slope 2 and sketch several members of the family.

		  (b)	� Find an equation for the family of linear functions such 
that f s2d − 1 and sketch several members of the family.

		  (c)	� Which function belongs to both families?

	 6.	��� What do all members of the family of linear functions 
f sxd − 1 1 msx 1 3d have in common? Sketch several 
members of the family.

	 7.	�� �What do all members of the family of linear functions 
f sxd − c 2 x have in common? Sketch several members of 
the family.

Figure 22 shows the graphs of four logarithmic functions with various bases. In each 
case the domain is s0, `d, the range is s2`, `d, and the function increases slowly when 
x . 1.

 Example 7   |  Classify the following functions as one of the types of functions that 
we have discussed.
(a)	 f sxd − 5x	 (b)  tsxd − x 5

(c)	 hsxd −
1 1 x

1 2 sx 
	 (d)  ustd − 1 2 t 1 5t 4

Solution �
(a)	 f sxd − 5x is an exponential function. (The x is the exponent.)

(b)	 tsxd − x 5 is a power function. (The x is the base.) We could also consider it to be a 
polynomial of degree 5.

(c)	 hsxd −
1 1 x

1 2 sx 
  is an algebraic function.

(d)	 ustd − 1 2 t 1 5t 4 is a polynomial of degree 4.	 ■
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Figure �22
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	 15.	�� �Biologists have noticed that the chirping rate of crickets 
of a certain species is related to temperature, and the rela-
tionship appears to be very nearly linear. A cricket produces 
113 chirps per minute at 708F and 173 chirps per minute  
at 808F.

		  (a)	� Find a linear equation that models the temperature T as 
a function of the number of chirps per minute N.

		  (b)	� What is the slope of the graph? What does it represent?
		  (c)	� If the crickets are chirping at 150 chirps per minute, 

estimate the temperature.

	 16.	��� The monthly cost of driving a car depends on the number 
of miles driven. Lynn found that in May it cost her $380 to 
drive 480 mi and in June it cost her $460 to drive 800 mi.

		  (a)	� Express the monthly cost C as a function of the distance 
driven d, assuming that a linear relationship gives a suit-
able model.

		  (b)	�� Use part (a) to predict the cost of driving 1500 miles per 
month.

		  (c)	�� Draw the graph of the linear function. What does the 
slope represent?

		  (d)	� What does the C-intercept represent?
		  (e)	� Why does a linear function give a suitable model in this 

situation?

	� 17–18 � For each scatter plot, decide what type of function you 
might choose as a model for the data. Explain your choices.

	 17.	�� (a)	

0 x

y 	 (b)	

0 x

y

	 18.	�� (a)	

0 x

y 	 (b)	

0 x

y

	 ;	 19.	�P eptic ulcer rate �� The table on page 30 shows (lifetime) 
peptic ulcer rates (per 100 population) for various fam-
ily incomes as reported by the National Health Interview 
Survey.

		  (a)	� Make a scatter plot of these data and decide whether a  
linear model is appropriate.

		  (b)	� Find and graph a linear model using the first and last 
data points.

		  (c)	 Find and graph the least squares regression line.

	 8.	�� �Find expressions for the quadratic functions whose graphs 
are shown.

		

y

(0, 1)

(1, _2.5)

(_2, 2)
y

x0

(4, 2)

f

g
x0

3

	 9.	�� �Find an expression for a cubic function f  if f s1d − 6 and 
f s21d − f s0d − f s2d − 0.

	 10.	� Climate change �� Recent studies indicate that the average 
surface temperature of the earth has been rising steadily. 
Some scientists have modeled the temperature by the linear 
function T − 0.02t 1 8.50, where T is temperature in °C 
and t represents years since 1900.

		  (a)	� What do the slope and T-intercept represent?
		  (b)	� Use the equation to predict the average global surface  

temperature in 2100.

	 11.	� Drug dosage �� If the recommended adult dosage for a 
drug is D (in mg), then to determine the appropriate dos-
age c for a child of age a, pharmacists use the equation 
c − 0.0417Dsa 1 1d. Suppose the dosage for an adult is 
200 mg.

		  (a)	� Find the slope of the graph of c. What does it  
represent?

		  (b)	� What is the dosage for a newborn?

	 12.	�� �At the surface of the ocean, the water pressure is the same 
as the air pressure above the water, 15 lbyin2. Below the 
surface, the water pressure increases by 4.34 lbyin2 for every 
10 ft of descent.

		  (a)	� Express the water pressure as a function of the depth 
below the ocean surface.

		  (b)	� At what depth is the pressure 100 lbyin2?

	 13.	�� �The relationship between the Fahrenheit sFd and Celsius 
sCd temperature scales is given by the linear function 
F − 9

5 C 1 32.
		  (a)	 Sketch a graph of this function.
		  (b)	� What is the slope of the graph and what does it repre-

sent? What is the F-intercept and what does it represent?

	 14.	�A bsorbing cerebrospinal fluid �� Cerebrospinal fluid is 
continually produced and reabsorbed by the body at a rate 
that depends on its current volume. A medical researcher 
finds that absorption occurs at a rate of 0.35 mLymin when 
the volume of fluid is 150 mL and at a rate of 0.14 mLymin 
when the volume is 50 mL.

		  (a)	� Suppose the absorption rate A is a linear function of the 
volume V. Sketch a graph of AsVd.

		  (b)	� What is the slope of the graph and what does it  
represent?

		  (c)	� What is the A-intercept of the graph and what does it 
represent?
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		  (a)	� Make a scatter plot of the data.
		  (b)	 Find and graph the regression line that models the data.
		  (c)	� An anthropologist finds a human femur of length 

53 cm. How tall was the person?

	 ;	 22.	�A sbestos and lung tumors �� When laboratory rats are 
exposed to asbestos fibers, some of them develop lung 
tumors. The table lists the results of several experiments by 
different scientists.

		  (a)	� Find the regression line for the data.
		  (b)	� Make a scatter plot and graph the regression line. Does 

the regression line appear to be a suitable model for the 
data?

		  (c)	� What does the y-intercept of the regression line  
represent?

Asbestos 
exposure 

(fibersymL)

Percent of mice 
that develop 
lung tumors

Asbestos 
exposure 

(fibersymL)

Percent of mice 
that develop 
lung tumors

50 2 1600 42
400 6 1800 37
500 5 2000 38
900 10 3000 50

1100 26

	 23.	��� Many physical quantities are connected by inverse square 
laws, that is, by power functions of the form f sxd − kx22. 
In particular, the illumination of an object by a light source 
is inversely proportional to the square of the distance from 
the source. Suppose that after dark you are in a room with 
just one lamp and you are trying to read a book. The light 
is too dim and so you move halfway to the lamp. How 
much brighter is the light?

	 24.	� Wingspan and weight �� The weight W (in pounds) of a 
bird (that can fly) has been related to the wingspan L (in 
inches) of the bird by the power function L − 30.6W 0.3952. 
(In Exercise 1.5.66 this model will be derived from data.)

		  (a)	� The bald eagle has a wingspan of about 90 inches. Use 
the model to estimate the weight of the eagle.

		  (b)	� An ostrich weighs about 300 pounds. Use the model to 
estimate what the wingspan of an ostrich should be in 
order for it to fly.

		  (c)	� The wingspan of an ostrich is about 72 inches. Use your 
answer to part (b) to explain why ostriches can’t fly.

	 ;	 25.	� Species–area relation for reptiles �� The table shows the 
number N of species of reptiles and amphibians inhabiting 
Caribbean islands and the area A of the island in square 
miles.

		  (a)	� Use a power function to model N as a function of A.
		  (b)	� The Caribbean island of Dominica has area 291 mi2. 

How many species of reptiles and amphibians would 
you expect to find on Dominica?

		  (d)	� Use the linear model in part (c) to estimate the ulcer 
rate for an income of $25,000.

		  (e)	� According to the model, how likely is someone with an 
income of $80,000 to suffer from peptic ulcers?

		  (f)	� Do you think it would be reasonable to apply the 
model to someone with an income of $200,000?

 
Income

Ulcer rate 
(per 100 population)

	 $4,000 	 14.1
	 $6,000 	 13.0
	 $8,000 	 13.4
	 $12,000 	 12.5
	 $16,000 	 12.0
	 $20,000 	 12.4
	 $30,000 	 10.5
	 $45,000 	 9.4
	 $60,000 	 8.2

	 ;	 20.	� Cricket chirping rate �� In Exercise 15 we modeled tem-
perature as a linear function of the chirping rate of crickets 
from limited data. Here we use more extensive data in the 
following table to construct a linear model.

Temperature 
s8Fd

Chirping rate 
(chirpsymin)

Temperature 
s8Fd

Chirping rate 
(chirpsymin)

50 	 20 75 140
55 	 46 80 173
60 	 79 85 198
65 	 91 90 211
70 113

		  (a)	 Make a scatter plot of the data.
		  (b)	 Find and graph the regression line.
		  (c)	� Use the linear model in part (b) to estimate the chirping 

rate at 1008F.

	 ;	 21.	� Femur length �� Anthropologists use a linear model that 
relates human femur (thighbone) length to height. The 
model allows an anthropologist to determine the height of 
an individual when only a partial skeleton (including the 
femur) is found. Here we find the model by analyzing the 
data on femur length and height for the eight males given 
in the following table.

Femur length 
(cm)

Height 
(cm)

Femur length 
(cm)

Height 
(cm)

50.1 	 178.5 44.5 168.3
48.3 	 173.6 42.7 165.0
45.2 	 164.8 39.5 155.4
44.7 	 163.7 38.0 155.8
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			���   (ear bones in their heads). Scientists have proposed a cubic 
polynomial to model the data.

		  (a)	� Use a cubic polynomial to model the data. Graph the 
polynomial together with a scatter plot of the data.

		  (b)	� Use your model to estimate the length of a 5-year-old 
rock bass.

		  (c)	� A fisherman catches a rock bass that is 20 inches long. 
Use your model to estimate its age.

Age 
(years)

Length 
(inches)

Age 
(years)

Length 
(inches)

1 	 4.8 	 9 	 18.2
2 	 8.8 	 9 	 17.1
2 	 8.0 10 	 18.8
3 	 7.9 10 	 19.5
4 	 11.9 11 	 18.9
5 	 14.4 12 	 21.7
6 	 14.1 12 	 21.9
6 	 15.8 13 	 23.8
7 	 15.6 14 	 26.9
8 	 17.8 14 	 25.1

Photo by Karna McKinney, AFSC, NOAA Fisheries

Island A N

Saba 	 4 	 5
Monserrat 	 40 	 9
Puerto Rico 	 3,459 	 40
Jamaica 	 4,411 	 39
Hispaniola 	 29,418 	 84
Cuba 	 44,218 	 76

	 ;	 26.	��� The table shows the mean (average) distances d of the 
planets from the sun (taking the unit of measurement to be 
the distance from the earth to the sun) and their periods T 
(time of revolution in years).

Planet d T

Mercury 	 0.387 	 0.241
Venus 	 0.723 	 0.615
Earth 	 1.000 	 1.000
Mars 	 1.523 	 1.881
Jupiter 	 5.203 	 11.861
Saturn 	 9.541 	 29.457
Uranus 	 19.190 	 84.008
Neptune 	 30.086 	 164.784

		  (a)	� Fit a power model to the data.
		  (b)	� Kepler’s Third Law of Planetary Motion states that

			�   “The square of the period of revolution of a planet  
is proportional to the cube of its mean distance from 
the sun.”

			   Does your model corroborate Kepler’s Third Law?

	 ;	 27.	� Fish growth �� The table gives the lengths of rock bass 
			���   caught at different ages, as determined by their otoliths 	 BB

1.3 New Functions from Old Functions

In this section we start with the basic functions we discussed in Section 1.2 and obtain 
new functions by shifting, stretching, and reflecting their graphs. We also show how to 
combine pairs of functions by the standard arithmetic operations and by composition.

■ Transformations of Functions
By applying certain transformations to the graph of a given function we can obtain 
the graphs of related functions. This will give us the ability to sketch the graphs of  
many functions quickly by hand. It will also enable us to write equations for given graphs. 

Let’s first consider translations. If c is a positive number, then the graph of y − f sxd 1 c 
is just the graph of y − f sxd shifted upward a distance of c units (because each y-coordi-
nate is increased by the same number c). Likewise, if tsxd − f sx 2 cd, where c . 0, then 
the value of t at x is the same as the value of f  at x 2 c (c units to the left of x). There- 
fore the graph of y − f sx 2 cd is just the graph of y − f sxd shifted c units to the right 
(see Figure 1).
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Vertical and Horizontal Shifts � Suppose c . 0. To obtain the graph of

 y − f sxd 1 c, shift the graph of y − f sxd a distance c units upward

 y − f sxd 2 c, shift the graph of y − f sxd a distance c units downward

 y − f sx 2 cd, shift the graph of y − f sxd a distance c units to the right

 y − f sx 1 cd, shift the graph of y − f sxd a distance c units to the left

x

y

0

y=f(x-c)y=f(x+c) y =ƒ

y=ƒ-c

y=ƒ+c

c

c

c c

      

y=   ƒ1
c

x

y

0

y=f(_x)

y=ƒ

y=_ƒ

y=cƒ
(c>1)

Figure �1  Translating the graph of f 	 Figure �2  Stretching and reflecting the graph f

Now let’s consider the stretching and reflecting transformations. If c . 1, then the  
graph of y − cf sxd is the graph of y − f sxd stretched by a factor of c in the vertical  
direction (because each y-coordinate is multiplied by the same number c). The graph of 
y − 2f sxd is the graph of y − f sxd reflected about the x-axis because the point sx, yd is 
replaced by the point sx, 2yd. (See Figure 2 and the following chart, where the results of 
other stretching, shrinking, and reflecting transformations are also given.)

Vertical and Horizontal Stretching and Reflecting � Suppose c . 1. To 
obtain the graph of

 y − cf sxd, stretch the graph of y − f sxd vertically by a factor of c

 y − s1ycd f sxd, shrink the graph of y − f sxd vertically by a factor of c

 y − f scxd, shrink the graph of y − f sxd horizontally by a factor of c

 y − f sxycd, stretch the graph of y − f sxd horizontally by a factor of c

 y − 2f sxd, reflect the graph of y − f sxd about the x-axis

 y − f s2xd, reflect the graph of y − f sxd about the y-axis
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Figure 3 illustrates these stretching transformations when applied to the cosine func-
tion with c − 2. For instance, in order to get the graph of y − 2 cos x we multiply the  
y-coordinate of each point on the graph of y − cos x by 2. This means that the graph of 
y − cos x gets stretched vertically by a factor of 2.

x

1

2

y

0

y=cos x

y=cos 2x

y=cos    x1
2

x

1

2

y

0

y=2 cos x

y=cos x

y=    cos x1
2

1

 Example 1   |  Given the graph of y − sx , use transformations to graph y − sx 2 2, 
y − sx 2 2 , y − 2sx , y − 2sx , and y − s2x .

SOLUTION � The graph of the square root function y − sx , obtained from Fig-
ure 1.2.13(a), is shown in Figure 4(a). In the other parts of the figure we sketch 
y − sx 2 2 by shifting 2 units downward, y − sx 2 2  by shifting 2 units to the
�right, y − 2sx  by reflecting about the x-axis, y − 2sx  by stretching vertically by a 
factor of 2, and y − s2x  by reflecting about the y-axis.

(a) y=œ„x (b) y=œ„-2x (c) y=œ„„„„x-2 (d) y=_œ„x (e) y=2œ„x (f ) y=œ„„_x

0 x

y

0 x

y

0 x

y

20 x

y

_2

0 x

y

1

10 x

y

Figure �4 ■

 Example 2   |  Sketch the graph of the function f sxd − x 2 1 6x 1 10.

SOLUTION � Completing the square, we write the equation of the graph as

y − x 2 1 6x 1 10 − sx 1 3d2 1 1

This means we obtain the desired graph by starting with the parabola y − x 2 and shifting 
3 units to the left and then 1 unit upward (see Figure 5).

	 (a) y=≈ (b) y=(x+3)@+1

x0_1_3

1

y

(_3, 1)

x0

y

	 ■

Figure �3

Figure �5
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 Example 3   |  Sketch the graphs of the following functions.
(a)	 y − sin 2x	 (b)	 y − 1 2 sin x

Solution �
(a)	 We obtain the graph of y − sin 2x from that of y − sin x by compressing horizon-
tally by a factor of 2. (See Figures 6 and 7.) Thus, whereas the period of y − sin x is  
2�, the period of y − sin 2x is 2�y2 − �.

x0

y

1

π
2

π

y=sin x

x0

y

1

π
2

π
4

π

y=sin 2x

Figure �6	 Figure �7

(b)	 To obtain the graph of y − 1 2 sin x, we again start with y − sin x. We reflect  
about the x-axis to get the graph of y − 2sin x and then we shift 1 unit upward to get 
y − 1 2 sin x. (See Figure 8.)

	
x

1

2

y

π0 2π

y=1-sin x

π
2

3π
2 	 ■

 Example 4   |  Hours of daylight � Figure 9 shows graphs of the number of hours 
of daylight as functions of the time of the year at several latitudes. Given that Philadel-
phia is located at approximately 408N latitude, find a function that models the length of 
daylight at Philadelphia.

0
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6

8

10

12

14

16

18

20

Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Hours

60° N

50° N
40° N
30° N
20° N

Figure �8

Figure �9
Graph of the length of daylight  

from March 21 through  
December 21 at various latitudes

Source: Adapted from L. Harrison,  

Daylight, Twilight, Darkness and Time  

(New York: Silver, Burdett, 1935), 40.
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Solution � Notice that each curve resembles a shifted and stretched sine function. 
By looking at the blue curve we see that, at the latitude of Philadelphia, daylight 
lasts about 14.8 hours on June 21 and 9.2 hours on December 21, so the amplitude 
of the curve (the factor by which we have to stretch the sine curve vertically) is 
1
2 s14.8 2 9.2d − 2.8.

By what factor do we need to stretch the sine curve horizontally if we measure the 
time t in days? Because there are about 365 days in a year, the period of our model 
should be 365. But the period of y − sin t is 2�, so the horizontal stretching factor is 
2�y365.

We also notice that the curve begins its cycle on March 21, the 80th day of the year,  
so we have to shift the curve 80 units to the right. In addition, we shift it 12 units 
upward. Therefore we model the length of daylight in Philadelphia on the t th day of the 
year by the function

	 Lstd − 12 1 2.8 sinF 2�

365
st 2 80dG	 ■

■ Combinations of Functions
Two functions f  and t can be combined to form new functions f 1 t, f 2 t, ft, and fyt  
in a manner similar to the way we add, subtract, multiply, and divide real numbers. The 
sum and difference functions are defined by

s f 1 tdsxd − f sxd 1 tsxd             s f 2 tdsxd − f sxd 2 tsxd

If the domain of f  is A and the domain of t is B, then the domain of f 1 t is the inter-
section A > B because both f sxd and tsxd have to be defined. For example, the domain 
of f sxd − sx  is A − f0, `d and the domain of tsxd − s2 2 x  is B − s2`, 2g, so the 
domain of s f 1 tdsxd − sx 1 s2 2 x  is A > B − f0, 2g.

Similarly, the product and quotient functions are defined by

s ftdsxd − f sxdtsxd            S  f

tDsxd −
 f sxd
tsxd

The domain of ft is A > B, but we can’t divide by 0 and so the domain of fyt is 
hx [ A > B | tsxd ± 0j. For instance, if f sxd − x 2 and tsxd − x 2 1, then the domain 
of the rational function s fytdsxd − x 2ysx 2 1d is hx | x ± 1j, or s2`, 1d ø s1, `d. 

There is another way of combining two functions to obtain a new function. For exam-
ple, suppose that y − f sud − su  and u − tsxd − x 2 1 1. Since y is a function of u and 
u is, in turn, a function of x, it follows that y is ultimately a function of x. We compute 
this by substitution:

y − f sud − f stsxdd − f sx 2 1 1d − sx 2 1 1

The procedure is called composition because the new function is composed of the two 
given functions f  and t.

In general, given any two functions f  and t, we start with a number x in the domain 
of t and calculate tsxd. If this number tsxd is in the domain of f , then we can calculate 
the value of f stsxdd. Notice that the output of one function is used as the input to the next 
function. The result is a new function hsxd − f stsxdd obtained by substituting t into f . It 
is called the composition (or composite) of f  and t and is denoted by f 8 t (“ f  circle t”).

Definition � Given two functions f  and t, the composite function f 8 t (also 
called the composition of f  and t) is defined by

s f 8 tdsxd − f stsxdd
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The domain of f 8 t is the set of all x in the domain of t such that tsxd is in the domain  
of f . In other words, s f 8 tdsxd is defined whenever both tsxd and f stsxdd are defined. 
Figure 10 shows how to picture f 8 t in terms of machines.

 Example 5   |  If f sxd − x 2 and tsxd − x 2 3, find the composite functions f 8 t  
and t 8 f .

SOLUTION � We have

 s f 8 tdsxd − f stsxdd − f sx 2 3d − sx 2 3d2

	  st 8 f dsxd − ts f sxdd − tsx 2 d − x 2 2 3 	 ■

NOTE � You can see from Example 5 that, in general, f 8 t ± t 8 f . Remember, the  
notation f 8 t means that the function t is applied first and then f  is applied second. In 
Example 5, f 8 t is the function that first subtracts 3 and then squares; t 8 f  is the function 
that first squares and then subtracts 3.

 Example 6   |  If f sxd − sx  and tsxd − s2 2 x , find each function and its domain.
(a)	 f 8 t	 (b)	 t 8 f 	 (c)	 f 8 f 	 (d)	 t 8 t

SOLUTION �

(a)	 s f 8 tdsxd − f stsxdd − f (s2 2 x) − ss2 2 x − s4 2 2 x 

The domain of f 8 t is hx | 2 2 x > 0j − hx | x < 2j − s2`, 2g.

(b)	 st 8 f dsxd − ts f sxdd − t(sx ) − s2 2 sx 

For sx  to be defined we must have x > 0. For s2 2 sx  to be defined we must have
2 2 sx > 0, that is, sx < 2, or x < 4. Thus we have 0 < x < 4, so the domain of 
t 8 f  is the closed interval f0, 4g.

(c)	 s f 8 f dsxd − f s f sxdd − f (sx ) − ssx − s4 x 

The domain of f 8 f  is f0, `d.

(d)	 st 8 tdsxd − tstsxdd − tss2 2 xd − s2 2 s2 2 x

This expression is defined when both 2 2 x > 0 and 2 2 s2 2 x > 0. The first 
inequality means x < 2, and the second is equivalent to s2 2 x < 2, or 2 2 x < 4, or 
x > 22. Thus 22 < x < 2, so the domain of t 8 t is the closed interval f22, 2g.	 ■

It is possible to take the composition of three or more functions. For instance, the 
composite function f 8 t 8 h is found by first applying h, then t, and then f  as follows:

s f 8 t 8 hdsxd − f stshsxddd

 Example 7   |  BB   Antibiotic dosage � Antibiotics are used to treat bacterial 
sinus infections. If a dosage of x mg is taken orally, suppose that the amount absorbed 
into the bloodstream through the stomach is hsxd − 8xysx 1 8d mg. If x mg enters  
the bloodstream, suppose that the amount surviving filtration by the liver is tsxd − 1

4 x. 
Finally, if x mg survives filtration by the liver, suppose that f sxd − x 2 1 mg is 
absorbed into the sinus cavity, provided that x . 1 [otherwise f sxd − 0].

f

g

f{©}

f • g

x

©

(input)

(output)

Figure �10
The f 8 t machine is composed of the t 
machine (first) and then the f  machine.

If 0 < a < b, then a 2 < b 2.
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(a)	 Use composition of functions to derive the function that relates oral dosage to the 
amount of drug that reaches the sinus cavity.
(b)	 Suppose the antibiotic is instead administered by injection. Derive the function 
that relates dosage to the amount of drug that reaches the sinus cavity.

Soluton �
(a)	 The amount of antibiotic after filtration by the liver is

tshsxdd − 1
4hsxd −

1

4S 8x

x 1 8D −
2x

x 1 8

Now	
2x

x 1 8
. 1    &?    2x . x 1 8    &?    x . 8

So if x . 8, the amount of the drug that reaches the sinus cavity is

f stshsxddd − fS 2x

x 1 8D −
2x

x 1 8
2 1 −

2x 2 sx 1 8d
x 1 8

−
x 2 8

x 1 8

Otherwise f stshsxddd − 0. So we can write the amount that reaches the sinus cavity as

f stshsxddd − H x 2 8

x 1 8

0

if x . 8

if x < 8

(b)	 If the drug is administered by injection, then the amount reaching the sinus  
cavity is

f stsxdd − H1
4 x 2 1 if x . 4

0 if x < 4

Figure 11 displays the graphs of the functions f , t, and h, as well as the composite 
functions showing how the amount of antibiotic reaching the sinus cavity depends on 
the amount administered in both cases.	 ■

So far we have used composition to build complicated functions from simpler ones. 
But in calculus it is often useful to be able to decompose a complicated function into 
simpler ones, as in the following example.

 Example 8   |  Given Fsxd − cos2 sx 1 9d, find functions f , t, and h such that 
F − f 8 t + h.

Solution � Since Fsxd − fcossx 1 9dg 2, the formula for F says: First add 9, then 
take the cosine of the result, and finally square. So we let

hsxd − x 1 9      tsxd − cos x      f sxd − x 2

�Then

 s f + t + hdsxd − f stshsxddd − f stsx 1 9dd − f scossx 1 9dd

 − fcossx 1 9dg 2 − Fsxd ■
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EXERCISES 1.3

	 1.	��� Suppose the graph of f  is given. Write equations for the graphs 
that are obtained from the graph of f  as follows.

		  (a)	 Shift 3 units upward.	 (b)	 Shift 3 units downward.
		  (c)	 Shift 3 units to the right.	 (d)	 Shift 3 units to the left.
		  (e)	 Reflect about the x-axis.	 (f)	 Reflect about the y-axis.
		  (g)	 Stretch vertically by a factor of 3.
		  (h)	 Shrink vertically by a factor of 3.

	 2.	�� �Explain how each graph is obtained from the graph of y − f sxd.
		  (a)	 y − f sxd 1 8	 (b)	 y − f sx 1 8d
		  (c)	 y − 8 f sxd	 (d)	 y − f s8xd
		  (e)	 y − 2f sxd 2 1	 (f)	 y − 8 f s 1

8 xd
	 3.	�� �The graph of y − f sxd is given. Match each equation with its 

graph and give reasons for your choices.
		  (a)	 y − f sx 2 4d	 (b)	 y − f sxd 1 3

		  (c)	 y − 1
3 f sxd	 (d)	 y − 2f sx 1 4d

		  (e)	 y − 2 f sx 1 6d

		

!@

$

%

#f

y

3

_3

6

0 x3_3_6 6

	 4.	�� �The graph of f  is given. Draw the graphs of the following  
functions.

		  (a)	 y − f sxd 2 2	 (b)	 y − f sx 2 2d

		  (c)	 y − 22 f sxd	 (d)	 y −  f s 1
3 xd 1 1

x

y

0 1

2

	 5.	�� ��The graph of f  is given. Use it to graph the following  
functions.

		  (a)	 y − f s2xd	 (b)	 y − f s 1
2xd

		  (c)	 y − f s2xd	 (d)	 y − 2f s2xd

x

y

0 1

1

	 6.	�� (a)	� How is the graph of y − 2 sin x related to the graph of 
y − sin x? Use your answer and Figure 6 to sketch the 
graph of y − 2 sin x.

		  (b)	� How is the graph of y − 1 1 sx  related to the graph 
of y − sx

  

? Use your answer and Figure 4(a) to sketch 
the graph of y − 1 1 sx .

	� 7–20 � Graph the function by hand, not by plotting points, but 
by starting with the graph of one of the standard functions 
given in Section 1.2, and then applying the appropriate  
transformations.

	 7.	�� y −
1

x 1 2
	 8.	 y − sx 2 1d3

	 9.	 y − 2s3 x 	 10.	 y − x 2 1 6x 1 4

	 11.	 y − sx 2 2 2 1	 12.	 y − 4 sin 3x

	 13.	 y − sins1
2 xd	 14.	 y −

2

x
2 2

	 15.	 y − 2x 3	 16.	 y − 1 2 2sx 1 3 

	 17.	 y − 1
2s1 2 cos xd	 18.	 y − | x | 2 2

	 19.	 y − 1 2 2x 2 x 2	 20.	 y −
1

4
 tanSx 2

�

4 D
	 21.	��� The city of New Orleans is located at latitude 308N. Use 

Figure 9 to find a function that models the number of hours 
of daylight at New Orleans as a function of the time of 
year. To check the accuracy of your model, use the fact that 
on March 31 the sun rises at 5:51 am and sets at 6:18 pm in 
New Orleans. 

	 22.	��� A variable star is one whose brightness alternately 
increases and decreases. For the most visible variable 
star, Delta Cephei, the time between periods of maximum 
brightness is 5.4 days, the average brightness (or magni-
tude) of the star is 4.0, and its brightness varies by 60.35 
magnitude. Find a function that models the brightness of 
Delta Cephei as a function of time.

	 23.	�� �Some of the highest tides in the world occur in the Bay 
of Fundy on the Atlantic Coast of Canada. At Hopewell 
Cape the water depth at low tide is about 2.0 m and at high 
tide it is about 12.0 m. The natural period of oscillation is 
about 12 hours and on June 30, 2009, high tide occurred at 
6:45 am. Find a function involving the cosine function that 
models the water depth Dstd (in meters) as a function of 
time t (in hours after midnight) on that day.

	 24.	��� Volume of air in lungs � In a normal respiratory cycle 
the volume of air that moves into and out of the lungs is 
about 500 mL. The reserve and residual volumes of air that 
remain in the lungs occupy about 2000 mL and a single 

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



	 43.	 vstd − secst 2d tanst 2d	 44.	 ustd −
tan t

1 1 tan t

	� 45–47 � Express the function in the form f 8 t 8 h.

	 45.	 Rsxd − ssx 2 1	 46.	 Hsxd − s8 2 1 | x |
	 47.	 Hsxd − sec4(sx )

	 48.	�� Use the table to evaluate each expression.
		  (a)  f sts1dd	 (b)  ts f s1dd	 (c)  f s f s1dd
		  (d)  tsts1dd	 (e)  st 8 f ds3d	 (f)  s f 8 tds6d

x 1 2 3 4 5 6

f sxd 3 1 4 2 2 5

tsxd 6 3 2 1 2 3

	 49.	�� �Use the given graphs of f  and t to evaluate each expression, 
or explain why it is undefined.

		�  (a)  f sts2dd	 (b)  ts f s0dd	 (c)  s f 8 tds0d
		  (d)  st 8 f ds6d	 (e)  st 8 tds22d	 (f)  s f 8 f ds4d

x

y

0

fg

2

2

	 50.	�� �Use the given graphs of f  and t to estimate the value of 
f stsxdd for x − 25, 24, 23, . . . , 5. Use these estimates to 
sketch a rough graph of f 8 t.

g

f

x

y

0 1

1

	 51.	�� �A stone is dropped into a lake, creating a circular ripple that 
travels outward at a speed of 60 cmys.

		  (a)	� Express the radius r of this circle as a function of the  
time t (in seconds).

		  (b)	� If A is the area of this circle as a function of the radius, 
find A 8 r and interpret it.

respiratory cycle for an average human takes about 4 seconds. 
Find a model for the total volume of air Vstd in the lungs as a 
function of time.

	 25.	�� Gene frequency � The frequency of a certain gene in a 
parasite population undergoes sinusoidal cycles as a result of 
coevolution with its host. It reaches a maximum frequency of 
80% and a minimum of 20%, with a complete cycle taking 
three years. Find a function that describes the gene frequency 
dynamics over time (measured in years) assuming that it 
starts at a frequency of 50% at time t − 0. See also Case 
Study 2 on page xlvi.

	 26.	�� Cyclic neutropenia �is a blood disorder in humans character-
ized by periodic fluctuations in the density of a certain kind 
of blood cell called neutrophils. The density of neutrophils 
reaches highs of around 2000 cellsymL of blood and lows 
near zero. The period of fluctuations is approximately three 
weeks. Model the temporal dynamics of neutrophils in days, 
assuming that the density is at its highest on day 0.

	� 27–28 � Find (a) f 1 t, (b) f 2 t, (c) ft, and (d) fyt and state 
their domains.

	 27.	�� f sxd − x 3 1 2x 2,    tsxd − 3x 2 2 1

	 28.	�� f sxd − s3 2 x ,    tsxd − sx 2 2 1

	� 29–34 � Find the functions (a) f 8 t, (b) t 8 f , (c) f 8 f , and  
(d) t 8 t and their domains.

	 29.	�� f sxd − x 2 2 1,    tsxd − 2x 1 1

	 30.	�� f sxd − x 2 2,    tsxd − x 2 1 3x 1 4

	 31.	�� f sxd − 1 2 3x,    tsxd − cos x

	 32.	�� f sxd − sx ,    tsxd − s3 1 2 x 

	 33.	�� f sxd − x 1
1

x
,    tsxd −

x 1 1

x 1 2

	 34.	�� f sxd −
x

1 1 x
,    tsxd − sin 2x

	� 35–38 � Find f 8 t 8 h.

	 35.	�� f sxd − 3x 2 2,    tsxd − sin x,    hsxd − x 2

	 36.	�� f sxd − | x 2 4 |,    tsxd − 2 x,    hsxd − sx 

	 37.	�� f sxd − sx 2 3 ,    tsxd − x 2,    hsxd − x 3 1 2

	 38.	�� f sxd − tan x,    tsxd −
x

x 2 1
,    hsxd − s3 x 

	� 39–44 � Express the function in the form f 8 t.

	 39.	 Fsxd − s2x 1 x 2d4	 40.	 Fsxd − cos2x

	 41.	 Fsxd −
s3 x 

1 1 s3 x 
	 42.	 Gsxd − Î x

1 1 x
 

3
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tion. Derive the function that relates dosage to the number 
of surviving bacteria using composition of functions.

		  (c)	� Sketch the graphs of the functions found in parts (a)  
and (b).

	 55.	�� Matrix-digesting enzymes� are sometimes produced by 
cancer cells to digest the tissue surrounding the tumor, allow-
ing it to grow and spread. In solid tumors, the enzymes are 
produced only by the cells on the surface of the tumor. Sup-
pose the diameter of a spherical tumor is growing at a rate of 
t mmyyear.

		  (a)	� What is the diameter d of the tumor as a function of time?
		  (b)	� Suppose the rate of enzyme production P is proportional 

to the surface area of the tumor S. Find P 8 S 8 d and 
interpret it.

	 56.	��� If you invest x dollars at 4% interest compounded annually,  
then the amount Asxd of the investment after one year is 
Asxd − 1.04x. Find A 8 A, A 8 A 8 A, and A 8 A 8 A 8 A. What 
do these compositions represent? Find a formula for the com-
position of n copies of A.

	 57.	��� �Let f  and t be linear functions with equations 
f sxd − m1x 1 b1 and tsxd − m2 x 1 b2. Is f 8 t also a linear 
function? If so, what is the slope of its graph?

	 58.	��� Suppose t is an even function and let h − f 8 t. Is h always an 
even function?

	 59.	�� �Suppose t is an odd function and let h − f 8 t. Is h always an 
odd function? What if f  is odd? What if f  is even?

	 52.	��� A spherical balloon is being inflated and the radius of the bal-
loon is increasing at a rate of 2 cmys.

		  (a)	� Express the radius r of the balloon as a function of the  
time t (in seconds).

		  (b)	� If V is the volume of the balloon as a function of the 
radius, find V 8 r and interpret it.

	 53.	��� A ship is moving at a speed of 30 kmyh parallel to a straight 
shoreline. The ship is 6 km from shore and it passes a light-
house at noon.

		  (a)	� Express the distance s between the lighthouse and the 
ship as a function of d, the distance the ship has traveled 
since noon; that is, find f  so that s − f sdd.

		  (b)	� Express d as a function of t, the time elapsed since noon; 
that is, find t so that d − tstd.

		  (c)	� Find f 8 t. What does this function represent?

	 54.	�� Bioavailability �is a term that refers to the fraction of an 
antibiotic dose taken orally that is absorbed into the blood-
stream. Suppose that, for a dosage of x mg, the bioavailability 
is hsxd − 1

2x mg. If x mg enters the bloodstream, suppose that 
the amount eventually absorbed into the site of an infection is 
given by tsxd − 4xysx 1 4d mg. Finally, if x mg is absorbed 
into the site of an infection, suppose that the number of sur-
viving bacteria is given by f sxd − 3200ys8 1 x 2d, measured 
in colony forming units, CFU.

		  (a)	� Derive the function that relates oral dosage to the number 
of surviving bacteria using composition of functions.

		  (b)	� Suppose the antibiotic is instead administered by injec-

■ �Project � The Biomechanics of Human Movement	 BB

Periodic processes in biology often display much more complicated patterns than those of 
the sine and cosine functions. For example, the vertical force exerted on the ground during 
human locomotion can display a variety of patterns depending on speed. (See, for example, 
Figure 1.) One way to model such processes is to first construct a function that adequately 
models a single cycle and then to use a periodic extension of this function to represent 
multiple cycles. In this project you will transform the cosine function to model the vertical 
force exerted on the ground during running and walking using such periodic extensions.

	 1.	� (a)	� Consider the force exerted on the ground during one stride of the right leg 
during running at 3.6 mys [Figure 1(a)]. Suppose the foot strikes the ground 
at t − 0, leaves the ground at t − 0.25 s, and that the maximal force exerted 
on the ground is 2 kN. Explain why the function f std − 1 2 coss8�td pro-
vides a reasonable description of the force exerted over one stride.

		�  (b)	� Plot the periodic extension of the function from part (a) assuming it repeats 
every 0.65 seconds.

	 2.	� (a)	� To model the force pattern of a single cycle during walking at 1.5 mys [Fig-
ure 1(b)] we need to alter the function from Problem 1(a) so that it is wider. 
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Figure �1
Source: Adapted from R. Alexander, “Walking and Running,” American Scientist 72 (1984): 348–54.

			�   Do so, assuming that the foot strikes the ground at t − 0 and leaves the 
ground at t − 0.8 s.

		  (b)	� The function in part (a) has the correct width but we need to create a dip in 
the function midway through the stride at t − 0.4 s. One way to do this is to 
add the function in part (a) to a similar function that oscillates twice as fast 
(that is, has half the period) and then scale the height of the resulting func-
tion appropriately. Use this approach to obtain a function with the desired 
shape.

		  (c)	� Plot the periodic extension of the function obtained in part (b) assuming it 
repeats every 1.2 seconds.

	 3.	� �A variation of the function in Problem 2(b) is given by

tstd − 1 2
coss2.5�td 1 q coss5�td

1 1 q

		�  where q is a constant.
		  (a)	� Plot the graph of t for q − 0.2, 0.8, and 1.8. What role does q play?
		  (b)	� Compare the graphs of t in part (a) with the graph of the function in  

Problem 2(b).

;

;

;
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1.4 Exponential Functions

We often hear people saying that something is “growing exponentially.” What does that 
mean, exactly? We answer that question in this section by looking at examples of expo-
nential growth and decay as modeled by exponential functions.

■ The Growth of Malarial Parasites
Malaria kills more than a million people every year. To understand the mechanisms 
that regulate malarial growth, controlled experiments have been done on mice. Indi-
vidual cells of the malarial species Plasmodium chabaudi reproduce synchronously (at 
the same time) every 24 hours. The parasites develop in red blood cells for a period of 24 
hours and then they all burst at the same time, quickly reinvade new blood cells, and start 
the process again. Each infected blood cell produces eight new parasites when it bursts. 
So a single parasite at time 0 produces 8 parasites after 1 day, 8 3 8 − 64 parasites after Hi
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2 days, and so on. If Psnd is the number of parasites after n days, then

 Ps0d − 1

 Ps1d − 8

 Ps2d − 8 3 Ps1d − 82

 Ps3d − 8 3 Ps2d − 83

This pattern continues for six or seven days, so for that time period we have

Psnd − 8n

The rapid growth of this function is demonstrated by the table of values and
the resulting scatter plot in Figure 1.

0

P(n)

1 2 3 4

1000

2000

3000

4000

n (days)

■ Exponential Functions
The function Psnd − 8n is called an exponential function because the variable n is the 
exponent. Likewise, f sxd − 5x is an exponential function because x is the exponent. 
The exponential function f sxd − 2x should not be confused with the power function 
tsxd − x 2, in which the variable is the base.

In general, an exponential function is a function of the form

f sxd − bx

where b is a positive constant. Let’s recall what this means.
If x − n, a positive integer, then

bn − b ? b ? ∙ ∙ ∙ ? b

n factors

If x − 0, then b 0 − 1, and if x − 2n, where n is a positive integer, then

b2n −
1

bn

If x is a rational number, x − pyq, where p and q are integers and q . 0, then

bx − bpyq − sq bp 
− ssq b d p

Day n Psnd
0 	 1

1 	 8

2 	 64

3 	 512

4 	 4,096

5 	 32,768

Figure �1
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But what is the meaning of bx if x is an irrational number? For instance, what is meant 
by 2s3 or 5�?

To help us answer this question, we first look at the graph of the function y − 2x, where 
x is rational. A representation of this graph is shown in Figure 2. We want to enlarge the  
domain of y − 2x to include both rational and irrational numbers.

There are holes in the graph in Figure 2 corresponding to irrational values of x. We 
want to fill in the holes by defining f sxd − 2x, where x [ R, so that f  is an increasing 
function. In particular, since the irrational number s3  satisfies

1.7 , s3 , 1.8

we must have

21.7 , 2s3 , 21.8

and we know what 21.7 and 21.8 mean because 1.7 and 1.8 are rational numbers. Similarly,  
if we use better approximations for s3 , we obtain better approximations for 2s3:

 1.73 , s3 , 1.74  ?  21.73 , 2s3 , 21.74

 1.732 , s3 , 1.733  ?  21.732 , 2s3 , 21.733

 1.7320 , s3 , 1.7321  ?  21.7320 , 2s3 , 21.7321

 1.73205 , s3 , 1.73206 ? 21.73205 , 2s3 , 21.73206

	 .	 .	 .	 .
	 .	 .	 .	 .
	 .	 .	 .	 .

It can be shown that there is exactly one number that is greater than all of the numbers

21.7,     21.73,     21.732,     21.7320,     21.73205,     . . .

and less than all of the numbers

21.8,     21.74,     21.733,     21.7321,     21.73206,     . . .

We define 2s3 to be this number. Using the preceding approximation process, we can 
compute it correct to six decimal places:

2s3 < 3.321997

Similarly, we can define 2x (or bx, if b . 0) where x is any irrational number. Figure 3 
shows how all the holes in Figure 2 have been filled to complete the graph of the function 
f sxd − 2x, x [ R.

x10

y

1

x0

y

1

1

Figure �2
Representation of y − 2x,  
x rational

A proof of this fact is given in  
J. Marsden and A. Weinstein, Calculus 
Unlimited (Menlo Park, CA: Benjamin/
Cummings, 1981).

Figure �3
y − 2x, x real
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The graphs of members of the family of functions y − bx are shown in Figure 4 for var- 
ious values of the base b. Notice that all of these graphs pass through the same point 
s0, 1d because b 0 − 1 for b ± 0. Notice also that as the base b gets larger, the exponen-
tial function grows more rapidly (for x . 0).

0

1®

1.5®2®4®10®”   ’®1
4”   ’®1

2

x

y

1

You can see from Figure 4 that there are basically three kinds of exponential functions 
y − bx. If 0 , b , 1, the exponential function decreases; if b − 1, it is a constant; and if  
b . 1, it increases. These three cases are illustrated in Figure 5. Observe that if b ± 1, then  
the exponential function y − bx has domain R and range s0, `d. Notice also that, since 
s1ybdx − 1ybx − b2x, the graph of y − s1ybdx is just the reflection of the graph of y − bx 
about the y-axis.

(a) y=b®,  0<b<1 (b) y=1® (c) y=b®,  b>1

1
(0, 1)

(0, 1)

x0

y y

x0x0

y

One reason for the importance of the exponential function lies in the following prop-
erties. If x and y are rational numbers, then these laws are well known from elementary  
algebra. It can be proved that they remain true for arbitrary real numbers x and y.

Laws of Exponents � If a and b are positive numbers and x and y are any real 
numbers, then

1.  b x1y − b xb y	 2.  b x2y −
b x

b y 	 3.  sb x dy − b xy	 4.  sabdx − a xb x

If 0 , b , 1, then b x approaches 0 
as x becomes large. If b . 1, then b x 
approaches 0 as x decreases through 
negative values. In both cases the x-axis 
is a horizontal asymptote. These mat-
ters are discussed in Section 2.2.

Figure �4

Figure �5

www.stewartcalculus.com
For review and practice using the 
Laws of Exponents, click on Review 
of Algebra.
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 Example 1   |  Sketch the graph of the function y − 3 2 2x and determine its 
domain and range.

Solution � First we reflect the graph of y − 2x [shown in Figures 3 and 6(a)] about 
the x-axis to get the graph of y − 22x in Figure 6(b). Then we shift the graph of 
y − 22x upward 3 units to obtain the graph of y − 3 2 2x in Figure 6(c). The domain 
is R and the range is s2`, 3d.

0

1

(a) y=2®

x

y

0

_1

(b) y=_2®

x

y

y=3

0

2

(c) y=3-2®

x

y

■

 Example 2   |  Use a graphing device to compare the exponential function f sxd − 2x 
and the power function tsxd − x 2. Which function grows more quickly when x is large?

Solution � Figure 7 shows both functions graphed in the viewing rectangle f22, 6g  
by f0, 40g. We see that the graphs intersect three times, but for x . 4 the graph of 
f sxd − 2x stays above the graph of tsxd − x 2. Figure 8 gives a more global view 
and shows that for large values of x, the exponential function y − 2x grows far more 
rapidly than the power function y − x 2.

40

0
_2 6

y=2® y=≈
250

0 8

y=2®

y=≈

Figure �7 Figure �8
	

■

■ Exponential Growth
We have seen how the exponential function Psnd − 8n models the initial growth of the 
malarial parasite P. chabaudi. In the next example we use an exponential function to 
model the human population in the 20th century.

For a review of reflecting and shifting 
graphs, see Section 1.3.

Figure �6

Example 2 shows that y − 2x increases 
more quickly than y − x 2. To dem-
onstrate just how quickly f sxd − 2x 
increases, let’s perform the following 
thought experiment. Suppose we start 
with a piece of paper a thousandth of 
an inch thick and we fold it in half 50 
times. Each time we fold the paper in 
half, the thickness of the paper doubles, 
so the thickness of the resulting paper 
would be 250y1000 inches. How thick  
do you think that is? It works out to be 
more than 17 million miles!
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 Example 3   |  BB   World population growth � Table 1 shows data for the 
population of the world from 1900 to 2010. Use an exponential function to model the 
data.

Solution � Figure 9 shows the scatter plot corresponding to the data in Table 1.

5x10'

P

t20 40 60 80 100 1200

Years after 1900

Figure �9  �Scatter plot for world population

The pattern of the data points in Figure 9 suggests exponential growth, so we use a 
graphing calculator with exponential regression capability to apply the method of least 
squares and obtain the exponential model

P − s1436.53d ? s1.01395d t

where t − 0 corresponds to 1900. Figure 10 shows the graph of this exponential function  
together with the original data points. We see that the exponential curve fits the data rea-
sonably well. The period of relatively slow population growth is explained by the two 
world wars and the Great Depression of the 1930s.

5x10'

20 40 60 80 100 120

P

t0

Years after 1900 ■

Table �1

t 
(years after 1900)

Population 
(millions)

t 
(years after 1900)

Population 
(millions)

	 0 1650 	 60 	 3040
10 1750 	 70 	 3710
20 1860 	 80 	 4450
30 2070 	 90 	 5280

40 2300 	 100 	 6080

50 2560 	 110 	 6870

Figure �10
Exponential model for  

population growth
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■ HIV Density and Exponential Decay
In 1995 a paper appeared detailing the effect of the protease inhibitor ABT-538 on the 
human immunodeficiency virus HIV-1.1 Table 2 shows values of the plasma viral load 
Vstd of patient 303, measured in RNA copies per mL, t days after ABT-538 treatment 
was begun. The corresponding scatter plot is shown in Figure 11.
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Figure �11  Plasma viral load in patient 303

The rather dramatic decline of the viral load that we see in Figure 11 reminds us of 
the graphs of the exponential function y − bx in Figures 4 and 5(a) for the case where the 
base b is less than 1. So let’s model the function Vstd by an exponential function. Using 
a graphing calculator or computer to fit the data in Table 2 with an exponential function 
of the form y − a ? bt, we obtain the model

V − 96.39785 ? s0.818656dt

In Figure 12 we graph this exponential function with the data points and see that the 
model represents the viral load reasonably well for the first month of treatment.
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We could use the graph in Figure 12 to estimate the half-life of V, that is, the time 
required for the viral load to be reduced to half its initial value. (See Exercise 33.) In the 
next example we are given the half-life of a radioactive element and asked to find the 
mass of a sample at any time.

 Example 4   |  The half-life of strontium-90, 90Sr, is 25 years. This means that half 
of any given quantity of 90Sr will disintegrate in 25 years.
(a)	 If a sample of 90Sr has a mass of 24 mg, find an expression for the mass mstd that 
remains after t years.
(b)	 Find the mass remaining after 40 years, correct to the nearest milligram.
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Table �2

t (days) Vstd

	 1 	 76.0

	 4 	 53.0

	 8 	 18.0

11 	 9.4

15 	 5.2

22 	 3.6

Figure �12
Exponential model for viral load

1. D. Ho et al., “Rapid Turnover of Plasma Virions and CD4 Lymphocytes in HIV-1 Infection,” Nature 373 
(1995): 123–26.
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(c)	 Use a graphing device to graph mstd and use the graph to estimate the time 
required for the mass to be reduced to 5 mg.

Solution �
(a)	 The mass is initially 24 mg and is halved during each 25-year period, so

 ms0d − 24

 ms25d −
1

2
s24d

 ms50d −
1

2
?

1

2
s24d −

1

22 s24d

 ms75d −
1

2
?

1

22 s24d −
1

23 s24d

 ms100d −
1

2
?

1

23 s24d −
1

24 s24d

From this pattern, it appears that the mass remaining after t years is

mstd −
1

2ty25 s24d − 24 ? 22ty25 − 24 ? s221y25dt

This is an exponential function with base b − 221y25 − 1y21y25.

(b)	 The mass that remains after 40 years is

ms40d − 24 ? 2240y25 < 7.9 mg

(c)	 We use a graphing calculator or computer to graph the function mstd − 24 ? 22ty25 
in Figure 13. We also graph the line m − 5 and use the cursor to estimate that 
mstd − 5 when t < 57. So the mass of the sample will be reduced to 5 mg after about 
57 years.	 ■

■ The Number e
Of all possible bases for an exponential function, there is one that is most convenient 
for the purposes of calculus. The choice of a base b is influenced by the way the graph 
of y − bx crosses the y-axis. Figures 14 and 15 show the tangent lines to the graphs of 
y − 2x and y − 3x at the point s0, 1d. (Tangent lines will be defined precisely in Sec-
tion 3.1. For present purposes, you can think of the tangent line to an exponential graph 
at a point as the line that touches the graph only at that point.) If we measure the slopes 
of these tangent lines at s0, 1d, we find that m < 0.7 for y − 2x and m < 1.1 for y − 3x.

0

y=2®

1
mÅ0.7

x

y

      

0

1

mÅ1.1

x

y
y=3®

Figure �14 Figure �15

m=24 · 2_t/25

m=5

30

0 100

Figure �13

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 1.4  |  Exponential Functions    49

It turns out, as we will see in Chapter 3, that some of the formulas of calculus will be 
greatly simplified if we choose the base b so that the slope of the tangent line to y − bx 
at s0, 1d is exactly 1. (See Figure 16.) In fact, there is such a number and it is denoted by 
the letter e. (This notation was chosen by the Swiss mathematician Leonhard Euler in 
1727, probably because it is the first letter of the word exponential.) In view of Figures 
14 and 15, it comes as no surprise that the number e lies between 2 and 3 and the graph 
of y − ex lies between the graphs of y − 2x and y − 3x. (See Figure 17.) In Chapter 3 we 
will see that the value of e, correct to five decimal places, is

e < 2.71828

We call the function f sxd − ex the natural exponential function.

0

1

y=2®

y=e®

y=3®y

x

 Example 5   |  Graph the function y − 1
2 e2x 2 1 and state the domain and range.

Solution � We start with the graph of y − ex from Figures 16 and 18(a) and reflect 
about the y-axis to get the graph of y − e2x in Figure 18(b). (Notice that the graph 
crosses the y-axis with a slope of 21.) Then we compress the graph vertically by a 
factor of 2 to obtain the graph of y − 1

2 e2x in Figure 18(c). Finally, we shift the graph 
downward one unit to get the desired graph in Figure 18(d). The domain is R and the 
range is s21, `d.

x0

y

(a) y=´

1

1
2(c) y=   e–®

0

1

x

y

0

(b) y=e–®

1

x

y

1
2(d) y=   e– ®-1

y=_1
0

1

y

x

Figure �18 ■

How far to the right do you think we would have to go for the height of the graph 
of y − ex to exceed a million? The next example demonstrates the rapid growth of this 
function by providing an answer that might surprise you.

0

y=´

1

m=1

x

y

Figure �16
The natural exponential function 
crosses the y-axis with a slope of 1.

 TEC   Module 1.4 enables you to graph 
exponential functions with various 
bases and their tangent lines in order to 
estimate more closely the value of b for 
which the tangent has slope 1.

Figure �17
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 Example 6   |  Use a graphing device to find the values of x for which 
ex . 1,000,000.

Solution � In Figure 19 we graph both the function y − ex and the horizontal line 
y − 1,000,000. We see that these curves intersect when x < 13.8. Thus ex . 106 
when x . 13.8. It is perhaps surprising that the values of the exponential function have 
already surpassed a million when x is only 14.

	

1.5x10^

0 15

y=´

y=10^

	 ■Figure �19

	� 1–4 � Use the Law of Exponents to rewrite and simplify the  
expression.

	 1.	�� (a)	
423

228 	 (b)	
1

s3 x 4 

	 2.	�� (a)	 8 4y3	 (b)	 xs3x 2d3

	 3.	�� (a)	 b8s2bd4	 (b)	
s6y3d4

2y 5

	 4.	�� (a)	
x 2n ? x 3n21

x n12 	 (b)	
sasb 

s3 ab 

	 5.	�� (a)	� Write an equation that defines the exponential function 
with base b . 0.

		  (b)	 What is the domain of this function?
		  (c)	 If b ± 1, what is the range of this function?
		  (d)	� Sketch the general shape of the graph of the exponen-

tial function for each of the following cases.
			   (i)  b . 1            (ii)  b − 1            (iii)  0 , b , 1

	 6.	�� (a)	 How is the number e defined?
		  (b)	 What is an approximate value for e?
		  (c)	 What is the natural exponential function?

;	� 7–10 � Graph the given functions on a common screen. How are 
these graphs related?

	 7.	�� y − 2x,    y − e x,    y − 5x,    y − 20 x

	 8.	�� y − e x,    y − e 2x,    y − 8x,    y − 82x

	 9.	�� y − 3x,    y − 10 x,    y − (1
3)x

,    y − ( 1
10)x

	 10.	�� y − 0.9 x,    y − 0.6x,    y − 0.3x,    y − 0.1x

	� 11–16 � Make a rough sketch of the graph of the function. Do 
not use a calculator. Just use the graphs given in Figures 4 and 
17 and, if necessary, the transformations of Section 1.3.

	 11.	 y − 10 x12	 12.	 y − s0.5dx 2 2

	 13.	 y − 222x	 14.	 y − e | x |

	 15.	 y − 1 2 1
2 e2x	 16.	 y − 2s1 2 e x d

	 17.	��� Starting with the graph of y − e x, write the equation of the 
graph that results from

		  (a)	 shifting 2 units downward
		  (b)	 shifting 2 units to the right
		  (c)	 reflecting about the x-axis
		  (d)	 reflecting about the y-axis
		  (e)	 reflecting about the x-axis and then about the y-axis

	 18.	��� Starting with the graph of y − e x, find the equation of the 
graph that results from

		  (a)	 reflecting about the line y − 4
		  (b)	 reflecting about the line x − 2

	� 19–20 � Find the domain of each function.

	 19.	�� (a)	 f sxd −
1 2 e x 2

1 2 e12x 2	 (b)	 f sxd −
1 1 x

e cos x

	 20.	�� (a)	 tstd − sinse2t d	 (b)	 tstd − s1 2 2 t 

EXERCISES 1.4
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	 (c)	� Graph the model from part (b) together with the scatter plot 
in part (a). Use the TRACE feature to determine how long 
it takes for the bacteria count to double.

	 G. lamblia

	 30.	�� �A bacteria culture starts with 500 bacteria and doubles in 
size every half hour.

		  (a)	� How many bacteria are there after 3 hours?
		  (b)	� How many bacteria are there after t hours?
		  (c)	� How many bacteria are there after 40 minutes?

;		  (d)	� Graph the population function and estimate the time 
for the population to reach 100,000.

	 31.	��� The half-life of bismuth-210, 210Bi, is 5 days.
		  (a)	� If a sample has a mass of 200 mg, find the amount 

remaining after 15 days.
		  (b)	� Find the amount remaining after t days.
		  (c)	� Estimate the amount remaining after 3 weeks.

;		  (d)	� Use a graph to estimate the time required for the mass 
to be reduced to 1 mg.

	 32.	��� An isotope of sodium, 24Na, has a half-life of 15 hours. A 
sample of this isotope has mass 2 g.

		  (a)	� Find the amount remaining after 60 hours.
		  (b)	� Find the amount remaining after t hours.
		  (c)	� Estimate the amount remaining after 4 days.

;		  (d)	� Use a graph to estimate the time required for the mass 
to be reduced to 0.01 g.

	 33.	��H alf-life of HIV � Use the graph of V in Figure 12 to 
estimate the half-life of the viral load of patient 303 during 
the first month of treatment.

	 34.	�� Blood alcohol concentration � After alcohol is fully 
absorbed into the body, it is metabolized with a half-life 
of about 1.5 hours. Suppose you have had three alcoholic 
drinks and an hour later, at midnight, your blood alcohol 
concentration (BAC) is 0.6 mgymL.

		  (a)	� Find an exponential decay model for your BAC t hours 
after midnight.

;		  (b)	� Graph your BAC and use the graph to determine when 
you can drive home if the legal limit is 0.08 mgymL.

Source: Adapted from P. Wilkinson et al., “Pharmacokinetics of Ethanol 

after Oral Administration in the Fasting State,” Journal of Pharmacokinetics 

and Biopharmaceutics 5 (1977): 207–24.
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	� 21–22 � Find the exponential function f sxd − Cb x whose graph  
is given.

	 21.	

0

(1, 6)

(3, 24)
y

x

	 22.	

(_1, 3)

”1,    ’4
3

0

y

x

	 23.	�� �If f sxd − 5x, show that

 f sx 1 hd 2 f sxd
h

− 5xS 5h 2 1

h D
	 24.	��� Suppose you are offered a job that lasts one month. Which 

of the following methods of payment do you prefer?
		  I.	 One million dollars at the end of the month.
		  II.	� One cent on the first day of the month, two cents on the 

second day, four cents on the third day, and, in general, 
2n21 cents on the nth day.

	 25.	�� �Suppose the graphs of f sxd − x 2 and tsxd − 2x are drawn 
on a coordinate grid where the unit of measurement is  
1 inch. Show that, at a distance 2 ft to the right of the ori-
gin, the height of the graph of f  is 48 ft but the height  
of the graph of t is about 265 mi.

	 ;	 26.	�� �Compare the functions f sxd − x 5 and tsxd − 5x by graph-
ing both functions in several viewing rectangles. Find all 
points of intersection of the graphs correct to one decimal 
place. Which function grows more rapidly when x is large?

	 ;	 27.	�� �Compare the functions f sxd − x 10 and tsxd − e x by graph-
ing both f  and t in several viewing rectangles. When does 
the graph of t finally surpass the graph of f ?

	 ;	 28.	��� Use a graph to estimate the values of x such that 
e x . 1,000,000,000.

	 ;	 29.	� Giardia lamblia growth �� A researcher is trying to deter-
mine the doubling time of a population of the bacterium 
Giardia lamblia. He starts a culture in a nutrient solution 
and estimates the bacteria count every four hours. His data 
are shown in the table.

Time (hours) 	 0  	 4 	 8 	12 	 16 	 20 	 24

Bacteria count
sCFUymLd 	37 	47 	63 	78 	105 	130 	173

	 (a)	� Make a scatter plot of the data.
	 (b)	� Use a graphing calculator to find an exponential curve 

f std − a ? bt that models the bacteria population t hours 
later.
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1.5 Logarithms; Semilog and Log-Log Plots

■ Inverse Functions
Table 1 gives data from an experiment in which a bacteria culture was started with 100 
bacteria in a limited nutrient medium. The size of the bacteria population was recorded 
at hourly intervals. The number of bacteria N is a function of the time t: N − f std.

Suppose, however, that the biologist changes her point of view and becomes inter-
ested in the time required for the population to reach various levels. In other words, she 
is thinking of t as a function of N. This function is called the inverse function of f , 
denoted by f 21, and read “ f  inverse.” Thus t − f 21sNd is the time required for the popu-
lation level to reach N. The values of f 21 can be found by reading Table 1 from right to 
left or by consulting Table 2. For instance, f 21s550d − 6 because f s6d − 550.

	T able 1  N as a function of t	 Table 2  t as a function of N

t 
(hours)

 N − f std  
 − population at time t

0 100

1 168

2 259

3 358

4 445

5 509

6 550

7 573

8 586
  

 
N

 t − f 21sNd  
 − time to reach N bacteria

100 0

168 1

259 2

358 3

445 4

509 5

550 6

573 7

586 8

		���  a calculator with exponential regression capability to 
model the US population since 1900. Use the model to 
estimate the population in 1925 and to predict the popula-
tion in the year 2020.

	 37.	�� �If you graph the function

f sxd −
1 2 e 1yx

1 1 e 1yx

		��  you’ll see that f  appears to be an odd function. Prove it.

	 ;	 38.	��� Graph several members of the family of functions

f sxd −
1

1 1 ae bx

			�   where a . 0. How does the graph change when b changes? 
How does it change when a changes?

;	 35.	�� World population � Use a calculator with exponential 
regression capability to model the population of the world 
with the data from 1950 to 2010 in Table 1 on page 46. Use 
the model to estimate the population in 1993 and to predict 
the population in the year 2020.

	 ;	 36.	�� US population � The table gives the population of the 
United States, in millions, for the years 1900–2010. Use 

Year Population Year Population

1900 	 76 1960 	 179
1910 	 92 1970 	 203
1920 	 106 1980 	 227
1930 	 123 1990 	 250

1940 	 131 2000 	 281

1950 	 150 2010 	 310
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Not all functions possess inverses. Let’s compare the functions f  and t whose arrow  
diagrams are shown in Figure 1. Note that f  never takes on the same value twice (any two 
inputs in A have different outputs), whereas t does take on the same value twice (both 2  
and 3 have the same output, 4). In symbols,

ts2d − ts3d

but	 f sx1 d ± f sx 2 d        whenever x1 ± x 2

Functions that share this property with f  are called one-to-one functions.

4

3

2

1

10

7

4

2
f

A B

4

3

2

1

10

4

2
g

A B

(1)  Definition � A function f  is called a one-to-one function if it never takes on 
the same value twice; that is,

f sx1 d ± f sx2 d        whenever x1 ± x2

If a horizontal line intersects the graph of f  in more than one point, then we see from 
Figure 2 that there are numbers x1 and x2 such that f sx1 d − f sx2 d. This means that f  
is not one-to-one. Therefore we have the following geometric method for determining 
whether a function is one-to-one.

Horizontal Line Test � A function is one-to-one if and only if no horizontal 
line intersects its graph more than once.

 Example 1   |  Is the function f sxd − x 3 one-to-one?

Solution 1 � If x1 ± x 2, then x3
1 ± x3

2 (two different numbers can’t have the same 
cube). Therefore, by Definition 1, f sxd − x 3 is one-to-one.

Solution 2 � From Figure 3 we see that no horizontal line intersects the graph of 
f sxd − x 3 more than once. Therefore, by the Horizontal Line Test, f  is one-to-one.	 ■

 Example 2   |  Is the function tsxd − x 2 one-to-one?

Solution 1 � This function is not one-to-one because, for instance,

ts1d − 1 − ts21d

�and so 1 and 21 have the same output.

Figure �1
f  is one-to-one; t is not.

In the language of inputs and outputs, 
this definition says that f  is one-to-one 
if each output corresponds to only one 
input.

0

‡fl

y=ƒ

y

x⁄ ¤

Figure �2
The function is not one-to-one because 
f sx1 d − f sx2 d.

0

y=˛

y

x

Figure �3
f sxd − x 3 is one-to-one.
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Solution 2 � From Figure 4 we see that there are horizontal lines that intersect the 
graph of t more than once. Therefore, by the Horizontal Line Test, t is not one-to-one.

■

One-to-one functions are important because they are precisely the functions that pos-
sess inverse functions according to the following definition.

(2)  Definition � Let f  be a one-to-one function with domain A and range B. 
Then its inverse function f 21 has domain B and range A and is defined by

f 21syd − x    &?    f sxd − y

for any y in B.

This definition says that if f  maps x into y, then f 21 maps y back into x. (If f  were 
not one-to-one, then f 21 would not be uniquely defined.) The arrow diagram in Figure 5 
indicates that f 21 reverses the effect of f . Note that

 domain of f 21 − range of f

 range of f 21 − domain of f

For example, the inverse function of f sxd − x 3 is f 21sxd − x 1y3 because if y − x 3, 
then

f 21syd − f 21sx 3 d − sx 3 d1y3 − x

CAUTION  Do not mistake the 21 in f 21 for an exponent. Thus

f 21sxd    does not mean  
1

f sxd

The reciprocal 1yf sxd could, however, be written as f f sxdg21.

 Example 3   |  If f  is one-to-one and f s1d − 5, f s3d − 7, and f s8d − 210, find 
f 21s7d, f 21s5d, and f 21s210d.

Solution � From the definition of f 21 we have

f 21s7d − 3        because        f s3d − 7

f 21s5d − 1        because        f s1d − 5

f 21s210d − 8        because        f s8d − 210

��The diagram in Figure 6 makes it clear how f 21 reverses the effect of f  in this case.

0

y=≈

x

y

Figure �4
tsxd − x2 is not one-to-one.

x

y

A

B

f – !f

Figure �5
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	 ■

The letter x is traditionally used as the independent variable, so when we concentrate 
on f 21 rather than on f , we usually reverse the roles of x and y in Definition 2 and write

(3)	 f 21sxd − y    &?    f syd − x

By substituting for y in Definition 2 and substituting for x in (3), we get the following 
cancellation equations:

(4)	  f 21s f sxdd − x for every x in A

 f s f 21sxdd − x for every x in B

The first cancellation equation says that if we start with x, apply f , and then apply f 21, we  
arrive back at x, where we started (see the machine diagram in Figure 7). Thus f 21 
undoes what f  does. The second equation says that f  undoes what f 21 does.

x xf ƒ f –!

For example, if f sxd − x 3, then f 21sxd − x 1y3 and so the cancellation equations 
become

 f 21s f sxdd − sx 3 d1y3 − x

 f s f 21sxdd − sx 1y3 d3 − x

These equations simply say that the cube function and the cube root function cancel each 
other when applied in succession.

Now let’s see how to compute inverse functions. If we have a function y − f sxd and 
are able to solve this equation for x in terms of y, then according to Definition 2 we must 
have x − f 21syd. If we want to call the independent variable x, we then interchange x and 
y and arrive at the equation y − f 21sxd.

(5) � How to Find the Inverse Function of a One-to-One Function f

Step 1 � Write y − f sxd.
Step 2 � Solve this equation for x in terms of y (if possible).

Step 3 �� To express f 21 as a function of x, interchange x and y.  
The resulting equation is y − f 21sxd.

Figure �6
The inverse function reverses  

inputs and outputs.

Figure �7
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 Example 4   |  Find the inverse function of f sxd − x 3 1 2.

Solution � According to (5) we first write

y − x 3 1 2

��Then we solve this equation for x:

 x 3 − y 2 2

 x − s3 y 2 2 

�Finally, we interchange x and y:

y − s3 x 2 2 

�Therefore the inverse function is f 21sxd − s3 x 2 2 .	 ■

The principle of interchanging x and y to find the inverse function also gives us the 
method for obtaining the graph of f 21 from the graph of f . Since f sad − b if and only  
if f 21sbd − a, the point sa, bd is on the graph of f  if and only if the point sb, ad is on the 
graph of f 21. But we get the point sb, ad from sa, bd by reflecting about the line y − x. 
(See Figure 8.)

0

y

x

(b, a)

(a, b)

y=x

          

0

y

x

f –!

y=x f

Figure �8             Figure �9

Therefore, as illustrated by Figure 9:

The graph of f 21 is obtained by reflecting the graph of f  about the line y − x.

 Example 5   |  Reproduction number � One of the main quantities that epide-
miologists try to measure for infectious diseases is the so-called basic reproduction 
number, denoted by R0. Biologically, this is the expected number of new infections that 
an infected individual will produce when introduced into a completely susceptible 
population. The probability of an outbreak occurring (as opposed to the disease dying 
out by chance) is then modeled by the equation

P − 1 2
1

R0
        where R0 > 1

Find the inverse function of P, interpret it, and graph it.

In Example 4, notice how f 21 reverses 
the effect of f . The function f  is the 
rule “Cube, then add 2”; f 21 is the rule 
“Subtract 2, then take the cube root.”

Disease R0

Measles 12–18

Diphtheria 6–7

Smallpox 5–7

Polio 5–7

Mumps 4–7

HIV 2–5

Ranges of R0 values for 
some common diseases
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Solution � To find the inverse function we solve the given equation for R0:

 
1

R0
− 1 2 P        R0 −

1

1 2 P

�This equation expresses R0 as a function of P. It gives the value of R0 that is required to 
obtain outbreak probability P.

Notice that we did not interchange the variables P and R0 because they need to 
retain their meanings. Figure 10 shows the graphs of each of these variables as a func-
tion of the other variable. Observe that each of these graphs is a reflection of the other 
about the diagonal line P − R0.

10

P

1

R0
          

10

1

R0

P

	

(a)  P as a function of R0

P − 1 2
1

R0
,  R0 > 1

	

(b)  R0 as a function of P

R0 −
1

1 2 P
,  0 < P , 1

	
■

■ Logarithmic Functions
If b . 0 and b ± 1, the exponential function f sxd − bx is either increasing or decreasing 
and so it is one-to-one by the Horizontal Line Test. It therefore has an inverse function f 21, 
which is called the logarithmic function with base b and is denoted by logb. If we use 
the formulation of an inverse function given by (3),

f 21sxd − y    &?    f syd − x

then we have

(6)	 logb x − y    &?    by − x	

Thus, if x . 0, then logb x is the exponent to which the base b must be raised to give x. 
For example, log10 0.001 − 23 because 1023 − 0.001.

The cancellation equations (4), when applied to the functions f sxd − bx and 
f 21sxd − logb x, become

(7)	  logbsb xd − x for every x [ R

	  blogb x − x for every x . 0

The logarithmic function logb has domain s0, `d and range R. Its graph is the reflec-
tion of the graph of y − bx about the line y − x.

Figure 11 shows the case where b . 1. (The most important logarithmic functions have  
base b . 1.) The fact that y − bx is a very rapidly increasing function for x . 0 is  
reflected in the fact that y − logb x is a very slowly increasing function for x . 1.

In Exercise 32 this model is modified to 
take vaccinations into account.

Figure �10

0

y=x

y=b®,  b>1

y=logb x,  b>1

y

x

Figure �11
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Figure 12 shows the graphs of y − logb x with various values of the base b . 1. Since 
logb 1 − 0, the graphs of all logarithmic functions pass through the point s1, 0d.

The following properties of logarithmic functions follow from the corresponding 
properties of exponential functions given in Section 1.4.

Laws of Logarithms � If x and y are positive numbers, then

	1.	 logbsxyd − logb x 1 logb y

	2.	 logbS x

yD − logb x 2 logb y

	3.	 logbsxrd − r logb x        (where r is any real number)

 Example 6   |  Use the laws of logarithms to evaluate log2 80 2 log2 5.

Solution � Using Law 2, we have

log2 80 2 log2 5 − log2S 80

5 D − log2 16 − 4

�because 24 − 16.	 ■

■ Natural Logarithms
Of all possible bases b for logarithms, we will see in Chapter 3 that the most convenient 
choice of a base is the number e, which was defined in Section 1.4. The logarithm with 
base e is called the natural logarithm and has a special notation:

loge x − ln x

If we put b − e and replace loge with “ln” in (6) and (7), then the defining properties 
of the natural logarithm function become

(8)	 ln x − y    &?    ey − x

(9)	  lnsexd − x for every x [ R

	  e ln x − x for every x . 0

In particular, if we set x − 1, we get

ln e − 1

 Example 7   |  Find x if ln x − 5.

0

y

1

x1

y=log£ x

y=log™ x

y=log∞ x
y=log¡¸ x

Figure �12

Notation for Logarithms
Most textbooks in calculus and the 
sciences, as well as calculators, use the 
notation ln x for the natural logarithm 
and log x for the “common logarithm,” 
log10 x. In the more advanced math-
ematical and scientific literature and in 
computer languages, however, the nota-
tion log x usually denotes the natural 
logarithm.
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Solution 1 � From (8) we see that

ln x − 5        means        e 5 − x

�Therefore x − e 5.
(If you have trouble working with the “ln” notation, just replace it by loge. Then the 

equation becomes loge x − 5; so, by the definition of logarithm, e 5 − x.)

Solution 2 � Start with the equation

ln x − 5

�and apply the exponential function to both sides of the equation:

e ln x − e 5

�But the second cancellation equation in (9) says that e ln x − x. Therefore x − e 5.	 ■

 Example 8   |  Solve the equation e 523x − 10.

Solution � We take natural logarithms of both sides of the equation and use (9):

 lnse 523x d − ln 10

 5 2 3x − ln 10

 3x − 5 2 ln 10

 x − 1
3 s5 2 ln 10d

�Since the natural logarithm is found on scientific calculators, we can approximate the 
solution: to four decimal places, x < 0.8991.	 ■

 Example 9   |  Express ln a 1 1
2 ln b as a single logarithm.

Solution � Using Laws 3 and 1 of logarithms, we have

 ln a 1 1
2 ln b − ln a 1 ln b 1y2

 − ln a 1 ln sb 

	  − ln(asb ) 	 ■

The following formula shows that logarithms with any base can be expressed in terms 
of the natural logarithm.

(10)  Change of Base Formula � For any positive number b sb ± 1d, we have

logb x −
ln x

ln b

Proof � Let y − logb x. Then, from (6), we have by − x. Taking natural logarithms of 
both sides of this equation, we get y ln b − ln x. Therefore

	 y −
ln x

ln b
	 ■
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Scientific calculators have a key for natural logarithms, so Formula 10 enables us 
to use a calculator to compute a logarithm with any base (as shown in the following 
example).

 Example 10   |  Evaluate log8 5 correct to six decimal places.

Solution � Formula 10 gives

	 log8 5 −
ln 5

ln 8
< 0.773976	 ■

 Example 11   |  In Example 1.4.4 we showed that the mass of 90Sr that remains from 
a 24-mg sample after t years is m − f std − 24 ? 22ty25. Find the inverse of this function 
and interpret it.

Solution � We need to solve the equation m − f std − 24 ? 22ty25 for t. We start by 
isolating the exponential and taking natural logarithms of both sides:

 22ty25 −
m

24

 lns22ty25d − lnS m

24D
 2

t

25
 ln 2 − ln m 2 ln 24

 t − 2
25

ln 2
sln m 2 ln 24d −

25

ln 2
sln 24 2 ln md

�So the inverse function is

f 21smd −
25

ln 2
sln 24 2 ln md

�This function gives the time required for the mass to decay to m milligrams. In par-
ticular, the time required for the mass to be reduced to 5 mg is

t − f 21s5d −
25

ln 2
sln 24 2 ln 5d < 56.58 years

�This answer agrees with the graphical estimate that we made in Example 1.4.4(c).	 ■

■ Graph and Growth of the Natural Logarithm
The graphs of the exponential function y − ex and its inverse function, the natural loga-
rithm function, are shown in Figure 13. Because the curve y − ex crosses the y-axis with  
a slope of 1, it follows that the reflected curve y − ln x crosses the x-axis with a slope  
of 1.

In common with all other logarithmic functions with base greater than 1, the natural 
logarithm is an increasing function defined on s0, `d and the y-axis is a vertical asymp-
tote. (This means that the values of ln x become very large negative as x approaches 0.)

 Example 12   |  Sketch the graph of the function y − lnsx 2 2d 2 1.

y

1
0

x1

y=x
y=´

y=ln x

Figure �13
The graph of y − ln x is the reflection 
of the graph of y − e x about the line 
y − x.
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Solution � We start with the graph of y − ln x as given in Figure 13. Using the 
transformations of Section 1.3, we shift it 2 units to the right to get the graph of 
y − lnsx 2 2d and then we shift it 1 unit downward to get the graph of 
y − lnsx 2 2d 2 1. (See Figure 14.)

0

y

2 x(3, 0)

x=2

y=ln(x-2)

0

y

x

y=ln x

(1, 0) 0

y

2 x

x=2

(3, _1)

y=ln(x-2)-1

Figure �14	 ■

Although ln x is an increasing function, it grows very slowly when x . 1. In fact, ln x  
grows more slowly than any positive power of x. To illustrate this fact, we compare  
approximate values of the functions y − ln x and y − x 1y2 − sx  in the following table 
and we graph them in Figures 15 and 16. You can see that initially the graphs of y − sx  
and y − ln x grow at comparable rates, but eventually the root function far surpasses the 
logarithm.

x 1 2 5 10 50 100 500 1000 10,000 100,000

ln x 0 0.69 1.61 2.30 3.91 4.6 6.2 6.9 9.2 11.5

sx 1 1.41 2.24 3.16 7.07 10.0 22.4 31.6 100 316

ln x

sx 0 0.49 0.72 0.73 0.55 0.46 0.28 0.22 0.09 0.04

x0

y

1

1

y=œ„x

y=ln x

      
x0

y

1000

20

y=œ„x

y=ln x

Figure �15
      

Figure �16

■ Semilog Plots
We’ve seen that the exponential function y − bx sb . 1d increases so rapidly that it’s 
sometimes difficult to represent data points conveniently on a single plot. (See Fig-
ure 1.4.1.) On the other hand, we have just seen that their inverse functions, the logarith-
mic functions, increase very slowly. For that reason, logarithmic scales are often used 
when real-world quantities involve a huge disparity in size: the pH scale for the acidity 
of a solution, the decibel scale for loudness, the Richter scale for the magnitude of an 
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earthquake. In such cases, the equidistant marks on a logarithmic scale represent con-
secutive powers of 10. (See Figure 17.)

100 101

0 1 2 3 4 5 6

102 103 104 105 106

Vast differences in size occur in biology too. Figure 18 shows that, in comparing 
lengths, a logarithmic scale provides more manageable numbers.

10–6 10–4 10–2 100 102 104 106 108 1010

ant human whale earth sunred blood cell

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10

Length
(meters)

log(length)

Figure �18

In biology it’s common to use a semilog plot to see whether data points are appro-
priately modeled by an exponential function. This means that instead of plotting the 
points sx, yd, we plot the points sx, log yd. (Logarithms to the base 10 are always used, so 
log − log10.) In other words, we use a logarithmic scale on the vertical axis.

If we start with an exponential function of the form y − a ? bx and take logarithms 
of both sides, we get

log y − logsa ? bxd − log a 1 log bx

(11)	 log y − log a 1 x log b	

If we let Y − log y, M − log b, and B − log a, then Equation 11 becomes

Y − B 1 Mx

which is the equation of a line with slope M and Y-intercept B.
So if we obtain experimental data that we suspect might possibly be exponential, then 

we could graph a semilog scatter plot and see if it is approximately linear. If so, we could 
then obtain an exponential model for our original data.

 Example 13   |  Viral load � In Section 1.4 we presented data on the viral load 
Vstd of patient 303 after t days of treatment with ABT-538. In the following table we 
calculate log Vstd and in Figure 19 we show the corresponding semilog plot.

The marks on the “logarithmic ruler” 
are the logarithms of the numbers they 
represent.

Figure �17
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0 t (days)

2

1

2010

log V(t)

Figure �19

We see that the first five data points in Figure 19 lie very nearly on a straight line and, 
using linear regression, we get the equation

log Vstd − 2.006 2 0.088t

for 1 < t < 15. Then, applying the exponential function with base 10 to both sides of 
this equation, we obtain an equation for the viral load:

Vstd − 101 ? s0.817d t

�This is quite close to the exponential model we got in Section 1.4 using six data points.
	 ■

■ Log-Log Plots
If we use logarithmic scales on both the horizontal and vertical axes, the resulting graph 
is called a log-log plot. It is used when we suspect that a power function might be a good 
model for our data. If we start with a power function y − Cxp and take logarithms of 
both sides, we get

log y − logsCxpd − log C 1 log xp

(12)	 log y − log C 1 p log x	

Let Y − log y, A − log C, and X − log x. Then Equation 12 becomes

Y − A 1 pX

We recognize that Y  is a linear function of X, so the points slog x, log yd lie on a straight 
line.

 Example 14   |  BB   Species richness in bat caves � Table 3 on page 64 
gives the areas of several caves in central Mexico and the number of bat species that 
live in each cave.1

(a)	 Make a scatter plot and a log-log plot of the data.
(b)	 Is a power model appropriate? If so, find an expression for it.
(c)	 The cave called El Sapo near Puebla, Mexico, has a surface area of A − 205 m2. Use 
the model to estimate the number of bat species you would expect to find in that cave.

t Vstd log Vstd

	 1 76 	 1.9

	 4 53 	 1.7

	 8 18 	 1.3

11 9.4 	 0.97

15 5.2 	 0.72

22 3.6 	 0.56

29 2.8 	 0.45

1. A. Brunet et al., “The Species–Area Relationship in Bat Assemblages of Tropical Caves,” Journal of Mam-
malogy 82 (2001): 1114–22.
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Table 3  Species–Area Data

Cave Area (m2) Number of Species

La Escondida 	 18 1

El Escorpion 	 19 1

El Tigre 	 58 1

Misión Imposible 	 60 2

San Martin 128 5

El Arenal 187 4

La Ciudad 344 6

Virgen 511 7

Solution �
(a)	 Let A denote the surface area of a cave and S the number of bat species in the cave. 
From the scatter plot in Figure 20 we see that the data are neither linear nor exponen-
tial. So we calculate the logarithms of the data and create the log-log plot in Figure 21.

0

S

A (m@)200 400

5

      
0 log A

log S

1 2

0.60

0.30

0.90

Figure �20         Figure �21

(b)	 It appears that log S is approximately a linear function of log A. With a graphing 
calculator or computer, we get the linear model

log S − 0.64 log A 2 0.86

Then we apply the exponential function with base 10 to both sides of this equation:

 S − 100.64 log A20.86 − 10log A0.64

1020.86

 S − 0.14A0.64

(Alternatively, after verifying from Figure 21 that a power model is appropriate, we 
could have used a calculator to calculate this power model directly from the original 
data.) Figure 22 shows that the power model is a reasonable one.

0

S

200 400

5 0.64S=0.14A

A (m@)

log A log S

1.26 	 0

1.28 	 0

1.76 	 0

1.78 0.30

2.11 0.70

2.27 0.60

2.54 0.78

2.71 0.85

Figure �22
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(c)	 Using the model from part (b) with A − 205, we get

S < 0.14 ? 2050.64 < 4.22

So we would expect to find about four bat species in the El Sapo cave.	 ■

Summary: Linear, Exponential, or Power Model? �
�To determine whether a linear, exponential, or power model is appropriate, we 
make a scatter plot, a semilog plot, and a log-log plot.

■ � If the scatter plot of the data lies approximately on a line, then a linear model 
is appropriate.

■ � If the semilog plot of the data lies approximately on a line, then an exponential 
model is appropriate.

■ � If the log-log plot of the data lies approximately on a line, then a power model 
is appropriate.

The El Sapo cave actually does have 
four species of bats.

	 1.	��� (a)	 What is a one-to-one function?
		  (b)	� How can you tell from the graph of a function whether 

it is one-to-one?

	 2.	�� (a)	� Suppose f  is a one-to-one function with domain A 
and range B. How is the inverse function f 21 defined? 
What is the domain of f 21? What is the range of f 21?

		  (b)	� If you are given a formula for f , how do you find a  
formula for f 21?

		  (c)	� If you are given the graph of f , how do you find the 
graph of f 21?

	� 3–14 � A function is given by a table of values, a graph, a for-
mula, or a verbal description. Determine whether it is one-to-
one.

	 3.	
x 1 2 3 4 5 6

f sxd 1.5 2.0 3.6 5.3 2.8 2.0

	 4.	
x 1 2 3 4 5 6

f sxd 1.0 1.9 2.8 3.5 3.1 2.9

	 5.	

x

y 	 6.	 y

x

	 7.	

x

y 	 8.	 y

x

	 9.	 f sxd − x 2 2 2x	 10.	 f sxd − 10 2 3x

	 11.	 tsxd − 1yx	 12.	 tsxd − cos x

	 13.	�� f std is the height of a football t seconds after kickoff.

	 14.	�� f std is your height at age t.

	 15.	��� Assume that f  is a one-to-one function.
		  (a)	� If f s6d − 17, what is f 21s17d?
		  (b)	�� If f 21s3d − 2, what is f s2d?

	 16.	�� �If f sxd − x 5 1 x 3 1 x, find f 21s3d and f s f 21s2dd.

	 17.	�� If tsxd − 3 1 x 1 e x, find t21s4d.

	 18.	�� The graph of f  is given.
		  (a)	 Why is f  one-to-one?
		  (b)	 What are the domain and range of f 21?
		  (c)	 What is the value of f 21s2d?
		  (d)	 Estimate the value of f 21s0d.

y

x0 1

1

EXERCISES 1.5
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What do you notice about the inverse function in relation 
to the original function?

	 33.	�� (a)	 How is the logarithmic function y − logb x defined?
		  (b)	 What is the domain of this function?
		  (c)	 What is the range of this function?
		  (d)	� Sketch the general shape of the graph of the function  

y − logb x if b . 1.

	 34.	�� (a)	 What is the natural logarithm?
		  (b)	 What is the common logarithm?
		  (c)	� Sketch the graphs of the natural logarithm function and 

the natural exponential function with a common set of 
axes.

	� 35–38 � Find the exact value of each expression.

	 35.	�� (a)	 log5 125	 (b)	 log3 s 1
27d

	 36.	�� (a)	 lns1yed	 (b)	 log10 s10 

	 37.	�� (a)	 log2 6 2 log2 15 1 log2 20
		��  (b)	 log3 100 2 log3 18 2 log3 50

	 38.	�� (a)	 e22 ln 5	 (b)	 lnsln ee10d

	� 39–41 � Express the given quantity as a single logarithm.

	 39.	 ln 5 1 5 ln 3

	 40.	 lnsa 1 bd 1 lnsa 2 bd 2 2 ln c

	 41.	 1
3 lnsx 1 2d3 1 1

2 fln x 2 lnsx 2 1 3x 1 2d2g

	 42.	�� �Use Formula 10 to evaluate each logarithm correct to six 
decimal places.

	�� 	 (a)	 log12 10	 (b)	 log2 8.4

	 43.	��� Suppose that the graph of y − log2 x is drawn on a coordi-
nate grid where the unit of measurement is an inch. How 
many miles to the right of the origin do we have to move 
before the height of the curve reaches 3 ft?

	 ;	 44.	��� Compare the functions f sxd − x 0.1 and tsxd − ln x by 
graphing both f  and t in several viewing rectangles. When 
does the graph of f  finally surpass the graph of t?

	� 45–46 � Make a rough sketch of the graph of each function. Do 
not use a calculator. Just use the graphs given in Figures 12 and 
13 and, if necessary, the transformations of Section 1.3.

	 45.	�� (a)	 y − log10sx 1 5d	 (b)	 y − 2ln x

	 46.	�� (a)	 y − lns2xd	 (b)	 y − ln | x |

	� 47–50 � Solve each equation for x.

	 47.	�� (a)	 e724x − 6	 (b)	 lns3x 2 10d − 2

	 48.	�� (a)	 lnsx 2 2 1d − 3	 (b)	 e 2x 2 3e x 1 2 − 0

	 49.	�� (a)	 2x25 − 3	 (b)	 ln x 1 lnsx 2 1d − 1

	 19.	��� The formula C − 5
9 sF 2 32d, where F > 2459.67, 

expresses the Celsius temperature C as a function of the 
Fahrenheit temperature F. Find a formula for the inverse 
function and interpret it. What is the domain of the inverse 
function?

	 20.	��� In the theory of relativity, the mass of a particle with speed 
v is

m − f svd −
m 0

s1 2 v 2yc 2 

		��  �where m 0 is the rest mass of the particle and c is the speed 
of light in a vacuum. Find the inverse function of f  and 
explain its meaning.

	� 21–26 � Find a formula for the inverse of the function.

	 21.	 f sxd − 1 1 s2 1 3x	 22.	 f sxd −
4x 2 1

2x 1 3

	 23.	 f sxd − e 2x21	 24.��	 y − x 2 2 x,    x > 1
2

	 25.	 y − lnsx 1 3d	 26.	 y −
e x

1 1 2e x

	 ;	� 27–28 � Find an explicit formula for f 21 and use it to graph f 21, 
f , and the line y − x on the same screen. To check your work, 
see whether the graphs of f  and f 21 are reflections about the 
line.

	 27.	 f sxd − x 4 1 1,    x > 0	 28.	 f sxd − 2 2 e x

	� 29–30 � Use the given graph of f  to sketch the graph of f 21.

	 29.	 y

x0 1

1

	 30.	 y

x0 2

1

	 31.	�� Let f sxd − s1 2 x 2 ,  0 < x < 1.
		  (a)	 Find f 21. How is it related to f ?
		  (b)	� Identify the graph of f  and explain your answer to  

part (a).

	 32.	�� Vaccination coverage � Suppose we modify the function 
in Example 5 by introducing vaccination to control the 
probability of an outbreak of the disease. We want to know 
the fraction of the population that we have to vaccinate to 
achieve a target outbreak probability. If v is the vaccination 
fraction, then the outbreak probability as a function of v is

P − 1 2
1

R0s1 2 vd

		��  �Find the inverse of this function to obtain the vaccination 
coverage needed for any given target outbreak probability. 
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		�  (The maximum charge capacity is Q0 and t is measured in  
seconds.)

		  (a)	� Find the inverse of this function and explain its  
meaning.

		  (b)	� How long does it take to recharge the capacitor to 90% 
of capacity if a − 2?

	 ;	� 59–64 � Data points sx, yd are given.
	 (a)	 Draw a scatter plot of the data points.
	 (b)	� Make semilog and log-log plots of the data.
	 (c)	� Is a linear, power, or exponential function appropriate for 

modeling these data?
	 (d)	� Find an appropriate model for the data and then graph the 

model together with a scatter plot of the data.

	 59.	
x 2 4 6 8 10 12

y 0.08 0.12 0.18 0.26 0.35 0.53

	 60.	
x 1.0 2.4 3.1 3.6 4.3 4.9

y 3.2 4.8 5.8 6.2 7.2 7.9

	 61.	
x 0.5 1.0 1.5 2.0 2.5 3.0

y 4.10 3.71 3.39 3.2 2.78 2.53

	 62.	
x 10 20 30 40 50 60

y 29 82 150 236 330 430

	 63.	
x 3 4 5 6 7 8

y 11.3 20.2 32.2 45.7 62.1 80.4

	 64.	
x 5 10 15 20 25 30

y 0.013 0.046 0.208 0.930 4.131 18.002

	 ;	 65.	�I ndian population �� The table gives the midyear popula-
tion of India (in millions) for the last half of the 20th 
century.

Year Population Year Population

1950 370 1980 685

1960 445 1990 838

1970 554 2000 1006

		  (a)	� Make a scatter plot, semilog plot, and log-log plot for 
these data and comment on which type of model would 
be most appropriate.

	 50.	�� (a)	 lnsln xd − 1	 (b)	 e ax − Ce bx,  where a ± b

	� 51–52 � Solve each inequality for x.

	 51.	�� (a)	 ln x , 0	 (b)	 e x . 5

	 52.	�� (a)	 1 , e 3x21 , 2	 (b)	 1 2 2 ln x , 3

	 53.	� Dialysis time �� Hemodialysis is a process by which a 
machine is used to filter urea and other waste products 
from an individual’s blood when the kidneys fail. The 
concentration of urea in the blood is often modeled as 
exponential decay. If K is the mass transfer coefficient 
(in mLymin), cstd is the urea concentration in the blood 
at time t (in mgymL) and V is the blood volume, then 
cstd − c0e2KtyV where c0 is the initial concentration at time 
t − 0.

		  (a)	� How long should a patient be put on dialysis to 
reduce the blood urea concentration from an initial 
value of 1.65 mgymL to 0.60 mgymL, given that 
K − 340 mLymin and V − 32,941 mL?

		  (b)	� Derive a general formula for the dialysis time T in 
terms of the initial urea concentration c0 and the target 
urea concentration csT d.

	 54.	� Dialysis treatment adequacy
		  (a)	� The quantity KtyV in Exercise 53 is sometimes used as 

a measure of dialysis treatment adequacy. What does 
this represent and what are its units?

		  (b)	� Another quantity sometimes used to measure dialysis 
treatment adequacy is the fractional reduction in urea 
during a dialysis session, denoted by U (that is, the 
ratio of the amount of urea removed during dialysis to 
its initial amount). What is the relationship between U 
and KtyV?

	 55.	�� (a)	� Find the domain of f sxd − lnse x 2 3d.
		  (b)	� Find f 21 and its domain.

	 56.	�� (a)	� What are the values of e ln 300 and lnse 300d?
		  (b)	� Use your calculator to evaluate e ln 300 and lnse 300d. What 

do you notice? Can you explain why the calculator has 
trouble?

	 57.	� Bacteria population �� If a bacteria population starts with 
500 bacteria and doubles in size every half hour, then the 
number of bacteria after t hours is n − f std − 500 ? 4 t. 
(See Exercise 1.4.30).

		  (a)	� Find the inverse of this function and explain its  
meaning.

		  (b)	� When will the population reach 10,000?

	 58.	��� When a camera flash goes off, the batteries immediately 
begin to recharge the flash’s capacitor, which stores electric 
charge given by

Qstd − Q0s1 2 e 2tya d
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			���   shows the number of tree species S found for a given area 
A in the rain forest.

		  (a)	� Make a scatter plot of the data and either a semilog 
plot or a log-log plot, whichever you think is more  
appropriate.

		  (b)	� Use your preferred plot from part (a) to find a model. 
Graph your model with the scatter plot.

A sm2d S A sm2d S

3.81 3 122.07 70

7.63 3 244.14 112

15.26 12 488.28 134

30.52 13 976.56 236

61.04 31

	� Source: Adapted from K. Kochummen et al., “Floristic Composition of 

Pasoh Forest Reserve, a Lowland Rain Forest in Peninsular Malaysia,” 

Journal of Tropical Forest Science 3 (1991): 1–13.

	 ;	 68.	� Malarial parasites �� The table, supplied by Andrew 
Read, shows the results of an experiment involving 
malarial parasites. The time t is measured in days and N is 
the number of parasites per microliter of blood.

		  (a)	� Make a scatter plot and a semilog plot of the data.
		  (b)	� Find an exponential model and graph your model with 

the scatter plot. Is it a good fit?

t (days) N t (days) N

1 228 5 372,331

2 2,357 6 2,217,441

3 12,750 7 6,748,400

4 26,661

	 ;	 69.	� Drinking and driving �� In a medical study, researchers 
measured the mean blood alcohol concentration (BAC) of 
eight fasting adult male subjects (in mgymL) after rapid 
consumption of 30 mL of ethanol (corresponding to two 
standard alcoholic drinks). The BAC peaked after half an 
hour and the table shows measurements starting after an 
hour.

t (hours) 1.0 1.25 1.5 1.75 2.0

BAC 0.33 0.29 0.24 0.22 0.18

t (hours) 2.25 2.5 3.0 3.5 4.0

BAC 0.15 0.12 0.069 0.034 0.010

		  (a)	� Make a scatter plot and a semilog plot of the data.
		  (b)	� Find an exponential model and graph your model with 

the scatter plot. Is it a good fit?

		  (b)	� Obtain an exponential model for the population.
		  (c)	� Use your model to estimate the population in 2010 

and compare with the actual population of 1173 mil-
lion. What conclusion can you make?

	 ;	 66.	� Why is the dodo extinct? �� Ornithologists measured and 
cataloged the wingspans and weights of many different 
species of birds that can fly. The table shows the wingspan 
L for a bird of weight W.

		  (a)	� Make a scatter plot, semilog plot, and log-log plot for 
these data. Which type of model do you think would 
be best?

		  (b)	� Find an exponential model and power model for the 
data.

		  (c)	� Graph the models from part (b). Which is better?
		  (d)	� The dodo is a bird that has been extinct since the late 

17th century. It weighed about 45 pounds and had a 
wingspan of about 20 inches.Use the model chosen in 
part (c) to estimate the wingspan of a 45-lb bird. Why 
couldn’t a dodo fly?

Bird W slbd L sind

Turkey vulture 	 4.40 69

Bald eagle 	 6.82 84

Great horned owl 	 3.08 44

Cooper’s hawk 	 1.03 28

Sandhill crane 	 9.02 79

Atlantic puffin 	 0.95 24

California condor 	17.82 109

Common loon 	 7.04 48

Yellow warbler 0.022 8

Common grackle 	 0.20 16

Wood stork 	 5.06 63

Mallard 	 2.42 35

The dodo (now extinct)

	 ;	 67.	� Biodiversity in a rain forest �� To quantify the biodiver-
sity of trees in a tropical rain forest, biologists collected 
data in the Pasoh Forest Reserve of Malaysia. The table 

	 BB

Study of a Dodo (oil on canvas), Hart, F. (19th Century)/Royal Albert 
Memorial Museum, Exeter, Devon, UK/The Bridgeman Art Lbrary.
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molecules continues to double every temperature cycle 
(referred to as a PCR cycle).

		  (a)	� Suppose a sample containg x molecules is collected 
from a crime scene and is amplified by PCR. Express 
the number of DNA molecules as a function of the 
number n of PCR cycles.

		  (b)	� There is a detection threshold of T molecules below 
which no DNA can be seen. Derive an equation for the 
number of PCR cycles it will take for the DNA sample 
to reach the detection threshold.

		  (c)	� One way scientists determine the abundance of differ-
ent DNA molecules in a sample is by measuring the 
difference in time it takes to reach the detection thresh-
old for each. Sketch a graph of the number of cycles 
needed to reach the detection threshold as a function 
of the initial number of molecules. Comment on the 
relationship between differences in initial number 
of molecules and differences in the time to reach the 
detection threshold.

		  (c)	� Use your model and logarithms to determine when the 
BAC will be less than 0.08 mgymL, the legal limit for 
driving.

	� Source: Adapted from P. Wilkinson et al., “Pharmacokinetics of Ethanol 

after Oral Administration in the Fasting State,” Journal of Pharmacokinet-

ics and Biopharmaceutics 5 (1977): 207–24.

	 70.	� Amplifying DNA �� Polymerase Chain Reaction (PCR) is 
a biochemical technique that allows scientists to take tiny 
samples of DNA and amplify them into large samples that 
can then be examined to determine the DNA sequence. 
(This is useful, for example, in forensic science.) The pro-
cess works by mixing the sample with appropriate enzymes 
and then heating it until the DNA double helix separates 
into two individual strands. The enzymes then copy each 
strand, and once the sample is cooled the number of DNA 
molecules will have doubled. By repeatedly performing 
this heating and cooling process, the number of DNA 

■ �Project � The Coding Function of DNA	 BB

Proteins are made up of long chains of molecules called amino acids. Twenty different 
amino acids are coded by the DNA of living organisms. The “alphabet” of DNA con-
sists of four letters A, T, C, and G, called bases. These bases are grouped together along 
the DNA sequence into “words,” called codons. All codons contain the same number 
of bases (that is, the words are always the same length) and any given codon specifies 
exactly one amino acid (see Figure 1). The coding of amino acids by DNA described 
here can be viewed as a function that takes an input codon and produces an output amino 
acid.

	 1.	� �Suppose that all codons contained only one base. What would the domain of the 
coding function be? What would its biggest possible range be?

	 2.	�� Suppose that all codons contained two bases. What would the domain of the cod-
ing function be? What would its biggest possible range be?
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1.6 Sequences and Difference Equations

A sequence can be thought of as a list of numbers written in a definite order:

a1, a2, a3, a4, . . . , an, . . .

The number a1 is called the first term, a2 is the second term, and in general an is the nth 
term. Sometimes we might want to start the sequence with n − 0. Then a0 is the zeroth 
term and we list the terms of the sequence as

a0, a1, a2, a3 , . . . , an, . . .

Notice that for every positive integer n there is a corresponding number an and so a 
sequence can be defined as a function whose domain is the set of positive integers. But 
we usually write an instead of the function notation f snd for the value of the function at 
the number n.

Some sequences are defined by giving a formula for the nth term an in terms of n, as 
the following example illustrates.

 Example 1   |  Find the first five terms of the sequence.

(a)	 an −
n

n 1 1
,  n > 1	 (b)	 an − s21dn21,  n > 1	 (c)	 an − 8n,  n > 0

Solution �
(a)	 Putting n − 1, 2, 3, 4, 5, successively, in the formula for an we get the initial terms 
of the sequence:

1

2
,

2

3
,

3

4
,

4

5
,

5

6
, . . . ,

n

n 1 1
, . . .

	 3.	�� In fact, all codons actually contain three bases. What is the domain of the coding 
function in this case? What is its biggest possible range?

	 4.	�� Given your answers to Problems 1–3, speculate on why codons contain three 
bases rather than fewer or more.

	 5.	�� Explain why the coding function in which codons have three bases is not a one-
to-one function.

Researchers use the fact that the coding function is not one-to-one to infer which 
DNA sequence variants are advantageous. In particular, because the coding function is 
not one-to-one, two kinds of DNA mutations can occur: those that do not alter the amino 
acid (called synonymous mutations) and those that do (called nonsynonymous muta-
tions). Synonymous mutations are not expected to affect organismal functioning because 
they don’t affect protein structure. As a result, such synonymous mutations are expected 
to accumulate over time, by chance, in a clocklike fashion. Nonsynonymous mutations 
do change the amino acid and therefore alter protein structure. If such alterations are 
advantageous, then we would expect these mutational changes to occur at a rate that 
is higher than those of the neutral, synonymous mutations. This kind of comparison is 
possible only because the genetic coding function isn’t one-to-one; it forms the basis of 
nonsynonymous-to-synonymous ratio tests used in biology.
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(b)	 Again we start with n − 1, noting that s21d121 − s21d0 − 1:

1, 21, 1, 21, 1, . . .

(c)	 Here we start with n − 0. The terms are 80, 81, 82, 83, 84, or

1, 8, 64, 512, 4096, . . .

We’ve already met this sequence in describing the growth of malarial parasites in Sec-
tion 1.4.	 ■

A sequence can be pictured by plotting its graph. Because a sequence is a function 
whose domain is the set of positive integers, its graph consists of isolated points with 
coordinates

s1, a1d    s2, a2d    s3, a3d    . . .    sn, and    . . .

Parts (a) and (b) of Figure 1 show the graphs of the sequences in parts (a) and (b) of 
Example 1.

(a)       

10 n

an

1

_1

(b)

The heights of the points on the graph in Figure 1(a) appear to be approaching the 
number 1, whereas those in Figure 1(b) are oscillating (forever) between 21 and 1. The 
behavior of sequences in the long run (as n becomes large) will be discussed in Sec-
tion 2.1.

If we know the first few terms of a sequence but don’t have a general formula for  
an, we might be able to detect a pattern in the numbers and write a formula for the nth 
term. Such a formula might not be unique; we look for the simplest formula, as in the 
next example.

 Example 2   |  Find a formula for the general term an of the sequence

3

5
, 2

4

25
,

5

125
, 2

6

625
,

7

3125
, . . .

assuming that the pattern of the first few terms continues.

Solution � We are given that

a1 −
3

5
    a2 − 2

4

25
    a3 −

5

125
    a4 − 2

6

625
    a5 −

7

3125

�Notice that the numerators of these fractions start with 3 and increase by 1 whenever 
we go to next term. The second term has numerator 4, the third term has numerator 5; 
in general, the nth term will have numerator n 1 2. The denominators are the powers 

Figure �1
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of 5, so an has denominator 5n. The signs of the terms are alternately positive and nega-
tive, so we multiply by s21dn21 as in Example 1(b). Therefore

	 an − s21dn21 n 1 2

5n 	 ■

■ Recursive Sequences: Difference Equations
Some sequences don’t have simple defining formulas like the ones in Examples 1 and 2. 
The nth term of a sequence may depend on some of the terms that precede it. A sequence 
defined in this way is called recursive.

 Example 3   |  Find the first five terms of the sequence defined recursively by the 
equations

a1 − 2      an11 − 1
2san 1 6d      for n > 1

Solution � The defining formula allows us to calculate a term if we know the 
preceding one. We are given the first term, so we can use it to find the second term. 
Then we find the third term from the second one, and so on:

 a2 − 1
2sa1 1 6d − 1

2s2 1 6d − 4

 a3 − 1
2sa2 1 6d − 1

2s4 1 6d − 5

 a4 − 1
2sa3 1 6d − 1

2s5 1 6d − 5.5

 a5 − 1
2sa4 1 6d − 1

2s5.5 1 6d − 5.75

�So the sequence starts like this:

	 2, 4, 5, 5.5, 5.75, . . .	 ■

 Example 4   |  Fibonacci sequence � Find the first ten terms of the recursive 
sequence given by

F1 − 1,    F2 − 1,    Fn − Fn21 1 Fn22    for n > 3

Solution � We are given F1 and F2, so we proceed as follows:

 F3 − F2 1 F1 − 1 1 1 − 2

 F4 − F3 1 F2 − 2 1 1 − 3

 F5 − F4 1 F3 − 3 1 2 − 5

�Each term is the sum of the two terms that precede it, so we can easily write as many 
terms as we please. Here are the first ten terms:

	 1,  1,  2,  3,  5,  8,  13,  21,  34,  55	 ■

The sequence in Example 4 is called the Fibonacci sequence, named after the 13th-
century Italian mathematician known as Fibonacci, who used it to solve a problem con-
cerning the breeding of rabbits (see Exercise 23). This sequence also occurs in numerous 
applications in plant biology. (See Figure 2 for one such occurrence.)

A recursive sequence is also called a difference equation. The recursive sequence in 
Example 3 is called a first-order difference equation because an11 depends on just the 

1

1

2

3

5

8

Figure �2
The Fibonacci sequence in the branch-
ing of a tree
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preceding term an, whereas the Fibonacci sequence is a second-order difference equa-
tion because Fn depends on the two preceding terms Fn21 and Fn22.

The general first-order difference equation is of the form

an11 − f sand

where f  is some function. Why is it called a difference equation? The word difference 
comes from the fact that such equations are often formulated in terms of the difference 
between one term and the next:

Dan − an11 2 an

The equation Dan − tsand can be written as follows:

 an11 2 an − tsand

 an11 − an 1 tsand − f sand
where f sxd − x 1 tsxd.

■ Discrete-Time Models in the Life Sciences
Difference equations are often used in biology to model cell division and insect popula-
tions, for example. In these contexts we usually replace n by t, to denote time. If we think 
of t as the current time, then t 1 1 is one unit of time into the future. (For cell division, t 
might represent hours or days; for insect populations, it could represent days, months, or 
years.) We will use Nt to denote the population size, so a difference equation modeling 
population size has the form

Nt11 − f sNtd      t − 0, 1, 2, 3, . . .

In this context we call f  an updating function because f  “updates” the population from 
Nt to Nt11.

We have already seen an example of this in Section 1.4, where a malarial parasite 
produces 8 new parasites in a period of 24 hours. So

Nt11 − 8Nt      N0 − 1

where t is measured in days, and we saw that the solution of this difference equation is

Nt − 8t

If an E. coli population starts with N0 bacteria and its size doubles every 20 minutes, 
then we measure t in units of 20 minutes and write Nt11 − 2Nt. As before, we find that

Nt − N0 ? 2t

More generally, if a population of cells divides synchronously, with each cell producing 
R daughter cells, then the difference equation

(1)	 Nt11 − RNt	

relates successive generations and the solution is

(2)	 Nt − N0 ? Rt	

The number R is the number of offspring per individual and is called the per capita 
growth factor.

BB

We have discussed sequences defined 
by a formula and also recursive 
sequences. Equation 1 defines a recur-
sive sequence and the solution given 
by Equation 2 is the corresponding 
formula.
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Similar equations arise when we consider insect populations that breed seasonally. 
We will take the unit of time to be the time span from one generation to the next. Then 
in general terms we can formulate the model

(3)	 Nt11 − Nt 1 inflow 2 outflow	

If the population has a constant per capita birth rate � and constant per capita death rate 
�, then the difference equation in (3) becomes

(4)	 Nt11 − Nt 1 �Nt 2 �Nt	

Notice that in the case where insects die immediately after producing the next genera-
tion, we have � − 1 and Equation 4 becomes Equation 1 with R − �.

So far we have considered populations that grow under ideal conditions without limi-
tations to growth. Let’s now consider a more realistic model called the logistic differ-
ence equation. Let K represent the carrying capacity, which is the population size at 
which the per capita growth factor is 1. We replace the difference equation in Equation 
1, Nt11 − RNt, by the model

(5)	 Nt11 − F1 1 rS1 2
Nt

K DGNt	

where r is a positive constant. Here the per capita growth factor is

(6)	 R − 1 1 rS1 2
Nt

K D	

whereas in (1) R is simply a constant. Notice that NtyK is the fraction of the carrying 
capacity at time t and so rs1 2 NtyKd is small when Nt is close to K and rs1 2 NtyKd is 
close to its largest value r when Nt is small. Observe that R decreases linearly from 1 1 r 
to 1 as Nt increases from 0 to K. This means that the logistic difference equation has a 
variable per capita growth factor R.

We can simplify Equation 5 by defining

xt −
r

s1 1 rdK
Nt

Then

xt11 −
r

s1 1 rdK
 Nt11 −

r

s1 1 rdK
 F1 1 rS1 2

Nt

K DGNt

	  −
r

s1 1 rdK
 Fs1 1 rdNt 2

rNt
2

K G −
r

K
Nt 2

r 2N 2
t

s1 1 rdK 2

On the right side of this equation we use the fact that

Nt −
s1 1 rdK

r
xt

to obtain	 xt11 − s1 1 rdxt 2 s1 1 rdx 2
t − s1 1 rdxts1 2 xtd

If we now write Rmax − 1 1 r, which is the largest value of R as a function of Nt in Equa-

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 1.6  |  Sequences and Difference Equations    75

tion 6, we obtain a simpler-looking difference equation:

(7)	 xt11 − Rmax xts1 2 xtd	

Equation 7 is also called the logistic difference equation.

 Example 5   |  BB  � If x0 − 7
8, graph the first ten terms of the logistic difference 

equation (7) for (a) Rmax − 1.5 and (b) Rmax − 3.2.

Solution �
(a)	 With x0 − 7

8 and xt11 − 1.5xts1 2 xtd, we use a graphing calculator or computer to 
calculate the first ten terms approximately and then we plot them in Figure 3.

0 t

1

5 10

xt

Figure �3

(b)	 With Rmax − 3.2 we get the following values and plot them in Figure 4.

0 t

1

5 10

xt

Figure �4	 ■

Notice from Figures 3 and 4 that when we change the value of r in the logistic dif-
ference equation, and thereby change Rmax, the sequence looks quite different. We will 
return to this equation in Sections 2.1 and 4.5 to explore the limiting behavior of the  
logistic difference equation for different values of Rmax.

 Example 6   |  BB  � Maintaining cerebrospinal pressure1  Cerebrospinal 
fluid (CSF) is a clear liquid that occupies the compartment of the body containing the 

t xt t xt

0 	 0.8750 	 6 	 0.3155

1 	 0.1641 	 7 	 0.3239

2 	 0.2057 	 8 	 0.3285

3 	 0.2451 	 9 	 0.3309

4 	 0.2775 	 10 	 0.3321

5 	 0.3008

t xt t xt

0 	 0.8750 	 6 	 0.7604

1 	 0.3500 	 7 	 0.5831

2 	 0.7280 	 8 	 0.7779

3 	 0.6337 	 9 	 0.5528

4 	 0.7428 	 10 	 0.7911

5 	 0.6113

1. Adapted from S. Cruickshank, Mathematics and Statistics in Anaesthesia (New York: Oxford University 
Press, USA, 1998).
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brain and spinal cord (the cerebrospinal chamber). It is important to maintain an appro-
priate cerebrospinal pressure during medical procedures and the pressure is a function 
of the CSF volume. Suppose that we measure the CSF volume every five minutes 
during a medical procedure and that A mL of CSF is secreted into the cerebrospinal 
chamber every five minutes. Also, suppose that the amount of CSF reabsorbed every 
five minutes is proportional to its current volume.
(a)	 Derive a discrete-time difference equation for how the volume V  of CSF changes 
from one measurement to the next.
(b)	 Ultimately we are interested in how the cerebrospinal pressure P changes from one 
measurement to the next. Suppose that pressure is related to volume according to the 
equation P − V 2. (This would be appropriate if pressure is nearly zero for small vol-
umes but increases at an accelerating rate as volume increases.) Derive a discrete-time 
recursion for the pressure.

Solution �
(a)	 The volume at measurement m 1 1 is the volume at measurement m plus the 
secreted CSF (A) minus what is reabsorbed (kV, where k is the constant of proportion-
ality). Therefore we have

Vm11 − Vm 1 A 2 kVm − A 1 s1 2 kdVm

(b)	 For any given measurement, the pressure is given by Pm − V 2
m . So

Pm11 − V 2
m11 − fA 1 s1 2 kdVmg 2

This recursion is not yet complete because it tells us the pressure at measurement 
m 1 1 as a function of the volume at measurement m. To use it recursively we need the 
recursion to give us the pressure at measurement m 1 1 as a function of the pressure at 
measurement m. Therefore we need to write Vm in terms of Pm. Solving Pm − V 2

m  for Vm 
and keeping only the positive solution, we get Vm − sPm

 
 . Substituting, we get

	 Pm11 − fA 1 s1 2 kdsPm
 g 2

	 − A2 1 2As1 2 kdsPm 1 s1 2 kd2Pm	 ■

	� 1–4 � List the first five terms of the sequence.

	 1.	 an −
2n

n2 1 1
	 2.	 an −

3n

1 1 2n

	 3.	 an −
s21dn21

5n 	 4.	 an − cos 
n�

2

	� 5–8 � Calculate, to four decimal places, the first ten terms of 
the sequence and use them to plot the graph of the sequence by 
hand.

	 5.	� an −
3n

1 1 6n
	 6.	 an − 2 1

s21dn

n

	 7.	 an − 1 1 (21
2)n

	 8.	 an − 1 1
10n

9n

	� 9–14 � Find a formula for the general term an of the sequence, 
assuming that the pattern of the first few terms continues.

	 9.	 1, 13, 15, 17, 19, . . .	 10.	 1, 21
3, 19, 2 1

27, 1
81, . . .

	 11.	 23, 2, 24
3, 89, 216

27, . . .	 12.	 5, 8, 11, 14, 17, . . .

	 13.	 1
2, 24

3, 94, 216
5 , 25

6 , . . .

	 14.	 1, 0, 21, 0, 1, 0, 21, 0, . . .

EXERCISES 1.6
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nential factor e2xt, we get what is called the Ricker differ-
ence equation:

xt11 − cxt e2xt

		��  �This model has the advantage that the factor e2xt never 
reaches 0.

		  (a)	� If x0 − 0.5 and c − 2.5, calculate the first ten terms to 
four decimal places and graph them.

		  (b)	� Compare with Exercise 28.

	 33.	��� Repeat Exercise 32(a) for x0 − 7
8 and c − 3.42. Compare 

with Exercise 29.

	 34.	� Drug concentration �� Suppose Ct is the concentration of 
a drug in the bloodstream at time t, A is the concentration 
of the drug that is administered at each time step, and k is 
the fraction of the drug metabolized in a time step.

		  (a)	� What is the recursion that models how the drug con-
centration changes?

		  (b)	� If the initial concentration is C0 − 120 mgymL and 
A − 80 mgymL and k − 1

2, plot some points on the 
graph of Ct. Is the graph similar for other values of A 
and k?

	 35.	� Bacteria colonies on agar plates �� Bacteria are often 
grown on agar plates and form circular colonies. The area 
of a colony is proportional to the number of bacteria it 
contains. The agar (a gelatinous substance obtained from 
red seaweed) is the resource that bacteria use to reproduce 
and so only those bacteria on the edge of the colony can 
produce new offspring. Therefore the population changes 
according to the equation Nt11 − Nt 1 I, where I is the 
input of new individuals and is proportional to the circum-
ference of the colony, with proportionality constant R.

		  (a)	� Derive the recursion for the population size.
		  (b)	� Plot some points on the graph of Nt, assuming specific 

values for the proportionality constants.

	 36.	� Spherical colonies �� Suppose the volume of a spherical 
colony is proportional to the number of individuals in it 
and growth occurs only at the surface-resource interface 
of the colony. Find a difference equation that models the 
population.

	 37.	� Salmon and bears �� Pacific salmon populations have dis-
crete breeding cycles in which they return from the ocean 
to streams to reproduce and then die. This occurs every one 
to five years, depending on the species.

		  (a)	� Suppose that each fish must first survive predation by 
bears while swimming upstream, and predation occurs 
with probability d. After swimming upstream, each fish 
produces b offspring before dying. The stream is then 
stocked with m additional newly hatched fish before 
all fish then swim out to sea. What is the discrete-time 
recursion for the population size, assuming that there is 
no mortality while at sea? You should count the popu-
lation immediately before the upstream journey.

	� 15–22 � Find the first six terms of the recursive sequence.

	 15.	 a1 − 1, an11 − 5an 2 3	 16.	 a1 − 6, an11 −
an

n

	 17.	 a1 − 2, an11 −
an

1 1 an
	 18.	 a1 − 1, an11 − 4 2 an

	 19.	 a1 − 1, an11 − s3an 	 20.	 a1 − 3, an11 − s3an 

	 21.	 a1 − 2, a2 − 1, an11 − an 2 an21

	 22.	 a1 − 1, a2 − 2, an12 − an11 1 2an

	 23.	� Breeding rabbits �� Fibonacci posed the following 
problem: Suppose that rabbits live forever and that every 
month each pair produces a new pair, which becomes 
reproductive at age 2 months. If we start with one newborn 
pair, how many pairs of rabbits will we have in the nth 
month? Show that the answer is Fn, the nth term of the 
Fibonacci sequence defined in Example 4.

	 24.	�H arvesting fish �� A fish farmer has 5000 catfish in his 
pond. The number of catfish increases by 8% per month 
and the farmer harvests 300 catfish per month.

		  (a)	� Show that the catfish population Pn after n months is 
given recursively by

Pn − 1.08Pn21 2 300    P0 − 5000

		  (b)	� How many catfish are in the pond after six months?

	 25.	�� �Consider the difference equation

N0 − 1    Nt11 − RNt

		��  �What can you say about the solution of this equation as t 
becomes large in the following three cases?

		  (a)	� R , 1	 (b)	 R − 1	 (c)	 R . 1

	 26.	��� (a)	� For a difference equation of the form Nt11 − f sNtd, cal-
culate the composition s f 8 f dsNtd. What is the meaning 
of f 8 f  in this context?

		  (b)	� If Nt11 − f sNtd, where f  is one-to-one, what is 
f 21sNt11d? What is the meaning of the inverse function 
f 21 in this context?

	� 27–31 � Logistic equation  For the logistic difference equation 
xt11 − cxts1 2 xtd and the given values of x0 and c, calculate  
xt to four decimal places for t − 1, 2, . . . , 10 and graph xt. 
Comment on the behavior of the sequence.

	 27.	 x0 − 0.5, c − 1.5	 28.	 x0 − 0.5, c − 2.5

	 29.	 x0 − 7
8, c − 3.42	 30.	 x0 − 7

8, c − 3.45

	 31.	 x0 − 0.5, c − 3.7

	 32.	�R icker equation �� In the logistic difference equation the 
factor s1 2 xtd decreases linearly from 1 to 0 as xt increases 
from 0 to 1. If, instead, we introduce the decreasing expo-
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��		�  unmethylated. Find a recursion for the fraction f  of the 
DNA molecule that is methylated.

	 39.	�T wo bacteria strains �� Suppose the population sizes 
of two strains of bacteria each grow as described by the 
recursions at11 − Ra at and bt11 − Rb bt, respectively. 
The frequency of the first strain at time t is defined as 
pt − at ysat 1 btd. Derive a recursion for pt and show that 
it can be written in terms of a single constant � − Ra yRb.

	 40.	��� Find the first 40 terms of the sequence defined by

an11 − H1
2an if an is an even number

3an 1 1 if an is an odd number

		���  and a1 − 11. Do the same if a1 − 25. Make a conjecture 
about this type of sequence.

		  (b)	� Suppose instead that bears prey on fish only while the 
fish are swimming downstream. What is the discrete-
time recursion for the population dynamics? (Again 
assume there is no mortality while at sea.)

		  (c)	� Which of the recursions obtained in parts (a) and (b) 
predicts the largest increase in population size from 
one year to the next? Justify your answer both math-
ematically and in terms of the underlying biology. You 
can assume that 0 , d , 1 and b . 0.

	 38.	� Methyl groups in DNA �� DNA sometimes has chemical 
groups attached, called methyl groups, that affect gene 
expression. Suppose that, during each hour, first a fraction 
m of unmethylated locations on the DNA become methyl-
ated, and then a fraction u of methylated locations become 

■ Project � Drug Resistance in Malaria	 BB

Drug resistance in malaria is a serious problem in many parts of the world. Let’s suppose 
that there are two different genes in the population, one that causes resistance (labeled R) 
and one that is sensitive to the drug (labeled S). We will construct a recursion for the fre-
quency of the R gene by assuming that the entire malaria life cycle occurs synchronously.

The life cycle of malaria is quite complicated. Part of it occurs in mosquitoes and part 
in humans (see Figure 1). While in humans, each malaria parasite carries a single copy of 
the gene (either R or S) and is referred to as haploid. But while in the mosquito, pairs of 
such haploid parasites combine through a process of sexual reproduction to form diploid 
parasites. Diploid individuals carry two copies of the gene and therefore can be of three 
different types: RR, RS, or SS (see Figure 2).

To contruct a recursion for the frequency of the R gene, we must first choose a point 
in the malaria life cycle at which to census the population. Since the haploid stage of the 
parasite in humans is the simplest, let’s choose that. We use pt to denote the frequency of 
the R type in the haploid stage. (All R genes are colored yellow in Figure 2.) Our goal is 
to derive a recursion of the form pt11 − f s ptd for some function f. We do this by divid-
ing  the entire life cycle into three steps: (1) union of pairs of haploid individuals to form 
diploid individuals; (2) differential survival of diploid individuals in the mosquito; and  
(3) the production of new haploid individuals by the surviving diploid parasites.

	 1.	� �Suppose that when pairs of haploid individuals unite to form diploids in the  
mosquitoes, they do so randomly and independently of the gene they carry. If 
pt is the frequency of the R gene in the haploids, what are the frequencies of the 
RR, RS, and SS types in the mosquitoes after this step occurs? (As a check, make 
sure the frequencies sum to 1.)

	 2.	�� Suppose that the probability of survival of the three different types of diploid 
individuals in mosquitoes, as a result of the drug, is given by the constants  
WRR, WRS, and WSS. What are the frequencies of the three different types after this 
differential survival?

	 3.	�� After differential survival the three types produce several haploid individuals that 
infect humans. Suppose that each diploid individual produces a total of b haploid 
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Figure �1 
Life cycle of malaria
Source: From Starr. Biology, 8E © 2011 Brooks/

Cole, a part of Cengage Learning, Inc. Reproduced 

by permission. www.cengage.com/permissions

Figure �2
Source: Adapted from C. Starr et al., Biology: 

Concepts and Applications, 8th ed. (Belmont, CA: 

Cengage Learning, 2011), 316.
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carries them to the liver.

Sporozoites reproduce asexually
in liver cells, mature into merozoites.
Merozoites leave the liver and infect
red blood cells.
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descendants, but RR individuals produce all R-type haploids, SS individuals 
produce all S-type haploids, and RS individuals produce a 50:50 mixture of both. 
What is the frequency of the R-type haploids in humans after this occurs? 

�		�	   We will assume the frequency doesn’t change as the haploid parasites go 
through the rest of their life cycle in humans (as shown in Figure 1). Thus, the 
frequency just calculated is the value of p after the completion of the entire life 
cycle and so it is equal to pt11. Therefore you should arrive at the final result

pt11 −
p 2

t WRR 1 pts1 2 ptdWRS

p 2
t WRR 1 2pts1 2 ptdWRS 1 s1 2 ptd2WSS

	 4.	�� When the drug is removed from use we sometimes see that the frequency of the 
drug-resistant gene decreases because the S type survives best in the absence 
of the drug. For example, this might be modeled by choosing WRR − 1

4 and 
WRS − WSS − 1

2. Show that, with these choices, the expression in Problem 3 
reduces to the rational function discussed in Section 1.2 on page 25.

CONCEPT CHECK

	 1.	�� (a)	 What is a function? What are its domain and range?
		  (b)	 What is the graph of a function?
		  (c)	� How can you tell whether a given curve is the graph of a 

function?

	 2.	�� �Discuss four ways of representing a function. Illustrate your 
discussion with examples.

	 3.	��� (a)	� What is an even function? How can you tell if a function 
is even by looking at its graph?

		  (b)	� What is an odd function? How can you tell if a function is 
odd by looking at its graph?

	 4.	�� What is an increasing function?

	 5.	�� What is a mathematical model?

	 6.	�� Give an example of each type of function.
		  (a)	 Linear function	 (b)	 Power function
		  (c)	 Exponential function	 (d)	 Quadratic function
		  (e)	 Polynomial of degree 5	 (f)	 Rational function

	 7.	�� �Sketch by hand, on the same axes, the graphs of the following 
functions.

		  (a)	 f sxd − x	 (b)	 tsxd − x 2

		  (c)	 hsxd − x 3	 (d)	 jsxd − x 4

	 8.	��� Draw, by hand, a rough sketch of the graph of each function.
		  (a)	 y − sin x	 (b)	 y − cos x
		  (c)	 y − tan x	 (d)	 y − e x

		  (e)	 y − ln x	 (f)	 y − 1yx

		  (g)	 y − | x |	 (h)	 y − sx  

	 9.	��� Suppose that f  has domain A and t has domain B.
		  (a)	 What is the domain of f 1 t?
		  (b)	 What is the domain of f t?
		  (c)	 What is the domain of fyt?

	 10.	��� How is the composite function f 8 t defined? What is its 
domain?

	 11.	��� Suppose the graph of f  is given. Write an equation for each of 
the graphs that are obtained from the graph of f  as follows.

		  (a)	 Shift 2 units upward.
		  (b)	 Shift 2 units downward.
		  (c)	 Shift 2 units to the right.
		  (d)	 Shift 2 units to the left.
		  (e)	 Reflect about the x-axis.
		  (f)	 Reflect about the y-axis.
		  (g)	 Stretch vertically by a factor of 2.
		  (h)	 Shrink vertically by a factor of 2.
		  (i)	 Stretch horizontally by a factor of 2.
		  ( j)	 Shrink horizontally by a factor of 2.

	 12.	�� (a)	� What is a one-to-one function? How can you tell if a 
function is one-to-one by looking at its graph?

		  (b)	� If f  is a one-to-one function, how is its inverse function  
f 21 defined? How do you obtain the graph of f 21 from 
the graph of f ?

	 13.	�� (a)	� What is a semilog plot?
		  (b)	� If a semilog plot of your data lies approximately on a 

line, what type of model is appropriate?

Chapter 1 Review
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		  (b)	� If a population has carrying capacity K, write the logistic 
difference equation for Nt.

		  (c)	� Write the logistic difference equation for

xt −
r

s1 1 rdK
Nt

Answers to the Concept Check can be found on the back 
endpapers.

	 14.	�� (a)	� What is a log-log plot?
		  (b)	� If a log-log plot of your data lies approximately on a line, 

what type of model is appropriate?

	 15.	�� (a)	� What is a sequence?
		  (b)	 What is a recursive sequence?

	 16.	 Discrete-time models
		  (a)	� If there are Nt cells at time t and they divide according to 

the difference equation Nt11 − RNt, write an expression 
for Nt.

TRUE-FALSE QUIZ

EXERCISES

	� Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

	 1.	�� If f  is a function, then f ss 1 td − f ssd 1 f std.

	 2.	�� If f ssd − f std, then s − t.

	 3.	�� If f  is a function, then f s3xd − 3 f sxd.

	 4.	��� If x1 , x2 and f  is a decreasing function, then f sx1 d . f sx2 d.

	 5.	�� �A vertical line intersects the graph of a function at most once.

	 6.	�� If f  and t are functions, then f 8 t − t 8 f .

	 7.	�� �If f  is one-to-one, then f 21sxd −
1

 f sxd
.

	 8.	�� You can always divide by e x.

	 9.	�� If 0 , a , b, then ln a , ln b.

	 10.	�� If x . 0, then sln xd6 − 6 ln x.

	 11.	�� If x . 0 and a . 1, then 
ln x

ln a
− ln 

x

a
 .

	 12.	�� If x is any real number, then sx 2 − x.

	 1.	�� Let f  be the function whose graph is given.
		  (a)	 Estimate the value of f s2d.
		  (b)	 Estimate the values of x such that f sxd − 3.
		  (c)	 State the domain of f.
		  (d)	 State the range of f.
		  (e)	 On what interval is f  increasing?
		  (f )	 Is f  one-to-one? Explain.
		  (g)	 Is f  even, odd, or neither even nor odd? Explain.

y

x1

1

f

	 2.	��� The graph of t is given.
		  (a)	 State the value of ts2d.
		  (b)	 Why is t one-to-one?
		  (c)	 Estimate the value of t21s2d.
		  (d)	 Estimate the domain of t21.
		  (e)	 Sketch the graph of t21.

gy

x0 1

1

	 3.	� Sea level �� The figure shows how the sea level has changed 
over the last quarter of a million years according to data from
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�Source: Adapted from T. Garrison, Oceanography: An Invitation to Marine Science 

(Belmont, CA: Cengage Learning, 2010), 113, figure 4.15.
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y

x0 1

1

	� 13–19 � Use transformations to sketch the graph of the function.

	 13.	 y − 2sin 2x	 14.	 y − 3 lnsx 2 2d

	 15.	 y − 1
2s1 1 e x d	 16.	 y − 2 2 sx 

	 17.	 f sxd −
1

x 1 2
	 18.	 f sxd − x 2 2 2x

	 19.	 f sxd − H2x

e x 2 1

if x , 0

if x > 0

	 20.	��� Determine whether f  is even, odd, or neither even nor odd.
		  (a)	 f sxd − 2x 5 2 3x 2 1 2
		  (b)	 f sxd − x 3 2 x 7

		  (c)	 f sxd − e2x 2

		  (d)	 f sxd − 1 1 sin x

	 21.	��� If f sxd − ln x and tsxd − x 2 2 9, find the functions  
(a) f 8 t, (b) t 8 f , (c) f 8 f , (d) t 8 t, and their domains.

	 22.	�� �Express the function Fsxd − 1ysx 1 sx   as a composition 
of three functions.

BB 	 23.	� Life expectancy �� Life expectancy improved dramatically 
in the 20th century. The table gives the life expectancy at 
birth (in years) of males born in the United States. Use a 
scatter plot to choose an appropriate type of model. Use 
your model to predict the life-span of a male born in the 
year 2010.

Birth year
Life  

expectancy Birth year
Life  

expectancy

1900 48.3 1960 66.6

1910 51.1 1970 67.1

1920 55.2 1980 70.0

1930 57.4 1990 71.8

1940 62.5 2000 73.0

1950 65.6

	 24.	��� A small-appliance manufacturer finds that it costs $9000 to 
produce 1000 toaster ovens a week and $12,000 to produce 
1500 toaster ovens a week.

		  (a)	� Express the cost as a function of the number of toaster 
ovens produced, assuming that it is linear. Then sketch 
the graph.

		���  ocean floor cores. Sstd is the sea level (in meters) relative 
to present sea level.

		  (a)	 What was the sea level 100,000 years ago?
		  (b)	� When was the sea level lowest? Highest?
		  (c)	� What is the range of this function?
		  (d)	� Can you account for the fluctuation of the sea level in 

terms of ice ages?

	 4.	� Marine fish catch �� The figure shows the worldwide com-
mercial marine fish catch Fstd in millions of tonnes (metric 
tons).

		  (a)	� In what year was the fish catch 70 million tonnes?
		  (b)	 What is the range of F?

1940 1950 1960 1970 1980 1990 2000

20

40

60

80

t

F (tonnes)

Source: Adapted from T. Garrison, Oceanography: An Invitation to Marine Sci-

ence (Belmont, CA: Cengage Learning, 2010), 472, figure 17.13a.

	 5.	��� If f sxd − x 2 2 2x 1 3, evaluate the difference quotient

f sa 1 hd 2 f sad
h

	 6.	��� Sketch a rough graph of the yield of a crop as a function  
of the amount of fertilizer used.

	� 7–10 � Find the domain and range of the function. Write your 
answer in interval notation.

	 7.	 f sxd − 2ys3x 2 1d	 8.	 tsxd − s16 2 x 4 

	 9.	 hsxd − lnsx 1 6d	 10.	 Fstd − 3 1 cos 2t

	 11.	��� Suppose that the graph of f  is given. Describe how the 
graphs of the following functions can be obtained from the 
graph of f.

		  (a)	 y − f sxd 1 8	 (b)	 y − f sx 1 8d
		  (c)	 y − 1 1 2 f sxd	 (d)	 y − f sx 2 2d 2 2

		  (e)	 y − 2f sxd	 (f)	 y − f 21sxd

	 12.	��� The graph of f  is given. Draw the graphs of the following 
functions.

		  (a)	 y − f sx 2 8d	 (b)	 y − 2f sxd

		  (c)	 y − 2 2 f sxd	 (d)	 y − 1
2 f sxd 2 1

		  (e)	 y − f 21sxd	 (f)	 y − f 21sx 1 3d
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	 33.	
x 4 8 12 16 20 24

y 7.0 11.5 15.2 18.9 22.1 25.0

	 34.	
x 1 3 6 10 14 16

y 7.22 4.61 2.38 0.99 0.41 0.26

	 ;	 35.	� Nigerian population �� The table gives the midyear popu-
lation of Nigeria (in millions) from 1985 to 2010.

Year Population Year Population

1985 85 2000 124

1990 97 2005 142

1995 110 2010 162

		  (a)	� Make a scatter plot, semilog plot, and log-log plot for 
these data and comment on which type of model would 
be most appropriate.

		  (b)	� Obtain an exponential model for the population.
		  (c)	� Use your model to estimate the population in 2008 and 

predict the population in 2020.

	� 36–37 � Find the first six terms of the sequence.

	 36.	 an − sinsn�y3d

	 37.	 a1 − 3, an11 − n 1 2an 2 1

	 38.	��� Find a formula for the general term of the sequence

23,
5

4
, 2

7

9
,

9

16
, 2

11

25
, . . .

		��  assuming that the pattern of the first few terms continues.

	 39.	��� If x0 − 0.9 and xt11 − 2.7xts1 2 xtd, calculate xt to four 
decimal places for t − 1, 2, . . . 10 and graph xt. Comment 
on the behavior of the sequence.

	 40.	� Beverton-Holt model �� An alternative to the logistic 
model for restricted population growth is the Beverton-Holt 
recruitment curve. Here the recursion model is

Nt11 −
cNt

1 1 sc 2 1dNt yK

		���  where K is the carrying capacity and c is the per capita 
growth factor.

		  (a)	� If K − 50 and c − 1.7, plot some points on the graph 
of Nt for the following values of the initial population: 
N0 − 10, 30, 70.

		  (b)	� For the values in part (a), compare the Beverton-Holt 
model with the logistic model.

		  (b)	� What is the slope of the graph and what does it  
represent?

		  (c)	� What is the y-intercept of the graph and what does it  
represent?

	 25.	�� If f sxd − 2x 1 ln x, find f 21s2d.

	 26.	�� Find the inverse function of f sxd −
x 1 1

2x 1 1
.

	 27.	�� Find the exact value of each expression.
		  (a)	 e 2 ln 3	 (b)	 log10 25 1 log10 4

	 28.	�� Solve each equation for x.
		  (a)	 e x − 5	 (b)	 ln x − 2
		  (c)	 ee x

− 2

	 29.	��� The half-life of palladium-100, 100Pd, is four days. (So 
half of any given quantity of 100Pd will disintegrate in four 
days.) The initial mass of a sample is one gram.

		  (a)	� Find the mass that remains after 16 days.
		  (b)	� Find the mass mstd that remains after t days.
		  (c)	� Find the inverse of this function and explain its  

meaning.
		  (d)	� When will the mass be reduced to 0.01 g?

	 30.	�P opulation growth �� The population of a certain species 
in a limited environment with initial population 100 and 
carrying capacity 1000 is

Pstd −
100,000

100 1 900e2t

		��  where t is measured in years.

	 ;		  (a)	� Graph this function and estimate how long it takes for 
the population to reach 900.

		  (b)	� Find the inverse of this function and explain its  
meaning.

		  (c)	� Use the inverse function to find the time required for 
the population to reach 900. Compare with the result of  
part (a).

	 ;	 31.	��� Gra	ph members of the family of functions 
f sxd − lnsx 2 2 cd for several values of c. How does the 
graph change when c changes?

	 ;	 32.	��� Graph the three functions y − x b, y − b x, and y − logb x 
on the same screen for two or three values of b . 1. For 
large values of x, which of these functions has the largest 
values and which has the smallest values?

;	� 33–34 � Data points sx, yd are given.
	 (a)	� Draw a scatter plot of the data points.
	 (b)	 Make semilog and log-log plots of the data.
	 (c)	� Is a linear, power, or exponential function appropriate for 

modeling these data?
	 (d)	� Find an appropriate model for the data and then graph the 

model together with a scatter plot of the data.
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case study 1a  Kill Curves and Antibiotic Effectiveness

We are studying the relationship between the magnitude of antibiotic treat-
ment and the effectiveness of the treatment. Recall that the extent of bacte-
rial killing by an antibiotic is determined by both the antibiotic concentration 
profile and the dose response relationship. Figures 1 and 2 show these plots for the anti-
biotic ciprofloxacin when used against E. coli .1
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Figure �1
Antibiotic concentration profile in plasma of a 
healthy human volunteer after receiving 500 mg 
of ciprofloxacin

Figure 2
Dose response relationship for ciprofloxacin with 
the bacteria E. coli

Now, in the words of Picasso, we are viewing mathematical models as “lies that reveal 
truth.” In other words, we don’t expect our mathematical model to capture every detail of 
the biological system; rather, we simply want it to capture the most important features. 
To this end, let’s describe the main patterns seen in Figures 1 and 2 mathematically.

Figure 1 shows that the antibiotic concentration increases extremely quickly, followed 
by a slow decay. To simplify matters let’s therefore suppose that it increases instantly 
from zero to the peak concentration at time t − 0, and it then decays. As we will see 
in Case Study 1b, the decay can be well modeled using the exponential decay function

(1)	 cstd − c0e2kt	

where c0 is the concentration at t − 0 and k is a positive constant. Equation 1 is plotted 
in Figure 3.
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Figure �3
Drug concentration profile modeled by 

the function cstd − c0e2kt with  
c0 − 1.2 mgymL and k − 0.175 

1. Adapted from S. Imre et al., “Validation of an HPLC Method for the Determination of Ciprofloxacin in 
Human Plasma,” Journal of Pharmaceutical and Biomedical Analysis 33 (2003): 125–30.
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In Figure 2 it looks like the dose response relationship doesn’t vary much up to a con-
centration of around 0.013 mgymL. It then drops suddenly to a low value and remains 
relatively constant as the antibiotic concentration increases further. To simplify matters, 
let’s model the dose response relationship by the piecewise defined function

rscd − Hr2 if c , MIC

r1 if c > MIC

where MIC is a constant that is referred to as the minimum inhibitory concentration  
(MIC − 0.013 mgymL in this case), r1 and r2 are constants giving the bacteria population 
growth rate under high and low antibiotic concentration, respectively, and r1 , 0 and 
r2 . 0. This function is plotted in Figure 4.2
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The functions in Figures 3 and 4 will, together, determine how the bacteria popula-
tion size changes over time. At t − 0 the antibiotic concentration is c0, and if c0 is greater 
than MIC − 0.013 mgymL, then the bacteria population size will decline. At the same 
time the antibiotic concentration will decay as time passes, eventually reaching a value 
of MIC − 0.013 mgymL. At this point the growth rate of the bacteria population becomes 
positive.

In Case Study 1b you will show that, using the functions in Figures 3 and 4, a suitable 
model for the size of the bacteria population Pstd (in CFUymL) as a function of time t 
(in hours) is given by the piecewise defined function

(2a)	 Pstd − H6e ty3 if t , 2.08

12 if t > 2.08

if c0 , 0.013, and

(2b)	 Pstd −  
6e2ty20 if t , a

6Aety3 if a < t , b

12 if t > b

if c0 > 0.013, where the constants a, b, and A are defined by a − 5.7 lns77c0d, 
b − 6.6 lns77c0d 1 2.08, and A − s77c0d22.2.

Figure �4
Dose response relationship  
modeled by the piecewise  

defined function rscd

2.� Adapted from W. Bär et al., “Rapid Method for Detection of Minimal Bactericidal Concentration of Anti-
biotics,” Journal of Microbiological Methods 77 (2009): 85–89, Figure 1.
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	 1.	� �Plot Pstd as a function of time for each of the concentrations c0 − 0, 0.019, 0.038, 
0.075, 0.15, 0.3, 0.6, 1.2. These are the kill curves predicted by the model. 
Comment on the similarities and differences between the predicted curves and 
those from the data in Figure 5.3
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Our goal is to summarize the model kill curves from Problem 1 in a simpler form in 
order to see more clearly the relationship between the magnitude of antibiotic treatment 
and its predicted effectiveness.

To do this, we need to obtain a measure of the magnitude of antibiotic treatment as well 
as a measure of its effectiveness. We first obtain a measure of the magnitude of antibiotic 
treatment from the antibiotic concentration profiles that underlie each predicted kill curve. 
Three measures are commonly used: (1) the peak antibiotic concentration divided by  
MIC, denoted by �; (2) the duration of time for which the antibiotic concentration 
remains above MIC, denoted by �; and (3) the area under the antibiotic concentration 
profile divided by MIC, denoted by �. These measures are illustrated graphically in  
Figure 6.

C
on

ce
nt

ra
tio

n cmax

Time (hours)

∏=cmax/MIC
å=area A/MIC

MIC
t

A

(�g/mL)

Figure �5
The kill curves of ciprofloxacin for  
E. coli when measured in a growth 

chamber. The concentration of  
ciprofloxacin at t − 0 is indicated 

above each curve (in mgymL).

Figure �6
Three measures �, �, and � of the  
magnitude of antibiotic treatment

3. Adapted from A. Firsov et al., “Parameters of Bacterial Killing and Regrowth Kinetics and Antimicrobial 
Effect Examined in Terms of Area under the Concentration-Time Curve Relationships: Action of Ciprofloxa-
cin against Escherichia coli in an In Vitro Dynamic Model.” Antimicrobial Agents and Chemotherapy 41 
(1997): 1281–87.
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	 2.	� �Find expressions for � and � in terms of k, c0, and MIC, using Equation 1 for the 
antibiotic concentration profile.

	 3.	� �In Case Study 1c you will show that � −
1

k
 

c0

MIC
. Sketch graphs of �, �, and �

		�  as functions of c0, using the values k − 0.175 (1yhours) and MIC − 0.013 mgymL. 
What are their units?

You will notice from Problem 3 that, for a given antibiotic and bacterial species (in 
other words, for a given value of k and MIC), all three quantities �, �, and � increase with 
one another. For example, it is not possible to have a high value of � without also hav-
ing high values of � and �. Therefore, since these measures are not independent of one 
another, we need to consider only one of them. We will focus the remainder of our study 
on �, since it is the most commonly used.

Next we need to quantify the effectiveness of the antibiotic by quantifying different 
properties of the kill curves. Let’s consider two possibilities: (i) the time taken to reduce 
the bacteria population size to 90% of its initial size, denoted by T, and (ii) the drop in 
population size before the population rebound occurs, denoted by D. Both measures are 
shown in Figure 7.
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	 4.	� �Find expressions for D and T  in the modeled populations in terms of c0.

Our final goal is to use the results from Problem 4, along with the expression for �, to 
plot D against � and to plot T  against � as well. This will give us the model’s predictions 
for the plots in Figures 5 and 6 in Case Study 1 on page xlii.

	 5.	� �Substitute the values k − 0.175 and MIC − 0.013 into the expression for �. This 
expression, along with the results from Problem 4, should give you functions 
of the form T − f sc0d, D − tsc0d, and � − hsc0d for some functions f , t, and h. 
[Note: Some of the functions might actually be independent of c0.]

	 6.	� �Using the concept of inverse functions, explain how to obtain a function that 
gives D as a function of � in terms of t and h21. Find an explicit expression for 
this function.

	 7.	� �What is T  as a function of �?

Figure �7
Two measures T and D of  

antibiotic effectiveness
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	 8.	� �Plot the functions obtained in Problems 6 and 7. You should obtain the curves 
shown in Figures 8 and 9.
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Figure �8
Predicted relationship between D 
and �, along with the observations 
obtained using the kill curve data in 
Figure 5

      

Figure �9
Predicted relationship between T  
and �, along with the observations 
obtained using the kill curve data in 
Figure 5

	 9.	� �From Figures 8 and 9 you can see that this relatively simple model predicts the 
observed data reasonably well. In particular, T  is predicted to be independent 
of the magnitude of antibiotic treatment, whereas D increases with it. Provide a 
biological explanation in terms of the model for why this occurs. [Hint: Relate 
the fact that T  is predicted to be independent of � to the form of the kill curves 
from Problem 1 for different antibiotic doses.]

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



89

Viruses infect all living organisms 

and are responsible for diseases 

ranging from the common cold to 

smallpox and AIDS. In the project 

on page 101 you are asked to use 

recursive sequences to investi-

gate the interaction among viral 

infection, the human immune 

system, and antiviral drugs.

Eye of Science / Science Source

2.1  Limits of Sequences
Project: Modeling the Dynamics of Viral Infections

2.2  Limits of Functions at Infinity

2.3  �Limits of Functions at Finite Numbers

2.4  Limits: Algebraic Methods

2.5  �Continuity

CASE STUDY 2a: Hosts, Parasites, and Time-Travel

2Limits
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2.1 Limits of Sequences

■ The Long-Term Behavior of a Sequence
In Section 1.6 we looked at sequences, both those given by a simple defining formula 
and those defined recursively by a difference equation. Here we investigate what hap-
pens to the terms an of a sequence in the long run. In other words, we explore what  
happens to an as n becomes large.

 Example 1   |  What happens to the terms of the sequence when n becomes large?

(a)	 an −
1

n
	 (b)	 bn − s21dn

Solution �
(a)	 The first few terms of the sequence are

1, 
1

2
, 

1

3
, 

1

4
, 

1

5
, 

1

6
,  . . .

�and for larger values of n we have

a10 − 0.1,  a100 − 0.01,  a1000 − 0.001,  a1,000,000 − 0.000001,  . . .

�The larger the value of n, the smaller the value of an. The terms are approaching 0 as n 
increases. [See Figure 1(a).]

(b)	 Here the terms are

21,  1,  21,  1,  21,  1,  21,  . . .

The values of the terms alternate between 1 and 21 forever. So they don’t approach 
any fixed number. [See Figure 1(b)].	 ■

The sequences in Example 1 behave quite differently. The terms an − 1yn approach 
0 as n becomes large. (In fact we could make 1yn as small as we like by taking n large 
enough). We indicate this by saying that the sequence has limit 0 and by writing

lim
nl `

 
1

n
− 0

On the other hand, the sequence bn − s21dn does not have a limit, that is,

lim
nl `

 s21dn  does not exist

■ Definition of a Limit
In general we write

lim
nl`

 an − L

if the terms an approach L as n becomes large.

1

_1

1 n

bn

(b) b =(_1)n
n

n10

1

an

(a) a =n n
1

Figure �1

The idea of a limit is the basic concept in all of calculus. It underlies such 

phenomena as the long-term behavior of a population, the rate of growth of a 

tumor, and the area of a leaf.
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(1) Definition � A sequence hanj has the limit L and we write

lim
nl`

 an − L    or    an l L  as  n l `

if we can make the terms an as close to L as we like by taking n sufficiently large. 
If lim nl` an exists, we say the sequence converges (or is convergent). Otherwise, 
we say the sequence diverges (or is divergent).

Figure 2 illustrates Definition 1 by showing the graphs of two sequences that have 
the limit L.

0 n

an

L

0 n

an

L

If an becomes large as n becomes large, we use the notation

lim
nl`

 an − `

In this case the sequence hanj is divergent, but in a special way. We say that an diverges 
to `.

 Example 2   |  Is the sequence an − sn   convergent or divergent?

Solution � When n is large, sn   is large, so

lim
nl`

 sn − `

�and the sequence hsn j is divergent. Notice that we can make sn   as big as we want by 
taking n big enough. For instance,

	 sn  . 1000    when    n . 1,000,000	 ■

■ Limit Laws
The more precise version of Definition 1 in Appendix D can be used to prove the follow-
ing properties of limits.

If hanj and hbnj are convergent sequences and c is a constant, then

 lim
nl`

 san 1 bnd − lim
nl`

 an 1 lim
nl`

 bn

 lim
nl`

 san 2 bnd − lim
nl`

 an 2 lim
nl`

 bn

 lim
nl`

 can − c lim
nl`

 an lim
nl`

 c − c

 lim
nl`

 sanbnd − lim
nl`

 an ? lim
nl`

 bn

 lim
nl`

 
an

bn
−

lim
nl`

 an

lim
nl`

 bn
if lim

nl`
 bn ± 0

 lim
nl`

 ap
n − f lim

nl`
 ang p if p . 0 and an . 0

A more precise definition of the limit of 
a sequence is given in Appendix D.

Limit Laws for Sequences

Figure �2
Graphs of two  
sequences with  
lim
nl`

 an − L
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From the last of these laws and the fact that limnl` s1ynd − 0, we deduce that

(2)	 lim
nl`

 
1

np  − 0    for any number p . 0	

Combining this fact with the various limit laws, we can calculate limits of sequences 
as in the following example.

 Example 3   |  Find lim
nl`

 
1 1 2n 2

5 1 3n 1 4n 2 .

Solution � As n becomes large, both numerator and denominator become large, so 
it isn’t obvious what happens to their ratio. If we divide the numerator and denomina-
tor by n 2 (the highest power of n that occurs in the denominator), then we can use the 
Limit Laws and take advantage of the limits we know from Equation 2:

 lim
nl`

 
1 1 2n 2

5 1 3n 1 4n 2 − lim
nl`

 

1 1 2n 2

n 2

5 1 3n 1 4n 2

n 2

− lim
nl`

 

1

n 2 1 2

5

n 2 1
3

n
1 4

 −

lim
nl`

 
1

n 2 1 lim
nl`

 2

5 lim
nl`

 
1

n 2 1 3 lim
nl`

 
1

n
1 lim

nl`
 4

 −
0 1 2

5 ? 0 1 3 ? 0 1 4
−

1

2

�We have used the Limit Laws and Equation 2 with p − 2 and p − 1.	 ■

■ Geometric Sequences
A geometric sequence is a sequence of the form bn − ar n. We start with a number 
b0 − a and multiply repeatedly by a number r:

a, ar, ar 2, ar 3, ar 4, . . .

We saw an example of this in Section 1.4 with a − 1 and r − 8. The malarial species  
P. chabaudi reproduces every 24 hours and so a single such parasite at time t − 0 results 
in bn − 8n parasites after n days (at least initially). From our knowledge of the exponen-
tial function, we know that the sequence bn − 8n grows indefinitely:

lim
nl`

 8n − `

We also modeled cell division by the recursion

Nt11 − RNt
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whose solution is

Nt − N0 Rt

where R is the per capita growth factor. So this is a geometric sequence with a − N0 and 
r − R.

In general there are three cases for the geometric sequence bn − r n if r is a positive 
number. From the graphs of the exponential functions in Figures 1.4.4 and 1.4.5 (page 
44) we see that

(3)	 lim
nl`

 r n −

0 if 0 , r , 1

1 if r − 1

` if r . 1

These three cases are illustrated in Figure 3.

 Example 4   |  Calculate lim
nl`

 
2 n 2 1

6 n  if it exists.

Solution � Simplifying, we get

 lim
nl`

 
2 n 2 1

6 n − lim
nl`

 F 2 n

6 n 2
1

6 nG − lim
nl`

 FS 1

3D
n

2 S 1

6D
nG

 − lim
nl`

 S 1

3D
n

2 lim
nl`

 S 1

6D
n

− 0 2 0 − 0

�where the second last equality follows from (3) with r − 1
3 and r − 1

6.	 ■

■ Recursion for Medication
Let’s modify the geometric recursion bn11 − rbn by adding a constant term c:

bn11 − rbn 1 c

This difference equation arises when a patient is given a daily medication.

 Example 5   |  BB  � Drug concentration  A drug is administered to a patient 
at the same time every day. Suppose the concentration of the drug is Cn (measured in 
mgymL) after the injection on the nth day. Before the injection the next day, only 30% 
of the drug present on the preceding day remains in the bloodstream. If the daily dose 
raises the concentration by 0.2 mgymL, find the concentration after four days.

Solution � Just before the daily dose of medication is administered, the concentra-
tion is reduced to 30% of the preceding day’s concentration, that is, 0.3Cn. With the 
new dose, the concentration is increased by 0.2 mgymL and so

(4)	 Cn11 − 0.3Cn 1 0.2	

r>1

r=1

0<r<1
0 n

an

1

1

Figure �3
The sequence bn − r n
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Starting with C0 − 0 and putting n − 0, 1, 2, 3 into this difference equation, we get

 C1 − 0.3C0 1 0.2 − 0.2

 C2 − 0.3C1 1 0.2 − 0.3s0.2d 1 0.2 − 0.26

 C3 − 0.3C2 1 0.2 − 0.3s0.26d 1 0.2 − 0.278

 C4 − 0.3C3 1 0.2 − 0.3s0.278d 1 0.2 − 0.2834

�The concentration after four days is 0.2834 mgymL.	 ■

The successive daily concentrations in Example 5 appear to be increasing. Do you 
think they increase indefinitely? Or do they have a limit? 

For now, let’s assume there is a limiting concentration. Let’s call it C, that is, 
limnl` Cn − C. As nl`, observe that n 1 1l` too. So limnl` Cn11 − C too. There-
fore, taking limits in Equation 4, we have

 lim
nl`

 Cn11 − lim
nl`

 s0.3Cn 1 0.2d − 0.3 lim
nl`

 Cn 1 lim
nl`

 0.2

 C − 0.3C 1 0.2

 0.7C − 0.2

 C −
0.2

0.7
−

2

7

This shows that if there is a limiting concentration C, then

C −
2

7
< 0.2857 mgymL

We are going to verify that there is indeed a limiting concentration by first finding an 
explicit formula for Cn.

■ Geometric Series
If we add the terms of a geometric sequence, we get another sequence, this one consist-
ing of sums:

 s0 − a

 s1 − a 1 ar

 s2 − a 1 ar 1 ar 2

 s3 − a 1 ar 1 ar 2 1 ar 3

..

.

 sn − a 1 ar 1 ar 2 1 ∙ ∙ ∙ 1 ar n

If we multiply sn by r and align the terms with those above, we get

	 rsn − 	 ar 1 ar 2 1 ∙ ∙ ∙ 1 ar n 1 ar n11
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If we now subtract these last two equations, most of the terms cancel in pairs:

 sn 2 rsn − a 2 ar n11

 sns1 2 rd − as1 2 r n11d

If r ± 1, we can solve for sn:

(5)	 sn − a 1 ar 1 ar 2 1 ∙ ∙ ∙ 1 ar n −
as1 2 r n11d

1 2 r
	

We know that the solution of the difference equation

bn11 − rbn    b0 − a

is bn − ar n. We can now use Formula 5 to find a solution of the recursion

bn11 − c 1 rbn    b0 − a

To see the pattern, we start by computing the first few terms:

 b1 − c 1 ra

 b2 − c 1 rb1 − c 1 rsc 1 rad − cs1 1 rd 1 r 2a

 b3 − c 1 rb2 − c 1 rsc 1 cr 1 r 2ad − cs1 1 r 1 r 2d 1 r 3a

	 ..
.

 bn − cs1 1 r 1 r 2 1 ∙ ∙ ∙ r n21d 1 r na

Using Formula 5 for the sum of a finite geometric series, we have the following formula.

(6) � The solution of the difference equation bn11 − c 1 rbn, b0 − a, is

bn − r na 1 cS 1 2 r n

1 2 r D
 Example 6   |  Drug concentration (continued)  What is the concentration of 
the drug in Example 5 after the nth dose? What is the limiting concentration?

Solution � The difference equation in Example 5 is of the form Cn11 − rCn 1 c, 
where r − 0.3, c − 0.2, and C0 − 0. So from Equation 6 we have

Cn − 0.2F 1 2 s0.3dn

1 2 0.3 G −
2

7
f1 2 s0.3dng

�Because 0.3 , 1, we know from Equation 3 that limnl` s0.3dn − 0. So the limiting 
concentration is

lim
nl`

 Cn − lim
nl`

 
2

7
f1 2 s0.3dng −

2

7
s1 2 0d −

2

7
 mgymL

�as we had predicted.	 ■

The sum of terms of a sequence is 
called a series. Formula 5 gives the 
sum of a finite geometric series.
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What happens if we try to add all of the infinitely many terms of a geometric 
sequence? For instance, if a − 1 and r − 1

2, does it make sense to talk about the value 
of the infinite sum

1 1
1

2
1

1

4
1

1

8
1

1

16
1 ∙ ∙ ∙ 1

1

2 n 1 ∙ ∙ ∙

This sum is called an infinite series. From Equation 5 we know that the sum of the first 
n 1 1 terms is

sn − 1 1
1

2
1

1

4
1

1

8
1

1

16
1 ∙ ∙ ∙ 1

1

2 n −

1S1 2
1

2 n11D
1 2 1

2
− 2S1 2

1

2 n11D
and limnl` s1y2 n11d − 0, so limnl` sn − 2. In other words, by adding enough terms 
of the series, we can make the sum as close as we like to 2. We say that the sum of the 
geometric series is 2 and we write

1 1
1

2
1

1

4
1

1

8
1

1

16
1 ∙ ∙ ∙ 1

1

2 n21 1
1

2 n 1 ∙ ∙ ∙ − 2

In general, if 21 , r , 1, we know that limnl` r n − 0 and so, from Equation 5,

lim
nl`

 sn − lim
nl`

 F a

1 2 r
2

a

1 2 r
 r n11G −

a

1 2 r
2

a

1 2 r
 lim
nl`

 r n11 −
a

1 2 r

If 21 , r , 1, the sum of the infinite geometric series is

a 1 ar 1 ar 2 1 ∙ ∙ ∙ 1 ar n 1 ∙ ∙ ∙ −
a

1 2 r

As the following example illustrates, a repeating decimal number is the sum of an 
infinite geometric series.

 Example 7   |  Write the number 2.317 − 2.3171717 . . . as a ratio of integers.

Solution �

2.3171717 . . . − 2.3 1
17

103 1
17

105 1
17

107 1 . . .

�After the first term we have a geometric series with a − 17y10 3 and r − 1y10 2. 
Therefore

 2.317 − 2.3 1

17

103

1 2
1

102

− 2.3 1

17

1000

99

100

	  −
23

10
1

17

990
−

1147

495
	 ■
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■ The Logistic Sequence in the Long Run
In Section 1.6 we looked at the logistic difference equation, which is of the form

(7)	 xt11 − cxts1 2 xtd	

where c is a constant. Here we examine this equation again, this time exploring the limit-
ing behavior of the terms for various values of c.

 Example 8   |  BB  � Logistic difference equation  Compute and plot the next 
16 terms of the logistic equation (7) in the following cases. Then describe the limiting 
behavior of the sequence.
(a)	 x0 − 0.8, c − 2.8	 (b)	 x0 − 0.4, c − 3.4

Solution �
(a)	 Taking x0 − 0.8 and xt11 − 2.8xts1 2 xtd, we use a graphing calculator or com-
puter to compute the terms up to x16 to four decimal places and then we plot the graph 
in Figure 4.

100

0.6

t

xt

Figure �4

From the table of values and Figure 4 it appears that the terms of the sequence 
are approaching a number between 0.64 and 0.65. In fact if we assume that the limit 
exists and we call it L, we can evaluate it by the same technique as for the sequence in 
Example 5. We have both lim tl` xt − L and lim tl` xt11 − L and so, using the Limit 
Laws, we have

 L − lim
t l`

 xt11 − lim
t l`

 f2.8xts1 2 xtdg − 2.8Ls1 2 Ld

 1 − 2.8s1 2 Ld

 1 2 L −
1

2.8
? L − 1 2

1

2.8
−

1.8

2.8
−

9

14

 lim
nl`

 xt −
9

14
< 0.64286

t xt t xt

0 0.8000 	 9 0.6321
1 0.4480 	 10 0.6511
2 0.6924 	 11 0.6360
3 0.5963 	 12 0.6482
4 0.6740 	 13 0.6385
5 0.6152 14 0.6463
6 0.6628 15 0.6401
7 0.6258 16 0.6450
8 0.6557
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(b)	 Here x0 − 0.4 and xt11 − 3.4xts1 2 xtd. Again we calculate the next 16 terms and 
plot them in Figure 5.

100

0.4

0.8

t

xt

Figure �5

�Looking at the table and Figure 5, it appears that the values of xt do not approach any 
fixed number. Instead, they oscillate between values near 0.84 and values near 0.45. In 
other words, for c − 3.4,

	 lim
t l`

 xt does not exist	 ■

Sometimes it’s easier to see what’s happening in the graph of a sequence if we join con-
secutive points by line segments. In Figure 6 we have done this for the logistic sequence 
in Example 8(b) by joining the points in Figure 5. Thus Figure 6 is not truly the graph  
of that sequence, but it does represent the sequence in a way that might be easier to 
visualize.

Let’s pursue that idea for other values of c. As Figure 7 shows, when we increase the 
value of c the behavior of the logistic sequence becomes more complex and when c − 4 
it is quite erratic. [This behavior is part of what it means to be chaotic.]

t0 10 20

x¸=0.4, c=3.7

0.4

xt

 

t0 10 20

x¸=0.4, c=4

0.4

xt

t xt t xt

0 0.4000 	 9 0.8385
1 0.8160 	 10 0.4603
2 0.5105 	 11 0.8446
3 0.8496 	 12 0.4461
4 0.4344 	 13 0.8401
5 0.8354 14 0.4566
6 0.4676 15 0.8436
7 0.8464 16 0.4486
8 0.4419

100

0.4

0.8

t

xt

Figure �6

Figure �7
Logistic sequences
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EXERCISES 2.1

	 1.	�� (a)	 What is a sequence?
		  (b)	� What does it mean to say that limnl` an − 8?
		  (c)	 What does it mean to say that limnl` an − `?

	 2.	�� (a)	 What is a convergent sequence? Give two examples.
		  (b)	 What is a divergent sequence? Give two examples.

	 3.	� World record sprint times �� The graph plots the sequence 
of the world record times for the men’s 100-meter sprint 
every five years t. Do you think that this sequence has a 
nonzero limit as tl`? What would that mean for this 
sporting event?

10.4

10.6

9.8

9.6

10.0

10.2

1920 1940 1960 1980 2000 t
(years)

seconds

	 4.	� World record hammer throws �� The graph plots the 
sequence of the world record distances for the women’s 
hammer throw by year t.

		  (a)	� Explain what it would mean for this sporting event if 
the sequence does not have a limit as tl`.

		  (b)	� Do you think this sequence is convergent or divergent? 
Explain.

	

66

68

70

72

74

76

78

1994 1998 2002 2006 2010 t
(years)

meters

	� 5–8 � Calculate, to four decimal places, the first ten terms of the 
sequence and use them to plot the graph of the sequence. Does 
the sequence appear to have a limit? If so, calculate it. If not, 
explain why.

	 5.	 an −
n 2

2n 1 3n 2 	 6.	 an − 4 2
2

n
1

3

n 2

	 7.	 an − 3 1 (22
3)n

	 8.	 an −
n

sn 1 1

	� 9–26 � Determine whether the sequence is convergent or diver-
gent. If it is convergent, find the limit.

	 9.	 an −
1

3n 4 	 10.	 an −
5

3n

	 11.	 an −
2n 2 1 n 2 1

n 2 	 12.	 an −
n 3 2 1

n

	 13.	 an −
3 1 5n

2 1 7n
	 14.	 an −

n 3 2 1

n 3 1 1

	 15.	 an − 1 2 s0.2dn	 16.	 an − 2 2n 1 6 2n

	 17.	 an −
n 2

sn 3 1 4n 
	 18.	 an − sinsn�y2d

	 19.	 an − cossn�y2d	 20.	 an −
� n

3n

	 21.	 an −
10 n

1 1 9 n 	 22.	 an −
s3 n 

sn 1 s4 n 

	 23.	 an − lns2n 2 1 1d 2 lnsn 2 1 1d

	 24.	 an −
3n12

5n

	 25.	 an −
e n 1 e2n

e 2n 2 1
	 26.	 an − lnsn 1 1d 2 ln n

	� 27–34 � Calculate, to four decimal places, the first eight terms 
of the recursive sequence. Does it appear to be convergent? If 
so, guess the value of the limit. Then assume the limit exists 
and determine its exact value.

	 27.	 a1 − 1,  an11 − 1
2an 1 1

	 28.	 a1 − 2,  an11 − 1 2 1
3an

	 29.	 a1 − 2,  an11 − 2an 2 1

	 30.	 a1 − 1,  an11 − s5an
   

	 31.	 a1 − 1,  an11 −
6

1 1 an

	 32.	 a1 − 3,  an11 − 8 2 an
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	 40.	��� A sequence is defined recursively by an − s5 2 ndan21, 
a1 − 1. Find the sum of all the terms of the sequence.

	 	� 41–46 � Express the number as a ratio of integers.

	 41.	 0.8 − 0.8888 . . .	 42.	 0.46 − 0.46464646 . . .

	 43.	 2.516 − 2.516516516 . . .

	 44.	 10.135 − 10.135353535 . . .

	 45.	 1.5342	 46.	 7.12345

	 ;	� 47–52 � Logistic equation  Plot enough terms of the logistic 
difference equation xt11 − cxts1 2 xtd to see how the terms 
behave. Does the sequence appear to be convergent? If so, 
estimate the limit and then, assuming the limit exists, calculate 
its exact value. If not, describe the behavior of the terms.

	 47.	 x0 − 0.1,  c − 2	 48.	 x0 − 0.8,  c − 2.6

	 49.	 x0 − 0.2,  c − 3.2	 50.	 x0 − 0.4,  c − 3.5

	 51.	 x0 − 0.1,  c − 3.8	 52.	 x0 − 0.6,  c − 3.9

	 ;	 53.	� Logistic equation: Dependence on initial values ��  
Compare plots of the first 20 terms of the logistic equa-
tion xt11 − 1

4 xts1 2 xtd for the initial values x0 − 0.2 and 
x0 − 0.2001. When the initial value changes slightly, how 
does the solution change?

	 ;	 54.	� Logistic equation: Dependence on initial values ��  
Repeat Exercise 53 for the equation xt11 − 4xts1 2 xtd and 
compare with the results of Exercise 53. [This behavior is 
another part of what it means to be chaotic.]

	 ;	� 55–58 � The Ricker equation �xt11 − cxt e2xt was introduced in 
Exercise 1.6.32. Plot enough terms of the Ricker equation to 
see how the terms behave. Does the sequence appear to be con-
vergent? If so, estimate the limit and then, assuming the limit 
exists, calculate its exact value. If not, describe the behavior of 
the terms.

	 55.	 x0 − 0.2,  c − 2	 56.	 x0 − 0.4,  c − 3

	 57.	 x0 − 0.8,  c − 10	 58.	 x0 − 0.9,  c − 20

	 59.	��� The Sierpinski carpet is constructed by removing the 
center one-ninth of a square of side 1, then removing the 
centers of the eight smaller remaining squares, and so on. 
(The figure shows the first three steps of the construction.) 
Show that the sum of the areas of the removed squares is 1. 
This implies that the Sierpinski carpet has area 0.

	 33.	 a1 − 1,  an11 − s2 1 an 

	 34.	 a1 − 100,  an11 −
1

2 San 1
25

an
D

	 35.	�A ntibiotic pharmacokinetics �� A doctor prescribes a 
100-mg antibiotic tablet to be taken every eight hours. Just 
before each tablet is taken, 20% of the drug present in the 
preceding time step remains in the body.

		  (a)	� How much of the drug is in the body just after the sec-
ond tablet is taken? After the third tablet?

		  (b)	� If Qn is the quantity of the antibiotic in the body just 
after the nth tablet is taken, write a difference equation 
that expresses Qn11 in terms of Qn.

		  (c)	 Find a formula for Qn as a function of n.
		  (d)	� What quantity of the antibiotic remains in the body in 

the long run?

	 36.	� Drug pharmacokinetics �� A patient is injected with a 
drug every 12 hours. Immediately before each injection the 
concentration of the drug has been reduced by 90% and the 
new dose increases the concentration by 1.5 mgymL.

		  (a)	� What is the concentration after three doses?
		  (b)	� If Cn is the concentration after the nth dose, write a dif-

ference equation that expresses Cn11 in terms of Cn.
		  (c)	� Find a formula for Cn as a function of n.
		  (d)	� What is the limiting value of the concentration?

	 37.	� Drug pharmacokinetics �� A patient takes 150 mg of a 
drug at the same time every day. Just before each tablet is 
taken, 5% of the drug present in the preceding time step 
remains in the body.

		  (a)	� What quantity of the drug is in the body after the third 
tablet? After the nth tablet?

		  (b)	� What quantity of the drug remains in the body in the 
long run?

	 38.	� Insulin injection �� After injection of a dose D of insulin, 
the concentration of insulin in a patient’s system decays 
exponentially and so it can be written as De2at, where t 
represents time in hours and a is a positive constant.

		  (a)	� If a dose D is injected every T hours, write an expres-
sion for the sum of the residual concentrations just 
before the sn 1 1dst injection.

		  (b)	� Determine the limiting pre-injection concentration.
		  (c)	� If the concentration of insulin must always remain at or 

above a critical value C, determine a minimal dosage D 
in terms of C, a, and T.

	 39.	��� Let x − 0.99999 . . . .
		  (a)	� Do you think that x , 1 or x − 1?
		  (b)	� Sum a geometric series to find the value of x.
		  (c)	� How many decimal representations does the number 1 

have?
		  (d)	� Which numbers have more than one decimal  

representation?
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■ Project  Modeling the Dynamics of Viral Infections1

A patient is infected with a virus that triples its numbers every hour. The immune system 
eventually kicks in and reduces the replication rate by a factor of 1

2 in addition to kill- 
ing 500,000 virus particles per hour, but this doesn’t happen until the viral load reaches 
two million copies.

To combat the infection, the infected person receives hourly doses of an antiviral 
drug. This drug further reduces the replication rate, to a value of 1.25, and the immune 
system and the drug together can kill 25,000,000 copies of the virus per hour.

Let’s model the phases of the infection using a discrete-time difference equation.

	 1.	�� �What is the recursion for the number of viral particles in the absence of treatment 
and before the immune response starts? What is the equation for the number of 
viral particles as a function of time?

	 2.	�� �How long does it take for the immune system to be activated after the infection 
starts? Derive an equation for this length of time for an arbitrary initial number 
of viral particles.

	 3.	�� �What is the recursion for the number of viral particles after the immune response 
has begun, but before the drug is used?

	 4.	�� �What is the condition for the viral population size to decrease over time solely 
because of the immune system? Is this possible?

	 5.	�� �What is the recursion for the number of viral particles in the presence of both the 
immune response and the drug?

	 6.	�� �What is the condition for the viral population size to decrease over time when the 
drug and immune system are both acting? Is this possible?

	 7.	�� �If an individual is infected by one virus, how much time do you have to start drug 
treatment in order to control the infection?

	 8.	�� �Often the outcome of an infection depends on the number of viral particles 
causing the infection. Derive an expression for the amount of time it takes from 
the initial infection for an individual to reach the critical viral load—beyond 
which control of the infection is impossible—as a function of the initial number 
of particles n0 and an arbitrary initial replication rate R.

A

CEGB

F
H

D ¨

b

	 60.	��� A right triangle ABC is given with /A − � and | AC | − b. 
CD is drawn perpendicular to AB, DE is drawn perpen-
dicular to BC, EF � AB, and this process is continued 
indefinitely, as shown in the figure. Find the total length of 
all the perpendiculars

| CD | 1 | DE | 1 | EF | 1 | FG | 1 ∙ ∙ ∙

	�� 	 in terms of b and �.

1. Adapted from F. Giordano et al., A First Course in Mathematical Modeling (Belmont, CA: Cengage Learn-
ing, 2014).
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	 9.	�� �Suppose 24 hours have passed since the start of an infection with a single viral 
particle. How many viral particles are in the body? Can the use of the drug now 
control the infection? If so, how long will it take until the individual is free of the 
virus?
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2.2 Limits of Functions at Infinity

In the preceding section we looked at the long-term behavior of a sequence hanj by 
analyzing what happens to the terms an when n becomes large. Here we do something 
similar: We ask what happens to function values f sxd when x becomes large. The only 
difference is that x is no longer restricted to be an integer.

■ The Monod Growth Function
In the 1930s and 1940s the French biologist Jacques Monod carried out experiments on 
E. coli bacteria feeding on a single nutrient, such as glucose. If N denotes the concentra-
tion of the nutrient, he modeled the per capita reproduction rate R of the bacteria as a 
function of N:

(1)	 RsNd −
SN

c 1 N
	

where c is a positive constant and S is the saturation level of the nutrient. The function 
RsNd given by Equation 1 is called the Monod growth function. Monod later recog-
nized that functions of this form had been used in biochemistry to model enzyme reac-
tions, in which case the function is called the Michaelis-Menten function.

 Example 1   |  BB  � The Monod growth function with S − 2 and c − 5 is

RsNd −
2N

5 1 N

Evaluate it for N − 5, 10, 50, 100, 500, 1000, 5000, 10,000. Then graph the function 
and comment on the shape of the graph.

Solution � The values are shown in the table and graphs of the function are shown 
on the intervals f0, 10g, f0, 100g, and f0, 1000g in Figure 1.

1

2

50

R

N

1

2

500

R

N

1

2

5000

R

N

(a) (b) (c)

Figure �1

Monod
Jacques Monod (1910–1976) was one 
of the fathers of molecular biology and 
was awarded the Nobel prize in 1965 
for his “discoveries concerning genetic 
control of enzyme and virus synthesis.” 
In addition to his scientific discoveries, 
Monod was also a philosopher of sci-
ence, a musician, a political activist, and 
chief of staff of operations for the French 
Resistance in World War II.

N RsNd

5 1.0000
10 1.3333
50 1.8182

100 1.9048
500 1.9802

1000 1.9900
5000 1.9980

10,000 1.9990
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We see that RsNd is an increasing function whose values are always less than 2 
(the saturation level) but which approach 2 as N grows larger. Biologically, this means 
that the rate of reproduction of each bacterium increases with nutrient concentration, 
getting closer to 2 but never exceeding this value.	 ■

In Example 1 we saw that as N gets larger and larger the values of RsNd become clos-
er and closer to 2. In fact it seems that we can make the values of RsNd as close as we like 
to 2 by making N sufficiently large. This situation is expressed symbolically by writing

lim
Nl`

 RsNd − 2

■ Definition of a Limit at Infinity
In general, we use the notation

lim
x l`

 f sxd − L

to indicate that the values of f sxd become closer and closer to L as x becomes larger and 
larger.

(2) Definition � Let f  be a function defined on some interval sa, `d. Then

lim
x l`

 f sxd − L

means that the values of f sxd can be made arbitrarily close to L by taking x suf-
ficiently large.

Another notation for lim x l ` f sxd − L is

f sxd l L    as    x l `

The symbol ` does not represent a number. Nonetheless, the expression lim
x l

 

`
 f sxd − L 

is often read as
“the limit of f sxd, as x approaches infinity, is L”

or	 “the limit of f sxd, as x becomes infinite, is L”

or	 “the limit of f sxd, as x increases without bound, is L”

The meaning of such phrases is given by Definition 2. A more precise definition is given 
in Appendix D.

Geometric illustrations of Definition 2 are shown in Figure 2. Notice that there are 
many ways for the graph of f  to approach the line y − L (which is called a horizontal 
asymptote) as we look to the far right of each graph.

x

y

0

y=ƒ

y=L

0 x

y

y=ƒ

y=L

x

y

0

y=ƒ

y=L

Figure �2  Examples illustrating lim
x l`

 f sxd − L
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What happens if we let x decrease through negative values indefinitely? The Monod 
growth function has no biological meaning if N is negative, but let’s consider the cor-
responding abstract mathematical function

f sxd −
2x

5 1 x

for numerically large negative values of x. The graph of f  in Figure 3 shows that the 
values of f sxd also approach 2 as x decreases through negative values without bound. 
This is expressed by writing

lim
x l2`

 
2x

5 1 x
− 2

The general definition is as follows.

(3) Definition � Let f  be a function defined on some interval s2`, ad. Then 

lim
x l2`

 f sxd − L

means that the values of f sxd can be made arbitrarily close to L by taking x suf-
ficiently large negative.

Again, the symbol 2` does not represent a number, but the expression lim
x l 2`

 f sxd − L 
is often read as

“the limit of f sxd, as x approaches negative infinity, is L”

Definition 3 is illustrated in Figure 4. Notice that the graph approaches the line y − L as 
we look to the far left of each graph.

(4) Definition � The line y − L is called a horizontal asymptote of the curve 
y − f sxd if either

lim
x l

 

`
 f sxd − L        or        lim

x l
 

2`
 f sxd − L

For instance, the curves in Figures 2 and 4 have the line y − L as a horizontal  
asymptote.

 Example 2   |  What are the horizontal asymptotes of the curve shown in Figure 5?

Solution � From the portion of the graph shown in Figure 5, it appears that f sxd 
approaches 22 when x gets large and approaches 3 when x becomes large negative. So

lim
xl`

 f sxd − 22    and    lim
xl2`

 f sxd − 3

This means that both y − 22 and y − 3 are horizontal asymptotes of the curve 
y − f sxd.	 ■

0 x

y

y=2

Figure �3

y −
2x

5 1 x

0

y

x

y=ƒ

y=L

x0

y

y=ƒ
y=L

Figure �4
Examples illustrating lim

x l2`
 f sxd − L

y

x0 1

1

Figure �5
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 Example 3   |  Find lim
x l `

 
1

x
 and lim

x l2`
 
1

x
.

Solution � Observe that when x is large, 1yx is small. For instance, 

1

100
− 0.01          

1

10,000
− 0.0001          

1

1,000,000
− 0.000001

�In fact, by taking x large enough, we can make 1yx as close to 0 as we please. There-
fore, according to Definition 2, we have

lim
x l `

 
1

x
− 0

�Similar reasoning shows that when x is large negative, 1yx is small negative, so we also 
have

lim
x l2`

 
1

x
− 0

�It follows that the line y − 0 (the x-axis) is a horizontal asymptote of the curve  
y − 1yx. (See Figure 6.)	 ■

The limit laws for sequences that we used in Section 2.1 have their counterparts for 
functions. For instance, the Sum Law for functions states that

lim
xl`

 f f sxd 1 tsxdg − lim
xl`

 f sxd 1 lim
xl`

 tsxd

if these limits exist. And the following limit, which corresponds to Equation 2.1.2, is 
also very useful.

lim
xl`

 
1

xp − 0    for any number p . 0

 Example 4   |  BB   The Monod growth function (continued)  From 
Example 1 it appears that the limit of the Monod function is limNl` RsNd − 2. Verify 
this using the Limit Laws.

Solution � Dividing the numerator and denominator by N, and using the Limit 
Laws, we get

 lim
Nl`

 RsNd − lim
Nl`

 
2N

5 1 N
− lim

Nl`
 

2

5

N
1 1

 −
2

5 lim
Nl`

 s1yNd 1 lim
Nl`

 1
−

2

5 ? 0 1 1
− 2

■

We conclude from Example 4 that the line R − 2 (corresponding to the saturation 
level) is a horizontal asymptote of the Monod function RsNd − 2Nys5 1 Nd. For the 
general Monod function given by Equation 1, we can show similarly that

lim
Nl`

 RsNd − lim
Nl`

 
SN

c 1 N
− S

0

y

x

y=∆

Figure �6

lim
x l `

 
1

x
− 0,  lim

x l2`
 
1

x
− 0
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So the line R − S is a horizontal asymptote (see Figure 7). Biologically, this means that 
no individual can have a reproductive rate greater than S, and this rate is approached 
asymptotically as the nutrient concentration becomes very large.

 Example 5   |  Evaluate lim
t l`

 
8t

1 1 4t 2 .

Solution � As with any rational function, we first divide both the numerator and 
denominator by the highest power of t that occurs in the denominator:

 lim
t l`

 
8t

1 1 4t 2 − lim
t l`

 

8t

t 2

1 1 4t 2

t 2

− lim
t l`

 

8

t

1

t 2 1 4

 −

8 lim
t l`

 
1

t

lim
t l`

 
1

t 2 1 lim
t l`

 4

−
8 ? 0

0 1 4
− 0

�So the t-axis is a horizontal asymptote. Figure 8 shows the graph of the function 
f std − 8tys1 1 4t 2d for t > 0. If a biologist were looking for a function to model a 
quantity that starts at 0, quickly reaches a peak, and then gradually decays toward 0, 
then a function similar to f  might be a suitable candidate.	 ■

 Example 6   |  Compute lim
xl`

 (sx 2 1 1 2 x).

Solution � Because both sx 2 1 1  and x are large when x is large, it’s difficult to see 
what happens to their difference, so we use algebra to rewrite the function.

We first multiply numerator and denominator by the conjugate radical:

 lim
x l

 

`
 (sx 2 1 1 2 x) − lim

x l
 

`
 (sx 2 1 1 2 x) sx 2 1 1 1 x

sx 2 1 1 1 x

 − lim
x l

 

`
 
sx2 1 1d 2 x2

sx2 1 1 1 x
− lim

x l
 

`
 

1

sx2 1 1 1 x

�Notice that the denominator of this last expression ssx 2 1 1 1 xd becomes large as 
x l ` (it’s bigger than x). So

 lim
x l

 

`
 (sx2 1 1 2 x) − lim

x l
 

`
 

1

sx2 1 1 1 x
− 0

�Figure 9 illustrates this result.	 ■

 Example 7   |  Evaluate lim
xl`

 sin x.

Solution � As x increases, the values of sin x oscillate between 1 and 21 infinitely 
often and so they don’t approach any definite number. Thus limxl` sin x does not  
exist.	 ■

N0

R

R=

R=S

SN
C+N

Figure �7

t0

y

y= 8t
1+4t@

Figure �8

We can think of the given function as 
having a denominator of 1.

y=   ≈+1œ„„„„„-x

x

y

0 1

1

Figure �9
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■ Limits Involving Exponential Functions
Let’s recall the shapes of the graphs of the exponential functions from Figures 1.4.4 and 
1.4.5. The graphs take the general shape shown in Figure 10.

y=b®,  0<b<1 y=b®,  b>1

y

x0x0

y

In both cases (0 , b , 1 and b . 1) the line y − 0 is a horizontal asymptote.  
Specifically:

 If 0 , b , 1, then  lim
xl`

 bx − 0.

 If b . 1, then  lim
xl2`

 bx − 0.

For instance, in Section 1.4 we considered the model

(5)	 Vstd − 96.39785 ? s0.818656d t	

for the viral load in a patient with HIV. Here the base of the exponential function is 
b − 0.818656, which is less than 1, and so

lim
t l`

 Vstd − 0

which is confirmed in Figure 1.4.12.
For the most important special case, b − e, we have the graph in Figure 11, illustrat-

ing the fact that

lim
xl2`

 ex − 0

You can see that the values of ex approach 0 very rapidly as xl2`.

y=´

x0

1

y

1

Figure �11

Recall from Section 1.3 that we get the graph of y − f s2xd by reflecting the graph of 
y − f sxd about the y-axis. So the graph of the function y − e2x is obtained by reflecting 
the graph of y − ex (Figure 11) about the y-axis. This function occurs so often in biol-
ogy that it’s wise to be familiar with the shape of its graph and its behavior for large x:

(6)	 lim
xl`

 e2x − 0	

Figure �10

x e x

0 1.00000
21 0.36788
22 0.13534
23 0.04979
25 0.00674
28 0.00034

210 0.00005
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Another way to see the limit of the viral load function Vstd in Equation 5 is to write 
Vstd in terms of a power of e. In general, bx − se ln bdx − ex ln b and so, with b − 0.818656 
and using Equation 6, we have

lim
t l`

 Vstd − lim
t l`

 s96.39785 ? e20.2001td − 0

 Example 8   |  BB  � Gause’s logistic model  In the 1930s the biologist G. F. 
Gause conducted an experiment with the protozoan Paramecium. He modeled his data 
with the logistic function

Pstd −
64

1 1 31e20.7944t

for the protozoan population after t days. Find the initial population and the limiting 
population.

Solution � The initial population was

Ps0d −
64

1 1 31 ? e 0 − 2

�The limiting population was

 lim
t l`

 Pstd − lim
t l`

 
64

1 1 31e20.7944 t −
64

1 1 31 lim
t l`

 e20.7944 t

 −
64

1 1 31 ? 0
− 64

�Here we have used the Limit Laws as well as Equation 6.	 ■

■ Infinite Limits at Infinity
The notation

lim
x l

 

`
 f sxd − `

is used to indicate that the values of f sxd become large as x becomes large. Similar 
meanings are attached to the following symbols:

lim
x l

 

2`
 f sxd − `            lim

x l
 

`
 f sxd − 2`            lim

x l
 

2`
 f sxd − 2`

 Example 9   |  Find lim
x l `

 x 3 and lim
x l2`

 x 3.

Solution � When x becomes large, x 3 also becomes large. For instance,

103 − 1000            1003 − 1,000,000            10003 − 1,000,000,000

�In fact, we can make x 3 as big as we like by taking x large enough. Therefore we can 
write

lim
x l `

 x 3 − `

�Similarly, when x is large negative, so is x 3. Thus

lim
x l2`

 x 3 − 2`

�These limit statements can also be seen from the graph of y − x 3 in Figure 12.	 ■

Gause
G. F. Gause (1910–1986) was a Russian 
biologist whose success was a result 
of his training and expertise in both 
mathematics and experimental biology. 
He proposed the competitive exclusion 
principle: Two species competing for the 
same resources cannot coexist if one 
has even a slight advantage over the 
other.

Notice that 20.7944t l 2` as t l `.

Figure �12
lim
x l `

 x 3 − `, lim
xl2`

 x3 − 2`

x

y

0

y=˛
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Looking at Figure 11 on page 107 we see that

 lim 
x l`

 ex − `

It is also true that

lim
xl`

 x 2 − `      lim
xl`

 sx − `      lim
xl`

 ln x − `

But as Figure 13 demonstrates, these four functions become large at different rates. In 
Chapter 4 we will see how to rank functions according to how quickly they grow.

 Example 10   |  Find lim
x l

 

`
 sx 2 2 xd.

Solution � It would be wrong to write

 lim
x l

 

`
 sx 2 2 xd − lim

x l
 

`
 x 2 2 lim

x l
 

`
 x − ` 2 `

�The Limit Laws can’t be applied to infinite limits because ` is not a number (` 2 ` 
can’t be defined). However, we can write

lim
x l

 

`
 sx 2 2 xd − lim

x l
 

`
 xsx 2 1d − `

�because both x and x 2 1 become arbitrarily large and so their product does too.	 ■

 Example 11   |  Find lim
x l `

 
x 2 1 x

3 2 x
.

Solution � As in Example 5, we divide the numerator and denominator by the high-
est power of x in the denominator, which is just x :

 lim 
x l`

 
x 2 1 x

3 2 x
− lim 

x l`
 
x 1 1

3

x
2 1

− 2`

�because x 1 1 l ` and 3yx 2 1 l 21 as x l `.	 ■

x

y=´

0

y

y=≈

y=ln x

y=œ„„x

1

1

Figure �13

	 1.	��� Explain in your own words the meaning of each of the  
following.

		  (a)	 lim
x l `

 f sxd − 5	 (b)	 lim
x l 2`

 f sxd − 3

	 2.	�� (a)	� Can the graph of y − f sxd intersect a horizontal 
asymptote? If so, how many times? Illustrate by 
sketching graphs.

		  (b)	� How many horizontal asymptotes can the graph of 
y − f sxd have? Sketch graphs to illustrate the  
possibilities.

	 ;	 3.	�� Guess the value of the limit

lim
x l

 

`
 
x 2

2x

		��  �by evaluating the function f sxd − x 2y2x for x − 0, 1, 2, 3,  

4, 5, 6, 7, 8, 9, 10, 20, 50, and 100. Then use a graph of f  
to support your guess.

	 ;	 4.	�� (a)	� Use a graph of

f sxd − S1 2
2

xDx

			�   to estimate the value of lim x l ` f sxd correct to two  
decimal places.

		  (b)	� Use a table of values of f sxd to estimate the limit to  
four decimal places.

	� 5–28 � Find the limit.

	 5.	 lim
xl`

 
1

2x 1 3
	 6.	 lim

xl`
 
3x 1 5

x 2 4

EXERCISES 2.2
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110    Chapter 2  |  Limits

		���  shows victims at Camp Funston of the influenza epidemic 
of 1918.] Extremely high levels of virulence result in 
very little transmission because the infected individual 
dies before infecting other individuals. Under certain 
assumptions, the number of new infections N is related to 
virulence v by the function

Nsvd −
8v

1 1 2v 1 v 2

		���  where v is the mortality rate (that is, virulence) and v > 0. 
Evaluate limvl` Nsvd and interpret your result.

	 32.	��� The von Bertalanffy growth function

Lstd − L ` 2 sL ` 2 L 0de2kt

		���  where k is a positive constant, models the length L of a fish 
as a function of t, the age of the fish. This model assumes 
that the fish has a well-defined length L 0 at birth (t − 0).

		  (a)	� Calculate lim tl` Lstd. How do you interpret the  
answer?

	 ;		  (b)	� If L 0 − 2 cm and L ` − 40 cm, graph Lstd for several 
values of k. What role does k play?

	 33.	��� The Pacific halibut fishery has been modeled by the  
equation

Bstd −
8 3 107

1 1 3e20.71t

		���  where Bstd is the biomass (the total mass of the mem-
bers of the population) in kilograms at time t. What is 
lim tl` Bstd? What is the significance of this limit?

	 34.	�� (a)	� A tank contains 5000 L of pure water. Brine that con-
tains 30 g of salt per liter of water is pumped into the 
tank at a rate of 25 Lymin. Show that the concentration 
of salt after t minutes (in grams per liter) is

Cstd −
30t

200 1 t

		  (b)	� What happens to the concentration as t l`?

	 7.	 lim
x l `

 
3x 2 2

2x 1 1
	 8.	 lim

x l `
 

1 2 x 2

x 3 2 x 1 1

	 9.	 lim
x l `

 
1 2 x 2 x 2

2x 2 2 7
	 10.	 lim

x l 2`
 
4x 3 1 6x 2 2 2

2x 3 2 4x 1 5

	 11.	 lim
t l2`

 0.6 t	 12.	 lim
r l `

 
5

10 r

	 13.	 lim
t l `

 
st  1 t 2

2t 2 t 2 	 14.	 lim
t l `

 
t 2 tst  

2t 3y2 1 3t 2 5

	 15.	 lim
x l `

 
s2x 2 1 1d2

sx 2 1d2sx 2 1 xd
	 16.	 lim

x l `
 

x 2

sx 4 1 1 

	 17.	 lim
x l

 

`
 (s9x 2 1 x 2 3x)

	 18.	 lim
x l

 

`
 (sx 2 1 ax 2 sx2 1 bx )

	 19.	 lim
x l `

 
6

3 1 e22x 	 20.	 lim
x l

 

`
 sx 2 1 1  

	 21.	 lim
x l `

 
x 4 2 3x 2 1 x

x 3 2 x 1 2
	 22.	 lim

x l ` 
se2x 1 2 cos 3xd

	 23.	�  lim
x l 2`

sx 4 1 x 5 d	 24.	 lim
x l 2`

 
1 1 x 6

x 4 1 1

	 25.	 lim
t l `

 e21yt 2

	 26.	 lim
x l `

 
e 3x 2 e23x

e 3x 1 e23x

	 27.	 lim
x l `

 
1 2 e x

1 1 2e x

	 28.	 lim
xl2`

 flnsx 2d 2 lnsx 2 1 1dg

	 29.	��� For the Monod growth function RsNd − SNysc 1 Nd, 
what is the significance of the constant c? [Hint: What is 
Rscd?]

	 30.	��� The Michaelis-Menten equation models the rate v of an 
enzymatic reaction as a function of the concentration [S] of 
a substrate S. In the case of the enzyme chymotrypsin the 
equation is

v −
0.14fSg

0.015 1 fSg

		  (a)	� What is the horizontal asymptote of the graph of v? 
What is its significance?

	 ;		  (b)	� Use a graphing calculator or computer to graph v as a 
function of [S].

	 31.	� Virulence and pathogen transmission �� The number of 
new infections produced by an individual infected with a 
pathogen such as influenza depends on the mortality rate 
that the pathogen causes. This pathogen-induced mortality 
rate is referred to as the pathogen’s virulence. [The photo 
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2.3 Limits of Functions at Finite Numbers

We’ve investigated what happens to function values f sxd as x becomes large. Here we 
focus on what happens to f sxd when x approaches a finite number. We begin by observ-
ing how such limits arise when we try to determine the speed of a falling ball. Later 
we’ll see how similar considerations are involved in finding rates of change in biology.

■ Velocity Is a Limit
If you watch the speedometer of a car as you travel in city traffic, you see that the 
speed doesn’t stay the same for very long; that is, the velocity of the car is not constant. 
We assume from watching the speedometer that the car has a definite velocity at each 
moment, but how is the “instantaneous” velocity defined? Let’s investigate the example 
of a falling ball.

 Example 1   |  Suppose that a ball is dropped from the upper observation deck of the 
CN Tower in Toronto, 450 m above the ground. Find the velocity of the ball after  
5 seconds.

Solution � Through experiments carried out four centuries ago, Galileo discovered 
that the distance fallen by any freely falling body is proportional to the square of the 
time it has been falling. (This model for free fall neglects air resistance.) If the distance 
fallen after t seconds is denoted by sstd and measured in meters, then Galileo’s law is 
expressed by the equation

sstd − 4.9t 2

The difficulty in finding the velocity after 5 s is that we are dealing with a single 
instant of time st − 5d, so no time interval is involved. However, we can approximate 
the desired quantity by computing the average velocity over the brief time interval of a 
tenth of a second from t − 5 to t − 5.1:

 average velocity −
change in position

time elapsed

 −
ss5.1d 2 ss5d

0.1

 −
4.9s5.1d2 2 4.9s5d2

0.1
− 49.49 mys
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e 
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n 
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 / 
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y 
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		��  �where t is the acceleration due to gravity and v* is the 
terminal velocity of the raindrop.

		  (a)	 Find lim t l ` vstd.
		  (b)	� For a large raindrop in moderate rainfall, a typical 

terminal velocity is 7.5 mys. How long does it take 
for the velocity of such a raindrop to reach 99% of its 
terminal velocity? (Take t − 9.8 mys2.) 

	 35.	��� Since limxl` e2x − 0, we should be able to make e2x as 
small as we like by choosing x large enough. How large do 
we have to take x so that e2x , 0.0001?

	 36.	��� Let f sxd − xysx 1 1d. What is limxl` f sxd? How large 
does x have to be so that f sxd . 0.99?

	 37.	��� The velocity vstd of a falling raindrop at time t is modeled 
by the equation

vstd − v*s1 2 e2ttyv*d

The CN Tower in Toronto was the tall-
est freestanding building in the world 
for 32 years.
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112    Chapter 2  |  Limits

�The following table shows the results of similar calculations of the average velocity 
over successively smaller time periods.

Time interval Average velocity (mys)

5 < t < 6 	 53.9

5 < t < 5.1 	 49.49

5 < t < 5.05 	 49.245

5 < t < 5.01 	 49.049

5 < t < 5.001 	 49.0049

�It appears that as we shorten the time period, the average velocity is becoming closer  
to 49 mys. The instantaneous velocity when t − 5 is defined to be the limiting value 
of these average velocities over shorter and shorter time periods that start at t − 5. 
Thus the (instantaneous) velocity after 5 s appears to be

	 v − 49 mys	 ■

■ Limits: Numerical and Graphical Methods
We saw in Example 1 how limiting values arise in determining the velocity of an object. 
In Chapter 3 we will see how limits also occur in finding tangent lines to curves and rates 
of growth in biology, so we now turn our attention to limits in general and numerical and 
graphical methods for computing them.

Let’s investigate the behavior of the function f  defined by f sxd − x 2 2 x 1 2 for 
values of x near 2. The following table gives values of f sxd for values of x close to 2 but 
not equal to 2.

x f sxd x f sxd

	 1.0 	 2.000000 	 3.0 	 8.000000

	 1.5 	 2.750000 	 2.5 	 5.750000

	 1.8 	 3.440000 	 2.2 	 4.640000

	 1.9 	 3.710000 	 2.1 	 4.310000

	 1.95 	 3.852500 	 2.05 	 4.152500

	 1.99 	 3.970100 	 2.01 	 4.030100

	 1.995 	 3.985025 	 2.005 	 4.015025

	 1.999 	 3.997001 	 2.001 	 4.003001

From the table and the graph of f  (a parabola) shown in Figure 1 we see that when x is 
close to 2 (on either side of 2), f sxd is close to 4. In fact, it appears that we can make the 
values of f sxd as close as we like to 4 by taking x sufficiently close to 2. We express this by  
saying “the limit of the function f sxd − x 2 2 x 1 2 as x approaches 2 is equal to 4.” 
The notation for this is

lim
x l

 

2
 sx 2 2 x 1 2d − 4

4
ƒ

approaches
4.

x

y

2
As x approaches 2,

y=≈-x+2

0

Figure �1
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In general, we use the following notation.

(1) Definition � Suppose f sxd is defined when x is near the number a. (This 
means that f  is defined on some open interval that contains a, except possibly at  
a itself.) Then we write

lim
x l a

 f sxd − L

and say	 “the limit of f sxd, as x approaches a, equals L”

if we can make the values of f sxd arbitrarily close to L (as close to L as we like) 
by taking x to be sufficiently close to a (on either side of a) but not equal to a.

Roughly speaking, this says that the values of f sxd approach L as x approaches a. In 
other words, the values of f sxd tend to get closer and closer to the number L as x gets 
closer and closer to the number a (from either side of a) but x ± a. (A more precise defi-
nition is given in Appendix D.)

An alternative notation for

lim
x l a

 f sxd − L

is	 f sxd l L        as        x l a

which is usually read “ f sxd approaches L as x approaches a.”
Notice the phrase “but x ± a” in the definition of a limit. This means that in finding 

the limit of f sxd as x approaches a, we never consider x − a. In fact, f sxd need not even be  
defined when x − a. The only thing that matters is how f  is defined near a.

Figure 2 shows the graphs of three functions. Note that in part (c), f sad is not defined 
and in part (b), f sad ± L. But in each case, regardless of what happens at a, it is true that 
lim x l a f sxd − L.

(c)

x

y

0

L

a

(b)

x

y

0

L

a

(a)

x

y

0

L

a

 Example 2   |  Guess the value of lim
x l1

 
x 2 1

x 2 2 1
.

Solution � Notice that the function f sxd − sx 2 1dysx 2 2 1d is not defined when 
x − 1, but that doesn’t matter because the definition of lim x l a f sxd says that we 
consider values of x that are close to a but not equal to a.

Figure �2
lim
x l a

 f sxd − L in all three cases.
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The tables at the left give values of f sxd (correct to six decimal places) for values of 
x that approach 1 (but are not equal to 1). On the basis of the values in the tables, we 
make the guess that

		  lim
x l 1

 
x 2 1

x 2 2 1
− 0.5	 ■

Example 2 is illustrated by the graph of f  in Figure 3. Now let’s change f  slightly by 
giving it the value 2 when x − 1 and calling the resulting function t:

tsxd − H x 2 1

x 2 2 1
if x ± 1

2 if x − 1

This new function t still has the same limit as x approaches 1 (see Figure 4).

0 1

0.5

x-1
≈-1y=

0 1

0.5

y=©

2

y

x

y

x

Figure �3	 Figure �4

 Example 3   |  Estimate the value of lim
t l 0

 
st 2 1 9 2 3

t 2 .

Solution � The table lists values of the function for several values of t near 0.

t st 2 1 9 2 3

t 2

61.0 0.16228
60.5 0.16553
60.1 0.16662
60.05 0.16666
60.01 0.16667

�As t approaches 0, the values of the function seem to approach 0.1666666 . . . and so 
we guess that

	 lim
t l 0

 
st 2 1 9 2 3

t 2 −
1

6
	 ■

x , 1 f sxd

0.5 0.666667
0.9 0.526316
0.99 0.502513
0.999 0.500250
0.9999 0.500025

x . 1 f sxd

1.5 0.400000
1.1 0.476190
1.01 0.497512
1.001 0.499750
1.0001 0.499975
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In Example 3 what would have happened if we had taken even smaller values of t? The  
table in the margin shows the results from one calculator; you can see that something 
strange seems to be happening.

If you try these calculations on your own calculator you might get different values, 
but eventually you will get the value 0 if you make t sufficiently small. Does this mean 
that the answer is really 0 instead of 16? No, the value of the limit is 16, as we will show in 
the next section. The problem is that the calculator gave false values because st 2 1 9  is 
very close to 3 when t is small. (In fact, when t is sufficiently small, a calculator’s value 
for st 2 1 9  is 3.000. . . to as many digits as the calculator is capable of carrying.)

Something similar happens when we try to graph the function

f std −
st 2 1 9 2 3

t 2

of Example 3 on a graphing calculator or computer. Parts (a) and (b) of Figure 5 show 
quite accurate graphs of f , and when we use the trace mode (if available) we can estimate 
easily that the limit is about 16. But if we zoom in too much, as in parts (c) and (d), then 
we get inaccurate graphs, again because of problems with subtraction.

0.1

0.2

(a) �_5, 5� by �_0.1, 0.3�

0.1

0.2

(b) �_0.1, 0.1� by �_0.1, 0.3� (c) �_10–^, 10–^� by �_0.1, 0.3� (d) �_10–&, 10–& � by �_0.1, 0.3�

 Example 4   |  Guess the value of lim
x l 0

 
sin x

x
.

Solution � The function f sxd − ssin xdyx is not defined when x − 0. Using a 
calculator (and remembering that sin x means the sine of the angle whose radian 
measure is x), we construct a table of values correct to eight decimal places. From the 
table at the left and the graph in Figure 6 we guess that

lim
x l 0

 
sin x

x
− 1

�This guess is in fact correct, as will be proved in the next section using a geometric  
argument.

0 x_1 1

y
sin x

xy=1

	 ■

Figure �5

x
sin x

x

61.0 0.84147098
60.5 0.95885108
60.4 0.97354586
60.3 0.98506736
60.2 0.99334665
60.1 0.99833417
60.05 0.99958339
60.01 0.99998333
60.005 0.99999583
60.001 0.99999983

Figure �6

t st 2 1 9 2 3

t 2

60.0005 0.16800
60.0001 0.20000
60.00005 0.00000
60.00001 0.00000

www.stewartcalculus.com
For a further explanation of why 
calculators sometimes give false 
values, click on Lies My Calculator 
and Computer Told Me. In particu-
lar, see the section called The Perils 
of Subtraction.
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 Example 5   |  Investigate lim 
x l 0

 sin 
�

x
.

Solution � Again the function f sxd − sins�yxd is undefined at 0. Evaluating the 
function for some small values of x, we get

 f s1d − sin � − 0              f (1
2 ) − sin 2� − 0

 f s1
3d − sin 3� − 0              f (1

4 ) − sin 4� − 0

 f s0.1d − sin 10� − 0              f s0.01d − sin 100� − 0

�Similarly, f s0.001d − f s0.0001d − 0. On the basis of this information we might be 
tempted to guess that

lim
x l 0

 sin 
�

x
− 0

�but this time our guess is wrong. Note that although f s1ynd − sin n� − 0 for any 
integer n, it is also true that f sxd − 1 for infinitely many values of x that approach 0. 
You can see this from the graph of f  shown in Figure 7.

y=sin(π/x)

x

y

1

1

_1

_1

�The dashed lines near the y-axis indicate that the values of sins�yxd oscillate 
between 1 and 21 infinitely often as x approaches 0. (See Exercise 43.) Since the 
values of f sxd do not approach a fixed number as x approaches 0,

	 lim
x l 0

 sin 
�

x
does not exist	 ■

 Example 6   |  Find lim
x l 0

 Sx 3 1
cos 5x

10,000D.

Solution � As before, we construct a table of values. From the first table in the 
margin it appears that

lim
x l 0

 Sx 3 1
cos 5x

10,000D − 0

�But if we persevere with smaller values of x, the second table suggests that

lim
x l 0

 Sx 3 1
cos 5x

10,000D − 0.000100 −
1

10,000

�Later we will see that lim x l 0 cos 5x − 1; then it follows that the limit is 0.0001.	 ■

Figure �7

x x 3 1
cos 5x

10,000

1 1.000028
0.5 0.124920
0.1 0.001088
0.05 0.000222
0.01 0.000101

x x 3 1
cos 5x

10,000

0.005 0.00010009
0.001 0.00010000
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Examples 5 and 6 illustrate some of the pitfalls in guessing the value of a limit. It is 
easy to guess the wrong value if we use inappropriate values of x, but it is difficult to 
know when to stop calculating values. And, as the discussion after Example 3 shows, 
sometimes calculators and computers give the wrong values. In the next section, how-
ever, we will develop foolproof methods for calculating limits.

 Example 7   |  BB   Catastrophic population collapse  In later chapters we 
will explore a model for population size in which catastrophic collapse and extinction 
occurs if the habitat is degraded beyond a critical level. (See Examples 4.1.6 and 7.2.3 
and Exercise 7.2.20.) We will see that the population size is given by the function

NsKd − H0 if 0 < K , a

K if K > a

�where a is a positive number and K is a nonnegative constant that measures habitat 
quality. (It is referred to as the carrying capacity. See Figure 8.)

As K approaches a from the left, NsKd approaches 0. As K approaches a from the 
right, NsKd approaches a. There is no single number that NsKd approaches as K 
approaches a. Therefore limKla NsKd does not exist.	 ■

■ One-Sided Limits
We noticed in Example 7 that NsKd approaches 0 as K approaches a from the left and 
NsKd approaches a as K approaches a from the right. We indicate this situation symboli-
cally by writing

lim
Kl a2

 NsKd − 0        and        lim
Kla1 

NsKd − a

The notation K l a2 indicates that we consider only values of K that are less than a. 
Likewise, K l a1 indicates that we consider only values of K that are greater than a.

(2) Definition � We write

lim
x l

 

a2
 f sxd − L

and say the left-hand limit of f sxd as x approaches a [or the limit of f sxd as x  
approaches a from the left] is equal to L if we can make the values of f sxd arbi-
trarily close to L by taking x to be sufficiently close to a and x less than a.

Notice that Definition 2 differs from Definition 1 only in that we require x to be less  
than a. Similarly, if we require that x be greater than a, we get “the right-hand limit of 
f sxd as x approaches a is equal to L” and we write

lim
x l

 

a1
 f sxd − L

K

N

0

a

a

Figure �8
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Thus the notation x l a1 means that we consider only x . a. These definitions are 
illustrated in Figure 9.

0 x

y

L

xa0 x

y

ƒ L

x a

ƒ

x    a+x    a_
(a) lim  ƒ=L (b) lim  ƒ=L

By comparing Definition l with the definitions of one-sided limits, we see that the 
following is true.

(3)	   lim
x l a

 f sxd − L      if and only if      lim
x l a2

 f sxd − L    and    lim
x l a1

 f sxd − L

 Example 8   |  Bird population  American robins breed in early spring and pairs 
produce a clutch of three to five eggs, laid one day apart. Only about 25% of chicks 
survive their first year. The graph in Figure 10 shows the population size Pstd of a flock 
of robins for a 7-day period in spring, where t is the number of days starting at noon on 
day 0.
(a)	 What happened at t − 2? At t − 3? Between t − 4 and t − 5?
(b)	 What are the values of the following limits (if they exist)?

lim
t l

 

22
 Pstd     lim

t l
 

21
 Pstd    lim

t l 2
Pstd    lim

t l 6
Pstd

4 6 t (days)2 3 5 710

25

27

P

Solution �
(a)	 We see from Figure 10 that at t − 2 the robin population increased by one, so the 
most likely explanation is that a chick hatched. At t − 3 two more chicks hatched. 
Between t − 4 and t − 5 the robin population decreased by 4, so four of the robins 
died, perhaps because of a predator.

(b)	 We read the following values from the graph in Figure 10:

lim
t l

 

22
 Pstd − 25      lim

t l
 

21
 Pstd − 26

Figure �9
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Because these limits are different, we conclude that

lim
t l 2

 Pstd  does not exist

On the other hand,

lim
t l 62

 Pstd − 24 − lim
t l

 

61
 Pstd

so

	 lim
t l 6

 Pstd − 24	 ■

■ Infinite Limits

 Example 9   |  Find lim
x l 0

 
1

x 2  if it exists.

Solution � As x becomes close to 0, x 2 also becomes close to 0, and 1yx 2 becomes 
very large. (See the table in the margin.) In fact, it appears from the graph of the 
function f sxd − 1yx 2 shown in Figure 11 that the values of f sxd can be made arbi-
trarily large by taking x close enough to 0. Thus the values of f sxd do not approach a 
number, so lim x l 0 s1yx 2 d does not exist.	 ■

To indicate the kind of behavior exhibited in Example 9, we use the notation

lim
x l 0

 
1

x2 − `

This does not mean that we are regarding ` as a number. Nor does it mean that the limit  
exists. It simply expresses the particular way in which the limit does not exist: 1yx 2 can 
be made as large as we like by taking x close enough to 0.

In general, we write symbolically

lim
x l a

f sxd − `

to indicate that the values of f sxd tend to become larger and larger (or “increase without 
bound”) as x becomes closer and closer to a.

(4) Definition � Let f  be a function defined on both sides of a, except possibly at 
a itself. Then

lim
x l a

f sxd − `

means that the values of f sxd can be made arbitrarily large (as large as we please) 
by taking x sufficiently close to a but not equal to a.

Another notation for limx l a f sxd − ` is

f sxd l `        as        x l a

Again, the symbol ̀  is not a number, but the expression lim x l a f sxd − ` is often read as

“the limit of f sxd, as x approaches a, is infinity”

or	 “ f sxd becomes infinite as x approaches a”	

or	 “ f sxd increases without bound as x approaches a”	

This definition is illustrated graphically in Figure 12.

x
1

x 2

61 1
60.5 4
60.2 25
60.1 100
60.05 400
60.01 10,000
60.001 1,000,000

y=

0

y

x

1
≈

Figure �11

 

x

y

x=a

y=ƒ

a0

Figure �12
lim 
x l a

 f sxd − `
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A similar sort of limit, for functions that become large negative as x gets close to a, is 
defined in Definition 5 and is illustrated in Figure 13.

(5) Definition � Let f  be defined on both sides of a, except possibly at a itself. 
Then

lim
x l a

 f sxd − 2`

means that the values of f sxd can be made arbitrarily large negative by taking x 
sufficiently close to a but not equal to a.

The symbol limx l a f sxd − 2` can be read as “the limit of f sxd, as x approaches a, is 
negative infinity” or “ f sxd decreases without bound as x approaches a.” As an example 
we have

lim
x l

 

0
 S2

1

x 2D − 2`

Similar definitions can be given for the one-sided infinite limits

	 lim
x l

 

a2
 f sxd − `        lim

x l
 

a1
 f sxd − `

	 lim
x l

 

a2
 f sxd − 2`	 lim

x l
 

a1
 f sxd − 2`

remembering that x l a2 means that we consider only values of x that are less than  
a, and similarly x l a1 means that we consider only x . a. Illustrations of these four 
cases are given in Figure 14.

(a) lim  ƒ=`

y

0 a x

x a_
(b) lim  ƒ=`

a

y

x

x a+

0

x a_
(c) lim  ƒ=_`

y

0 a x

(d) lim  ƒ=_`

a

y

0 x

x a+

Figure �14

(6) Definition � The line x − a is called a vertical asymptote of the curve 
y − f sxd if at least one of the following statements is true:

	 lim
x l

 

a
 f sxd − `	 lim

x l
 

a2
 f sxd − ` 	 lim

x l
 

a1
 f sxd − `

	 lim
x l

 

a
 f sxd − 2`	 lim

x l
 

a2
 f sxd − 2`	 lim

x l
 

a1
 f sxd − 2`

For instance, the y-axis is a vertical asymptote of the curve y − 1yx 2 because 
limx l 0 s1yx 2 d − `. In Figure 14 the line x − a is a vertical asymptote in each of the 
four cases shown. In general, knowledge of vertical asymptotes is very useful in sketch-
ing graphs.

0 x

y

x=a

y=ƒ

a

Figure �13
lim
xla

f sxd − 2`

When we say a number is “large nega-
tive,” we mean that it is negative but its 
magnitude (absolute value) is large.
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 Example 10   |  BB  � Anesthesiology  In Example 1.2.5 we discussed the use by 
anesthesiologists of ventilators during surgery. We saw that

C −
P

V

�where C is the steady state concentration of CO2 in the lungs and V  is the ventilation 
rate. As V l 01, C l ` when P is constant and so

lim
Vl

 

01
 
P

V
− `

�Therefore in Figure 15 the C-axis is a vertical asymptote of the graph of C. This means 
that as the ventilation rate becomes very low, the concentration of carbon dioxide in the 
lungs becomes very high. (Note: This does not mean that, in reality, we expect the CO2 
level in the lungs to become arbitrarily high as the ventilation rate approaches 0. 
Remember, this is simply a model of how CO2 concentration depends on ventilation 
rate. It is therefore a simplification of reality. Mathematical models often fail to be 
accurate descriptions of reality under extreme conditions, and this is an example.)	 ■

 Example 11   |  Find lim
x l

 

31
 

2x

x 2 3
 and lim

x l
 

32
 

2x

x 2 3
.

Solution � If x is close to 3 but larger than 3, then the denominator x 2 3 is a small 
positive number and 2x is close to 6. So the quotient 2xysx 2 3d is a large positive 
number. Thus, intuitively, we see that

lim
x l

 

31
 

2x

x 2 3
− `

�Likewise, if x is close to 3 but smaller than 3, then x 2 3 is a small negative number 
but 2x is still a positive number (close to 6). So 2xysx 2 3d is a numerically large 
negative number. Thus

  lim
x l

 

32
 

2x

x 2 3
− 2`

�The graph of the curve y − 2xysx 2 3d is given in Figure 16. The line x − 3 is a 
vertical asymptote.	 ■

 Example 12   |  Find the vertical asymptotes of f sxd − tan x.

Solution � Because

tan x −
sin x

cos x

�there are potential vertical asymptotes where cos x − 0. In fact, since cos x l 01 as 
x l s�y2d2 and cos x l 02 as x l s�y2d1, whereas sin x is positive when x is near 
�y2, we have

lim
x l

 

s�y2d2
 tan x − `        and        lim

x l
 

s�y2d1
 tan x − 2`

�This shows that the line x − �y2 is a vertical asymptote. Similar reasoning shows  
that the lines x − s2n 1 1d�y2, where n is an integer, are all vertical asymptotes of 
f sxd − tan x. The graph in Figure 17 confirms this.	 ■

V (mL/min)

C

0

C= P
V

(mg/mL)

Figure �15

5

2x
x-3y=

0 x

y

x=3

Figure �16

__
x

y

π0_π

1

π
2

3π
 2

π
2

3π
 2

Figure �17
y − tan x
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EXERCISES 2.3

	 1.	�� �Explain in your own words what is meant by the equation

lim
x l 2

 f sxd − 5

		��  �Is it possible for this statement to be true and yet f s2d − 3? 
Explain.

	 2.	�� Explain what it means to say that

lim
x l 12

 f sxd − 3        and        lim
x l11

 f sxd − 7

		��  �In this situation is it possible that limx l 1 f sxd exists? 
Explain.

	 3.	�� �Explain the meaning of each of the following.
		  (a)	 lim

x l 23
 f sxd − `	 (b)	 lim

x l 41
 f sxd − 2`

	 4.	��� Use the given graph of f  to state the value of each quantity, 
if it exists. If it does not exist, explain why.

		  (a)	 lim
x l 22

 f sxd 	 (b)	 lim
x l 21

 f sxd	 (c)	 lim
x l 2

 f sxd

		  (d)	 f s2d	 (e)	 lim
x l 4

 f sxd	 (f)	 f s4d

y

0 x2 4

4

2

	 5.	��� For the function f  whose graph is given, state the value of 
each quantity, if it exists. If it does not exist, explain why.

		  (a)	 lim
x l 1

 f sxd	 (b)	 lim
x l 32

 f sxd	 (c)	 lim
x l 31

 f sxd

		  (d)	 lim
x l 3

 f sxd	 (e)	 f s3d

y

0 x2 4

4

2

	 6.	��� For the function h whose graph is given, state the value of 
each quantity, if it exists. If it does not exist, explain why.

		  (a)	 lim
x l 232

 hsxd	 (b)	 lim
x l 231

 hsxd	 (c)	 lim
x l 23

 hsxd

		  (d)	 hs23d	 (e)	 lim
x l 02

 hsxd 	 (f)	 lim
x l 01

 hsxd

		  (g)	 lim
x l 0

 hsxd	 (h)	 hs0d	 (i)	 lim
x l 2

 hsxd

		  ( j)	 hs2d	 (k)	 lim
x l 51

 hsxd 	 (l)	 lim
x l 52

 hsxd

y

0 x2_2_4 4 6

Another example of a function whose graph has a vertical asymptote is the natural 
logarithmic function y − ln x. From Figure 18 we see that

lim
x l

 

01
 ln x − 2`

and so the line x − 0 (the y-axis) is a vertical asymptote. In fact, the same is true for 
y − logb x provided that b . 1. (See Figures 11 and 12 in Section 1.5.)

x0

y

1

y=ln x

Figure �18
The y-axis is a vertical asymptote of  

the natural logarithmic function.

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 2.3  |  Limits of Functions at Finite Numbers    123

	 10.	� Drug injections �� A patient receives a 150-mg injection of 
a drug every 4 hours. The graph shows the amount f std of 
the drug in the bloodstream after t hours. Find

lim
x l122

 f std    and    lim
x l121

 f std

		��  �and explain the significance of these one-sided limits.

4 8 12 16 t (hours)

f(t) (mg)

150

0

300

	� 11–18 � Sketch the graph of an example of a function f  that  
satisfies all of the given conditions.

	 11.	 lim
x l 31

 f sxd − 4,
  

lim
x l 32

 f sxd − 2,    lim
x l 22

 f sxd − 2,

		��  f s3d − 3,    f s22d − 1

	 12.	�� lim
x l 02

 f sxd − 2,    lim
x l 01

 f sxd − 0,    lim
x l 42

 f sxd − 3,

		��  lim
x l 41

 f sxd − 0,    f s0d − 2,    f s4d − 1

	 13.	�� lim
x l 0

 f sxd − 2`,    lim
x l 2`

 f sxd − 5,    lim
x l `

 f sxd − 25

	 14.	�� �lim
x l 2

 f sxd − `,    lim
x l 221

 f sxd − `,    lim
x l 222

 f sxd − 2`,  

		��  lim
x l 2`

 f sxd − 0,    lim
x l `

 f sxd − 0,    f s0d − 0

	 15.	�� lim
x l 2

 f sxd − 2`    lim
x l `

 f sxd − `,    lim
x l 2`

 f sxd − 0,

		  lim
x l 01

 f sxd − `,    lim
x l 02

 f sxd − 2`

	 16.	�� �lim
x l `

 f sxd − 3,    lim
x l 22

 f sxd − `,    lim
x l 21

 f sxd − 2`,  

		��  f  is odd

	 17.	 f s0d − 3,    lim
x l 02

 f sxd − 4,    lim
x l 01

 f sxd − 2,

	�� 	 lim
x l 2`

 f sxd − 2`,    lim
x l 42

 f sxd − 2`,    lim
x l 41

 f sxd − `,

		  lim
x l `

 f sxd − 3

	 18.	�� lim
x l `

 f sxd − 2`,    lim
x l `

 f sxd − 2,    f s0d − 0,    f  is even

	� 19–22 � Guess the value of the limit (if it exists) by evaluat-
ing the function at the given numbers (correct to six decimal 
places).

	 19.	��� lim
x l 2

 
x 2 2 2x

x 2 2 x 2 x
,  

		  x − 2.5, 2.1, 2.05, 2.01, 2.005, 2.001,

		  1.9, 1.95, 1.99, 1.995, 1.999

	 7.	��� The population of a village is Pstd, t days after June 1. 
Use the graph of P to state the value of each limit, if it 
exists. If it doesn’t exist, explain why.

		  (a)	 lim
t l 22

 Pstd	 (b)	 lim
t l 21

 Pstd	 (c)	 lim
t l2

 Pstd

		  (d)	 lim
t l 42

 Pstd	 (e)	 lim
t l 41

 Pstd	 (f)	 lim
t l 4

 Pstd

		  (g)	 lim
x l 5

 Pstd

		  (h)	What do you think happened on June 3rd and 5th?

4 t (days)20

250

260

P

	 8.	��� For the function R whose graph is shown, state the 
following.

		  (a)	 lim
x l 2

 Rsxd	 (b)	 lim
x l 5

 Rsxd

		  (c)	 lim
x l 232

 Rsxd	 (d)	 lim
x l 231

 Rsxd

		  (e)	 The equations of the vertical asymptotes.

x

y

0 2 5_3

	 9.	��� For the function t whose graph is given, state the following.

		  (a)	 lim
x l 0

 tsxd	 (b)	 lim
x l 22

 tsxd

		  (c)	 lim
x l 21

 tsxd	 (d)	 lim
x l `

 tsxd

		  (e)	 lim
x l 2`

 tsxd

		  (f)	 The equations of the asymptotes

1 x

y

1
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	 37.	 lim
x l 21

 
x 2 2 2x 2 8

x 2 2 5x 1 6

	 38.	�� �(a)	 Find the vertical asymptotes of the function

y −
x 2 1 1

3x 2 2x 2

	 ;		  (b)	� Confirm your answer to part (a) by graphing the  
function.

	 39.	�� Determine lim
x l 12

 
1

x 3 2 1
 and lim

x l 11
 

1

x 3 2 1

		  (a)	� by evaluating f sxd − 1ysx 3 2 1d for values of x that 
approach 1 from the left and from the right,

		  (b)	� by reasoning as in Example 11, and

	 ;		  (c)	 from a graph of f.

	 ;	40.	�� (a)	� Graph the function f sxd − e x 1 ln | x 2 4 | for 
0 < x < 5. Do you think the graph is an accurate 
representation of f ?

		  (b)	� How would you get a graph that represents f  better?

	 41.	�� (a)	� Estimate the value of the limit lim x l 0 s1 1 xd1yx to five 
decimal places. Does this number look familiar?

	 ;		  (b)	� Illustrate part (a) by graphing the function 
y − s1 1 xd1yx.

	 42.	�� (a)	� Evaluate the function f sxd − x 2 2 s2xy1000d for  
x − 1, 0.8, 0.6, 0.4, 0.2, 0.1, and 0.05, and guess the 
value of

lim 
x l 0

 Sx2 2
2x

1000D
		  (b)	� Evaluate f sxd for x − 0.04, 0.02, 0.01, 0.005, 0.003, 

and 0.001. Guess again.

	 ;	 43.	�� �Graph the function f sxd − sins�yxd of Example 5 in the 
viewing rectangle f21, 1g by f21, 1g. Then zoom in 
toward the origin several times. Comment on the behavior 
of this function.

	 44.	�� �In the theory of relativity, the mass of a particle with 
velocity v is

m −
m0

s1 2 v 2yc 2 

		��  �where m0 is the mass of the particle at rest and c is the 
speed of light. What happens as v l c2?

	 20.	�� � lim
x l 21

 
x 2 2 2x

x 2 2 x 2 2
,  

		  x − 0, 20.5, 20.9, 20.95, 20.99, 20.999,

		  22, 21.5, 21.1, 21.01, 21.001

	 21.	�� �lim
t l 0

 
e 5t 2 1

t
,    t − 60.5, 60.1, 60.01, 60.001, 60.0001

	 22.	�� lim
h l 0

 
s2 1 hd5 2 32

h
,  

	 	�� �h − 60.5, 60.1, 60.01, 60.001, 60.0001

	� 23–26 � Use a table of values to estimate the value of the limit.  
If you have a graphing device, use it to confirm your result  
graphically.

	 23.	 lim
x l 0

 
sx 1 4 2 2

x
	 24.	 lim

x l 0
 
tan 3x

tan 5x

	 25.	� lim
x l 1

 
x 6 2 1

x10 2 1
	 26.	 lim

x l 0
 
9 x 2 5 x

x

	 ;	 27.	�� (a)	� By graphing the function f sxd − scos 2x 2 cos xdyx 2 
and zooming in toward the point where the graph 
crosses the y-axis, estimate the value of lim x l 0 f sxd.

		  (b)	� Check your answer in part (a) by evaluating f sxd for  
values of x that approach 0.

	 ;	 28.	��� (a)	 Estimate the value of

lim
x l 0

 
sin x

sin �x

			�   by graphing the function f sxd − ssin xdyssin �xd. State 
your answer correct to two decimal places.

		  (b)	� Check your answer in part (a) by evaluating f sxd for  
values of x that approach 0.

	� 29–37 � Determine the infinite limit.

	 29.	 lim
x l 231

 
x 1 2

x 1 3
	 30.	 lim

x l 232
 
x 1 2

x 1 3

	 31.	 lim
x l 1

 
2 2 x

sx 2 1d2 	 32.	 lim
x l 52

 
e x

sx 2 5d3

	 33.	 lim
x l 31

 lnsx 2 2 9d	 34.	 lim
x l �2

 cot x

	 35.	 lim
x l 2�2

 x csc x	 36.	 lim
x l 22

 
x 2 2 2x

x 2 2 4x 1 4

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 2.4  |  Limits: Algebraic Methods    125

2.4 Limits: Algebraic Methods

In Section 2.3 we used calculators and graphs to guess the values of limits, but we saw 
that such methods don’t always lead to the correct answer. In this section we use the fol-
lowing properties of limits, called the Limit Laws, to calculate limits.

■ The Limit Laws
The following five properties of limits are similar to the ones we have seen before, but 
some of the other properties of limits apply only when the variable x approaches a finite 
number.

Suppose that c is a constant and the limits

lim
x l a

 f sxd        and        lim
x l a

 tsxd

exist. Then

	1.	 lim
x l a

 f f sxd 1 tsxdg − lim
x l a

 f sxd 1 lim
x l a

 tsxd

	2.	 lim
x l a

 f f sxd 2 tsxdg − lim
x l a

 f sxd 2 lim
x l a

 tsxd

	3.	 lim
x l a

 fcf sxdg − c lim
x l a

 f sxd

	4.	 lim
x l a

 f f sxd tsxdg − lim
x l a

 f sxd ? lim
x l a

 tsxd

	5.	 lim
x l a

 
 f sxd
tsxd

−
lim
x l a 

f sxd

lim
x l a

 tsxd
  if  lim

x l a

 tsxd ± 0

These laws can be stated verbally as follows:

	1.	 The limit of a sum is the sum of the limits.

	2.	 The limit of a difference is the difference of the limits.

	3.	 The limit of a constant times a function is the constant times the limit of the  
function.

	4.	 The limit of a product is the product of the limits

	5.	 The limit of a quotient is the quotient of the limits (provided that the limit of the 
denominator is not 0).

It is easy to believe that these properties are true. For instance, if f sxd is close to L 
and tsxd is close to M, it is reasonable to conclude that f sxd 1 tsxd is close to L 1 M. 
This gives us an intuitive basis for believing that Law 1 is true. All of these laws can be 
proved using the precise definition of a limit. In Appendix E we give the proof of Law 1.

Limit Laws for Functions

Sum Law

Difference Law

Constant Multiple Law

 
Product Law

Quotient Law
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 Example 1   |  Use the Limit Laws and the graphs of f  and t in Figure 1 to evaluate 
the following limits, if they exist.

(a)	 lim
x l 22

 f f sxd 1 5tsxdg            (b)	 lim
x l 1

 f f sxdtsxdg            (c)	 lim
x l 2

 
f sxd
tsxd

Solution �
(a)	 From the graphs of f  and t we see that

lim
x l 22

 f sxd − 1        and        lim
x l 22

 tsxd − 21

Therefore we have

lim
x l 22

  f f sxd 1 5tsxdg − lim
x l 22

 f sxd 1 lim
x l 22

 f5tsxdg        (by Law 1)

	 − lim
x l 22

 f sxd 1 5 lim
x l 22

 tsxd	 (by Law 3)

	 − 1 1 5s21d − 24

(b)	 We see that lim x l 1 f sxd − 2. But lim x l 1 tsxd does not exist because the left and 
right limits are different:

lim
x l 12

 tsxd − 22            lim
x l 11

 tsxd − 21

So we can’t use Law 4 for the desired limit. But we can use Law 4 for the one-sided 
limits:

lim
x l 12

 f f sxdtsxdg − 2 ? s22d − 24        lim
x l 11

 f f sxdtsxdg − 2 ? s21d − 22

The left and right limits aren’t equal, so lim x l 1 f f sxdtsxdg does not exist.

(c)  The graphs show that

lim
x l 2

 f sxd < 1.4        and        lim
x l 2

 tsxd − 0

Because the limit of the denominator is 0, we can’t use Law 5. The given limit does not 
exist because the denominator approaches 0 while the numerator approaches a nonzero 
number.	 ■

If we use the Product Law repeatedly with tsxd − f sxd, we obtain the following law.

6. � lim
x l

 

a
 f f sxdg n − f lim

x l
 

a
 f sxdg n          where n is a positive integer

In applying these six limit laws, we need to use two special limits:

7. � lim
x l a

 c − c
	

8.  lim
x l a

 x − a

These limits are obvious from an intuitive point of view (state them in words or draw 
graphs of y − c and y − x).

x

y

0

f

g
1

1

Figure �1

Power Law
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If we now put f sxd − x in Law 6 and use Law 8, we get another useful special limit.

9. � lim
x l a

 xn − an        where n is a positive integer

A similar limit holds for roots as follows.

10. � lim
x l a

 sn x − sn a       where n is a positive integer 

	 (If n is even, we assume that a . 0.)

More generally, we have the following law.

11. � lim 
x l

 

a
sn f sxd − sn lim

x l
 

a
 f sxd      where n is a positive integer

	 fIf n is even, we assume that lim
x la

 f sxd . 0g.

 Example 2   |  Evaluate the following limits and justify each step.

(a)	 lim
x l 5

 s2x 2 2 3x 1 4d	 (b)	 lim
x l 22

 
x 3 1 2x 2 2 1

5 2 3x

Solution �
(a)	  lim

x l
 

5
 s2x 2 2 3x 1 4d − lim

x l
 

5
 s2x 2 d 2 lim

x l
 

5
 s3xd 1 lim

x l
 

5
 4	 (by Laws 2 and 1)

	  − 2 lim
x l

 

5
 x 2 2 3 lim

x l
 

5
 x 1 lim

x l
 

5
 4 	 (by 3)

	  − 2s52 d 2 3s5d 1 4 	 (by 9, 8, and 7)

	  − 39

(b)	 We start by using Law 5, but its use is fully justified only at the final stage when 
we see that the limits of the numerator and denominator exist and the limit of the 
denominator is not 0.

	  lim
x l

 

22
 
x 3 1 2x 2 2 1

5 2 3x
−

lim
x l

 

22
 sx 3 1 2x 2 2 1d

lim
x l

 

22
 s5 2 3xd

	 (by Law 5)

	  
−

lim
x l

 

22 
x 3 1 2 lim

x l
 

22 x
2 2 lim

x l
 

22
 1

lim
x l

 

22
 5 2 3 lim

x l
 

22
 x 	

(by 1, 2, and 3)

	  −
s22d3 1 2s22d2 2 1

5 2 3s22d
	 (by 9, 8, and 7)

	  − 2
1

11
	 ■

Root Law
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NOTE � If we let f sxd − 2x 2 2 3x 1 4, then f s5d − 39. In other words, we would 
have gotten the correct answer in Example 2(a) by substituting 5 for x. Similarly, direct 
substitution provides the correct answer in part (b). The functions in Example 2 are 
a polynomial and a rational function, respectively, and similar use of the Limit Laws 
proves that direct substitution always works for such functions (see Exercise 45). We 
state this fact as follows.

Direct Substitution Property � If f  is a polynomial or a rational function and 
a is in the domain of f , then

lim
x l a

 f sxd − f sad

Functions with the Direct Substitution Property are called continuous at a and will 
be studied in Section 2.5. However, not all limits can be evaluated by direct substitution, 
as the following examples show.

 Example 3   |  Find lim
x l 1

 
x 2 2 1

x 2 1
.

Solution � Let f sxd − sx 2 2 1dysx 2 1d. We can’t find the limit by substituting 
x − 1 because f s1d isn’t defined. Nor can we apply the Quotient Law, because the limit 
of the denominator is 0. Instead, we need to do some preliminary algebra. We factor the 
numerator as a difference of squares:

x 2 2 1

x 2 1
−

sx 2 1dsx 1 1d
x 2 1

�The numerator and denominator have a common factor of x 2 1. When we take the 
limit as x approaches 1, we have x ± 1 and so x 2 1 ± 0. Therefore we can cancel the 
common factor and compute the limit as follows:

	  lim
x l 1

 
x 2 2 1

x 2 1
− lim

x l 1
 
sx 2 1dsx 1 1d

x 2 1
− lim

x l 1
 sx 1 1d − 1 1 1 − 2	 ■

NOTE � In Example 3 we were able to compute the limit by replacing the given func-
tion f sxd − sx 2 2 1dysx 2 1d by a simpler function, tsxd − x 1 1, with the same limit. 
This is valid because f sxd − tsxd except when x − 1, and in computing a limit as x 
approaches 1 we don’t consider what happens when x is actually equal to 1. In general, 
we have the following useful fact.

If f sxd − tsxd when x ± a, then lim
x l a

 f sxd − lim
x l a

 tsxd, provided the limits exist.

 Example 4   |  Find lim
x l 1

 tsxd where

tsxd − Hx 1 1

�

if  x ± 1

if  x − 1

Solution � Here t is defined at x − 1 and ts1d − �, but the value of a limit as x 
approaches 1 does not depend on the value of the function at 1. Since tsxd − x 1 1 for 

Newton and Limits
Isaac Newton was born on Christmas 
Day in 1642, the year of Galileo’s death. 
When he entered Cambridge University 
in 1661 Newton didn’t know much 
mathematics, but he learned quickly by 
reading Euclid and Descartes and by 
attending the lectures of Isaac Barrow. 
Cambridge was closed because of the 
plague in 1665 and 1666, and Newton 
returned home to reflect on what he  
had learned. Those two years were 
amazingly productive for at that time he 
made four of his major discoveries: 
(1) his representation of functions as 
sums of infinite series, including the 
binomial theorem; (2) his work on differ­
ential and integral calculus; (3) his laws  
of motion and law of universal gravita­
tion; and (4) his prism experiments on 
the nature of light and color. Because of 
a fear of controversy and criticism, he 
was reluctant to publish his discoveries 
and it wasn’t until 1687, at the urging 
of the astronomer Halley, that Newton 
published Principia Mathematica. In this 
work, the greatest scientific treatise 
ever written, Newton set forth his ver­
sion of calculus and used it to investi­
gate mechanics, fluid dynamics, and 
wave motion, and to explain the motion 
of planets and comets.

The beginnings of calculus are 
found in the calculations of areas and 
volumes by ancient Greek scholars such 
as Eudoxus and Archimedes. Although 
aspects of the idea of a limit are 
implicit in their “method of exhaustion,” 
Eudoxus and Archimedes never explicitly 
formulated the concept of a limit. Like­
wise, mathematicians such as Cavalieri, 
Fermat, and Barrow, the immediate pre­
cursors of Newton in the development 
of calculus, did not actually use limits. It 
was Isaac Newton who was the first to 
talk explicitly about limits. He explained 
that the main idea behind limits is that 
quantities “approach nearer than by any 
given difference.” Newton stated that the 
limit was the basic concept in calculus, 
but it was left to later mathematicians 
like Cauchy to clarify his ideas about 
limits.
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x ± 1, we have

	 lim
x l 1

 tsxd − lim
x l 1

 sx 1 1d − 2	 ■

Note that the values of the functions in Examples 3 and 4 are identical except when  
x − 1 (see Figure 2) and so they have the same limit as x approaches 1.

 Example 5   |  Evaluate lim
h l 0

 
s3 1 hd2 2 9

h
.

Solution � If we define 

Fshd −
s3 1 hd2 2 9

h

�then, as in Example 3, we can’t compute lim h l 0 Fshd by letting h − 0 since Fs0d is 
undefined. But if we simplify Fshd algebraically, we find that

Fshd −
s9 1 6h 1 h 2 d 2 9

h
−

6h 1 h 2

h
− 6 1 h

(Recall that we consider only h ± 0 when letting h approach 0.) Thus

	 lim
h l 0

 
s3 1 hd2 2 9

h
− lim

h l 0
 s6 1 hd − 6	 ■

 Example 6   |  Find lim
t l 0

 
st 2 1 9 2 3

t 2 .

Solution � We can’t apply the Quotient Law immediately, since the limit of the 
denominator is 0. Here the preliminary algebra consists of rationalizing the numerator:

 lim
t l 0

 
st 2 1 9 2 3

t 2 − lim
t l 0

 
st 2 1 9 2 3

t 2 ?
st 2 1 9 1 3

st 2 1 9 1 3

 − lim
t l 0

 
st 2 1 9d 2 9

t 2(st 2 1 9 1 3)

 − lim
t l 0

 
t 2

t 2(st 2 1 9 1 3)

 − lim
t l 0

 
1

st 2 1 9 1 3

 −  
1

slim
t l 0

 st 2 1 9d 1 3

   −
1

3 1 3
−

1

6

�This calculation confirms the guess that we made in Example 2.3.3.	 ■

y=©

1 2 3

1

x

y

0

2

3

y=ƒ

1 2 3

1

x

y

0

2

3

Figure �2
The graphs of the functions f  (from 
Example 3) and t (from Example 4)
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 Example 7   |  HIV prevalence and incidence  The number of people  
with HIV in New York in the early 1980s is well described by the function 
Pstd − 80 1 16t 1 121t 2, where t measures the years since 1982. (The graph of P is 
shown in Figure 3.) Epidemiologists call Pstd the prevalence of HIV at time t. The 
incidence of HIV is the number of new infections per unit time over a specified time 
interval.
(a)	 What was the HIV incidence during the 12 months of 1983?
(b)	 What was the HIV incidence during the first month of 1983?
(c)	 Calculate the limiting value of the incidence as the time interval shrinks to zero.

1200

200

400

600

800

1000

0.50 1.0 1.5 2.0 2.5 3.0
(years since

 1982)

t

P(t)

1 year

P(2)-P(1) new infections
during 1983

Solution � The number of infections in 1983 was

Ps1d − 80 1 16s1d 1 121s12d − 217

(a)	 The HIV incidence during the 12 months of 1983 was

Ps2d 2 Ps1d
1

−
80 1 16s2d 1 121s22d 2 217

1
− 379 infectionsyyear

(b)	 The HIV incidence during the first month of 1983 was

P(1 1
12) 2 Ps1d

1
12

−
34,465

144 2 217
1

12

−
3217

12
< 268 infectionsyyear

(c)	 The limiting value of the incidence is

 lim
hl 0

 
Ps1 1 hd 2 Ps1d

h
− lim

hl 0
 
80 1 16s1 1 hd 1 121s1 1 hd2 2 217

h

 − lim
hl 0

 
217 1 258h 1 121h 2 2 217

h

	  − lim
hl0

 s258 1 121hd − 258 infectionsyyear 	 ■

Figure �3
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■ Additional Properties of Limits
Some limits are best calculated by first finding the left- and right-hand limits. The fol-
lowing theorem is a reminder of what we discovered in Section 2.3. It says that a two-
sided limit exists if and only if both of the one-sided limits exist and are equal.

(1) Theorem � lim
x l a

 f sxd − L        if and only if        lim
x l a2

 f sxd − L − lim
x l a1

 f sxd

When computing one-sided limits, we use the fact that the Limit Laws also hold for 
one-sided limits.

 Example 8   |  Show that lim
x l 0

 | x | − 0.

Solution � Recall that

| x | − Hx

2x

if  x > 0

if  x , 0

�Since | x | − x for x . 0, we have

lim
x l

 

01
 | x | − lim

x l
 

01
 x − 0

�For x , 0 we have | x | − 2x and so

lim
x l

 

02
 | x | − lim

x l
 

02
 s2xd − 0

�Therefore, by Theorem 1,
	 lim

x l 0
 | x | − 0	 ■

 Example 9   |  Prove that lim
x l 0

 | x |
x

 does not exist.

Solution � 	  lim
x l

 

01
 | x |

x
− lim

x l
 

01
 
x

x
− lim

x l
 

01
 1 − 1

 lim
x l

 

02
 | x |

x
− lim

x l
 

02
 
2x

x
− lim

x l
 

02
 s21d − 21

�Since the right- and left-hand limits are different, it follows from Theorem 1 that 
lim x l 0 | x |yx does not exist. The graph of the function f sxd − | x |yx is shown in 
Figure 5 and supports the one-sided limits that we found.	 ■

The next two theorems give two additional properties of limits. Both can be proved 
using the precise definition in Appendix D.

(2) Theorem  If f sxd < tsxd when x is near a (except possibly at a) and the 
limits of f  and t both exist as x approaches a, then

lim
x l a

 f sxd < lim
x l a

 tsxd

The result of Example 8 looks plausible 
from Figure 4.

y

x0

y=|x|

Figure �4

1

_1
x

y

0

y= |x|
x

Figure �5
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(3) The Squeeze Theorem  If f sxd < tsxd < hsxd when x is near a (except  
possibly at a) and

lim
x l a

 f sxd − lim
x l a

 hsxd − L

then	 lim
x l a

 tsxd − L

The Squeeze Theorem, which is sometimes called the Sandwich Theorem or the 
Pinching Theorem, is illustrated by Figure 6. It says that if tsxd is squeezed between 
f sxd and hsxd near a, and if f  and h have the same limit L at a, then t is forced to have 
the same limit L at a.

 Example 10   |  Show that lim
x l 0

 x 2 sin 
1

x
− 0.

Solution � First note that we cannot use

lim
x l 0

 x 2 sin 
1

x
− lim

x l 0
 x 2 ? lim

x l 0
sin 

1

x

�because lim x l 0 sins1yxd does not exist (see Example 2.3.5).
Instead we apply the Squeeze Theorem, and so we need to find a function f  smaller 

than tsxd − x 2 sins1yxd and a function h bigger than t such that both f sxd and hsxd 
approach 0 as x approaches 0. To do this we use our knowledge of the sine function. 
Because the sine of any number lies between 21 and 1, we can write

(4)	 21 < sin 
1

x
< 1	

�Any inequality remains true when multiplied by a positive number. We know that 
x 2 > 0 for all x and so, multiplying each side of the inequalities in (4) by x 2, we get

2x 2 < x 2 sin 
1

x
< x 2

�as illustrated by Figure 7. We know that

lim
x l 0

 x 2 − 0        and        lim
x l 0

 s2x 2 d − 0

�Taking f sxd − 2x 2, tsxd − x 2 sins1yxd, and hsxd − x 2 in the Squeeze Theorem, we 
obtain

	 lim
x l 0

 x 2 sin 
1

x
− 0	 ■

■ Limits of Trigonometric Functions
We’ve seen that polynomials and rational functions satisfy the Direct Substitution Prop-
erty. We will now show that the sine and cosine functions also satisfy that property.  
We know from the definitions of sin � and cos � that the coordinates of the point P in  

0 x

y

a

L

f

g

h

Figure �6

y=≈

y=_≈

0 x

y

Figure �7
y − x2 sins1yxd
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Figure 8 are scos �, sin �d. As � l 0, we see that P approaches the point s1, 0d and so 
cos � l 1 and sin � l 0. Thus

(5)	 lim
� l 0

 cos � − 1        lim
� l 0

 sin � − 0	

Since cos 0 − 1 and sin 0 − 0, the equations in (5) assert that the cosine and sine func- 
tions satisfy the Direct Substitution Property at 0. The addition formulas for cosine and 
sine can then be used to deduce that these functions satisfy the Direct Substitution Prop-
erty everywhere (see Exercises 47 and 48). In other words, for any real number a,

lim
� l a

 sin � − sin a        lim
� l a

 cos � − cos a

This enables us to evaluate certain limits quite simply, as the next example shows.

 Example 11   |  Evaluate lim
xl�

 x cos x.

Solution � Using Limit Law 4 and the fact that the cosine function satisfies the 
Direct Substitution Property, we get

lim
x l �

 x cos x − S lim
x l �

 xDS lim
x l �

 cos xD
	 − � ? cos � − 2�	 ■

In Example 2.3.4 we made the guess, on the basis of numerical and graphical evi-
dence, that

(6)	 lim
� l 0

 
sin �

�
− 1	

We can prove Equation 6 with help from the Squeeze Theorem. Assume first that � lies 
between 0 and �y2. Figure 9(a) shows a sector of a circle with center O, central angle  
�, and radius 1. BC is drawn perpendicular to OA. By the definition of radian measure, 
we have arc AB − �. Also | BC | − | OB | sin � − sin �. From the diagram we see that

| BC | , | AB | , arc AB

Therefore	 sin � , �        so      
sin �

�
, 1

Let the tangent lines at A and B intersect at E. You can see from Figure 9(b) that the  
circumference of a circle is smaller than the length of a circumscribed polygon, and so 
arc AB , | AE | 1 | EB |. Thus

 � − arc AB , |AE | 1 |EB | , | AE | 1 | ED |
 − |AD | − |OA | tan � − tan �

Therefore we have

� ,
sin �

cos �
        and so         cos � ,

sin �

�
, 1

(b)

(a)

B

A

E

O

¨

B

A
O

1

D

E

C

Figure �9

¨

1

x0

y

(1, 0)

P(cos ¨, sin ¨)

Figure �8

Another way to establish the limits in 
(5) is to use the inequality sin � , � 
(for � . 0), which is proved after 
Example 11.
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We know that lim �l0 1 − 1 and lim �l0 cos � − 1, so by the Squeeze Theorem, we have

lim
� l 01

 
sin �

�
− 1

But the function ssin �dy� is an even function, so its right and left limits must be equal. 
Hence, we have

lim
� l 0

 
sin �

�
− 1

so we have proved Equation 6.

 Example 12   |  Find lim
x l 0

 
sin 7x

4x
.

Solution � In order to apply Equation 6, we first rewrite the function by multiplying 
and dividing by 7:

sin 7x

4x
−

7

4 S sin 7x

7x D
Notice that as x l 0, we have 7x l 0, and so, by Equation 6 with � − 7x,

lim
x l 0

 
sin 7x

7x
− lim

7x l 0
 
sins7xd

7x
− 1

Thus

 lim
x l 0

 
sin 7x

4x
− lim

x l 0
 
7

4 S sin 7x

7x D
 −

7

4
  lim

x l 0
 
sin 7x

7x
−

7

4
? 1 −

7

4 ■

 Example 13   |  Evaluate lim
� l 0

 
cos � 2 1

�
.

Solution �

 lim
� l 0

 
cos � 2 1

�
− lim

� l 0
S cos � 2 1

�
?

cos � 1 1

cos � 1 1D − lim
� l 0

 
cos2� 2 1

�scos � 1 1d

 − lim
� l 0

 
2sin2�

�scos � 1 1d
− 2 lim

� l 0
S sin �

�
?

sin �

cos � 1 1D
 − 2 lim

� l 0
 
sin �

�
? lim

� l 0
 

sin �

cos � 1 1

 − 21 ? S 0

1 1 1D − 0

	

      (by Equation 6)	 ■

Note that sin 7x ± 7 sin x.

We multiply numerator and denomina-
tor by cos � 1 1 in order to put the 
function in a form in which we can use 
the limits we know.
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	 1.	�� Given that

lim
x l 2

 f sxd − 4        lim
x l 2

 tsxd − 22        lim
x l 2

 hsxd − 0

		��  �find the limits that exist. If the limit does not exist, explain 
why.

		  (a)	 lim
x l

 

2
 f f sxd 1 5tsxdg	 (b)	 lim

x l
 

2
 ftsxdg3

		  (c)	 lim
x l 2

 sf sxd 	 (d)	 lim
x l

 

2
 
3f sxd
tsxd

		  (e)	 lim
x l

 

2
 
tsxd
hsxd

	 (f)	 lim
x l

 

2
 
tsxdhsxd

f sxd

	 2.	��� The graphs of f  and t are given. Use them to evaluate each 
limit, if it exists. If the limit does not exist, explain why.

		  (a)	� lim
x l

 

2
 f f sxd 1 tsxdg	 (b)	 lim

x l
 

1
 f f sxd 1 tsxdg

		  (c)	 lim
x l

 

0
 f f sxdtsxdg	 (d)	 lim

x l
 

21
 
 f sxd
tsxd

		  (e)	 lim
x l

 

2
 fx 3 f sxdg	 (f)	 lim

x l
 

1
 s3 1 f sxd

x1

y

y=ƒ
1

0 x

y

1

y=©
1

	� 3–7 � Evaluate the limit and justify each step by indicating the 
appropriate Limit Law(s).

	 3.	 lim
xl22

 s3x 4 1 2x 2 2 x 1 1d	 4.	 lim
t l21

 st 2 1 1d3st 1 3d5

	 5.	 lim
x l 2

 Î 2x 2 1 1

3x 2 2
 	 6.	 lim

x l 0
 

cos4 x

5 1 2x 3

	 7.	 lim
� l �y2

 � sin �

	 8.	�� (a)	 What is wrong with the following equation?

x 2 1 x 2 6

x 2 2
− x 1 3

		  (b)	 In view of part (a), explain why the equation

lim
x l

 

2
 

x 2 1 x 2 6

x 2 2
− lim

x l
 

2
 sx 1 3d

			   is correct.

	� 9–24 � Evaluate the limit, if it exists.

	 9.	 lim
x l

 

5
 

x 2 2 6x 1 5

x 2 5
	 10.	 lim

x l
 

4
 

x 2 2 4x

x 2 2 3x 2 4

	 11.	 lim
x l

 

5
 

x 2 2 5x 1 6

x 2 5
	 12.	 lim

x l
 

21
 
2x 2 1 3x 1 1

x 2 2 2x 2 3

	 13.	 lim
t l

 

23
 

t 2 2 9

2t 2 1 7t 1 3
	 14.	 lim

x l
 

21
 

x 2 2 4x

x 2 2 3x 2 4

	 15.	 lim
hl 0

 
s4 1 hd2 2 16

h
	 16.	 lim

h l
 

0
 
s2 1 hd3 2 8

h

	 17.	 lim
x l

 

22
 

x 1 2

x 3 1 8
	 18.	 lim

hl 0
 
s1 1 h 2 1

h

	 19.	 lim
x l

 

24
 

1

4
1

1

x

4 1 x
	 20.	 lim

x l
 

21
 
x 2 1 2x 1 1

x 4 2 1

	 21.	 lim
x l 16

 
4 2 sx 

16x 2 x 2 	 22.	 lim
t l

 

0
 S 1

t
2

1

t 2 1 tD
	 23.	 lim

t l 0
 S 1

ts1 1 t 
2

1

t
D	 24.	 lim

xl24
 
sx 2 1 9 2 5

x 1 4

	 ;	 25.	�� (a)	 Estimate the value of

lim
x l

 

0
 

x

s1 1 3x 2 1

			�   by graphing the function f sxd − xyss1 1 3x 2 1d.
		  (b)	� Make a table of values of f sxd for x close to 0 and guess 

the value of the limit.�
		  (c)	 Use the Limit Laws to prove that your guess is correct.

	 ;	 26.	�� (a)	 Use a graph of

f sxd −
s3 1 x 2 s3 

x

			�   to estimate the value of limx l 0 f sxd to two decimal 
places.

		  (b)	� Use a table of values of f sxd to estimate the limit to four 
decimal places.

		  (c)	� Use the Limit Laws to find the exact value of the limit.

	 ;	 27.	�� �Use the Squeeze Theorem to show that 
limx l 0 sx 2 cos 20�xd − 0. Illustrate by graphing the 
functions f sxd − 2x 2, tsxd − x 2 cos 20�x, and hsxd − x 2 
on the same screen.

	 ;	 28.	��� Use the Squeeze Theorem to show that

lim
x l

 

0
 sx 3 1 x 2  sin 

�

x
− 0

		���  Illustrate by graphing the functions f, t, and h (in the 
notation of the Squeeze Theorem) on the same screen.

	 29.	��� If 4x 2 9 < f sxd < x 2 2 4x 1 7 for x > 0, find lim
x l 4

  f sxd.

EXERCISES 2.4
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	 45.	�� (a)	 If p is a polynomial, show that lim xl a psxd − psad.
		  (b)	��� If r is a rational function, use part (a) to show that 

limx l a rsxd − rsad for every number a in the domain 
of r.

	 46.	��� In the theory of relativity, the Lorentz contraction formula

L − L0 s1 2 v 2yc 2 

		��  �expresses the length L of an object as a function of its 
velocity v with respect to an observer, where L0 is the 
length of the object at rest and c is the speed of light. Find 
limv l

 

c2 L and interpret the result. Why is a left-hand limit 
necessary?

	 47.	��� To prove that sine has the Direct Substitution Property we 
need to show that limxla sin x − sin a for every real 
number a. If we let h − x 2 a, then x − a 1 h and 
x l a &? h l 0. So an equivalent statement is that

lim
hl 0

 sinsa 1 hd − sin a

		���  Use (5) to show that this is true.

	 48.	��� Prove that cosine has the Direct Substitution Property.

	 49.	�� �If lim
x l 1

 
f sxd 2 8

x 2 1
− 10, find lim

x l 1
 f sxd.

	 50.	�� If lim
x l 0

 
f sxd
x 2 − 5, find the following limits.

		  (a)	 lim
x l 0

 f sxd	 (b)	 lim
x l 0

 
f sxd

x
	 51.	�� Is there a number a such that

lim
x l

 

22
 
3x 2 1 ax 1 a 1 3

x 2 1 x 2 2

		���  exists? If so, find the value of a and the value of the limit.

	 52.	��� The figure shows a fixed circle C1 with equation 
sx 2 1d2 1 y 2 − 1 and a shrinking circle C2 with radius r 
and center the origin. P is the point s0, rd, Q is the upper 
point of intersection of the two circles, and R is the point 
of intersection of the line PQ and the x-axis. What happens 
to R as C2 shrinks, that is, as r l 01?

		

x

y

0

P Q
C™

C¡
R

	 30.	�� If 2x < tsxd < x 4 2 x 2 1 2 for all x, evaluate lim
x l 1

 tsxd.

	 31.	�� Prove that lim
x l

 

0
 x 4 cos 

2

x
− 0.

	 32.	� Gene regulation �� Genes produce molecules called 
mRNA that go on to produce proteins. High concentrations 
of protein inhibit the production of mRNA, leading to 
stable gene regulation. This process has been modeled (see 
Section 10.3) to show that the concentration of mRNA over 
time is given by the equation

mstd − 1
2e2tssin t 2 cos td 1 1

2

		  (a)	� Evaluate lim tl0 mstd and interpret your result.
		  (b)	� Use the Squeeze Theorem to evaluate lim tl` mstd and 

interpret your result.

	� 33–36 � Find the limit, if it exists. If the limit does not exist, 
explain why.

	 33.	 lim
x l 3

 s2x 1  | x 2 3 |d	 34.	 lim
x l

 

26
 
2x 1 12

| x 1 6 |

	 35.	 lim
x l

 

02
 S 1

x
2

1

| x | D	 36.	 lim
x l

 

22
 
2 2 | x |
2 1 x

	 37.	�� Let tsxd −
x 2 1 x 2 6

| x 2 2 | .

		  (a)	 Find
			   (i)	 lim

x l
 

21
 tsxd	 (ii)	 lim

x l
 

22
 tsxd

		  (b)	 Does limx l 2 tsxd exist?
		  (c)	 Sketch the graph of t.

	 38.	��� Let

f sxd − Hx 2 1 1

sx 2 2d2

if x , 1

if x > 1

		  (a)	 Find lim x l12 f sxd and lim x l11  f sxd.
		  (b)	 Does lim x l1 f sxd exist?
		  (c)	 Sketch the graph of f .

	� 39–44 � Find the limit.

	 39.	 lim
x l 0

 
sin 3x

x
	 40.	 lim

x l 0
 
sin 4x

sin 6x

	 41.	 lim
t l 0

 
tan 6t

sin 2t
	 42.	 lim

t l 0
 
sin2 3t

t 2

	 43.	 lim
� l 0

 
sin �

� 1 tan �
	 44.	 lim

x l 0
 x cot x
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2.5 Continuity

We noticed in Section 2.4 that the limit of a function as x approaches a can often be 
found simply by calculating the value of the function at a. Functions with this property 
are called continuous at a. We will see that the mathematical definition of continuity 
corresponds closely with the meaning of the word continuity in everyday language. (A 
continuous process is one that takes place gradually, without interruption or abrupt 
change.)

■ Definition of a Continuous Function

(1) Definition � A function f  is continuous at a number a if

lim
x l a

 f sxd − f sad

Notice that Definition l implicitly requires three things if f  is continuous at a:

	1.	 f sad is defined (that is, a is in the domain of f )

	2.	 lim
x l a

 f sxd exists

	3.	 lim
x la

 f sxd − f sad

The definition says that f  is continuous at a if f sxd approaches f sad as x approaches 
a. Thus a continuous function f  has the property that a small change in x produces only 
a small change in f sxd. In fact, the change in f sxd can be kept as small as we please by 
keeping the change in x sufficiently small.

If f  is defined near a (in other words, f  is defined on an open interval containing a,  
except perhaps at a), we say that f  is discontinuous at a (or f  has a discontinuity at a) 
if f  is not continuous at a.

Geometrically, you can think of a function that is continuous at every number in an  
interval as a function whose graph has no break in it. The graph can be drawn without  
removing your pen from the paper.

 Example 1   |  Figure 2 shows the graph of a function f . At which numbers is f  
discontinuous? Why?

Solution � It looks as if there is a discontinuity when a 5 1 because the graph has a 
break there. The official reason that f  is discontinuous at 1 is that f s1d is not defined.

The graph also has a break when a 5 3, but the reason for the discontinuity is 
different. Here, f s3d is defined, but lim x l3 f sxd does not exist (because the left and 
right limits are different). So f  is discontinuous at 3.

What about a 5 5? Here, f s5d is defined and lim x l5 f sxd exists (because the left 
and right limits are the same). But

lim
x l 5

 fsxd ± f s5d

�So f  is discontinuous at 5.	 ■

As illustrated in Figure 1, if f  is con-
tinuous, then the points sx, f sxdd on the 
graph of f  approach the point sa, f sadd 
on the graph. So there is no gap in the 
curve.

f(a)

x0

y

a

y=ƒ

ƒ
approaches

f(a).

As x approaches a,

Figure �1

y

0 x1 2 3 4 5

Figure �2
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 Example 2   |  Show that the function f sxd − x 3 1 3x 2 is continuous at every real 
number a.

Solution � Using the Limit Laws, we have

 lim
x l a

 f sxd − lim
x l a

 sx 3 1 3x 2d − lim
x l a

 x3 1 3 lim
x l a

 x2

 − a 3 1 3a 2 − f sad

�Therefore f  is continuous at any number a.	 ■

 Example 3   |  Where are each of the following functions discontinuous?

(a)	 f sxd 5
x2 2 x 2 2

x 2 2
	 (b)	 f sxd − H 1

x 2
if  x ± 0

1 if  x − 0

(c)	 f sxd − H x 2 2 x 2 2

x 2 2
if  x ± 2

1 if  x − 2

	 (d)	 Hstd − H0 if t , 0

1 if t > 0

Solution �
(a)	 Notice that f s2d is not defined, so f is discontinuous at 2. Later we’ll see why f  is 
continuous at all other numbers.

(b)  Here f s0d 5 1 is defined but

lim
x l 0

 fsxd − lim
x l 0

 
1

x2

does not exist. (See Example 2.3.9.) So f  is discontinuous at 0.

(c)	 Here f s2d 5 1 is defined and

lim
x l 2

 fsxd − lim
x l 2

 
x 2 2 x 2 2

x 2 2
− lim

x l 2
 
sx 2 2dsx 1 1d

x 2 2
− lim

x l 2
 sx 1 1d − 3

exists. But

lim
x l 2

 f sxd ± f s2d

so f  is not continuous at 2.

(d)	 H is called the Heaviside function after the electrical engineer Oliver Heaviside 
(1853–1925) and can be used to describe an electric current that is turned on at time 
t − 0. Because

lim
t l 02

 H std − 0      and      lim
t l 01

 H std − 1

we know that lim tl0 H std does not exist. So H is discontinuous at 0.	 ■

Figure 3 shows the graphs of the functions in Example 3. In each case the graph can’t 
be drawn without lifting the pen from the paper because a hole or break or jump occurs 
in the graph. The kind of discontinuity illustrated in parts (a) and (c) is called removable 
because we could remove the discontinuity by redefining f  at just the single number 2. 
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[The function tsxd − x 1 1 is continuous.] The discontinuity in part (b) is called an infi-
nite discontinuity. The discontinuity in part (d) is called a jump discontinuity because 
the function “jumps” from one value to another.

1

t

y

0

(d) H(t)= 

1 2

1

x

y

0

(c)
if  x≠2

1 if x=2

≈-x-2
x-2 if  t<0

1 if t˘0
(b) ƒ= ƒ=

if  x≠0

1 if

1

x=0

1

x

y

01 2 x

y

0

1

(a) ƒ=≈-x-2
x-2 ≈

0

Physical phenomena are usually continuous. For instance, the displacement or veloc-
ity of a vehicle varies continuously with time, as does a person’s height. But discontinui-
ties do occur in biology. Figure 4 shows the graph of the robin population from Example 
2.3.8. The population function has a jump discontinuity whenever births or deaths occur, 
that is, at t − 2, 3, and 4.2.

4 6 t (days)2 3 5 710

25

27

P

 Example 4   |  BB  � Population harvesting and collapse  Intensive harvest-
ing of a population, such as occurs for some fish species, can cause population extinc-
tion. How this extinction occurs, however, depends on the nature of the harvesting. For 
example, two of the models for harvesting in the project on page 438 give the following 
equations for the population size N (measured in thousands) as a function of harvesting 
effort h, where h > 0:

Model 1      Nshd − H2s1 2 hd if h < 1

0 if h . 1

	 Model 2	 Nshd − H1
2 (1 1 s9 2 8h ) if h < 9

8

0 if h . 9
8

�Plot the population size for both models and comment on their continuity properties at 
the point where extinction occurs. What is the biological significance of the difference 
in continuity between the two models?

Figure �3
Graphs of the functions in Example 3

Figure �4
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Solution � The graphs of both models are shown in Figure 5. In model 1 the 
function is continuous and a small increase in harvesting always causes a small 
decrease in population size. Thus, if the harvesting pressure is only increased by small 
amounts, we would be able to “see extinction coming.” But in model 2 a small increase 
in harvesting causes a discontinuous collapse in population size at h − 9

8. In such cases 
a small increase in harvesting can cause the population to go extinct with no warning.

	

h

N

0

2

h

N

0

2

Model 1 Model 2

11 9
8

1
2

	 ■

(2) Definition � A function f  is continuous from the right at a number a if

lim
x l a1

 f sxd − f sad

and f  is continuous from the left at a if

lim
x l a2

 f sxd − f sad

Notice from Figure 4 that Pstd is continuous from the right, but not from the left, at 
each of the jump discontinuities.

(3) Definition � A function f  is continuous on an interval if it is continuous at 
every number in the interval. (If f  is defined only on one side of an endpoint of 
the interval, we understand continuous at the endpoint to mean continuous from 
the right or continuous from the left.)

Instead of using Definitions 1, 2, and 3 to verify the continuity of a function as we did 
in Example 2, it is often convenient to use the next theorem, which shows how to build 
complicated continuous functions from simple ones.

(4) Theorem � If f  and t are continuous at a and c is a constant, then the follow-
ing functions are also continuous at a:

1.	 f 1 t	 2.	 f 2 t	 3.	 cf

4.	 ft	 5.	
f

t     if tsad ± 0

Figure �5
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Proof � Each of the five parts of this theorem follows from the corresponding Limit 
Law in Section 2.4. For instance, we give the proof of part 1. Since f  and t are continu-
ous at a, we have

lim
x l a

 f sxd − f sad        and        lim
x l a

 tsxd − tsad

�Therefore

	  lim
x l a

 s f 1 tdsxd − lim
x l a

 f f sxd 1 tsxdg

	  − lim
x l a

 f sxd 1 lim
x l a

 tsxd        (by Law 1)

	  − f sad 1 tsad

	  − s f 1 tdsad

�This shows that f 1 t is continuous at a.	 ■

It follows from Theorem 4 and Definition 3 that if f  and t are continuous on an inter-
val, then so are the functions f 1 t, f 2 t, cf, ft, and (if t is never 0) fyt.

■ Which Functions Are Continuous?
It will be useful in our future work to know which functions are continuous and which 
are not. To that end let’s begin to compile a list of functions that are known to be con-
tinuous. The following theorem was stated in Section 2.4 as the Direct Substitution  
Property.

(5) Theorem �

(a) � Any polynomial is continuous everywhere; that is, it is continuous on 
R − s2`, `d.

(b) � Any rational function is continuous wherever it is defined; that is, it is contin-
uous on its domain.

Proof �
(a)  A polynomial is a function of the form

Psxd − cn xn 1 cn21xn21 1 ∙ ∙ ∙ 1 c1x 1 c0 

where c0, c1, . . . , cn are constants. We know that

lim
x l a

 c0 − c0        (by Law 7)

and	 lim
x l a

 xm − am        m − 1, 2, . . . , n        (by Law 9)

This equation is precisely the statement that the function f sxd − xm is a continuous  
function. Thus, by part 3 of Theorem 4, the function tsxd − cxm is continuous. Since P 
is a sum of functions of this form and a constant function, it follows from part 1 of  
Theorem 4 that P is continuous.
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(b)  A rational function is a function of the form

f sxd −
Psxd
Qsxd

where P and Q are polynomials. The domain of f  is D − hx [ R | Qsxd ± 0j. We 
know from part (a) that P and Q are continuous everywhere. Thus, by part 5 of 
Theorem 4, f  is continuous at every number in D.	 ■

As an illustration of Theorem 5, observe that the volume of a sphere varies continu-
ously with its radius because the formula Vsrd − 4

3�r 3 shows that V  is a polynomial 
function of r. Likewise, if a ball is thrown vertically into the air with a velocity of  
50 ftys, then the height of the ball in feet t seconds later is given by the formula 
h − 50t 2 16t 2. Again this is a polynomial function, so the height is a continuous func-
tion of the elapsed time.

Knowledge of which functions are continuous enables us to evaluate some limits very 
quickly, as the following example shows. Compare it with Example 2.4.2(b).

 Example 5   |  Find lim
x l

 

22
 
x 3 1 2x 2 2 1

5 2 3x
.

Solution � The function

f sxd −
x 3 1 2x 2 2 1

5 2 3x

�is rational, so by Theorem 5 it is continuous on its domain, which is hx | x ± 5
3 j.  

Therefore

 lim
x l22

 
x 3 1 2x 2 2 1

5 2 3x
− lim

x l22
 f sxd − f s22d

	  −
s22d3 1 2s22d2 2 1

5 2 3s22d
− 2

1

11
	 ■

It turns out that most of the familiar functions are continuous at every number in their 
domains. For instance, Limit Law 10 (page 127) is exactly the statement that root func-
tions are continuous.

From the appearance of the graphs of the sine and cosine functions (Figure 1.2.19), 
we would certainly guess that they are continuous. In fact we showed in Section 2.4 
that they both satisfy the Direct Substitution Property, so indeed they are continuous 
everywhere.

It follows from part 5 of Theorem 4 that

tan x −
sin x

cos x

is continuous except where cos x − 0. This happens when x is an odd integer multiple 
of �y2, so y − tan x has infinite discontinuities when x − 6�y2, 63�y2, 65�y2, and 
so on (see Figure 6).

In Section 1.4 we defined the exponential function y − bx so as to fill in the holes in 
the graph of y − bx where x is rational. In other words, the very definition of y − bx 
makes it a continuous function on R. The inverse function of any continuous one-to-one 
function is also continuous. (The graph of f 21 is obtained by reflecting the graph of f  

__
x

y

π0_π

1

π
2

3π
 2

π
2

3π
 2

Figure �6
y − tan x
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about the line y − x. So if the graph of f  has no break in it, neither does the graph of  
f 21.) Therefore the function y − logb x is continuous on s0, `d because it is the inverse 
function of y − bx.

(6) Theorem � The following types of functions are continuous at every number 
in their domains:

	 polynomials	 rational functions

	 power and root functions	 trigonometric functions

	 exponential functions	 logarithmic functions

 Example 6   |  Where is the function f sxd −
ln x 1 ex

x 2 2 1
 continuous?

Solution � We know from Theorem 6 that the function y − ln x is continuous for 
x . 0 and y − ex is continuous on R. Thus, by part 1 of Theorem 4, y − ln x 1 ex is 
continuous on s0, `d. The denominator, y − x 2 2 1, is a polynomial, so it is continu-
ous everywhere. Therefore, by part 5 of Theorem 4, f  is continuous at all positive 
numbers x except where x 2 2 1 − 0. So f  is continuous on the intervals s0, 1d and 
s1, `d.	 ■

 Example 7   |  Evaluate lim
x l

 

�
 

sin x

2 1 cos x
.

Solution � Theorem 6 tells us that y − sin x is continuous. The function in the 
denominator, y − 2 1 cos x, is the sum of two continuous functions and is therefore 
continuous. Notice that this function is never 0 because cos x > 21 for all x and so 
2 1 cos x . 0 everywhere. Thus the ratio

f sxd −
sin x

2 1 cos x

is continuous everywhere. Hence, by the definition of a continuous function,

	 lim 
x l

 

� 

sin x

2 1 cos x
− lim

x l
 

� 
f sxd − f s�d −

sin �

2 1 cos �
−

0

2 2 1
− 0	 ■

Another way of combining continuous functions f  and t to get a new continuous func-
tion is to form the composite function f 8 t. This fact is a consequence of the following  
theorem.

(7) Theorem � If f  is continuous at b and lim
x l

 

a
 tsxd − b,  then lim

x l
 

a
 f stsxdd − f sbd.  

In other words,

lim
xla

 f stsxdd − f Slim
xla

 tsxdD

This theorem says that a limit symbol 
can be moved through a function sym-
bol if the function is continuous and the 
limit exists. In other words, the order of 
these two symbols can be reversed.
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Intuitively, Theorem 7 is reasonable because if x is close to a, then tsxd is close to b, 
and since f  is continuous at b, if tsxd is close to b, then f stsxdd is close to f sbd.

(8) Theorem � If t is continuous at a and f  is continuous at tsad, then the com-
posite function f + t given by s f + tdsxd − f stsxdd is continuous at a.

This theorem is often expressed informally by saying “a continuous function of a 
continuous function is a continuous function.”

Proof � Since t is continuous at a, we have

lim
x l a

 tsxd − tsad

�Since f  is continuous at b − tsad, we can apply Theorem 7 to obtain

lim
x l a

 f stsxdd − f stsadd

�which is precisely the statement that the function hsxd − f stsxdd is continuous at a; that 
is, f 8 t is continuous at a.	 ■

 Example 8   |  Where are the following functions continuous?

(a)	 hsxd − sinsx 2 d	 (b)	 Fsxd − lns1 1 cos xd

Solution �
(a)	 We have hsxd − f stsxdd, where

tsxd − x 2        and        f sxd − sin x

Now t is continuous on R since it is a polynomial, and f  is also continuous every-
where. Thus h − f 8 t is continuous on R by Theorem 8.

(b)	 We know from Theorem 6 that f sxd − ln x is continuous and tsxd − 1 1 cos x  
is continuous (because both y − 1 and y − cos x are continuous). Therefore, by  
Theorem 8, Fsxd − f stsxdd is continuous wherever it is defined. Now ln s1 1 cos xd is 
defined when 1 1 cos x . 0. So it is undefined when cos x − 21, and this happens 
when x − 6�, 63�, . . . . Thus F has discontinuities when x is an odd multiple of � 
and is continuous on the intervals between these values (see Figure 7).	 ■

An important property of continuous functions is expressed by the following theo-
rem, whose proof is found in more advanced books on calculus.

(9) The Intermediate Value Theorem � Suppose that f  is continuous on 
the closed interval fa, bg and let N be any number between f sad and f sbd, where 
f sad ± f sbd. Then there exists a number c in sa, bd such that f scd − N.

The Intermediate Value Theorem states that a continuous function takes on every 
intermediate value between the function values f sad and f sbd. It is illustrated by Fig- 
ure 8. Note that the value N can be taken on once [as in part (a)] or more than once [as 
in part (b)].

2

_6

_10 10 

Figure �7

y − ln s1 1 cos xd
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(b)

0 x

y

f(b)

N

f(a)

a c£ b

y=ƒ

c™c¡

(a)

0 x

y

f(b)

N

f(a)

b

y=ƒ

a c

If we think of a continuous function as a function whose graph has no hole or  
break, then it is easy to believe that the Intermediate Value Theorem is true. In geometric 
terms it says that if any horizontal line y − N is given between y − f sad and y − f sbd  
as in Figure 9, then the graph of f  can’t jump over the line. It must intersect y − N  
somewhere.

 Example 9   |  BB  � Population harvesting and collapse (continued)   
Model 1 in Example 4 for the size of a population as a function of harvesting rate is 
continuous for all harvesting rates, whereas model 2 has a jump discontinuity at the 
harvesting rate h − 9

8. Provide a biological interpretation of the Intermediate Value 
Theorem in the context of these two models.

Solution � Since model 1 is continuous for all values of h, there is a harvesting rate 
that results in any population size between 2 and 0 (extinction). The discontinuity in 
model 2, however, means that there are some population sizes between 2 and 0 that 
cannot be obtained no matter what harvesting rate is used (for example, there is no 
harvesting rate h that results in a population size of N − 1

4). This can have important 
conservation implications. For instance, suppose conservation biologists decide not to 
impose harvesting regulations unless the population has declined to a critical value of 
N − 1

4. If model 1 is appropriate, then such regulations can prevent extinction. But if 
model 2 is appropriate, then the critical population size can never be reached no matter 
what the harvesting rate. Instead, the population will undergo irreversible collapse as 
harvesting rates increase before the population ever declines to the critical level.	 ■

One use of the Intermediate Value Theorem is in locating roots of equations, as 
shown in the following example.

 Example 10   |  Show that there is a root of the equation

4x 3 2 6x 2 1 3x 2 2 − 0
�between 1 and 2.

Solution � Let f sxd − 4x 3 2 6x 2 1 3x 2 2. We are looking for a solution of the 
given equation, that is, a number c between 1 and 2 such that f scd − 0. Therefore we 
take a − 1, b − 2, and N − 0 in Theorem 9. We have

	  f s1d − 4 2 6 1 3 2 2 − 21 , 0

and	  f s2d − 32 2 24 1 6 2 2 − 12 . 0	

�Thus f s1d , 0 , f s2d; that is, N − 0 is a number between f s1d and f s2d. Now f  is  

Figure �8

b0 x

y

f(a)

N

f(b)

a

y=
y=N

Figure �9
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continuous since it is a polynomial, so the Intermediate Value Theorem says there is a 
number c between 1 and 2 such that f scd − 0. In other words, the equation 
4x 3 2 6x 2 1 3x 2 2 − 0 has at least one root c in the interval s1, 2d.

In fact, we can locate a root more precisely by using the Intermediate Value 
Theorem again. Since

f s1.2d − 20.128 , 0        and        f s1.3d − 0.548 . 0

�a root must lie between 1.2 and 1.3. A calculator gives, by trial and error,

f s1.22d − 20.007008 , 0        and        f s1.23d − 0.056068 . 0

�so a root lies in the interval s1.22, 1.23d.	 ■

We can use a graphing calculator or computer to illustrate the use of the Interme-
diate Value Theorem in Example 10. Figure 10 shows the graph of f  in the viewing 
rectangle f21, 3g by f23, 3g and you can see that the graph crosses the x-axis between 
1 and 2. Figure 11 shows the result of zooming in to the viewing rectangle f1.2, 1.3g by 
f20.2, 0.2g.

In fact, the Intermediate Value Theorem plays a role in the very way these graphing 
devices work. A computer calculates a finite number of points on the graph and turns on 
the pixels that contain these calculated points. It assumes that the function is continuous 
and takes on all the intermediate values between two consecutive points. The computer 
therefore connects the pixels by turning on the intermediate pixels.

■ Approximating Discontinuous Functions by Continuous Ones
In calculus it’s desirable to work with continuous functions, but the functions that arise 
in biology are often discontinuous. For instance, if n − Pstd is the number of individuals 
in an animal or plant population at time t, then P is discontinuous whenever a birth or 
death occurs, as we saw in Figure 4. For a large animal or plant population, however, we 
can often replace the population function by a continuous function that approximates P. 
Figure 12 shows the graph of a population function, which is actually a step function, 
together with the graph of a continuous approximating function.

t

n

0

With the large numbers involved in the population of the world or HIV replication 
within a patient, for example, it is reasonable to model the population function with a 

0.2

_0.2

1.2 1.3

3

_3

_1 3

Figure �10
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1.2 1.3

3
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Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 2.5  |  Continuity    147

continuous function. Indeed, in Section 1.4 we obtained the exponential model

Pstd < s1436.53d ? s1.01395d t

for the world population after 1900 (corresponding to t − 0). In general, the exponential 
functions

f std − n0bt      and      tstd − n0ekt

where b and k are constants, are continuous functions that are often used to model popu-
lation growth, at least in the initial stages.

	 1.	��� Write an equation that expresses the fact that a function f  is 
continuous at the number 4.

	 2.	�� �If f  is continuous on s2`, `d, what can you say about its 
graph?

	 3.	�� (a)	� From the graph of f , state the numbers at which f  is 
discontinuous and explain why.

		  (b)	� For each of the numbers stated in part (a), determine 
whether f  is continuous from the right, or from the left,  
or neither.

y

x_4 2 4 6_2 0

	 4.	��� From the graph of t, state the intervals on which t is  
continuous.

y

x_4 2 4 6_2 8

	� 5–8 � Sketch the graph of a function f  that is continuous except 
for the stated discontinuity.

	 5.	�� Discontinuous, but continuous from the right, at 2

	 6.	��� Discontinuities at 21 and 4, but continuous from the left at 
21 and from the right at 4

	 7.	�� Removable discontinuity at 3, jump discontinuity at 5

	 8.	��� Neither left nor right continuous at 22, continuous only 
from the left at 2

	 9.	� Drug concentration �� A patient is injected with a drug 
every 12 hours. The graph shows the concentration Cstd of 
the drug in the bloodstream after t hours.

		  (a)	� At what values of t does C have discontinuities?
		  (b)	� What type of discontinuity does C have?

t (hours)

C

0

(mg/mL)

12 24 36 48

80

	 10.	� Squirrel population �� The graph of a population Pstd of 
squirrels is shown. Identify the discontinuities of P and 
comment on when and why they occur.

5 t (days)2 3 410

25

20

30
P

	 11.	��� A parking lot charges $3 for the first hour (or part of an 
hour) and $2 for each succeeding hour (or part), up to a 
daily maximum of $10.

		  (a)	� Sketch a graph of the cost of parking at this lot as a 
function of the time parked there.

		  (b)	� Discuss the discontinuities of this function and their 
significance to someone who parks in the lot.

EXERCISES 2.5
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	 ;	� 27–28 � Locate the discontinuities of the function and illustrate 
by graphing.

	 27.	 y −
1

1 1 e 1yx 	 28.	 y − lnstan2xd

	� 29–32 � Use continuity to evaluate the limit.

	 29.	 lim
x l

 

4
 
5 1 sx 

s5 1 x 
	 30.	 lim

x l
 

�
 sinsx 1 sin xd

	 31.	 lim
x l

 

1
 ex 22x

	 32.	� Drug resistance �� As we have previously noted (page 25), 
if p is the current frequency of the resistance gene in a 
model for the spread of drug resistance, then the frequency 
in the next generation is

p 2 2 2p

p 2 2 2

		���  What is the limit of this function as p l 12?

	� 33–34 � Show that f  is continuous on s2`, `d.

	 33.	� f sxd − H x 2     if  x , 1

sx     if  x > 1

	 34.	� f sxd − Hsin x    if  x , �y4

cos x    if  x > �y4

	 35.	��� Find the numbers at which the function

f sxd − Hx 1 2

ex

2 2 x

if x , 0

if 0 < x < 1

if x . 1

		���  is discontinuous. At which of these points is f  continuous 
from the right, from the left, or neither? Sketch the graph  
of f .

	 36.	��� The gravitational force exerted by the planet Earth on a unit 
mass at a distance r from the center of the planet is

Fsrd −

GMr

R 3 if  r , R

	
GM

r 2 	 if  r > R

		��  �where M is the mass of Earth, R is its radius, and G is the 
gravitational constant. Is F a continuous function of r?

	 37.	��� For what value of the constant c is the function f  continu-
ous on s2`, `d?

f sxd − Hcx 2 1 2x

x 3 2 cx

if  x , 2

if  x > 2

	 12.	��� Explain why each function is continuous or discontinuous.
		  (a)	� The temperature in New York City as a function of time
		  (b)	� The population of New York City as a function of time
		  (c)	�� The temperature at a specific time as a function of the 

distance due west from New York City
		  (d)	� The altitude above sea level as a function of the distance 

due west from New York City
		  (e)	� The cost of a taxi ride as a function of the distance  

traveled

	 13.	��� If f  and t are continuous functions with f s3d − 5 and 
limxl3 f2 f sxd 2 tsxdg − 4, find ts3d.

	� 14–15 � Use the definition of continuity and the properties of lim-
its to show that the function is continuous at the given number a.

	 14.	�� f sxd − 3x 4 2 5x 1 s3 x 2 1 4 ,    a − 2

	 15.	�� f sxd − sx 1 2x 3 d4,    a − 21

	 16.	��� Use the definition of continuity and the properties of limits  
to show that the following function is continuous on the 
interval s2, `d.

f sxd −
2x 1 3

x 2 2
 

	� 17–20 � Explain why the function is discontinuous at the given 
number a. Sketch the graph of the function.

	 17.	 f sxd − He x

x 2

if x , 0

if x > 0
	 a − 0

	 18.	 f sxd − H x 2 2 x

x 2 2 1

1

    if  x ± 1

    if  x − 1

	 a − 1

	 19.	 f sxd − Hcos x

0

1 2 x 2

if x , 0

if  x − 0

if x . 0

	 a − 0

	 20.	 f sxd − H 2x 2 2 5x 2 3

x 2 3

6

    if  x ± 3

    if  x − 3

	 a − 3

	� 21–26 � Explain, using Theorems 4, 5, 6, and 8, why the function 
is continuous at every number in its domain. State the domain.

	 21.	 Rsxd − x 2 1 s2x 2 1 	 22.	 Gsxd − s3 x s1 1 x 3d

	 23.	 Lstd − e 25t cos 2�t	 24.	 hsxd −
sin x

x 1 1

	 25.	 Gstd − lnst 4 2 1d	 26.	 Fsxd − sinscosssin xdd
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	 ;	� 47–48 � (a) Prove that the equation has at least one real solu-
tion. (b) Use your graphing device to find the solution correct 
to three decimal places.

	 47.	 100e2xy100 − 0.01x 2	 48.	 sx 2 5 −
1

x 1 3

	 49.	�� Is there a number that is exactly 1 more than its cube?

	 50.	�� Show that the function

f sxd − Hx 4 sins1yxd
0

if x ± 0

if x − 0

		��  is continuous on s2`, `d.

	 51.	��� A Tibetan monk leaves the monastery at 7:00 am and  
takes his usual path to the top of the mountain, arriving at 
7:00 pm. The following morning, he starts at 7:00 am at the 
top and takes the same path back, arriving at the monastery 
at 7:00 pm. Use the Intermediate Value Theorem to show 
that there is a point on the path that the monk will cross at 
exactly the same time of day on both days.

	 38.	��� Suppose that a function f  is continuous on [0, 1] except at 
0.25 and that f s0d − 1 and f s1d − 3. Let N − 2. Sketch 
two possible graphs of f, one showing that f  might not 
satisfy the conclusion of the Intermediate Value Theorem 
and one showing that f  might still satisfy the conclusion of 
the Intermediate Value Theorem (even though it doesn’t 
satisfy the hypothesis).

	 39.	��� If f sxd − x 2 1 10 sin x, show that there is a number c such 
that f scd − 1000.

	 40.	��� Suppose f  is continuous on f1, 5g and the only solutions of 
the equation f sxd − 6 are x − 1 and x − 4. If f s2d − 8, 
explain why f s3d . 6.

	� 41–44 � Use the Intermediate Value Theorem to show that there 
is a solution of the given equation in the specified interval.

	 41.	�� �x 4 1 x 2 3 − 0,    s1, 2d	 42.	� s3 x − 1 2 x,    s0, 1d

	 43.	�� e x − 3 2 2x,    s0, 1d	 44.	 sin x − x 2 2 x,    s1, 2d

	� 45–46 � (a) Prove that the equation has at least one real root.  
(b) Use your calculator to find an interval of length 0.01 that  
contains a root.

	 45.	 cos x − x 3	 46.	 ln x − 3 2 2x

CONCEPT CHECK

	 1.	�� (a)	 What is a convergent sequence?
		  (b)	 What does limnl` an − 3 mean?

	 2.	�� �What is lim
nl`

 r n in the following three cases?

		  (a)	 0 , r , 1	 (b)	 r − 1	 (c)	 r . 1

	 3.	�� (a)	� What is the sum of the finite geometric series 
a 1 ar 1 ar 2 1 ∙ ∙ ∙ 1 ar n?

		  (b)	� If 21 , r , 1, what is the sum of the infinite geomet-
ric series a 1 ar 1 ar 2 1 ∙ ∙ ∙ 1 ar n 1 ∙ ∙ ∙?

	 4.	��� Explain what each of the following means and illustrate 
with a sketch.

		  (a)	 lim
x l a

 f sxd − L	 (b)	 lim
x l a1

 f sxd − L

		  (c)	 lim
x l a2

 f sxd − L	 (d)	 lim
x l a

 f sxd − `

		  (e)	 lim
x l `

 f sxd − L

	 5.	�� State the following Limit Laws for functions.
		  (a)	 Sum Law	 (b)	 Difference Law
		  (c)	 Constant Multiple Law	 (d)	 Product Law
		  (e)	 Quotient Law	 (f)	 Power Law
		  (g)	 Root Law

	 6.	�� What does the Squeeze Theorem say?

	 7.	�� (a)	� What does it mean to say that the line x − a is a vertical 
asymptote of the curve y − f sxd? Draw curves to illus-
trate the various possibilities.

		  (b)	� What does it mean to say that the line y − L is a hori-
zontal asymptote of the curve y − f sxd? Draw curves to 
illustrate the various possibilities.

	 8.	��� Which of the following curves have vertical asymptotes? 
Which have horizontal asymptotes?

		  (a)	 y − x 4	 (b)	 y − sin x
		  (c)	 y − tan x	 (d)	 y − e x

		  (e)	 y − ln x	 (f)	 y − 1yx

		  (g)	 y − sx 

	 9.	�� (a)	 What does it mean for f  to be continuous at a?
		  (b)	� What does it mean for f  to be continuous on the interval 

s2`, `d? What can you say about the graph of such a 
function?

	 10.	�� What does the Intermediate Value Theorem say?

Answers to the Concept Check can be found on the back 
endpapers.

Chapter 2 Review
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150    Chapter 2  |  Limits

	� Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

	 1.	�� If limnl` an − L, then limnl` a2n11 − L.

	 2.	 0.99999 . . . − 1

	 3.	 lim
x l

 

4
 S 2x

x 2 4
2

8

x 2 4D − lim
x l

 

4
 

2x

x 2 4
2 lim

x l
 

4
 

8

x 2 4

	 4.	 lim
x l

 

1
 
x 2 1 6x 2 7

x 2 1 5x 2 6
−

lim
x l

 

1 sx 2 1 6x 2 7d

lim
x l

 

1
 sx 2 1 5x 2 6d

	 5.	 lim
x l 1

 
x 2 3

x 2 1 2x 2 4
−

lim
x l 1 sx 2 3d

lim
x l 1

 sx 2 1 2x 2 4d

	 6.	��� If limx l 5 f sxd − 2 and limx l 5 tsxd − 0, then 
��limx l 5 f f sxdytsxdg does not exist.

	 7.	�� �If lim x l5 f sxd − 0 and limx l 5 tsxd − 0, then 
��limx l 5 f f sxdytsxdg does not exist.

	 8.	��� If limx l 6 f f sxd tsxdg exists, then the limit must be f s6d ts6d.

	 9.	�� If p is a polynomial, then limx l b psxd − psbd.

	 10.	�� �If limx l 0 f sxd − ` and limx l 0 tsxd − `, then 
limx l 0 f f sxd 2 tsxdg − 0.

	 11.	��� A function can have two different horizontal asymptotes.

	 12.	�� �If f  has domain f0, `d and has no horizontal asymptote, 
then limx l ` f sxd − ` or limx l ` f sxd − 2`.

	 13.	�� �If the line x − 1 is a vertical asymptote of y − f sxd, then f  
is not defined at 1.

	 14.	�� �If f s1d . 0 and f s3d , 0, then there exists a number c 
between 1 and 3 such that f scd − 0.

	 15.	��� If f  is continuous at 5 and f s5d − 2 and f s4d − 3, then 
limx l 2 f s4x 2 2 11d − 2.

	 16.	�� �If f  is continuous on f21, 1g and f s21d − 4 and  
f s1d − 3, then there exists a number r such that | r | , 1  
and f srd − �.

TRUE-FALSE QUIZ

EXERCISES

	� 1–4 � Determine whether the sequence is convergent or diver-
gent. If it is convergent, find its limit.

	 1.	 an −
2 1 n 3

1 1 2n 3 	 2.	 an −
9 n11

10 n

	 3.	 an −
n 3

1 1 n 2 	 4.	 an − s22dn

	 5.	��� Calculate the first eight terms of the sequence defined by 
a1 − 1, an11 − 1

3 an 1 3. Does it appear to be convergent? 
Assuming the limit exists, find its exact value.

	 6.	� Drug concentration �� A patient is injected with a drug at 
the same time every day. Before each injection, the concen-
tration of the drug has dropped to 20% of its original value 
and the new dose raises the concentration by 0.25 mgymL.

		  (a)	� What is the concentration after four doses?
		  (b)	� If Cn is the concentration after n doses, write a differ-

ence equation that expresses Cn11 in terms of Cn.
		  (c)	� Solve the difference equation to find a formula for Cn.
		  (d)	� Find the limiting value of the concentration.

	 7.	��� Express the repeating decimal 1.2345345345 . . . as a 
fraction.

	 8.	� Logistic equation �� Plot enough terms of the logistic 
difference equation to see the behavior of the terms. If the 

sequence appears to be convergent, estimate its limit and 
then, assuming the limit exists, find its exact value. If not, 
describe how the terms behave.

		  (a)	� xt11 − 2.5xts1 2 xtd,  x0 − 0.5
		  (b)	 xt11 − 3.3xts1 2 xtd,  x0 − 0.4

	 9.	�� The graph of f  is given.
		  (a)	 Find each limit, or explain why it does not exist.
			   (i)	 lim

x l 21
 f sxd	 (ii)	 lim

x l 231
 f sxd

			   (iii)	 lim
x l 23

 f sxd	 (iv)	 lim
x l 4

 f sxd

			   (v)	 lim
x l 0

 f sxd	 (vi)	 lim
x l 22

 f sxd

			   (vii)	 lim
x l `

 f sxd	 (viii)	 lim
x l 2`

 f sxd

		  (b)	 State the equations of the horizontal asymptotes.
		  (c)	 State the equations of the vertical asymptotes.
		  (d)	 At what numbers is f  discontinuous? Explain.

0 x

y

1

1
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	 29.	 �The Michaelis-Menten equation ��for the rate v of the 
enzymatic reaction of the concentration [S] of a substrate S, 
in the case of the enzyme pepsin, is

v −
0.50fSg

3.0 3 10 24 1 fSg

		���  What is lim
fSgl `

 v? What is the meaning of the limit in this

		��   context?

	 30.	�� Prove that limx l 0 x 2 coss1yx 2 d − 0.

	 31.	��� Let

f sxd − Hs2x 

3 2 x

sx 2 3d2

if x , 0

if 0 < x , 3

if x . 3

		  (a)	 Evaluate each limit, if it exists.
			   (i)	 lim

x l 01
 f sxd	 (ii)	 lim

x l 02
 f sxd	 (iii)	 lim

x l 0
 f sxd

			   (iv)	 lim
x l 32

 f sxd	 (v)	 lim
x l 31

 f sxd	 (vi)	 lim
x l 3

 f sxd

		  (b)	 Where is f  discontinuous?
		  (c)	 Sketch the graph of f.

	 32.	��� Show that each function is continuous on its domain. State  
the domain.

		  (a)	 tsxd −
sx 2 2 9 

x 2 2 2
	 (b)	 hsxd − xesin x

	� 33–34 � Use the Intermediate Value Theorem to show that there 
is a root of the equation in the given interval.

	 33.	 2x 3 1 x 2 1 2 − 0,     s22, 21d

	 34.	�� e2x 2

− x,    s0, 1d

	 10.	��� Sketch the graph of an example of a function f  that satisfies 
all of the following conditions:

		  lim
x l

 

2`
 f sxd − 22,    lim

x l `
 f sxd − 0,    lim

x l
 

23
 f sxd − `,

		  lim
x l

 

32
 f sxd − 2`,    lim

x l
 

31
 f sxd − 2,

		  f  is continuous from the right at 3

	� 11–28 � Find the limit.

	 11.	 lim
xl `

 
1 2 x

2 1 5x
	 12.	 lim

t l `
 322 t

	 13.	 lim
x l

 

1
 e x 3 2x	 14.	 lim

x l
 

3
 

x 2 2 9

x 2 1 2x 2 3

	 15.	 lim
x l

 

23
 

x 2 2 9

x 2 1 2x 2 3
	 16.	 lim

x l
 

11
 

x 2 2 9

x 2 1 2x 2 3

	 17.	 lim
h l

 

0
 
sh 2 1d3 1 1

h
	 18.	 lim

t l
 

2
 
t 2 2 4

t 3 2 8

	 19.	 lim
r l

 

9
 

sr  

sr 2 9d4 	 20.	 lim
v l

 

41 
4 2 v

| 4 2 v |

	 21.	 lim
u l 1

 
u 4 2 1

u3 1 5u 2 2 6u
	 22.	 lim

x l 3
 
sx 1 6 2 x

x 3 2 3x 2

	 23.	 lim
x l �2 lnssin xd	 24.	 lim

x l 2`
 
1 2 2x 2 2 x 4

5 1 x 2 3x 4

	 25.	 lim
x l `

 
sx 2 2 9 

2x 2 6
	 26.	 lim

x l `
 e x2x 2

	 27.	 lim
x l `

 (sx 2 1 4x 1 1 2 x)

	
28.	 lim

x l 1
 S 1

x 2 1
1

1

x 2 2 3x 1 2D
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case study 2a  Hosts, Parasites, and Time-Travel

We are studying a model for the interaction between Daphnia and its para-
site. Recall that there are two possible host genotypes (A and a) and two 
possible parasite genotypes (B and b). Parasites of type B can infect only hosts 
of type A, while parasites of type b can infect only hosts of type a. Here we will take 
equations that will be obtained in Case Studies 2b and 2d to explore the biological pre-
dictions that can be obtained from them.

In Case Study 2d we will derive the functions

(1a)	  qstd − 1
2 1 Mq cossct 2 �qd	

(1b)	  pstd − 1
2 1 Mp cossct 2 �pd	
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152    Chapter 2  |  Limits

where qstd is the predicted frequency of host genotype A at time t and pstd is the pre-
dicted frequency of parasite genotype B at time t. In these equations �q, �p, and c are 
positive constants, while Mq, Mp are positive constants that are strictly less than 12.

	 1.	�� �Describe, in words, how the genotype frequencies of the host and parasite change 
over time. Provide an explanation, in biological terms, for these dynamics.

	 2.	� ��How do the constants Mq and Mp affect the pattern of genotype frequencies over 
time?

	 3.	�� �The constant c is determined by the consequences of infection, in terms of repro-
duction, for both the host and the parasite. A large difference in reproductive suc-
cess between infected versus uninfected hosts makes c large. Likewise, a large 
difference in reproductive success between parasites that are unable to infect a 
host versus those that are able to infect a host also makes c large. How does c 
affect the pattern of genotype frequencies over time as predicted by Equations 1? 
Provide an explanation for this in biological terms.

	 4.	�� �The constants �q and �p are referred to as the phase of qstd and pstd, respec-
tively. How do these constants affect the pattern of genotype frequencies over 
time?

	 5.	�� �As you will see in Equation 3, the difference �* − �p 2 �q turns out to be 
important in the coevolution of the host and parasite. What does this difference 
represent mathematically? Explain why this quantity is a measure of the extent 
to which the frequency of the parasite genotype lags behind the frequency of the 
host genotype.

Equations 1 give the genotype frequencies as functions of time. In the Daphnia-
parasite system described in Case Study 2 on page xlvi, these equations can also be 
interpreted as giving the dynamics of genotype frequencies as a function of depth in the 
sediment core shown in Figure 1.

Shallow

Young

Deep

Old
Time

Depth

W

t

W

t 1 D

D

Deep Shallow

Old Young

Depth

Time

Figure �1	 Figure �2

In the experiment described in Case Study 2, researchers chose a fixed depth � and 
extracted a layer of sediment of width W  centered around this depth (see Figure 2). The 
contents of this layer were mixed completely, and then hosts and parasites were extracted 
at random from the mixture. Researchers also took deeper and shallower layers (which 
represent the past and the future for hosts located in the layer at �) and again completely 
mixed each layer. The center of these layers was a distance D from the center of the 
focal layer at �, with D , 0 corresponding to a deeper layer and D . 0 a shallower layer 
(see Figure 2). The researchers then challenged hosts from the layer at � with parasites 
from their past (that is, from the layer with D , 0), present (the layer at �), and future 
(the layer with D . 0). For each challenge experiment the fraction of hosts becoming 
infected was measured.
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In Case Study 2b we will show that, when a layer of sediment at location � with width 
W  is mixed completely, the frequency of type A hosts in this mixture is predicted to be

(2a)	 qaves�d − 1
2 1 Mq cossc� 2 �qd

2 sin(1
2cW)

cW
	

Likewise, we will show that, when a layer of sediment at location � with width W  is 
mixed completely, the frequency of type B parasites in this mixture is predicted to be

(2b)	 paves�d − 1
2 1 Mp cossc� 2 �pd

2 sin(1
2cW)

cW
	

	 6.	�� �The functions (2a) and (2b) are similar to (1a) and (1b) except that the second 
terms are multiplied by the quantity 2 sin(1

2cW)ycW . Describe how the frequency 
of the genotypes within a mixed layer depends on the width W  of this layer. In 
particular, what happens as the width of the layer becomes very small (that is, 
when W l 0)? What happens as the width becomes very large (that is, W l `)? 
Provide a biological interpretation for your answers.

In the experiment introduced in Case Study 2, hosts from depth � were challenged 
with parasites from depth � 1 D. This was repeated for different depths �, and the overall 
fraction of hosts infected was measured. In Case Study 2b we will show that the pre-
dicted fraction of hosts infected from such an experiment is

(3)	 FsDd − 1
2 1 Mp Mq cosscD 2 �*d

4 sin2 (1
2cW)

c 2W 2 	

where �* − �p 2 �q and D , 0 corresponds to parasites from a host’s past and D . 0 
to parasites from a host’s future.

	 7.	�� �Sketch the graph of FsDd when �* − 0. Be as accurate as possible, showing 
where the maxima and minima occur as well as where the graph crosses the 
vertical axis. Construct similar sketches when �* is small and positive as well 
as when �* is small and negative. These plots depict the predicted fraction of 
infected hosts in the experiment as a function of the relative point in time from 
which the parasite was taken.

	 8.	�� �Suppose that cD is relatively small, meaning that the layers used in the challenge 
experiments are close to one another. Use your results from Problem 7 to explain 
how it is possible to obtain the experimental data like those shown in Figure 3.
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Figure �3
Horizontal axis is the time from which 

the parasite was taken, relative to  
the host’s point in time.

Source: Adapted from S. Gandon et al., “Host-

Parasite Coevolution and Patterns of Adaptation 

across Time and Space,” Journal of Evolutionary 

Biology 21 (2008): 1861–66.
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154    Chapter 2  |  Limits

		�  ��In particular, what is true about the value of �* in this case? Provide a biological 
interpretation of your answer.

	 9.	�� �Again suppose that cD is relatively small. Use your results from Problem 7 to 
explain how it is possible to obtain data like those shown in Figure 4. What is 
true about the value of �* in this case? Provide a biological interpretation of your 
answer.
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Figure �4
Horizontal axis is the time from which 

the parasite was taken, relative to  
the host’s point in time.

Source: Adapted from S. Gandon et al., “Host-

Parasite Coevolution and Patterns of Adaptation 

across Time and Space,” Journal of Evolutionary 

Biology 21 (2008): 1861–66.
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3.1  Derivatives and Rates of Change

3.2  The Derivative as a Function

3.3  �Basic Differentiation Formulas

3.4  The Product and Quotient Rules

3.5  �The Chain Rule

3.6  �Exponential Growth and Decay
Project: Controlling Red Blood Cell Loss During Surgery

3.7  �Derivatives of the Logarithmic and Inverse Tangent Functions

3.8  �Linear Approximations and Taylor Polynomials
Project: Harvesting Renewable Resources

CASE STUDY 1b: Kill Curves and Antibiotic Effectiveness

The maximum sustainable swim-

ming speed S of salmon depends 

on the water temperature T. 

Exercise 42 in Section 3.1 asks 

you to analyze how S varies as 

T changes by estimating the 

derivative of S with respect to T.

© Jody Ann / Shutterstock.com
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156    Chapter 3  |  Derivatives

3.1 Derivatives and Rates of Change

The problem of finding a rate of change at a given instant and the problem of finding the 
tangent line to a curve at a given point involve finding the same type of limit, which we 
call a derivative.

■ Measuring the Rate of Increase of  
Blood Alcohol Concentration
Biomedical scientists have studied the chemical and physiological changes in the body 
that result from alcohol consumption. The reaction in the human body occurs in two 
stages: a fairly rapid process of absorption and a more gradual one of metabolism. To 
predict the effect of alcohol consumption, one needs to know the rate at which alcohol is 
absorbed and metabolized.

Medical researchers measured the blood alcohol concentration (BAC) of eight fasting 
adult male subjects after rapid consumption of 15 mL of ethanol (corresponding to one 
alcoholic drink).1 The data they obtained were modeled by the concentration function

(1)	 Cstd − 0.0225te20.0467t	

where t is measured in minutes after consumption and C is measured in mgymL. The 
graph of C is shown in Figure 1.

C

0 t (min)60

0.1

(mg/mL)

 Example 1   |  Blood alcohol concentration  How quickly is the BAC (given 
by Equation 1) increasing after 10 minutes?

Solution � We are asked to find the rate of change of C with respect to t when 
t − 10. The difficulty is that we are dealing with a single instant of time (t − 10 min) 
and so no time interval is involved. However, we can approximate the desired quantity 

Figure �1

In this chapter we study a special type of limit, called a derivative. Derivatives 

arise when we want to find a rate of growth, a velocity, the slope of a tangent line, or 

any instantaneous rate of change.

1.� P. Wilkinson et al., “Pharmacokinetics of Ethanol after Oral Administration in the Fasting State,” Journal 
of Pharmacokinetics and Biopharmaceutics 5 (1977): 207–24.
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�by calculating the average rate of change of C with respect to t in the time interval 
�from t − 10 to t − 11:

 average rate of change −
change in C

change in t
−

Cs11d 2 Cs10d
11 2 10

 <
0.148073 2 0.141048

1
− 0.007025 smgymLdymin

�The following table shows the results of similar calculations of the average rates of 
change [in smgymLdymin] over successively smaller time periods.

Time interval
Average rate 

of change Time interval
Average rate 

of change

10 < t < 11 0.00703 	 9 < t < 10 0.00804
10 < t < 10.5 0.00727 	 9.5 < t < 10 0.00777
10 < t < 10.1 0.00747 	 9.9 < t < 10 0.00757
10 < t < 10.01 0.00751 9.99 < t < 10 0.00752

�It appears that as we shorten the time period, the average rate of change is becom-
ing closer and closer to a number between 0.00752 and 0.00753 smgymLdymin. The 
instantaneous rate of change at t − 10 is defined to be the limiting value of these 
average rates of change over shorter and shorter time periods that start or end at t − 10. 
So we estimate that the BAC increased at a rate of about 0.0075 smgymLdymin.	 ■

■ Tangent Lines
The word tangent is derived from the Latin word tangens, which means “touching.” Thus 
a tangent to a curve is a line that touches the curve. In other words, a tangent line should 
have the same direction as the curve at the point of contact. How can this idea be made 
precise?

For a circle we could simply follow Euclid and say that a tangent is a line that inter-
sects the circle once and only once, as in Figure 2(a). For more complicated curves this 
definition is inadequate. Figure 2(b) shows two lines l and t passing through a point P on 
a curve C. The line l intersects C only once, but it certainly does not look like what we 
think of as a tangent. The line t, on the other hand, looks like a tangent but it intersects 
C twice.

(a) (b)

t
P

Ct

l

To be specific, let’s look at the problem of trying to find a tangent line t to the parabola 
y − x 2 in the following example.

We will return to the story about blood 
alcohol concentration in Example 6.

Figure �2
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 Example 2   |  Find an equation of the tangent line to the parabola y − x 2 at the  
point Ps1, 1d.

SOLUTION � We will be able to find an equation of the tangent line t as soon as we 
know its slope m. The difficulty is that we know only one point, P, on t, whereas we 
need two points to compute the slope. But observe that we can compute an approxima-
tion to m by choosing a nearby point Qsx, x 2 d on the parabola (as in Figure 3) and 
computing the slope mPQ of the secant line PQ. [A secant line, from the Latin word 
secans, meaning cutting, is a line that cuts (intersects) a curve more than once.]

We choose x ± 1 so that Q ± P. Then

mPQ −
x 2 2 1

x 2 1

What happens as x approaches 1? From Figure 4 we see that Q approaches P along the 
parabola and the secant lines PQ rotate about P and approach the tangent line t.

Q approaches P from the right

Q approaches P from the left

P

y

x0

Q

t

P

y

x0

Q

t

P

y

x0

Q

t

P

y

x0
Q

t

P

y

x0

Q

t

x0

P

y
Q

t

Figure �4

It appears that the slope m of the tangent line is the limit of the slopes of the secant 
lines as x approaches 1:

 m − lim
xl1

 
x2 2 1

x 2 1
− lim

xl1
 
sx 2 1dsx 1 1d

x 2 1

 − lim
xl1

 sx 1 1d − 1 1 1 − 2

Using the point-slope form of the equation of a line, we find that an equation of the 
tangent line at s1, 1d is

y 2 1 − 2sx 2 1d    or    y − 2x 2 1 ■

x

y

0

y=≈

tQ{x, ≈}

P(1, 1)

Figure �3

 TEC   In Visual 3.1A you can see how 
the process in Figure 4 works for addi-
tional functions.

Point-slope form for a line through the 
point sx1, y1d with slope m:

y 2 y1 − msx 2 x1d
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We sometimes refer to the slope of the tangent line to a curve at a point as the slope 
of the curve at the point. The idea is that if we zoom in far enough toward the point, the 
curve looks almost like a straight line. Figure 5 illustrates this procedure for the curve 
y − x 2 in Example 2. The more we zoom in, the more the parabola looks like a line. In 
other words, the curve becomes almost indistinguishable from its tangent line.

(1, 1)

2

0 2

(1, 1)

1.5

0.5 1.5

(1, 1)

1.1

0.9 1.1

Figure �5  Zooming in toward the point s1, 1d on the parabola y − x 2

In general, if a curve C has equation y − f sxd and we want to find the tangent line to 
C at the point Psa, f sadd, then we consider a nearby point Qsx, f sxdd, where x ± a, and 
compute the slope of the secant line PQ:

mPQ −
f sxd 2 f sad

x 2 a

Then we let Q approach P along the curve C by letting x approach a. If mPQ approaches 
a number m, then we define the tangent t to be the line through P with slope m. (This 
amounts to saying that the tangent line is the limiting position of the secant line PQ as 
Q approaches P. See Figure 6.)

0 x

y

P

t
Q

Q

Q

0 x

y

a x

P{a, f(a)}

ƒ-f(a)

x-a

Q{x, ƒ}

Figure �6

(2) Definition � The tangent line to the curve y − f sxd at the point Psa, f sadd is 
the line through P with slope

m − lim
x l a

 
 f sxd 2 f sad

x 2 a

provided that this limit exists.

 TEC   Visual 3.1B shows an animation 
of Figure 5.
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There is another expression for the slope of a tangent line that is sometimes easier to 
use. If h − x 2 a, then x − a 1 h and so the slope of the secant line PQ is

mPQ −
 f sa 1 hd 2 f sad

h

(See Figure 7 where the case h . 0 is illustrated and Q is to the right of P. If it hap-
pened that h , 0, however, Q would be to the left of P.) Notice that as x approaches  
a, h approaches 0 (because h − x 2 a) and so the expression for the slope of the tangent 
line in Definition 2 becomes

(3)	 m − lim
h l 0

 
 f sa 1 hd 2 f sad

h
	

 Example 3   |  Find an equation of the tangent line to the hyperbola y − 3yx at the  

point s3, 1d.

SOLUTION � Let f sxd − 3yx. Then, by Equation 3, the slope of the tangent at s3, 1d is

m − lim
h l 0

 
 f s3 1 hd 2 f s3d

h
− lim

h l 0
 

3

3 1 h
2 1

h
− lim

h l 0
 

3 2 s3 1 hd
3 1 h

h

	 − lim
h l 0

 
2h

hs3 1 hd
− lim

h l 0
 2

1

3 1 h
− 2

1

3

Therefore an equation of the tangent at the point s3, 1d is

y 2 1 − 21
3 sx 2 3d

which simplifies to	 y − 2 2 1
3x    or    x 1 3y 2 6 − 0

The hyperbola and its tangent are shown in Figure 8.	 ■

■ Derivatives
We have seen that the same type of limit arises in finding the slope of a tangent line 
(Equation 3) or a rate of change (Example 1). In fact, limits of the form

lim
h l

 

0
 
 f sa 1 hd 2 f sad

h

arise whenever we calculate a rate of change in any of the sciences, such as a rate of 
growth in biology or a rate of reaction in chemistry. Since this type of limit occurs so 
widely, it is given a special name and notation.

(4) Definition � The derivative of a function f at a number a, denoted by f 9sad, 
is

f 9sad − lim
h l

 

0
 
 f sa 1 hd 2 f sad

h
if this limit exists.

0 x

y

a a+h

P{a, f(a)}

h

Q{a+h, f(a+h)}
t

f(a+h)-f(a)

Figure �7

y=

(3, 1)

x+3y-6=0

x

y

0

3
x

Figure �8

f 9sad is read “ f  prime of a.”
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If we write x − a 1 h, then we have h − x 2 a and h approaches 0 if and only if x  
approaches a. Therefore an equivalent way of stating the definition of the derivative, as 
we saw in finding tangent lines, is

(5)	 f 9sad − lim
x l a

 
 f sxd 2 f sad

x 2 a
	

 Example 4   |  Find the derivative of the function f sxd − x 2 2 8x 1 9 at the 
number a.

SOLUTION � From Definition 4 we have

  f 9sad − lim
h l

 

0
 
 f sa 1 hd 2 f sad

h

 − lim
h l

 

0
 
fsa 1 hd2 2 8sa 1 hd 1 9g 2 fa 2 2 8a 1 9g

h

 − lim
h l

 

0
 
a 2 1 2ah 1 h 2 2 8a 2 8h 1 9 2 a 2 1 8a 2 9

h

 − lim
h l

 

0
 
2ah 1 h 2 2 8h

h
− lim

h l
 

0
 s2a 1 h 2 8d

 − 2a 2 8 ■

We defined the tangent line to the curve y − f sxd at the point Psa, f sadd to be the line 
that passes through P and has slope m given by Equation 2 or 3. Since, by Definition 4, 
this is the same as the derivative f 9sad, we can now say the following.

The tangent line to y − f sxd at sa, f sadd is the line through sa, f sadd whose slope is 
equal to f 9sad, the derivative of f  at a.

If we use the point-slope form of the equation of a line, we can write an equation of 
the tangent line to the curve y − f sxd at the point sa, f sadd:

y 2 f sad − f 9sadsx 2 ad

 Example 5   |  Find an equation of the tangent line to the parabola y − x 2 2 8x 1 9 
at the point s3, 26d.

SOLUTION � From Example 4 we know that the derivative of f sxd − x 2 2 8x 1 9 at 
the number a is f 9sad − 2a 2 8. Therefore the slope of the tangent line at s3, 26d is 
f 9s3d − 2s3d 2 8 − 22. Thus an equation of the tangent line, shown in Figure 9, is

y 2 s26d − s22dsx 2 3d        or        y − 22x ■

y=≈-8x+9

(3, _6)

y=_2x

0 x

y

Figure �9
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■ Rates of Change
We have already seen one example of a rate of change in Example 1. In general, suppose 
y is a quantity that depends on another quantity x. Thus y is a function of x and we write 
y − f sxd. If x changes from x1 to x2, then the change in x (also called the increment of 
x) is

Dx − x2 2 x1

and the corresponding change in y is

Dy − f sx2d 2 f sx1d

The difference quotient
Dy

Dx
−

 f sx2d 2 f sx1d
x2 2 x1

is called the average rate of change of y with respect to x over the interval fx1, x2g and 
can be interpreted as the slope of the secant line PQ in Figure 10.

As we did in Example 1, we now consider the average rate of change over smaller 
and smaller intervals by letting x2 approach x1 and therefore letting Dx approach 0. The 
limit of these average rates of change is called the (instantaneous) rate of change of y 
with respect to x at x − x1, which is interpreted as the slope of the tangent to the curve 
y − f sxd at Psx1, f sx1dd:

(6) �	  instantaneous rate of change − lim 
Dx l 0

 
Dy

Dx
− lim 

x2 l x1

  f sx2d 2 f sx1d
x2 2 x1

We recognize this limit as being the derivative f 9sx1d.
We know that one interpretation of the derivative f 9sad is as the slope of the tangent 

line to the curve y − f sxd when x − a.  We now have a second interpretation:

The derivative f 9sad is the instantaneous rate of change of y − f sxd with respect  
to x when x − a.

The connection with the first interpretation is that if we sketch the curve y − f sxd, then 
the instantaneous rate of change is the slope of the tangent to this curve at the point where 
x − a. This means that when the derivative is large (and therefore the curve is steep, as  
at the point P in Figure 11), the y-values change rapidly. When the derivative is small, the 
curve is relatively flat (as at point Q) and the y-values change slowly.

 Example 6   |  Blood alcohol concentration (continued)  Draw the tangent 
line to the BAC curve in Example 1 at t − 10 and interpret its slope.

SOLUTION � In Example 1 we estimated that the rate of increase of the blood alcohol 
concentration when t − 10 is about 0.0075 smgymLdymin. The equation of the curve 
(Equation 1) is

Cstd − 0.0225te20.0467t

which gives Cs10d < 0.14105. So, using the point-slope equation of a line, we get that 
an approximate equation of the tangent line at t − 10 is

C 2 0.14105 − 0.0075st 2 10d

or	 C − 0.06605 1 0.0075t

Figure �10
average rate of change − mPQ

instantaneous rate of change
        − slope of tangent at P

0 x

y

⁄ ¤

Q{¤, ‡}

Îx

ÎyP{⁄, fl}

P

Q

x

y

Figure �11
The y-values are changing rapidly  
at P and slowly at Q.
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The concentration curve and its tangent line are graphed in Figure 12 and the slope of 
the tangent line is the rate of increase of BAC when t − 10.

0  t (min)

0.1

10

C (mg/mL)

■

 Example 7   |  BB   Malarial parasites  The table at the left, supplied by 
Andrew Read, shows experimental data involving malarial parasites. The time t is 
measured in days and N is the number of parasites per microliter of blood.
(a)	 Find the average rates of change of N with respect to t over the intervals f1, 3g, 
f2, 3g, f3, 4g, and f3, 5g.
(b)	 Interpret and estimate the value of the derivative N9s3d.

solution
(a)	 The average rate of change over f1, 3g is

Ns3d 2 Ns1d
3 2 1

−
12,750 2 228

2
− 6261 sparasitesymLdyday

Similar calculations give the average rates of change in the following table:

Interval Rate of change

f1, 3g 6,261
f2, 3g 10,393
f3, 4g 13,911
f3, 5g 179,791

(b)	 The derivative N9s3d means the rate of change of N with respect to t when  
t − 3 days. According to Equation 5,

N9s3d − lim
t l3

 
Nstd 2 Ns3d

t 2 3

The difference quotients in this expression (for various values of t) are just the  
rates of change in the table in part (a). So N9s3d lies somewhere 10,393 and  
13,911 sparasitesymLdyday. We estimate that the rate of increase of the parasite 
population on day 3 was approximately the average of these two numbers, namely

N9s3d < 12,152 sparasitesymLdyday ■

A familiar example of a rate of change is velocity. In Example 2.3.1 we found the 
instantaneous velocity of a ball dropped from the CN Tower as the limit of average 
velocities over shorter and shorter time periods. More generally, if s − f std is the posi-
tion function of a particle that moves along a straight line, then f 9sad is the rate of change 

Figure �12

t N

1 	 228
2 	 2,357
3 	 12,750
4 	 26,661
5 	 372,331
6 	 2,217,441

Although the function Nstd is not a 
smooth function, it can be approxi-
mated by a smooth one as in Fig-
ure 2.5.12. In that sense it is meaning-
ful to talk about the derivative N9s3d.
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of the displacement s with respect to the time t. In other words, f 9sad is the velocity of 
the particle at time t − a. The speed of the particle is the absolute value of the velocity, 
that is, | f 9sad |.

Let’s revisit the example of the falling ball.

 Example 8   |  Suppose that a ball is dropped from the upper observation deck of the 
CN Tower, 450 m above the ground.
(a)	 What is the velocity of the ball after 5 seconds?
(b)	 How fast is the ball traveling when it hits the ground?

SOLUTION � We will need to find the velocity both when t − 5 and when the ball hits 
the ground, so it’s efficient to start by finding the velocity at a general time t. Using the 
equation of motion s − f std − 4.9t 2, we have

 vstd − f 9std − lim
h l 0

 
f st 1 hd 2 f std

h
− lim

h l 0
 
4.9st 1 hd2 2 4.9t 2

h

 − lim
h l 0

 
4.9st 2 1 2th 1 h 2 2 t 2d

h
− lim

h l 0
 
4.9s2th 1 h 2d

h

 − lim
h l 0

 4.9s2t 1 hd − 9.8t

(a)	 The velocity after 5 seconds is vs5d − s9.8ds5d − 49 mys. 

(b)	 Since the observation deck is 450 m above the ground, the ball will hit the ground 
at the time t1 when sst1d − 450, that is,

4.9t 2
1 − 450

This gives

t 2
1 −

450

4.9
    and    t1 − Î450

4.9
 < 9.6 s

The velocity of the ball as it hits the ground is therefore

vst1d − 9.8t1 − 9.8Î450

4.9
 < 94 mys ■

 Example 9   |  HIV prevalence and incidence  In Example 2.4.7 we saw  
that the prevalence of a disease P is the number of cases as a function of time t. The 
incidence of the disease is the number of new infections per unit time over a specified 
time interval. We calculated the incidence of HIV in New York during the early 1980s 
over shorter and shorter time intervals. In the limiting case, as the interval shrinks to 
zero, we obtained the incidence of HIV at a point in time. Thus the incidence of HIV at 
a particular time can be viewed as the derivative of its prevalence function at that time. 
(Technically, this is true only if prevalence is changing solely due to the occurrence of 
new infections, as was the case for HIV in the early 1980s, since incidence is defined 
as the rate of generation of new infections. More generally, prevalence can change as a 
result of individuals dying or recovering from disease, as occurred later for HIV).	 ■
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EXERCISES 3.1

	 1.	�� A curve has equation y − f sxd.
		  (a)	� Write an expression for the slope of the secant line 

through the points Ps3, f s3dd and Qsx, f sxdd.
		  (b)	� Write an expression for the slope of the tangent line  

at P.

	 ;	 2.	�� �Graph the curve y − e x in the viewing rectangles f21, 1g 
by f0, 2g, f20.5, 0.5g by f0.5, 1.5g, and f20.1, 0.1g by 
f0.9, 1.1g. What do you notice about the curve as you zoom 
in toward the point s0, 1d?

	 3.	�� (a)	� Find the slope of the tangent line to the parabola 
y − 4x 2 x 2 at the point s1, 3d

			   (i)	 using Definition 2	 (ii)	 using Equation 3
		  (b)	 Find an equation of the tangent line in part (a).

	 ;		��  (c)	� Graph the parabola and the tangent line. As a check on 
your work, zoom in toward the point s1, 3d until the 
parabola and the tangent line are indistinguishable.

	 4.	�� (a)	� Find the slope of the tangent line to the curve 
y − x 2 x 3 at the point s1, 0d

			   (i)	 using Definition 2	 (ii)	 using Equation 3
		  (b)	 Find an equation of the tangent line in part (a).

	 ;		  (c)	� Graph the curve and the tangent line in successively 
smaller viewing rectangles centered at s1, 0d until the 
curve and the line appear to coincide.

	� 5–8 � Find an equation of the tangent line to the curve at the  
given point.

	 5.	�� y − 4x 2 3x 2,    s2, 24d

	 6.	�� y − x 3 2 3x 1 1,    s2, 3d

	 7.	 y − sx ,    s1, 1d

	 8.	�� y −
2x 1 1

x 1 2
,    s1, 1d

	 9.	�� (a)	� Find the slope of the tangent to the curve 
y − 3 1 4x 2 2 2x 3 at the point where x − a.

		  (b)	� Find equations of the tangent lines at the points s1, 5d  
and s2, 3d.

	 ;		  (c)	� Graph the curve and both tangents on a common 
screen.

	 10.	�� (a)	� Find the slope of the tangent to the curve y − 1ysx  at 
the point where x − a.

		  (b)	� Find equations of the tangent lines at the points s1, 1d  
and s4, 12 d.

	 ;		  (c)	� Graph the curve and both tangents on a common 
screen.

	 11.	��� For the function t whose graph is given, arrange the 
following numbers in increasing order and explain  

		��  your reasoning:

0 t9s22d t9s0d t9s2d t9s4d

y=©

1 3 4_1 0 x2

y

	 12.	�� �Find an equation of the tangent line to the graph of 
y − tsxd at x − 5 if ts5d − 23 and t9s5d − 4.

	 13.	�� �If an equation of the tangent line to the curve y − f sxd at 
the point where a − 2 is y − 4x 2 5, find f s2d and f 9s2d.

	 14.	�� �If the tangent line to y − f sxd at (4, 3) passes through the 
point (0, 2), find f s4d and f 9s4d.

	 15.	�� �Sketch the graph of a function f  for which f s0d − 0, 
f 9s0d − 3, f 9s1d − 0, and f 9s2d − 21.

	 16.	��� Sketch the graph of a function t for which 
ts0d − ts2d − ts4d − 0, t9s1d − t9s3d − 0, 
t9s0d − t9s4d − 1, t9s2d − 21, limx l ` tsxd − `, and 
limx l 2` tsxd − 2`.

	 17.	��� If f sxd − 3x 2 2 x 3, find f 9s1d and use it to find an equa-
tion of the tangent line to the curve y − 3x 2 2 x 3 at the 
point s1, 2d.

	 18.	�� �If tsxd − x 4 2 2, find t9s1d and use it to find an equa- 
tion of the tangent line to the curve y − x 4 2 2 at the  
point s1, 21d.

	 19.	�� (a)	� If Fsxd − 5xys1 1 x 2d, find F9s2d and use it to  
find an equation of the tangent line to the curve 
y − 5xys1 1 x 2d at the point s2, 2d.

	 ;		  (b)	� Illustrate part (a) by graphing the curve and the tangent 
line on the same screen.

	 20.	�� (a)	� If Gsxd − 4x 2 2 x 3, find G9sad and use it to find equa-
tions of the tangent lines to the curve y − 4x 2 2 x 3 at 
the points s2, 8d and s3, 9d.

	 ;		  (b)	� Illustrate part (a) by graphing the curve and the tangent 
lines on the same screen.

	 21–25 � Find f 9sad.

	 21.	 f sxd − 3x 2 2 4x 1 1	 22.	 f std − 2t 3 1 t
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		  (a)	� Estimate the average rate of invasion between 1890 and 
1920, between 1920 and 1960, and between 1960 and 
2000.

		  (b)	� Estimate the instantaneous rate of invasion in 1940.

	 31.	�P opulation growth �� The table gives the US midyear 
population, in millions, from 1990 to 2010.

t 	1990  	1995 	2000 	2005 	2010

Pstd 249.6 	266.3 	282.2 	295.8 	308.3

		  (a)	� Find the average rate of population increase
			   (i)	 from 1990 to 2000	 (ii)	 from 1995 to 2000
			   (iii)	 from 2000 to 2005	 (iv)	 from 2000 to 2010
		  (b)	�� If Pstd is the population at time t, estimate and interpret 

the value of the derivative P9s2000d.

	 32.	� Viral load �� The table shows values of the viral load Vstd in 
HIV patient 303, measured in RNA copiesymL, t days after 
ABT-538 treatment was begun.

t 4 8 11 15 22

Vstd 53 18 9.4 5.2 3.6

		  (a)	� Find the average rate of change of V with respect to t 
over each time interval:

			   (i)	 f4, 11g	 (ii)	 f8, 11g
			   (iii)	 f11, 15g	 (iv)	 f11, 22g
			   What are the units?
		  (b)	� Estimate and interpret the value of the derivative V9s11d.

Source: Adapted from D. Ho et al., “Rapid Turnover of Plasma Virions and 

CD4 Lymphocytes in HIV-1 Infection,” Nature 373 (1995): 123–26.

	 33.	� Blood alcohol concentration �� Researchers measured the 
average blood alcohol concentration Cstd of eight men 

	 23.	 f std −
2t 1 1

t 1 3
	 24.	 f sxd − x 22

	 25.	 f sxd − s1 2 2x 

	 26.	��� Shown are graphs of the position functions of two runners,  
A and B, who run a 100-meter race and finish in a tie.

		  (a)	� Describe and compare how the runners run the race.
		  (b)	� At what time is the distance between the runners the  

greatest?
		  (c)	� At what time do they have the same velocity?

s (meters)

0 4 8 12

80

40

t (seconds)

A

B

	 27.	��� If a ball is thrown into the air with a velocity of 40 ftys, its 
height (in feet) after t seconds is given by y − 40t 2 16t 2. 
Find the velocity when t − 2.

	 28.	�� �If a rock is thrown upward on the planet Mars with a velocity 
of 10 mys, its height (in meters) after t seconds is given by 
H − 10t 2 1.86t 2.

		  (a)	 Find the velocity of the rock after one second.
		  (b)	 Find the velocity of the rock when t − a.
		  (c)	 When will the rock hit the surface?
		  (d)	 With what velocity will the rock hit the surface?

	 29.	�� �The displacement (in meters) of a particle moving in a 
straight line is given by the equation of motion s − 1yt 2, 
where t is measured in seconds. Find the velocity of the 
particle at times t − a, t − 1, t − 2, and t − 3.

	 30.	� Invasive species �� The Argentine ant is an invasive species 
in North America.

		��  �The graph shows the cumulative number of counties in the 
United States that have been invaded by this species over 
time.
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	 37.	�� �A warm can of soda is placed in a cold refrigerator. Sketch 
the graph of the temperature of the soda as a function of 
time. Is the initial rate of change of temperature greater or 
less than the rate of change after an hour?

	 38.	� Bacteria population �� The number of bacteria after t hours 
in a controlled laboratory experiment is n − f std.

		  (a)	� What is the meaning of the derivative f 9s5d? What are its 
units?

		  (b)	� Suppose there is an unlimited amount of space and nutri-
ents for the bacteria. Which do you think is larger, f 9s5d 
or f 9s10d? If the supply of nutrients is limited, would that 
affect your conclusion? Explain.

	 39.	��� The cost of producing x ounces of gold from a new gold 
mine is C − f sxd dollars.

		  (a)	� What is the meaning of the derivative f 9sxd? What are its 
units?

		  (b)	 What does the statement f 9s800d − 17 mean?
		  (c)	� Do you think the values of f 9sxd will increase or 

decrease in the short term? What about the long term? 
Explain.

	 40.	�� �The quantity (in pounds) of a gourmet ground coffee that is 
sold by a coffee company at a price of p dollars per pound  
is Q − f s pd.

		  (a)	� What is the meaning of the derivative f 9s8d? What are its 
units?

		  (b)	 Is f 9s8d positive or negative? Explain.

	 41.	�O xygen solubility �� The quantity of oxygen that can dis-
solve in water depends on the temperature of the water. (So 
thermal pollution influences the oxygen content of water.) 
The graph shows how oxygen solubility S varies as a func-
tion of the water temperature T.

		  (a)	� What is the meaning of the derivative S9sT d? What are 
its units?

		  (b)	� Estimate the value of S9s16d and interpret it.

(mg/L)

4

8

12

16

S

0 T (°C)8 16 24 32 40

Source: Adapted from C. Kupchella et al., Environmental Science: Living 

Within the System of Nature, 2d ed. (Boston: Allyn and Bacon, 1989).

		��  �starting one hour after consumption of 30 mL of ethanol 
(corresponding to two alcoholic drinks):

t (hours) 1.0 1.5 2.0 2.5 3.0

Cstd smgymLd 0.33 0.24 0.18 0.12 0.07

		  (a)	� Find the average rate of change of C with respect to t 
over each time interval:

			   (i)	 f1.0, 2.0g	 (ii)	 f1.5, 2.0g
			   (iii)	 f2.0, 2.5g	 (iv)	 f2.0, 3.0g
			   What are the units?
		  (b)	� Estimate and interpret the value of the derivative C9s2d.

Source: Adapted from P. Wilkinson et al., “Pharmacokinetics of Ethanol after 

Oral Administration in the Fasting State,” Journal of Pharmacokinetics and 

Biopharmaceutics 5 (1977): 207–24.

	 34.	��� Let Dstd be the US national debt at time t. The table gives 
approximate values of the function by providing end of year 
estimates, in billions of dollars, from 1990 to 2010. Interpret 
and estimate the value of D9s2000d.

t 1990 1995 2000 2005 2010

Dstd 3233 4974 5662 8170 14,025

Source: US Dept. of the Treasury

	 35.	��� Let T std be the temperature (in °F) in Seattle t hours after 
midnight on May 7, 2012. The table shows values of this 
function recorded every two hours. What is the meaning of 
T9s12d? Estimate its value.

t 4 6 8 10 12 14 16

T 48 46 51 57 62 68 71

	 36.	�� �A roast turkey is taken from an oven when its temperature 
has reached 185°F and is placed on a table in a room where 
the temperature is 75°F. The graph shows how the tempera-
ture of the turkey decreases and eventually approaches room 
temperature. By measuring the slope of the tangent, estimate 
the rate of change of the temperature after an hour.

P

T (°F)

0 30 60 90 120 150

100

200

t (min)
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3.2 The Derivative as a Function

In the preceding section we considered the derivative of a function f  at a fixed number a:

(1)	 f 9sad − lim
h l 0

 
 f sa 1 hd 2 f sad

h
	

Here we change our point of view and let the number a vary. If we replace a in Equa-
tion 1 by a variable x, we obtain

(2)	 f 9sxd − lim
h l 0

 
f sx 1 hd 2 f sxd

h
	

Given any number x for which this limit exists, we assign to x the number f 9sxd. So we 
can regard f 9 as a new function, called the derivative of f  and defined by Equation 2. 
We know that the value of f 9 at x, f 9sxd, can be interpreted geometrically as the slope of 
the tangent line to the graph of f  at the point sx, f sxdd.

The function f 9 is called the derivative of f  because it has been “derived” from f  by 
the limiting operation in Equation 2. The domain of f 9 is the set hx | f 9sxd existsj and 
may be smaller than the domain of f .

■ Graphing a Derivative from a Function’s Graph

 Example 1   |  The graph of a function f  is given in Figure 1. Use it to sketch the 

graph of the derivative f 9.

10

1

y=ƒ

x

y

Figure �1

200 T (°C)10

S
(cm/s)

20

10

	 42.	� Swimming speed of salmon �� The graph at the right 
shows the influence of the temperature T on the maximum 
sustainable swimming speed S of Coho salmon.

		  (a)	� What is the meaning of the derivative S9sT d? What are  
its units?

		  (b)	� Estimate the values of S9s15d and S9s25d and interpret 
them.
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SOLUTION � We can estimate the value of the derivative at any value of x by drawing 
the tangent at the point sx, f sxdd and estimating its slope. For instance, for x − 5 we 
draw the tangent at P in Figure 2(a) and estimate its slope to be about 32, so f 9s5d < 1.5. 
This allows us to plot the point P9s5, 1.5d on the graph of f 9 directly beneath P. 
Repeating this procedure at several points, we get the graph shown in Figure 2(b). 
Notice that the tangents at A, B, and C are horizontal, so the derivative is 0 there and 
the graph of f 9 crosses the x-axis at the points A9, B9, and C9, directly beneath A, B, 
and C. Between A and B the tangents have positive slope, so f 9sxd is positive there. But 
between B and C the tangents have negative slope, so f 9sxd is negative there.

m=0

m=0

Pª (5, 1.5)

y

B

A mÅ

C

P

(a)

x

1

10

y=ƒ

y

Aª Bª Cª

(b)

x

1

10 5

y=fª(x)

3
2

m=0

5

■

 Example 2   |  HIV prevalence and incidence  In epidemiology the preva-
lence of a disease, Pstd, is the number of individuals currently infected with the disease 
at time t. The incidence of a disease is the rate at which new individuals are contract-
ing the disease. During the initial spread of HIV in the United States, prevalence 

Figure �2

 TEC   Visual 3.2 shows an animation of 
Figure 2 for several functions.
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increased, changing only as a result of new infections. Consequently, P9std < incidence 
from 1977–1990 (see Figure 3). Sketch a graph of the incidence of HIV over this time 
period.

t

800,000

19851980
0

400,000

1990

P(t)

P(t)

Solution � We take the incidence over time to be the function P9std. From the graph 
of Pstd we see that the slope P9std starts off near zero prior to 1980 (the rate of people 
becoming infected was small) and then increases. We see abrupt increases in the slope 
around 1981 and 1983, and an abrupt decrease around 1985, after which it remains 
relatively constant (see Figure 3). As a result, the incidence curve increases quickly in 
1981 and again in 1983, and then decreases quickly in 1985 as shown in Figure 4. After 
1985 it remains relatively flat, meaning that during this period a constant number of 
new infections per unit time occurred.

t

800,000

19851980
0

400,000

1990

P(t)

   Pª(t)Å incidence 

■

■ Finding a Derivative from a Function’s Formula

 Example 3 
(a)  If f sxd − x 3 2 x, find a formula for f 9sxd.
(b)  Illustrate by comparing the graphs of f  and f 9.

SOLUTION
(a)	 When using Equation 2 to compute a derivative, we must remember that the 
variable is h and that x is temporarily regarded as a constant during the calculation of 
the limit.

	  f 9sxd − lim
h l 0

 
 f sx 1 hd 2 f sxd

h
− lim

h l 0
 
 fsx 1 hd3 2 sx 1 hdg 2 fx 3 2 xg

h

	  − lim
h l 0

 
x 3 1 3x 2h 1 3xh 2 1 h 3 2 x 2 h 2 x 3 1 x

h

	  − lim
h l 0

 
3x 2h 1 3xh 2 1 h 3 2 h

h
− lim

h l 0
 s3x 2 1 3xh 1 h 2 2 1d − 3x 2 2 1

Figure �3
HIV prevalence in the United  

States 1977–1990
Source: R. Song et al., “Estimation of HIV  

Incidence in the United States,” Journal  

of the American Medical Association  

300 (2008): 520–29.

Figure �4
HIV prevalence and incidence in  

the United States 1977–1990
Source: R. Song et al., “Estimation of HIV  

Incidence in the United States,” Journal  

of the American Medical Association  

300 (2008): 520–29.
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(b)	 We use a graphing device to graph f  and f 9 in Figure 5. Notice that f 9sxd − 0 
when f  has horizontal tangents and f 9sxd is positive when the tangents have positive 
slope. So these graphs serve as a check on our work in part (a).

2

_2

_2 2

2

_2

_2 2

f f ª

■

 Example 4   |  �If f sxd − sx , find the derivative of f . State the domain of f 9.

SOLUTION 

	  f 9sxd − lim
h l

 

0
 
 f sx 1 hd 2 f sxd

h
− lim

h l
 

0
 
sx 1 h 2 sx 

h

	  − lim
h l

 

0
 Ssx 1 h 2 sx 

h
?

sx 1 h 1 sx 

sx 1 h 1 sx D
	  − lim

h l
 

0
 

sx 1 hd 2 x

h(sx 1 h 1 sx )  − lim
h l

 

0
 

1

sx 1 h 1 sx 

	  −
1

sx 1 sx 
−

1

2sx 

We see that f 9sxd exists if x . 0, so the domain of f 9 is s0, `d. This is smaller than the 
domain of f , which is f0, `d.	 ■

Let’s check to see that the result of Example 4 is reasonable by looking at the graphs
of f  and f 9 in Figure 6. When x is close to 0, sx  is also close to 0, so f 9sxd − 1ys2sx d  
is very large and this corresponds to the steep tangent lines near s0, 0d in Figure 6(a) and 
the large values of f 9sxd just to the right of 0 in Figure 6(b). When x is large, f 9sxd is very 
small and this corresponds to the flatter tangent lines at the far right of the graph of f  and 
the horizontal asymptote of the graph of f 9.

 Example 5   |  �Find f 9 if f sxd −
1 2 x

2 1 x
.

SOLUTION

	  f 9sxd − lim
h l 0

 
 f sx 1 hd 2 f sxd

h
− lim

h l 0
 

1 2 sx 1 hd
2 1 sx 1 hd

2
1 2 x

2 1 x

h

	  − lim
hl 0

 
s1 2 x 2 hds2 1 xd 2 s1 2 xds2 1 x 1 hd

hs2 1 x 1 hds2 1 xd

	  − lim
hl 0

 
s2 2 x 2 2h 2 x 2 2 xhd 2 s2 2 x 1 h 2 x 2 2 xhd

hs2 1 x 1 hds2 1 xd

	  − lim
hl 0

 
23h

hs2 1 x 1 hds2 1 xd
 − lim

hl 0
 

23

s2 1 x 1 hds2 1 xd
− 2

3

s2 1 xd2 ■

Figure �5

Here we rationalize the numerator.

a

b
2

c

d

e
−

ad 2 bc

bd
?

1

e

(a) ƒ=œ„x

1

2œ„x
(b) f ª(x)=

x

1

y

10

x

1

y

10

Figure �6
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■ Differentiability
If we use the traditional notation y − f sxd to indicate that the independent variable is x 
and the dependent variable is y, then some common alternative notations for the deriva-
tive are as follows:

f 9sxd − y9 −
dy

dx
−

df

dx
−

d

dx
 f sxd − Df sxd − Dx f sxd

The symbols D and dydx are called differentiation operators because they indicate the 
operation of differentiation, which is the process of calculating a derivative.

The symbol dyydx, which was introduced by Leibniz, should not be regarded as a 
ratio (for the time being); it is simply a synonym for f 9sxd. Nonetheless, it is a very useful 
and suggestive notation, especially when used in conjunction with increment notation. 
Referring to Equation 3.1.6, we can rewrite the definition of derivative in Leibniz nota-
tion in the form

dy

dx
− lim

Dx l 0
 
Dy

Dx

If we want to indicate the value of a derivative dyydx in Leibniz notation at a specific 
number a, we use the notation

dy

dx Z
x−a

        or      
dy

dxGx−a

which is a synonym for f 9sad.

(3) Definition � A function f  is differentiable at a if f 9sad exists. It is differen-
tiable on an open interval sa, bd [or sa, `d or s2`, ad or s2`, `d] if it is differ- 
entiable at every number in the interval.

 Example 6   |  Where is the function f sxd − | x | differentiable?

SOLUTION � If x . 0, then | x | − x and we can choose h small enough that x 1 h . 0 
and hence | x 1 h | − x 1 h. Therefore, for x . 0, we have

f 9sxd − lim
h l 0

 | x 1 h | 2 | x |
h

− lim
h l 0

 
sx 1 hd 2 x

h

 − lim
h l 0

 
h

h
− lim

h l 0
 1 − 1

and so f  is differentiable for any x . 0.
Similarly, for x , 0 we have | x | − 2x and h can be chosen small enough that 

x 1 h , 0 and so | x 1 h | − 2sx 1 hd. Therefore, for x , 0,

f 9sxd − lim
h l 0

 | x 1 h | 2 | x |
h

− lim
h l 0

 
2sx 1 hd 2 s2xd

h

	 − lim
h l 0

 
2h

h
− lim

h l 0
 s21d − 21

and so f  is differentiable for any x , 0.

Leibniz
Gottfried Wilhelm Leibniz was born 
in Leipzig in 1646 and studied law, 
theology, philosophy, and mathematics 
at the university there, graduating with 
a bachelor’s degree at age 17. After 
earning his doctorate in law at age 20, 
Leibniz entered the diplomatic service 
and spent most of his life traveling to the 
capitals of Europe on political missions. 
In particular, he worked to avert a French 
military threat against Germany and 
attempted to reconcile the Catholic and 
Protestant churches.
    His serious study of mathematics 
did not begin until 1672 while he was 
on a diplomatic mission in Paris. There 
he built a calculating machine and met 
scientists, like Huygens, who directed 
his attention to the latest developments 
in mathematics and science. Leibniz 
sought to develop a symbolic logic and 
system of notation that would simplify 
logical reasoning. In particular, the 
version of calculus that he published in 
1684 established the notation and the 
rules for finding derivatives that we use 
today.
    Unfortunately, a dreadful priority 
dispute arose in the 1690s between the 
followers of Newton and those of Leibniz 
as to who had invented calculus first. 
Leibniz was even accused of plagiarism 
by members of the Royal Society in 
England. The truth is that each man 
invented calculus independently. Newton 
arrived at his version of calculus first but, 
because of his fear of controversy, did 
not publish it immediately. So Leibniz’s 
1684 account of calculus was the first to 
be published.
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For x − 0 we have to investigate

	 f 9s0d − lim
h l 0

 
 f s0 1 hd 2 f s0d

h

 − lim
h l 0

 | 0 1 h | 2 | 0 |
h

sif it existsd

Let’s compute the left and right limits separately:

 lim
h l

 

01
 | 0 1 h | 2 | 0 |

h
− lim

h l
 

01
 | h |

h
− lim

h l
 

01
 
h

h
− lim

h l
 

01
 1 − 1

and	  lim
h l

 

02
 | 0 1 h | 2 | 0 |

h
− lim

h l
 

02
 | h |

h
− lim

h l
 

02
 
2h

h
− lim

h l
 

02
 s21d − 21

Since these limits are different, f 9s0d does not exist. Thus f  is differentiable at all x 
except 0.

A formula for f 9 is given by

f 9sxd − H1

21

if  x . 0

if  x , 0

and its graph is shown in Figure 7(b). The fact that f 9s0d does not exist is reflected 
geometrically in the fact that the curve y − | x | does not have a tangent line at s0, 0d. 
[See Figure 7(a).]	 ■

Both continuity and differentiability are desirable properties for a function to have. 
The following theorem shows how these properties are related.

(4) Theorem � If f  is differentiable at a, then f  is continuous at a.

Proof � To prove that f  is continuous at a, we have to show that lim x l a f sxd − f sad. 
We do this by first showing that the difference f sxd 2 f sad approaches 0.

The given information is that f  is differentiable at a, that is,

f 9sad − lim
x l a

 
f sxd 2 f sad

x 2 a

exists (see Equation 3.1.5). To connect the given and the unknown, we divide and multi-
ply f sxd 2 f sad by x 2 a (which we can do when x ± a):

f sxd 2 f sad −
 f sxd 2 f sad

x 2 a
 sx 2 ad

Thus, using the Product Law and (3.1.5), we can write

 lim
x l a

 f f sxd 2 f sadg − lim
x l a

 
 f sxd 2 f sad

x 2 a
 sx 2 ad

 − lim
x l a

 
 f sxd 2 f sad

x 2 a
? lim

x l a
 sx 2 ad

 − f 9sad ? 0 − 0

x

1

y

_1
0

x

y

0

(a) y=ƒ=| x |

(b) y=fª(x) 

Figure �7 
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To use what we have just proved, we start with f sxd and add and subtract f sad:

 lim
x l a

 f sxd − lim
x l a

 f f sad 1 s f sxd 2 f saddg

 − lim
x l a

 f sad 1 lim
x l a

 f f sxd 2 f sadg

 − f sad 1 0 − f sad

Therefore f  is continuous at a.	 ■

NOTE  � The converse of Theorem 4 is false; that is, there are functions that are con-
tinuous but not differentiable. For instance, the function f sxd − | x | is continuous at 0 
because

lim
x l 0

 f sxd − lim
x l 0

 | x | − 0 − f s0d

(See Example 2.4.8.) But in Example 6 we showed that f  is not differentiable at 0.
We saw that the function y − | x | in Example 6 is not differentiable at 0 and Fig- 

ure 7(a) shows that its graph changes direction abruptly when x − 0. In general, if the 
graph of a function f  has a “corner” or “kink” in it, then the graph of f  has no tangent at 
this point and f  is not differentiable there. [In trying to compute f 9sad, we find that the 
left and right limits are different.]

Theorem 4 gives another way for a function not to have a derivative. It says that if f  is 
not continuous at a, then f  is not differentiable at a. So at any discontinuity (for instance, 
a jump discontinuity) f  fails to be differentiable.

A third possibility is that the curve has a vertical tangent line when x − a; that is, f   
is continuous at a and

lim
x l a | f 9sxd | − `

This means that the tangent lines become steeper and steeper as x l a. Figure 8 shows  
one way that this can happen; Figure 9(c) shows another. Figure 9 illustrates the three pos- 
sibilities that we have discussed.

(a) A corner (c) A vertical tangent(b) A discontinuity

x

y

a0 x

y

a0x

y

a0

A graphing calculator or computer provides another way of looking at differentiabil-
ity. If f  is differentiable at a, then when we zoom in toward the point sa, f sadd the graph 
straightens out and appears more and more like a line. (See Figure 10. We saw a specific 
example of this in Figure 3.1.5.) But no matter how much we zoom in toward a point  
like the ones in Figures 8 and 9(a), we can’t eliminate the sharp point or corner (see 
Figure 11).

vertical tangent
line

x

y

a0

Figure �8

Figure �9
Three ways for f  not to be  

differentiable at a 
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x

y

a0x

y

a0

Figure �10
f  is differentiable at a.

Figure �11
f  is not differentiable at a.

 Example 7   |  BB   Metabolic power in walking and running  Figure 12 
shows a graph of the metabolic power Psvd consumed by humans who walk and then 
run at speed v.
(a)	 Is P a differentiable function of v?
(b)	 Sketch the graph of P9svd.

solution
(a)	 We see from the graph of P in Figure 12 that P is not differentiable at speed 
v < 2.2 mys because the graph has a corner there. But P is differentiable at all other 
speeds.
(b)	 Using the method of Example 1, we measure slopes at a few points (as in Fig-
ure 13) and plot the resulting points in Figure 14.

0 4 521 3

500

830

1500

P

√
        

0 4 521 3

300

500

Pª

√

Figure �13 Figure �14

Notice, however, that unlike in Example 1, the axes have unequal scales. For instance, 
for 2.2 < v < 4.4, the slope is approximately

1500 2 830

4.4 2 2.2
−

670

2.2
< 305 Wysmysd

The discontinuity in the graph of P9 at v < 2.2 reflects the fact that P9svd does not  
exist there.	 ■

■ Higher Derivatives
If f  is a differentiable function, then its derivative f 9 is also a function, so f 9 may have 
a derivative of its own, denoted by s f 9d9 − f 0. This new function f 0 is called the second  

0 4 521 3

500

1000

1500

Running

Walking

P

√ (m/s)

(W)

Figure �12
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derivative of f  because it is the derivative of the derivative of f . Using Leibniz notation, 
we write the second derivative of y − f sxd as

d

dx
 S dy

dxD −
d 2y

dx 2

 Example 8   |  If f sxd − x 3 2 x, find and interpret f 0sxd.

SOLUTION � In Example 3 we found that the first derivative is f 9sxd − 3x 2 2 1. So 
the second derivative is

 f 99sxd − s f 9d9sxd − lim
h l

 

0
 
 f 9sx 1 hd 2 f 9sxd

h

 − lim
h l

 

0
 
 f3sx 1 hd2 2 1g 2 f3x 2 2 1g

h

 − lim
h l

 

0
 
 3x 2 1 6xh 1 3h2 2 1 2 3x 2 1 1

h

 − lim
h l

 

0
 s6x 1 3hd − 6x

The graphs of f , f 9, and f 0 are shown in Figure 15.
We can interpret f 0sxd as the slope of the curve y − f 9sxd at the point sx, f 9sxdd. In 

other words, it is the rate of change of the slope of the original curve y − f sxd.
Notice from Figure 15 that f 0sxd is negative when y − f 9sxd has negative slope  

and positive when y − f 9sxd has positive slope. So the graphs serve as a check on our  
calculations.	 ■

In general, we can interpret a second derivative as a rate of change of a rate of change. 
The most familiar example of this is acceleration, which we define as follows.

If s − sstd is the position function of an object that moves in a straight line, we know 
that its first derivative represents the velocity vstd of the object as a function of time:

vstd − s9std −
ds

dt

The instantaneous rate of change of velocity with respect to time is called the accelera-
tion astd of the object. Thus the acceleration function is the derivative of the velocity 
function and is therefore the second derivative of the position function:

astd − v9std − s0std

or, in Leibniz notation,

a −
dv

dt
−

d 2s

dt 2

The third derivative f - is the derivative of the second derivative: f -− s f 0 d9. So f -sxd 
can be interpreted as the slope of the curve y − f 0sxd or as the rate of change of f 0sxd. 
If y − f sxd, then alternative notations for the third derivative are

y- − f -sxd −
d

dx
 S d 2 y

dx 2D −
d 3y

dx 3

f · f ª f

1.5

_2

2

_1.5

Figure �15

 TEC    In Module 3.2 you can see how 
changing the coefficients of a polyno-
mial f  affects the appearance of the 
graphs of f , f 9, and f 0.
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The process can be continued. The fourth derivative f + is usually denoted by f s4d. In 
general, the nth derivative of f  is denoted by f snd and is obtained from f  by differentiat-
ing n times. If y − f sxd, we write

y snd − f sndsxd −
dn y

dxn

 Example 9   |  If f sxd − x3 2 x, find f -sxd and f s4dsxd.

SOLUTION � In Example 8 we found that f 0sxd − 6x. The graph of the second deriv-
ative has equation y − 6x and so it is a straight line with slope 6. Since the derivative 
f -sxd is the slope of f 0sxd, we have

f -sxd − 6

for all values of x. So f - is a constant function and its graph is a horizontal line. 
Therefore, for all values of x,

f s4dsxd − 0 ■

■ What a Derivative Tells Us about a Function
Because f 9sxd represents the slope of the curve y − f sxd at the point sx, f sxdd, it tells us 
the direction in which the curve proceeds at each point. So it is reasonable to expect that 
information about f 9sxd will provide us with information about f sxd.

In particular, to see how the derivative of f  can tell us where a function is increasing 
or decreasing, look at Figure 16. (Increasing functions and decreasing functions were 
defined in Section 1.1.) Between A and B and between C and D, the tangent lines have 
positive slope and so f 9sxd . 0. Between B and C, the tangent lines have negative slope 
and so f 9sxd , 0. Thus it appears that f  increases when f 9sxd is positive and decreases 
when f 9sxd is negative.

D

A

B

C

y

0 x

It turns out, as we will see in Chapter 4, that what we observed for the function 
graphed in Figure 16 is always true. We state the general result as follows.

If f 9sxd . 0 on an interval, then f  is increasing on that interval.

If f 9sxd , 0 on an interval, then f  is decreasing on that interval.

 Example 10  �

(a)	 If it is known that the graph of the derivative f 9 of a function is as shown in 
Figure 17, what can we say about f ?
(b)	 If it is known that f s0d − 0, sketch a possible graph of f .

Figure �16

1

_1

x

y

_1

1
y=fª(x)

Figure �17
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EXERCISES 3.2

	� 1–2 � Use the given graph to estimate the value of each deriva-
tive. Then sketch the graph of f 9.

	 1.	�� (a)	 f 9s23d	 (b)	 f 9s22d

		  (c)	 f 9s21d	 (d)	 f 9s0d

		  (e)	 f 9s1d	 (f)	 f 9s2d

		  (g)	 f 9s3d

y

x

1

1

	 2.	�� (a)	 f 9s0d	 (b)	 f 9s1d

		  (c)	 f 9s2d	 (d)	 f 9s3d

		  (e)	 f 9s4d	 (f)	 f 9s5d

		  (g)	 f 9s6d	 (h)	 f 9s7d

y

0 x

1

1

	 3.	��� Match the graph of each function in (a)–(d) with the graph 
of its derivative in I–IV. Give reasons for your choices.

y

0

y

0

y

0

y

0

xx

x x

(b)(a)

(c) (d)

III

III IV

y

0

y

0

y

0

x

x

y

0

x

x

solution
(a)	 We observe from Figure 17 that f 9sxd is negative when 21 , x , 1, so the 
original function f  must be decreasing on the interval s21, 1d. Similarly, f 9sxd is 
positive for x , 21 and for x . 1, so f  is increasing on the intervals s2`, 21d and 
s1, `d. Also note that, since f 9s21d − 0 and f 9s1d − 0, the graph of f  has horizontal 
tangents when x − 61.

(b)	 We use the information from part (a), and the fact that the graph passes through 
the origin, to sketch a possible graph of f  in Figure 18. Notice that f 9s0d − 21, so we 
have drawn the curve y − f sxd passing through the origin with a slope of 21. Notice 
also that f 9sxd l 1 as x l 6` (from Figure 17). So the slope of the curve y − f sxd 
approaches 1 as x becomes large (positive or negative). That is why we have drawn the 
graph of f  in Figure 18 progressively straighter as x l 6`.	 ■

1
x

y

_1

y=ƒ1

Figure �18
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	 13.	�T adpole weights �� The graph shows the average body 
weight W as a function of time for tadpoles raised in a 
density of 80 tadpolesyL.

		  (a)	� What is the meaning of the derivative W9std?
		  (b)	� Sketch the graph of W9std.

0.8

0.6

0.4

0.2

2 4 6 80 t (weeks)

(g)W

	 14.	� Ground reaction force in walking �� The graph shows the 
horizontal force Fstd exerted by the ground on a person who 
is walking.

		  (a)	� What is the meaning of the derivative F9std?
		  (b)	� Sketch the graph of F9std.

0 t

Horizontal
ground

reaction
force

F

	 15.	� Marriage age �� The graph shows how the average age of 
first marriage of Japanese men varied in the last half of the 
20th century. Sketch the graph of the derivative function 
M9std. During which years was the derivative negative?

1990 2000

25

M

1960 1970 1980

27

t

	� 16–18 � Make a careful sketch of the graph of f  and below it 
sketch the graph of f 9 in the same manner as in Exercises 4–11. 
Can you guess a formula for f 9sxd from its graph?

	 16.	 f sxd − sin x	 17.	 f sxd − e x

	 18.	 f sxd − ln x

	� 4–11 � Trace or copy the graph of the given function f . (Assume 
that the axes have equal scales.) Then use the method of Example 
1 to sketch the graph of f 9 below it.

	 4.	

0 x

y

	 5.	

x

y

0

	 6.	

0 x

y

	 7.	

x

y

0

	 8.	

0 x

y

	 9.	

0 x

y
	 10.	

x

y

0

	 11.	

0 x

y

	 12.	� Yeast population �� Shown is the graph of the population 
function Pstd for yeast cells in a laboratory culture. Use the 
method of Example 1 to graph the derivative P9std. What 
does the graph of P9 tell us about the yeast population?

(yeast cells)

t (hours)

P

0 5 10 15

500
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		  (a)	 What is the meaning of N9std? What are its units?
		  (b)	� Construct a table of estimated values for N9std.  

[See Example 3.1.7 for N9s3d.]

	 36.	� Blood alcohol concentration �� Researchers measured the 
blood alcohol concentration Cstd of eight adult male subjects 
after rapid consumption of 30 mL of ethanol (correspond-
ing to two standard alcoholic drinks). The table shows the 
data they obtained by averaging the BAC (in mgymL) of 
the eight men.

t (hours) 	 0.0  	0.2 	 0.5 	0.75 	 1.0 	1.25

Cstd 	 0 	0.25 	0.41 	0.40 	0.33 	0.29

t (hours) 	 1.5  	1.75 	 2.0 2.25 	 2.5 	 3.0

Cstd 	0.24 	0.22 	0.18 	0.15 	0.12 	0.07

		  (a)	 What is the meaning of C9std?
		  (b)	 Make a table of estimated values for C9std.

Source: Adapted from P. Wilkinson et al., “Pharmacokinetics of Ethanol 

after Oral Administration in the Fasting State,” Journal of Pharmacokinetics 

and Biopharmaceutics, 5 (1977): 207–24.

	� 37–40 � The graph of f  is given. State, with reasons, the num-
bers at which f  is not differentiable.

	 37.			   38.	

_2 2 x

y

0

          

2 4 x

y

0

	 39.			   40.	

_2 4 x

y

0

               

_2 2 x

y

0

	 ;	 41.	��� Graph the function f sxd − x 1 s| x | . Zoom in repeatedly, 
		���  first toward the point s21, 0d and then toward the origin. 

What is different about the behavior of f  in the vicinity of 
these two points? What do you conclude about the differen-
tiability of f ?

	 ;	 42.	��� Zoom in toward the points (1, 0), (0, 1), and s21, 0d on  
the graph of the function tsxd − sx 2 2 1d2y3. What do you 
notice? Account for what you see in terms of the differen- 
tiability of t.

	 ;	 19.	�� Let f sxd − x 2.
		  (a)	� Estimate the values of f 9s0d, f 9( 1

2), f 9s1d, and f 9s2d by 
using a graphing device to zoom in on the graph of f .

		  (b)	� Use symmetry to deduce the values of f 9(21
2 ), f 9s21d,  

and f 9s22d.
		  (c)	� Use the results from parts (a) and (b) to guess a for-

mula for f 9sxd.
		  (d)	� Use the definition of a derivative to prove that your 

guess in part (c) is correct.

	 ;	 20.	�� �Let f sxd − x 3.
		  (a)	� Estimate the values of f 9s0d, f 9( 1

2), f 9s1d, f 9s2d, and 
f 9s3d by using a graphing device to zoom in on the 
graph of f .

		  (b)	� Use symmetry to deduce the values of f 9(21
2 ), f 9s21d, 

f 9s22d, and f 9s23d.
		  (c)	 Use the values from parts (a) and (b) to graph f 9.
		  (d)	 Guess a formula for f 9sxd.
		  (e)	� Use the definition of a derivative to prove that your 

guess in part (d) is correct.

	� 21–31 � Find the derivative of the function using the definition of 
a derivative. State the domain of the function and the domain of 
its derivative.

	 21.	 f sxd − 1
2 x 2 1

3	 22.	 f sxd − mx 1 b

	 23.	 f std − 5t 2 9t 2	 24.	 f sxd − 1.5x 2 2 x 1 3.7

	 25.	 f sxd − x 2 2 2x 3	 26.	 f sxd − x 1 sx 

	 27.	 tsxd − s1 1 2x 	 28.	 f sxd −
x 2 2 1

2x 2 3

	 29.	 Gstd −
4t

t 1 1
	 30.	 tstd −

1

st  

	 31.	 f sxd − x 4

	 ;	 32–34
	 (a)	 Use the definition of the derivative to calculate f 9.
	 (b)	� Check to see that your answer is reasonable by comparing 

the graphs of f  and f 9.

	 32.	 f sxd − x 1 1yx	 33.	 f sxd − x 4 1 2x

	 34.	 f std − t 2 2 st  

	 35.	� Malarial parasites �� An experiment measured the number 
of malarial parasites Nstd per microliter of blood, where t 
is measured in days. The results of the experiment are 
shown in the table.

t N t N

1 	 228 5 	 372,331
2 	 2357 6 	 2,217,441
3 	 12,750 7 	 6,748,400
4 	 26,661
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	� 47–48 � The graph of the derivative f 9 of a function f  is shown.
	 (a)	 On what intervals is f  increasing?
	 (b)	� If it is known that f s0d − 0, sketch a possible graph of f .

	 47.	

1 x

y

0

y=fª(x)

	 48.	

1

_1 x

y

0

y=fª(x)

	 49.	��� Recall that a function f  is called even if f s2xd − f sxd for 
all x in its domain and odd if f s2xd − 2f sxd for all such x. 
Prove each of the following.

		  (a)	 The derivative of an even function is an odd function.
		  (b)	 The derivative of an odd function is an even function.

	 50.	�� �When you turn on a hot-water faucet, the temperature T of 
the water depends on how long the water has been running.

		  (a)	� Sketch a possible graph of T as a function of the time t 
that has elapsed since the faucet was turned on.

		  (b)	� Describe how the rate of change of T with respect to t 
varies as t increases.

		  (c)	 Sketch a graph of the derivative of T.

	 43.	��� The figure shows the graphs of f , f 9, and f 0. Identify  
each curve, and explain your choices.

x

y a

b

c

	 44.	��� The figure shows graphs of f,  f 9, f 0, and f -. Identify  
each curve, and explain your choices.

x

y a b c d

	 ;	� 45–46 � Use the definition of a derivative to find f 9sxd and  
f 0sxd. Then graph f , f 9, and f 0 on a common screen and  
check to see if your answers are reasonable.

	 45.	 f sxd − 3x 2 1 2x 1 1	 46.	 f sxd − x 3 2 3x

3.3 Basic Differentiation Formulas

If it were always necessary to compute derivatives directly from the definition, as we did 
in the preceding section, such computations would be tedious and the evaluation of some 
limits would require ingenuity. Fortunately, several rules have been developed for find-
ing derivatives without having to use the definition directly. These formulas greatly sim-
plify the task of differentiation.

In this section we learn how to differentiate constant functions, power functions, 
polynomials, exponential functions, and the sine and cosine functions.

Let’s start with the simplest of all functions, the constant function f sxd − c. The 
graph of this function is the horizontal line y − c, which has slope 0, so we must have 
f 9sxd − 0. (See Figure 1.) A formal proof, from the definition of a derivative, is also easy:

 f 9sxd − lim
h l 0

 
 f sx 1 hd 2 f sxd

h
− lim

h l 0
 
c 2 c

h
− lim

h l 0
 0 − 0

In Leibniz notation, we write this rule as follows.

y

c

0 x

y=c

slope=0

Figure �1
The graph of f sxd − c is the  
line y − c, so f 9sxd − 0.
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Derivative of a Constant Function �

d

dx
 scd − 0

■ Power Functions
We next look at the functions f sxd − xn, where n is a positive integer. If n − 1, the 
graph of f sxd − x is the line y − x, which has slope 1. (See Figure 2.) So

(1)	
d

dx
sxd − 1	

(You can also verify Equation 1 from the definition of a derivative.) We have already 
investigated the cases n − 2 and n − 3. In fact, in Section 3.2 (Exercises 19 and 20) we 
found that

(2)	
d

dx
 sx 2 d − 2x          

d

dx
 sx 3 d − 3x 2 	

For n − 4 we find the derivative of f sxd − x 4 as follows:

f 9sxd − lim
h l 0

 
 f sx 1 hd 2 f sxd

h
− lim

h l 0
 
sx 1 hd4 2 x 4

h

 − lim
h l 0

 
x 4 1 4x 3h 1 6x 2h 2 1 4xh 3 1 h 4 2 x 4

h

 − lim
h l 0

 
4x 3h 1 6x 2h 2 1 4xh 3 1 h 4

h

 − lim
h l 0

 s4x 3 1 6x 2h 1 4xh 2 1 h 3 d − 4x 3

Thus

(3)	
d

dx
 sx 4 d − 4x 3	

Comparing the equations in (1), (2), and (3), we see a pattern emerging. It seems to be a 
reasonable guess that, when n is a positive integer, sdydxdsxn d − nxn21. This turns out 
to be true.

The Power Rule � If n is a positive integer, then

d

dx
 sxn d − nxn21

y

0
x

y=x

slope=1

Figure �2
The graph of f sxd − x is the  
line y − x, so f 9sxd − 1.
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proof � If f sxd − xn, then

f 9sxd −  lim
h l 0

 
 f sx 1 hd 2 f sxd

h
−  lim

h l 0
 
sx 1 hd n 2 xn

h

�In finding the derivative of x 4 we had to expand sx 1 hd4. Here we need to expand 
sx 1 hd n and we use the Binomial Theorem to do so:

f 9sxd − lim
h l 0

 

Fxn 1 nxn21h 1
nsn 2 1d

2
xn22h 2 1 ∙ ∙ ∙ 1 nxhn21 1 hnG 2 xn

h

 − lim
h l 0

 

nxn21h 1
nsn 2 1d

2
xn22h 2 1 ∙ ∙ ∙ 1 nxhn21 1 hn

h

 − lim
h l 0

 Fnxn21 1
nsn 2 1d

2
xn22h 1 ∙ ∙ ∙ 1 nxhn22 1 hn21G

 − nxn21

�because every term except the first has h as a factor and therefore approaches 0.	 ■

We illustrate the Power Rule using various notations in Example 1.

 Example 1 

(a)	 If f sxd − x 6, then f 9sxd − 6x 5.	 (b)	 If y − x 1000, then y9 − 1000x 999.

(c)	 If y − t 4, then 
dy

dt
− 4t 3.	 (d)	

d

dr
 sr 3 d − 3r 2	 ■

What about power functions with negative integer exponents? In Exercise 69 we ask 
you to verify from the definition of a derivative that

d

dx
 S 1

xD − 2
1

x 2

We can rewrite this equation as

d

dx
 sx21 d − s21dx22

and so the Power Rule is true when n − 21. In fact, we will show in the next section  
[Exercise 3.4.63(c)] that it holds for all negative integers.

What if the exponent is a fraction? In Example 3.2.4 we found that

d

dx
 sx −

1

2sx 

which can be written as

d

dx
 sx1y2 d − 1

2 x21y2

This shows that the Power Rule is true even when n − 1
2. In fact, we will show in Sec-

tion 3.7 that it is true for all real numbers n.

The Binomial Theorem is given on  
Reference Page 1.
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The Power Rule (General Version) � If n is any real number, then

d

dx
 sxn d − nxn21

 Example 2   |  Differentiate

(a)	 f sxd −
1

x 2 	 (b)	 y − s3 x 2 

SOLUTION � In each case we rewrite the function as a power of x.

(a)	 Since f sxd − x22, we use the Power Rule with n − 22:

f 9sxd −
d

dx
 sx22 d − 22x2221 − 22x23 − 2

2

x 3

(b)	
dy

dx
−

d

dx
 (s3 x 2 ) −

d

dx
 sx 2y3 d − 2

3 x s2y3d21 − 2
3 x21y3	 ■

The Power Rule enables us to find tangent lines without having to resort to the defini- 
tion of a derivative. It also enables us to find normal lines. The normal line to a curve 
C at a point P is the line through P that is perpendicular to the tangent line at P. (In the 
study of optics, one needs to consider the angle between a light ray and the normal line 
to a lens.)

 Example 3   |  Find equations of the tangent line and normal line to the curve
y − xsx  at the point s1, 1d. Illustrate by graphing the curve and these lines.

SOLUTION � The derivative of f sxd − xsx − xx 1y2 − x 3y2 is

f 9sxd − 3
2 x s3y2d21 − 3

2 x 1y2 − 3
2 sx 

So the slope of the tangent line at (1, 1) is f 9s1d − 3
2. Therefore an equation of the 

tangent line is

y 2 1 − 3
2 sx 2 1d        or        y − 3

2 x 2 1
2

The normal line is perpendicular to the tangent line, so its slope is the negative recip-
rocal of 32, that is, 22

3. Thus an equation of the normal line is

y 2 1 − 22
3 sx 2 1d        or        y − 22

3 x 1 5
3

We graph the curve and its tangent line and normal line in Figure 4.	 ■

■ New Derivatives from Old
When new functions are formed from old functions by addition, subtraction, or multi-
plication by a constant, their derivatives can be calculated in terms of derivatives of the 
old functions. In particular, the following formula says that the derivative of a constant 
times a function is the constant times the derivative of the function.

Figure 3 shows the function y in Exam-
ple 2(b) and its derivative y9. Notice  
that y is not differentiable at 0 (y9 is  
not defined there). Observe that y9 is 
positive when y increases and is nega- 
tive when y decreases.

2

_2

_3 3

y
yª

Figure �3
y − s3 x 2 

3

_1

_1 3

tangent

normal

Figure �4
y − xsx 
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The Constant Multiple Rule � If c is a constant and f  is a differentiable func-
tion, then

d

dx
 fcf sxdg − c 

d

dx
 f sxd

Proof � Let tsxd − cf sxd. Then

	  t9sxd − lim
h l 0

 
tsx 1 hd 2 tsxd

h
−  lim

h l 0
 
cf sx 1 hd 2 cf sxd

h

	  − lim
h l 0

 cF  f sx 1 hd 2 f sxd
h G

	  − c lim
h l 0

 
 f sx 1 hd 2 f sxd

h
        (by Limit Law 3)

	  − cf 9sxd 	 ■

 Example 4 

(a)	
d

dx
 s3x 4 d − 3 

d

dx
 sx 4 d − 3s4x 3 d − 12x 3

(b)	
d

dx
 s2xd −

d

dx
 fs21dxg − s21d 

d

dx
 sxd − 21s1d − 21	 ■

 Example 5   |  BB   Anesthesiology  As explained in Example 1.2.5, when ven-
tilators are used during surgery the steady state concentration C of CO2 in the lungs is 
C − PyV , where P is the rate of production of CO2 by the body and V  is the ventila-
tion rate. If P is constant, find dCydV  and interpret it.

Solution
Because P is constant, we can use the Constant Multiple Rule as follows:

 
dC

dV
− P ?

d

dV
 S 1

VD − P ?
d

dV
 sV21d

 − Ps2V22d − 2
P

V 2

This is the rate of change of the concentration with respect to the ventilation rate. 
Notice the minus sign in the expression for dCydV: the concentration decreases as the 
ventilation rate increases. Notice also that, because of the V 2 in the denominator, this 
rate of change is close to 0 when V  is large.	 ■

The next rule tells us that the derivative of a sum of functions is the sum of the  
derivatives.

The Sum Rule � If f  and t are both differentiable, then

d

dx
 f f sxd 1 tsxdg −

d

dx
 f sxd 1

d

dx
 tsxd

x

y

0

y=2ƒ

y=ƒ

Geometric Interpretation  
of the Constant Multiple Rule

Multiplying by c − 2 stretches the 
graph vertically by a factor of 2. All 
the rises have been doubled but the 
runs stay the same. So the slopes are 
doubled, too.

Using prime notation, we can write the  
Sum Rule as

s f 1 td9 − f 9 1 t9
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Proof � Let Fsxd − f sxd 1 tsxd. Then

	  F9sxd − lim
h l 0

 
Fsx 1 hd 2 Fsxd

h

	  − lim
h l 0

 
f f sx 1 hd 1 tsx 1 hdg 2 f f sxd 1 tsxdg

h

	  − lim
h l 0

 F  f sx 1 hd 2 f sxd
h

1
tsx 1 hd 2 tsxd

h G
 − lim

h l 0
 
 f sx 1 hd 2 f sxd

h
1 lim

hl 0
 
tsx 1 hd 2 tsxd

h
        (by Limit Law 1)

	  − f 9sxd 1 t9sxd	 ■

The Sum Rule can be extended to the sum of any number of functions. For instance, 
using this theorem twice, we get

s f 1 t 1 hd9 − fs f 1 td 1 hg9 − s f 1 td9 1 h9 − f 9 1 t9 1 h9

By writing f 2 t as f 1 s21dt and applying the Sum Rule and the Constant Multiple 
Rule, we get the following formula.

The Difference Rule � If f  and t are both differentiable, then

d

dx
 f f sxd 2 tsxdg −

d

dx
 f sxd 2

d

dx
 tsxd

The Constant Multiple Rule, the Sum Rule, and the Difference Rule can be com-
bined with the Power Rule to differentiate any polynomial, as the following examples 
demonstrate.

 Example 6 

d

dx
 sx 8 1 12x 5 2 4x 4 1 10x 3 2 6x 1 5d

 − 
d

dx
 sx 8 d 1 12 

d

dx
 sx 5 d 2 4 

d

dx
 sx 4 d 1 10 

d

dx
 sx 3 d 2 6 

d

dx
 sxd 1

d

dx
 s5d

 − 8x 7 1 12s5x 4 d 2 4s4x 3 d 1 10s3x 2 d 2 6s1d 1 0

  − 8x 7 1 60x 4 2 16x 3 1 30x 2 2 6 	 ■

 Example 7   |  Find the points on the curve y − x 4 2 6x 2 1 4 where the tangent 
line is horizontal.

SOLUTION � Horizontal tangents occur where the derivative is zero. We have

 
dy

dx
−

d

dx
 sx 4 d 2 6 

d

dx
 sx 2 d 1

d

dx
 s4d

 − 4x 3 2 12x 1 0 − 4xsx 2 2 3d
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Thus dyydx − 0 if x − 0 or x 2 2 3 − 0, that is, x − 6s3 . So the given curve has 
horizontal tangents when x − 0, s3 , and 2s3 . The corresponding points are s0, 4d, 
ss3 , 25d, and s2s3 , 25d. (See Figure 5.)	 ■

 Example 8   |  The position function of a particle is s − 2t 3 2 5t 2 1 3t 1 4, where 
s is measured in centimeters and t in seconds. Find the acceleration as a function of 
time. What is the acceleration after 2 seconds?

SOLUTION � The velocity and acceleration are

 vstd −
ds

dt
− 6t 2 2 10t 1 3

astd −
dv
dt

− 12 t 2 10

The acceleration after 2 s is as2d − 14 cmys2.	 ■

 Example 9   |  Blood flow  When we consider the flow of blood through a 
blood vessel, such as a vein or artery, we can model the shape of the blood vessel by a 
cylindrical tube with radius R and length l as illustrated in Figure 6.

R r

l

Because of friction at the walls of the tube, the velocity v of the blood is greatest 
along the central axis of the tube and decreases as the distance r from the axis increases 
until v becomes 0 at the wall. The relationship between v and r is given by the law of 
laminar flow discovered by the French physician Jean-Louis-Marie Poiseuille in 1840. 
This law states that

(4)	 v −
P

4�l
 sR2 2 r 2 d	

where � is the viscosity of the blood and P is the pressure difference between the ends 
of the tube. If P and l are constant, then v is a function of r with domain f0, Rg.

The average rate of change of the velocity as we move from r − r1 outward to 
r − r2 is given by

Dv

Dr
−

vsr2 d 2 vsr1d
r2 2 r1

and if we let Dr l 0, we obtain the velocity gradient, that is, the instantaneous rate of 
change of velocity with respect to r:

velocity gradient − lim
Dr l 0

 
Dv

Dr
−

dv

dr

Using Equation 4, we obtain

dv

dr
−

P

4�l
 s0 2 2rd − 2

Pr

2�l

0 x

y

(0, 4)

{œ„3, _5}{_œ„3, _5}

Figure �5
The curve y − x 4 2 6x 2 1 4 and its 
horizontal tangents

Figure �6
Blood flow in an artery

For more detailed information, see 
W. Nichols and M. O’Rourke (eds.), 
McDonald’s Blood Flow in Arteries: 
Theoretical, Experimental, and Clinical 
Principles, 5th ed. (New York, 2005).
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For one of the smaller human arteries we can take � − 0.027, R − 0.008 cm, 
l − 2 cm, and P − 4000 dynesycm2, which gives

 v −
4000

4s0.027d2
 s0.000064 2 r 2 d

 < 1.85 3 104s6.4 3 1025 2 r 2 d

At r − 0.002 cm the blood is flowing at a speed of

 vs0.002d < 1.85 3 104s64 3 1026 2 4 3 1026 d

 − 1.11 cmys

and the velocity gradient at that point is

dv

dr Z
r−0.002

− 2
4000s0.002d
2s0.027d2

< 274 scmysdycm

To get a feeling for what this statement means, let’s change our units from centi-
meters to micrometers (1 cm − 10,000 mm). Then the radius of the artery is 80 mm. 
The velocity at the central axis is 11,850 mmys, which decreases to 11,110 mmys at a 
distance of r − 20 mm. The fact that dvydr − 274 (mmys)ymm means that, when 
r − 20 mm, the velocity is decreasing at a rate of about 74 mmys for each micrometer 
that we proceed away from the center.	 ■

■ Exponential Functions
Let’s try to compute the derivative of the exponential function f sxd − bx using the defi-
nition of a derivative:

f 9sxd − lim
h l 0

 
 f sx 1 hd 2 f sxd

h
− lim

h l 0
 
bx1h 2 bx

h

− lim
h l 0

 
bxbh 2 bx

h
− lim

h l 0
 
bxsbh 2 1d

h

The factor bx doesn’t depend on h, so we can take it in front of the limit:

f 9sxd − bx lim
h l 0

 
bh 2 1

h

Notice that the limit is the value of the derivative of f  at 0, that is,

 lim
h l 0

 
bh 2 1

h
− f 9s0d

Therefore we have shown that if the exponential function f sxd − bx is differentiable at 
0, then it is differentiable everywhere and

(5)	 f 9sxd − f 9s0dbx	

This equation says that the rate of change of any exponential function is proportional to 
the function itself. (The slope is proportional to the height.)
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Numerical evidence for the existence of f 9s0d is given in the table at the left for the  
cases b − 2 and b − 3. (Values are stated correct to four decimal places.) It appears that 
the limits exist and 

for b − 2,    f 9s0d − lim
h l 0

 
2h 2 1

h
< 0.69

for b − 3,    f 9s0d − lim
h l 0

 
3h 2 1

h
< 1.10

In fact, it can be proved that these limits exist and, correct to six decimal places, the 
values are

d

dx
 s2x d Z

x−0
< 0.693147          

d

dx
 s3x d Z

x−0
< 1.098612

Thus, from Equation 5, we have

(6)	
d

dx
 s2x d < s0.69d2x          

d

dx
 s3x d < s1.10d3x	

Of all possible choices for the base b in Equation 5, the simplest differentiation formula 
occurs when f 9s0d − 1. In view of the estimates of f 9s0d for b − 2 and b − 3, it seems 
reasonable that there is a number b between 2 and 3 for which f 9s0d − 1. It is traditional  
to denote this value by the letter e. (In fact, that is how we introduced e in Section 1.4.) 
Thus we have the following definition.

Definition of the Number e 

e is the number such that    lim
h l 0

 
eh 2 1

h
− 1

Geometrically, this means that of all the possible exponential functions y − bx, the 
function f sxd − ex is the one whose tangent line at (0, 1d has a slope f 9s0d that is exactly 
1. (See Figures 7 and 8.)

0

y

1

x

slope=1

slope=e®

y=e®

{x, e ® }

0

y

1

x

y=2®

y=e®

y=3®

Figure �7	 Figure �8

h
2h 2 1

h

3h 2 1

h

	0.1 0.7177 1.1612
	0.01 0.6956 1.1047
	0.001 0.6934 1.0992
0.0001 0.6932 1.0987

In Exercise 1 we will see that e lies 
between 2.7 and 2.8. Later we will 
be able to show that, correct to five 
decimal places,

e < 2.71828
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If we put b − e and, therefore, f 9s0d − 1 in Equation 5, it becomes the following 
important differentiation formula.

Derivative of the Natural Exponential Function 

d

dx
 sex d − ex

Thus the exponential function f sxd − ex has the property that it is its own derivative. 
The geometrical significance of this fact is that the slope of a tangent line to the curve 
y − ex is equal to the y-coordinate of the point (see Figure 8).

 Example 10   |  If f sxd − ex 2 x, find f 9 and f 99. Compare the graphs of f  and f 9.

SOLUTION � Using the Difference Rule, we have

f 9sxd −
d

dx
 sex 2 xd −

d

dx
 sex d 2

d

dx
 sxd − ex 2 1

In Section 3.2 we defined the second derivative as the derivative of f 9, so

f 99sxd −
d

dx
 sex 2 1d −

d

dx
 sex d 2

d

dx
 s1d − ex

The function f  and its derivative f 9 are graphed in Figure 9. Notice that f  has a hori-
zontal tangent when x − 0; this corresponds to the fact that f 9s0d − 0. Notice also that, 
for x . 0, f 9sxd is positive and f  is increasing. When x , 0, f 9sxd is negative and f  is 
decreasing.	 ■

 Example 11   |  At what point on the curve y − ex is the tangent line parallel to the  
line y − 2x?

SOLUTION � Since y − ex, we have y9 − ex. Let the x-coordinate of the point in 
question be a. Then the slope of the tangent line at that point is ea. This tangent line 
will be parallel to the line y − 2x if it has the same slope, that is, 2. Equating slopes, 
we get

ea − 2      ?      a − ln 2

Therefore the required point is sa, ea d − sln 2, 2d. (See Figure 10.)	 ■

■ Sine and Cosine Functions
If we sketch the graph of the function f sxd − sin x and use the interpretation of f 9sxd  
as the slope of the tangent to the sine curve in order to sketch the graph of f 9 (see Exer-
cise 3.2.16), then it looks as if the graph of f 9 may be the same as the cosine curve (see 
Figure 11).

 TEC   Visual 3.3 uses the slope-a-scope 
to illustrate this formula.

3

_1

1.5_1.5

f

fª

Figure �9

1

1

0 x

2

3

y

y=´

y=2x

(ln 2, 2)

Figure �10

A review of the trigonometric functions 
is given in Appendix C.
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x0 2π

x0 π
2

π

π
2

π

ƒ=y= sin x

y

y

fª(xy= )

To prove that this is true we need to use two limits from Section 2.4 (see Equation 6 
and Example 13 in that section):

lim
� l 0

 
sin �

�
− 1        lim

� l 0
 
cos � 2 1

�
− 0

(7)	
d

dx
 ssin xd − cos x	

Proof � If f sxd − sin x, then

f 9sxd − lim
h l 0

 
 f sx 1 hd 2 f sxd

h
− lim

hl0
 
sinsx 1 hd 2 sin x

h

 − lim
h l 0

 
sin x cos h 1 cos x sin h 2 sin x

h

 − lim
h l 0

 F sin x cos h 2 sin x

h
1

cos x sin h

h G
 − lim

h l 0
 Fsin x S cos h 2 1

h D 1 cos x S sin h

h DG
 − lim

h l 0
 sin x ? lim

h l 0
 
cos h 2 1

h
1 lim

h l 0
 cos x ? lim

h l 0
 
sin h

h

 − ssin xd ? 0 1 scos xd ? 1 − cos x ■

Using the same methods as in the proof of Formula 7, one can prove (see Exer- 
cise 70) that

(8)	
d

dx
 scos xd − 2sin x	

 TEC   Visual 3.3 shows an animation  
of Figure 11.

Figure �11

We have used the addition formula for 
sine. See Appendix C.

Note that we regard x as a constant 
when computing a limit as h l 0, so 
sin x and cos x are also constants.
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	 1.	�� (a)	 How is the number e defined?
		  (b)	 Use a calculator to estimate the values of the limits

lim
h l 0

 
2.7h 2 1

h
        and        lim

h l 0
 
2.8h 2 1

h

			�   correct to two decimal places. What can you conclude 
about the value of e?

	 2.	�� (a)	� Sketch, by hand, the graph of the function f sxd − e x, 
paying particular attention to how the graph crosses the 
y-axis. What fact allows you to do this?

		  (b)	� What types of functions are f sxd − e x and tsxd − x e ? 
Compare the differentiation formulas for f  and t.

		  (c)	� Which of the two functions in part (b) grows more 
rapidly when x is large?

	 3–32 � Differentiate the function.

	 3.	 f sxd − 186.5	 4.	 f sxd − s30 

	 5.	 f sxd − 5x 2 1	 6.	 F sxd − 3
4 x 8

	 7.	 f sxd − x 3 2 4x 1 6	 8.	 f std − 1
2 t 6 2 3t 4 1 t

	 9.	 f sxd − x 2 3 sin x	 10.	 y − sin t 1 � cos t

	 11.	 f std − 1
4st 4 1 8d	 12.	 hsxd − sx 2 2ds2x 1 3d

	 13.	 Assd − 2
12

s 5 	 14.	 Bsyd − cy26

	 15.	 tstd − 2t23y4	 16.	 hstd − s4 t  2 4e t

	 17.	 y − 3e x 1
4

s3 x 
	 18.	 y − sx  sx 2 1d

	 19.	 Fsxd − (1
2 x)5	 20.	 f sxd −

x 2 2 3x 1 1

x 2

	 21.	 y −
x 2 1 4x 1 3

sx 
	 22.	 tsud − s2 u 1 s3u 

	 23.	 y − 4� 2	 24.	 Ls�d −
sin �

2
1

c

�

	 25.	 tsyd −
A

y 10 1 B cos y	 26.	 hsN d − rNS1 2
N

KD
	 27.	 f sxd − ksa 2 xdsb 2 xd	 28.	 Fsvd − aev 1

b

v
1

c

v 2

	 29.	 u − s5 t  1 4st 5 	 30.	 v − Ssx 1
1

s3 x D2

	 31.	 Gsyd −
A

y 10 1 Be y	 32.	 y − e x11 1 1

EXERCISES 3.3

 Example 12   |  Differentiate y − 3 sin � 1 4 cos �.

solution

	
dy

d�
− 3 

d

d�
 ssin �d 1 4 

d

d�
 scos �d − 3 cos � 2 4 sin �	 ■

 Example 13   |  Find the 27th derivative of cos x.

SOLUTION � The first few derivatives of f sxd − cos x are as follows:

	 f 9sxd − 2sin x

	  f 99sxd − 2cos x

	  f999sxd − sin x

	 f s4dsxd − cos x

	  f s5dsxd − 2sin x

Looking for a pattern, we see that the successive derivatives occur in a cycle of length 
4 and, in particular, f sndsxd − cos x whenever n is a multiple of 4. Therefore

f s24dsxd − cos x

and, differentiating three more times, we have

	 f s27dsxd − sin x	 ■
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		���  length 3 cm, pressure difference 3000 dynesycm2, and 
viscosity � − 0.027.

		  (a)	� Find the velocity of the blood along the center-
line r − 0, at radius r − 0.005 cm, and at the wall 
r − R − 0.01 cm.

		  (b)	� Find the velocity gradient at r − 0, r − 0.005, and 
r − 0.01.

		  (c)	� Where is the velocity the greatest? Where is the velocity 
changing most?

	 50.	�I nvasive species ��often display a wave of advance as they 
colonize new areas. Mathematical models based on random 
dispersal and reproduction have demonstrated that the speed 
with which such waves move is given by the expression 
2sDr , where r is the reproductive rate of individuals and D 
is a parameter quantifying dispersal. Calculate the derivative 
of the wave speed with respect to the reproductive rate r and 
explain its meaning.

	 51.	�� �The position function of a particle is given by 
s − t 3 2 4.5t 2 2 7t, t > 0.

		  (a)	 Find the velocity and acceleration of the particle.
		  (b)	� When does the particle reach a velocity of 5 mys?
		  (c)	� When is the acceleration 0? What is the significance of 

this value of t?

	 52.	��� If a ball is given a push so that it has an initial velocity of 
5 mys rolling down a certain inclined plane, then the 
distance it has rolled after t seconds is s − 5t 1 3t 2.

		  (a)	 Find the velocity after 2 s.
		  (b)	 How long does it take for the velocity to reach 35 mys?

	 53.	�� �(a)	� A company makes computer chips from square wafers  
of silicon. It wants to keep the side length of a wafer 
very close to 15 mm and it wants to know how the area 
Asxd of a wafer changes when the side length x changes. 
Find A9s15d and explain its meaning in this situation.

		  (b)	� Show that the rate of change of the area of a square with 
respect to its side length is half its perimeter. Try to  
explain geometrically why this is true by drawing a 
square whose side length x is increased by an amount 
Dx. How can you approximate the resulting change in 
area DA if Dx is small?

	 54.	�� (a)	� Sodium chlorate crystals are easy to grow in the shape 
of cubes by allowing a solution of water and sodium 
chlorate to evaporate slowly. If V is the volume of  
such a cube with side length x, calculate dVydx when 
x − 3 mm and explain its meaning.

		  (b)	� Show that the rate of change of the volume of a cube 
with respect to its edge length is equal to half the 
surface area of the cube. Explain geometrically why this 
result is true by arguing by analogy with Exercise 53(b).

	 55.	�� (a)	� Find the average rate of change of the area of a circle 
with respect to its radius r as r changes from

			   (i)	 2 to 3	 (ii)	 2 to 2.5	 (iii)	 2 to 2.1
		  (b)	 Find the instantaneous rate of change when r − 2.

	� 33–34 � Find an equation of the tangent line to the curve at the  
given point.

	 33.	�� y − s4 x ,    s1, 1d

	 34.	�� y − x 4 1 2x 2 2 x,    s1, 2d

	� 35–38 � Find equations of the tangent line and normal line to the 
curve at the given point.

	 35.	�� y − 6 cos x,    s�y3, 3d	 36.	 y − x 2 2 x 4,    s1, 0d

	 37.	�� y − x4 1 2e x,    s0, 2d	 38.	 y − s1 1 2xd2,    s1, 9d

	 ;	� 39–40 � Find an equation of the tangent line to the curve at the 
given point. Illustrate by graphing the curve and the tangent line 
on the same screen.

	 39.	 y − x 1 sx ,    s1, 2d	 40.	 y − 3x 2 2 x 3,    s1, 2d

	 ;	� 41–42 � Find f 9sxd. Compare the graphs of f  and f 9 and use 
them to explain why your answer is reasonable.

	 41.	 f sxd − 3x 15 2 5x 3 1 3	 42.	 f sxd − x 1
1

x

	� 43–46 � Find the first and second derivatives of the function.

	 43.	 f sxd − x 4 2 3x 3 1 16x	 44.	 Gsrd − sr 1 s3 r 

	 45.	 tstd − 2 cos t 2 3 sin t	 46.	 hstd − st 1 5 sin t

	 47.	� Fish growth �� Biologists have proposed a cubic polynomial 
to model the length L of rock bass at age A: 

L − 0.0155A3 2 0.372A2 1 3.95A 1 1.21

		��  �where L is measured in inches and A in years. (See Exercise 
1.2.27.) Calculate

dL

dA Z
A−12

		��  and interpret your answer.

	 48.	�R ain forest biodiversity �� The number of tree species S in 
a given area A in the Pasoh Forest Reserve in Malaysia has 
been modeled by the power function

SsAd − 0.882A0.842

		���  where A is measured in square meters. Find S9s100d and 
interpret your answer.

(Source: Adapted from K. Kochummen et al., “Floristic Composition of 

Pasoh Forest Reserve, a Lowland Rain Forest in Peninsular Malaysia,”  

Journal of Tropical Forest Science 3 (1991): 1–13.

	 49.	� Blood flow �� Refer to the law of laminar flow given in 
Example 9. Consider a blood vessel with radius 0.01 cm, 
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	 65.	�� �Find an equation of the normal line to the parabola 
y − x 2 2 5x 1 4 that is parallel to the line x 2 3y − 5.

	 66.	��� Where does the normal line to the parabola y − x 2 x 2 at 
the point (1, 0) intersect the parabola a second time? 
Illustrate with a sketch.

	 67.	�� �Draw a diagram to show that there are two tangent lines to 
the parabola y − x 2 that pass through the point s0, 24d. Find 
the coordinates of the points where these tangent lines 
intersect the parabola.

	 68.	�� (a)	� Find equations of both lines through the point s2, 23d 
that are tangent to the parabola y − x 2 1 x.

		  (b)	� Show that there is no line through the point s2, 7d that is  
tangent to the parabola. Then draw a diagram to see why.

	 69.	��� Use the definition of a derivative to show that if f sxd − 1yx, 
then f 9sxd − 21yx 2. (This proves the Power Rule for the  
case n − 21.)

	 70.	�� �Prove, using the definition of derivative, that if f sxd − cos x, 
then f 9sxd − 2sin x.

	 71.	��� Find the parabola with equation y − ax 2 1 bx whose 
tangent line at (1, 1) has equation y − 3x 2 2.

	 72.	�� �Find the value of c such that the line y − 3
2 x 1 6 is tangent 

to the curve y − csx .

	 73.	�� �For what values of a and b is the line 2x 1 y − b tangent to 
the parabola y − ax 2 when x − 2?

	 74.	��� A tangent line is drawn to the hyperbola xy − c at a point P.
		  (a)	� Show that the midpoint of the line segment cut from this 

tangent line by the coordinate axes is P.
		  (b)	� Show that the triangle formed by the tangent line and 

the coordinate axes always has the same area, no matter 
where P is located on the hyperbola.

	 75.	��� Evaluate lim
x l 1

 
x 1000 2 1

x 2 1
.

	 76.	�� �Draw a diagram showing two perpendicular lines that 
intersect on the y-axis and are both tangent to the parabola 
y − x 2. Where do these lines intersect?

		  (c)	� Show that the rate of change of the area of a circle with 
respect to its radius (at any r) is equal to the circum-
ference of the circle. Try to explain geometrically 
why this is true by drawing a circle whose radius is 
increased by an amount Dr. How can you approximate 
the resulting change in area DA if Dr is small?

	 56.	�� (a)	� Cell growth  The volume of a growing spherical cell 
is V − 4

3 �r 3, where the radius r is measured in micro-
meters (1 mm − 1026 m). Find the average rate of 
change of V with respect to r when r changes from

			   (i)	 5 to 8 mm	 (ii)	 5 to 6 mm	 (iii)	 5 to 5.1 mm
		  (b)	� Find the instantaneous rate of change of V with respect 

to r when r − 5 mm.
		  (c)	� Show that the rate of change of the volume of a cell 

with respect to its radius is equal to its surface area 
sS − 4�r 2d. Explain geometrically why this result is 
true. Argue by analogy with Exercise 55(c).

	 57.	��� Find 
d 99

dx99
  ssin xd.

	 58.	�� �Find the nth derivative of each function by calculating the 
first few derivatives and observing the pattern that occurs.

		  (a)	� f sxd − x n	 (b)	 f sxd − 1yx

	 59.	��� For what values of x does the graph of f sxd − x 1 2 sin x 
have a horizontal tangent?

	 60.	��� For what values of x does the graph of 
f sxd − x 3 1 3x 2 1 x 1 3 have a horizontal tangent?

	 61.	��� Show that the curve y − 6x 3 1 5x 2 3 has no tangent line 
with slope 4.

	 62.	��� Find an equation of the tangent line to the curve y − xsx  
that is parallel to the line y − 1 1 3x.

	 63.	�� �Find equations of both lines that are tangent to the curve 
y − 1 1 x 3 and parallel to the line 12x 2 y − 1.

	 ;	 64.	�� �At what point on the curve y − 1 1 2e x 2 3x is the 
tangent line parallel to the line 3x 2 y − 5? Illustrate by 
graphing the curve and both lines.

3.4 The Product and Quotient Rules

The formulas of this section enable us to differentiate new functions formed from old 
functions by multiplication or division.

■ The Product Rule
By analogy with the Sum and Difference Rules, one might be tempted to guess, as Leib-
niz did three centuries ago, that the derivative of a product is the product of the deriva-
tives. We can see, however, that this guess is wrong by looking at a particular example. 
Let f sxd − x  and tsxd − x 2. Then the Power Rule gives f 9sxd − 1 and t9sxd − 2x. But 
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s ftdsxd − x 3, so s ftd9sxd − 3x 2. Thus s ftd9 ± f 9t9. The correct formula was discovered 
by Leibniz (soon after his false start) and is called the Product Rule.

Before stating the Product Rule, let’s see how we might discover it. We start by assum-
ing that u − f sxd and v − tsxd are both positive differentiable functions. Then we can  
interpret the product uv as an area of a rectangle (see Figure 1). If x changes by an 
amount Dx, then the corresponding changes in u and v are

Du − f sx 1 Dxd 2 f sxd            Dv − tsx 1 Dxd 2 tsxd

and the new value of the product, su 1 Dudsv 1 Dvd, can be interpreted as the area of the 
large rectangle in Figure 1 (provided that Du and Dv happen to be positive).

The change in the area of the rectangle is

(1)	  Dsuvd − su 1 Dudsv 1 Dvd 2 uv − u Dv 1 v Du 1 Du Dv	

 − the sum of the three shaded areas

If we divide by Dx, we get

Dsuvd
Dx

− u 
Dv

Dx
1 v 

Du

Dx
1 Du 

Dv

Dx

If we now let Dx l 0, we get the derivative of uv:

 
d

dx
 suvd −  lim

Dx l 0
 
Dsuvd

Dx
− lim

Dx l 0
 Su 

Dv

Dx
1 v 

Du

Dx
1 Du 

Dv

DxD
 − u lim

Dx l 0
 
Dv

Dx
1 v lim

Dx l 0

Du

Dx
1 S lim

Dx l 0
 DuDS lim

Dx l 0
 
Dv

DxD
 − u 

dv

dx
1 v 

du

dx
1 0 ?

dv

dx

(2)	  
d

dx
 suvd − u 

dv

dx
1 v 

du

dx
	

(Notice that Du l 0 as Dx l 0 since f  is differentiable and therefore continuous.)
Although we started by assuming (for the geometric interpretation) that all the quan-

tities are positive, we notice that Equation 1 is always true. (The algebra is valid whether 
u, v, Du, and Dv are positive or negative.) So we have proved Equation 2, known as the  
Product Rule, for all differentiable functions u and v.

The Product Rule � If f  and t are both differentiable, then

d

dx
 f f sxdtsxdg − f sxd 

d

dx
 ftsxdg 1 tsxd 

d

dx
 f f sxdg

In words, the Product Rule says that the derivative of a product of two functions is the 
first function times the derivative of the second function plus the second function times 
the derivative of the first function.

u Î√Î√

√ u√

u

Îu Î√

√ Îu

Îu

Figure �1
The geometry of the Product Rule

Recall that in Leibniz notation the defi-
nition of a derivative can be written as

dy

dx
− lim

Dx l 0
 
Dy

Dx

In prime notation:

s ftd9 − ft9 1 t f 9
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 Example 1   |  Differentiate y − x 2 sin x.

Solution � Using the Product Rule, we have

 
dy

dx
− x 2 

d

dx
 ssin xd 1 sin x 

d

dx
 sx 2d

 − x 2 cos x 1 2x sin x ■

 Example 2   |  Differentiate the function f std − st   sa 1 btd.

SOLUTION 1 � Using the Product Rule, we have

f 9std − st   
d

dt
 sa 1 btd 1 sa 1 btd 

d

dt
 (st )

 − st   ? b 1 sa 1 btd ? 1
2 t21y2

 − bst  1
a 1 bt

2st  
−

a 1 3bt

2st  

SOLUTION 2 �  If we first use the laws of exponents to rewrite f std, then we can 
proceed directly without using the Product Rule.

 f std − ast  1 btst  − at 1y2 1 bt 3y2

	 f 9std − 1
2at21y2 1 3

2 bt 1y2

which is equivalent to the answer given in Solution 1.	 ■

Example 2 shows that it is sometimes easier to simplify a product of functions before 
differentiating than to use the Product Rule. In Example 1, however, the Product Rule is 
the only possible method.

 Example 3   |  If hsxd − xtsxd and it is known that ts3d − 5 and t9s3d − 2,  
find h9s3d.

Solution � Applying the Product Rule, we get

 h9sxd −
d

dx
 fxtsxdg

 − x 
d

dx
 ftsxdg 1 tsxd 

d

dx
 fxg

 − xt9sxd 1 tsxd

Therefore

	 h9s3d − 3t9s3d 1 ts3d − 3 ? 2 1 5 − 11	 ■

■ The Quotient Rule
We find a rule for differentiating the quotient of two differentiable functions u − f sxd 
and v − tsxd in much the same way that we found the Product Rule. If x, u, and v change 

Figure 2 shows the graphs of the func-
tion of Example 1 and its derivative. 
Notice that y9 − 0 whenever y has a 
horizontal tangent.

5

_5

_4 4

yyª

Figure �2

In Example 2, a and b are constants. It 
is customary in mathematics to use let-
ters near the beginning of the alphabet 
to represent constants and letters near 
the end of the alphabet to represent 
variables.
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by amounts Dx, Du, and Dv, then the corresponding change in the quotient uyv is

DS u

vD −
u 1 Du

v 1 Dv
2

u

v
−

su 1 Dudv 2 usv 1 Dvd
vsv 1 Dvd

 −
vDu 2 uDv

vsv 1 Dvd
so

d

dxS u

vD − lim
Dx l 0

 
Dsuyvd

Dx
− lim

Dx l 0
 

v 
Du

Dx
2 u 

Dv

Dx

vsv 1 Dvd

As Dx l 0, Dv l 0 also, because v − tsxd is differentiable and therefore continuous. 
Thus, using the Limit Laws, we get

d

dxS u

vD −

v lim
Dx l 0

  
Du

Dx
2 u lim

Dx l 0
 
Dv

Dx

v lim
Dx l 0

sv 1 Dvd
−

v 
du

dx
2 u 

dv

dx

v2

The Quotient Rule � If f  and t are differentiable, then

d

dx
 F  f sxd

tsxd G −

tsxd 
d

dx
 f f sxdg 2 f sxd 

d

dx
 ftsxdg

ftsxdg 2

In words, the Quotient Rule says that the derivative of a quotient is the denominator 
times the derivative of the numerator minus the numerator times the derivative of the  
denominator, all divided by the square of the denominator.

The Quotient Rule and the other differentiation formulas enable us to compute the  
derivative of any rational function, as the next example illustrates.

 Example 4   |  Let y −
x 2 1 x 2 2

x 3 1 6
. Then

 y9 −

sx 3 1 6d 
d

dx
 sx 2 1 x 2 2d 2 sx 2 1 x 2 2d 

d

dx
 sx 3 1 6d

sx 3 1 6d2

 −
sx 3 1 6ds2x 1 1d 2 sx 2 1 x 2 2ds3x 2 d

sx 3 1 6d2

 −
s2x 4 1 x 3 1 12x 1 6d 2 s3x 4 1 3x 3 2 6x 2 d

sx 3 1 6d2

 −
2x 4 2 2x 3 1 6x 2 1 12x 1 6

sx 3 1 6d2 ■

In prime notation:

S f

tD9
−

t f 9 2 ft9

t2

1.5

_1.5

_4 4

yª

y

Figure �3

We can use a graphing device to check 
that the answer to Example 4 is plau-
sible. Figure 3 shows the graphs of the 
function of Example 4 and its deriva-
tive. Notice that when y grows rapidly 
(near 22), y9 is large. And when y 
grows slowly, y9 is near 0.
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 Example 5   |  BB  � The Monod growth function  Monod modeled the per 
capita growth rate R of Escherichia coli bacteria by the function

RsNd −
SN

c 1 N

where N is the concentration of the nutrient, S is its saturation level, and c is a positive 
constant. Calculate dRydN and interpret it.

Solution � Using the Quotient Rule, we have

 
dR

dN
−

sc 1 Nd 
d

dN
 sSNd 2 SN 

d

dN
 sc 1 Nd

sc 1 Nd2

 −
sc 1 NdS 2 SN ? 1

sc 1 Nd2 −
cS

sc 1 Nd2

The derivative dRydN is the rate of change of the growth rate R with respect to the 
concentration of the nutrient. From the expression for dRydN we see that it is always 
positive, which means that R is an increasing function of N. But as the concentration 
becomes larger, dRydN becomes smaller because of the denominator sc 1 Nd2. So

dR

dN
 l 0    as    N l `

and this means that the graph of R becomes flatter as N gets larger. (See Figure 4.)	 ■

 Example 6   |  Find an equation of the tangent line to the curve y − exys1 1 x 2 d at 

the point s1, 12ed.
SOLUTION � According to the Quotient Rule, we have

 
dy

dx
−

s1 1 x 2 d 
d

dx
 sex d 2 ex  

d

dx
 s1 1 x 2 d

s1 1 x 2 d2

 −
s1 1 x 2 dex 2 exs2xd

s1 1 x 2 d2 −
exs1 2 2x 1 x 2d

s1 1 x 2d2

 −
exs1 2 xd2

s1 1 x 2 d2

So the slope of the tangent line at s1, 12ed is

dy

dx Z
x−1

− 0

This means that the tangent line at s1, 12ed is horizontal and its equation is y − 1
2e. fSee 

Figure 5. Notice that the function is increasing and crosses its tangent line at s1, 12ed.g
	 ■

0 N

R

dR/dN

S
c

S

Figure �4

2.5

0
_2 3.5

y= ´
1+≈

y= e1
2

Figure �5
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Note � Don’t use the Quotient Rule every time you see a quotient. Sometimes it’s easier 
to rewrite a quotient first to put it in a form that is simpler for the purpose of differentia-
tion. For instance, although it is possible to differentiate the function

Fsxd −
3x 2 1 2sx 

x

using the Quotient Rule, it is much easier to perform the division first and write the 
function as

Fsxd − 3x 1 2x21y2

before differentiating.
We summarize the differentiation formulas we have learned so far as follows.

Table of Differentiation Formulas

	
d

dx
 scd − 0	

d

dx
 sxn d − nxn21	

d

dx
 sex d − ex

	 scf d9 − cf 9	 s f 1 td9 − f 91 t9	 s f 2 td9 − f 92 t9

	 s ftd9 − ft9 1 tf 9	 S f

tD9
−

tf 9 2 ft9

t2

■ Trigonometric Functions
Knowing the derivatives of the sine and cosine functions, we can use the Quotient Rule 
to find the derivative of the tangent function:

 
d

dx
 stan xd −

d

dx
 S sin x

cos xD
 −

cos x 
d

dx
 ssin xd 2 sin x 

d

dx
 scos xd

cos2x

 −
cos x ? cos x 2 sin x s2sin xd

cos2x

 −
cos2x 1 sin2x

cos2x

 −
1

cos2x
− sec2x

d

dx
 stan xd − sec2x

The derivatives of the remaining trigonometric functions, csc, sec, and cot, can also 
be found easily using the Quotient Rule (see Exercises 45–47). We collect all the dif-
ferentiation formulas for trigonometric functions in the following table. Remember that 
they are valid only when x is measured in radians.
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Derivatives of Trigonometric Functions �

	
d

dx
 ssin xd − cos x	

d

dx
 scsc xd − 2csc x cot x

	
d

dx
 scos xd − 2sin x	

d

dx
 ssec xd − sec x tan x

	
d

dx
 stan xd − sec2x	

d

dx
 scot xd − 2csc2x

 Example 7   |  Differentiate f sxd −
sec x

1 1 tan x
. For what values of x does the graph 

of f  have a horizontal tangent?

SOLUTION � The Quotient Rule gives 

 f 9sxd −

s1 1 tan xd 
d

dx
 ssec xd 2 sec x 

d

dx
 s1 1 tan xd

s1 1 tan xd2

 −
s1 1 tan xd sec x tan x 2 sec x ? sec2x

s1 1 tan xd2

 −
sec x stan x 1 tan2x 2 sec2xd

s1 1 tan xd2

 −
sec x stan x 2 1d

s1 1 tan xd2

In simplifying the answer we have used the identity tan2x 1 1 − sec2x.
Since sec x is never 0, we see that f 9sxd − 0 when tan x − 1, and this occurs when 

x − n� 1 �y4, where n is an integer (see Figure 6).	 ■

When you memorize this table, it is 
helpful to notice that the minus signs 
go with the derivatives of the “cofunc-
tions,” that is, cosine, cosecant, and 
cotangent.

3

_3

_3 5

Figure �6
The horizontal tangents in Example 7

	 1.	�� �Find the derivative of f sxd − s1 1 2x 2dsx 2 x 2d in two 
ways: by using the Product Rule and by performing the 
multiplication first. Do your answers agree?

	 2.	��� Find the derivative of the function

Fsxd −
x 4 2 5x 3 1 sx 

x 2

		��  �in two ways: by using the Quotient Rule and by simplifying 
first. Show that your answers are equivalent. Which method 
do you prefer?

	� 3–34 � Differentiate.

	 3.	 f sxd − sx 3 1 2xde x	 4.	 tsxd − sx  e x

	 5.	 tstd − t 3 cos t	 6.	 hstd − et sin t

	 7.	 Fsyd − S 1

y 2 2
3

y 4Dsy 1 5y 3d

	 8.	 Rstd − st 1 e t d(3 2 st )
	 9.	 f sxd − sin x 1 1

2 cot x	 10.	 y − 2 csc x 1 5 cos x

	 11.	 hs�d − � csc � 2 cot �	 12.	 y − usa cos u 1 b cot ud

	 13.	 y −
e x

x 2 	 14.	 y −
e x

1 1 x

	 15.	 tsxd −
3x 2 1

2x 1 1
	 16.	 f std −

2t

4 1 t 2

	 17.	 y −
x 3

1 2 x 2 	 18.	 y −
x 1 1

x 3 1 x 2 2

	 19.	 y −
t 2 1 2

t 4 2 3t 2 1 1
	 20.	 y −

t

st 2 1d2

EXERCISES 3.4
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	 49.	��� Suppose that f s5d − 1, f 9s5d − 6, ts5d − 23, and 
t9s5d − 2. Find the following values.

		  (a)	 s ftd9s5d	 (b)	 s fytd9s5d	 (c)	 styf d9s5d

	 50.	��� �Suppose that f s2d − 23, ts2d − 4, f 9s2d − 22, and 
t9s2d − 7. Find h9s2d.

		  (a)	 hsxd − 5f sxd 2 4tsxd	 (b)	 hsxd − f sxdtsxd

		  (c)	 hsxd −
f sxd
tsxd

	 (d)	 hsxd −
tsxd

1 1 f sxd

	 51.	�� �If f  and t are the functions whose graphs are shown, let 
usxd − f sxdtsxd and vsxd − f sxdytsxd.

		  (a)	 Find u9s1d.	 (b)	 Find v9s5d.

f
g

x

y

0

1

1

	 52.	��� �Let Psxd − FsxdGsxd and Qsxd − FsxdyGsxd, where F and 
G are the functions whose graphs are shown.

		  (a)	� Find P9s2d.	 (b)	 Find Q9s7d.

F

G

x

y

0 1

1

	 53.	�� �If t is a differentiable function, find an expression for the  
derivative of each of the following functions.

		  (a)	 y − xtsxd	 (b)	 y −
x

tsxd
	 (c)	 y −

tsxd
x

	 54.	�I nsecticide resistance �� If the frequency of a gene for 
insecticide resistance is p, then its frequency in the next 
generation is given by the expression

ps1 1 sd
1 1 sp

		���  where s is the reproductive advantage that this gene has 
over the wild type in the presence of the insecticide. 
Determine the rate at which the gene frequency in the next 
generation changes as s changes.

	 55.	��� The Michaelis-Menten equation for the enzyme 
chymotrypsin is

v −
0.14fSg

0.015 1 fSg

		���  where v is the rate of an enzymatic reaction and [S] is the 
concentration of a substrate S. Calculate dvyd fSg and 
interpret it.

	 21.	 y − sr 2 2 2rder	 22.	 y −
1

s 1 kes

	 23.	 f s�d −
sec �

1 1 sec �
	 24.	 y −

1 1 sin x

x 1 cos x

	 25.	 y −
sin x

x 2 	 26.	 y −
1 2 sec x

tan x

	 27.	 y −
v 3 2 2vsv 

v
	 28.	 z − w 3y2sw 1 cewd

	 29.	 f std −
2t

2 1 st  
	 30.	 tstd −

t 2 st  

t 1y3

	 31.	 f sxd −
A

B 1 Ce x 	 32.	 f sxd −
1 2 xe x

x 1 e x

	 33.	 f sxd −
x

x 1
c

x

	 34.	 f sxd −
ax 1 b

cx 1 d

	� 35–36 � Find an equation of the tangent line to the given curve at 
the specified point.

	 35.	 y −
2x

x 1 1
,  s1, 1d	 36.	 y − e x cos x���,  s0, 1d

	� 37–38 � Find equations of the tangent line and normal line to the 
given curve at the specified point.

	 37.	 y − 2xe x,    s0, 0d	 38.	 y −
sx 

x 1 1
,    s4, 0.4d

	� 39–40 � Find f 9sxd and f 99sxd.

	 39.	 f sxd − x 4e x	 40.	 f sxd −
x

x 2 2 1

	 41.	�� If Hs�d − � sin �, find H9s�d and H99s�d.

	 42.	�� �If f std − csc t, find f 99s�y6d.

	 43.	��� If f sxd − xe x, find the nth derivative, f sndsxd.

	 44.	�� If tsxd − xye x, find t sndsxd.

	 45.	�� Prove that 
d

dx
 scsc xd − 2csc x cot x.

	 46.	�� Prove that 
d

dx
 ssec xd − sec x tan x.

	 47.	�� Prove that 
d

dx
 scot xd − 2csc2x.

	 48.	�� �Suppose that f s�y3d − 4 and f 9s�y3d − 22, and let 
tsxd − f sxd sin x and hsxd − scos xdyf sxd. Find 

		  (a) t9s�y3d	 (b) h9s�y3d
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3.5 The Chain Rule

Suppose you are asked to differentiate the function 

Fsxd − sx 2 1 1

The differentiation formulas you learned in the previous sections of this chapter do not  
enable you to calculate F9sxd.

Observe that F is a composite function. In fact, if we let y − f sud − su  and let 
u − tsxd − x 2 1 1, then we can write y − Fsxd − f stsxdd, that is, F − f 8 t. We know 
how to differentiate both f  and t, so it would be useful to have a rule that tells us how to 
find the derivative of F − f 8 t in terms of the derivatives of f  and t.

It turns out that the derivative of the composite function f 8 t is the product of the  
derivatives of f  and t. This fact is one of the most important of the differentiation rules and 
is called the Chain Rule. It seems plausible if we interpret derivatives as rates of change.  
Regard duydx as the rate of change of u with respect to x, dyydu as the rate of change of 
y with respect to u, and dyydx as the rate of change of y with respect to x. If u changes 

See Section 1.3 for a review of  
composite functions.

	 59.	��� How many tangent lines to the curve y − xysx 1 1) pass 
through the point s1, 2d? At which points do these tangent 
lines touch the curve?

	 60.	�� �Find equations of the tangent lines to the curve

y −
x 2 1

x 1 1

		��  that are parallel to the line x 2 2y − 2.

	 61.	�� (a)	� Use the Product Rule twice to prove that if f , t, and h 
are differentiable, then s fthd9 − f 9th 1 ft9h 1 fth9.

		  (b)	 Taking f − t − h in part (a), show that

d

dx
 f f sxdg3 − 3f f sxdg2 f 9sxd

		  (c)	� Use part (b) to differentiate y − e 3x.

	 62.	�� (a)	� If Fsxd − f sxd tsxd, where f  and t have derivatives of 
all orders, show that F99 − f 99t 1 2 f 9t9 1 ft99.

		  (b)	� Find similar formulas for F999 and F s4d.
		  (c)	� Guess a formula for F snd.

	 63.	�� (a)	� If t is differentiable, the Reciprocal Rule says that

d

dx
 F 1

tsxdG − 2
t9sxd

ftsxdg2

			��   �Use the Quotient Rule to prove the Reciprocal Rule.
		  (b)	� Use the Reciprocal Rule to differentiate the function 

y − 1ysx 4 1 x 2 1 1d.
		  (c)	� Use the Reciprocal Rule to verify that the Power Rule 

is valid for negative integers, that is,

d

dx
 sx2nd − 2nx2n21

			�   for all positive integers n.

	 56.	��� The biomass Bstd of a fish population is the total mass of 
the members of the population at time t. It is the product of 
the number of individuals Nstd in the population and the 
average mass Mstd of a fish at time t. In the case of 
guppies, breeding occurs continually. Suppose that at time 
t − 4 weeks the population is 820 guppies and is growing 
at a rate of 50 guppies per week, while the average mass is 
1.2 g and is increasing at a rate of 0.14 gyweek. At what 
rate is the biomass increasing when t − 4?

	 57.	��� The gas law for an ideal gas at absolute temperature T (in 
kelvins), pressure P (in atmospheres), and volume V (in 
liters) is PV − nRT, where n is the number of moles of the 
gas and R − 0.0821 is the gas constant. Suppose that, at a 
certain instant, P − 8.0 atm and is increasing at a rate of  
0.10 atmymin and V − 10 L and is decreasing at a rate of  
0.15 Lymin. Find the rate of change of T with respect to 
time at that instant if n − 10 mol.

	 58.	� Sensitivity of the eye to brightness �� If R denotes the 
reaction of the body to some stimulus of strength x, the 
sensitivity S is defined to be the rate of change of the 
reaction with respect to x. A particular example is that 
when the brightness x of a light source is increased, the eye 
reacts by decreasing the area R of the pupil. The experi-
mental formula

R −
40 1 24x 0.4

1 1 4x 0.4

		���  has been used to model the dependence of R on x when R 
is measured in square millimeters and x is measured in 
appropriate units of brightness.

		  (a)	 Find the sensitivity.
	 ;		  (b)	� Illustrate part (a) by graphing both R and S as functions  

of x. Comment on the values of R and S at low levels of 
brightness. Is this what you would expect?
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twice as fast as x and y changes three times as fast as u, then it seems reasonable that y 
changes six times as fast as x, and so we expect that 

dy

dx
−

dy

du
 
du

dx

The Chain Rule � If t is differentiable at x and f  is differentiable at tsxd, then 
the composite function F − f 8 t defined by Fsxd − f stsxdd is differentiable at x 
and F9 is given by the product

F9sxd − f 9stsxdd ? t9sxd

In Leibniz notation, if y − f sud and u − tsxd are both differentiable functions, 
then

dy

dx
−

dy

du
 
du

dx

Comments on the Proof of the Chain Rule � �Let Du be the change in u 
corresponding to a change of Dx in x, that is,

Du − tsx 1 Dxd 2 tsxd

Then the corresponding change in y is

Dy − f su 1 Dud 2 f sud
It is tempting to write

	  
dy

dx
− lim

Dxl 0
 
Dy

Dx

(1)	  − lim
Dx l 0

 
Dy

Du
?

Du

Dx
	

	  − lim
Dx l 0

 
Dy

Du
? lim

Dx l 0
 
Du

Dx

	  − lim
Du l 0

 
Dy

Du
? lim

Dx l 0
 
Du

Dx
	

(Note that Du l 0 as Dx l 0 
since t is continuous.)

	  −
dy

du
 
du

dx
	

The only flaw in this reasoning is that in (1) it might happen that Du − 0 (even when 
Dx ± 0) and, of course, we can’t divide by 0. Nonetheless, this reasoning does at least 
suggest that the Chain Rule is true. A full proof of the Chain Rule is given at the end of 
this section.	 ■

The Chain Rule can be written either in the prime notation

(2)	 s f 8 td9sxd − f 9stsxdd ? t9sxd	

or, if y − f sud and u − tsxd, in Leibniz notation:

(3)	
dy

dx
−

dy

du
 
du

dx
	

James Gregory
The first person to formulate the Chain 
Rule was the Scottish mathematician 
James Gregory (1638–1675), who also 
designed the first practical reflecting 
telescope. Gregory discovered the basic 
ideas of calculus at about the same time 
as Newton. He became the first Profes-
sor of Mathematics at the University of 
St. Andrews and later held the same 
position at the University of Edinburgh. 
But one year after accepting that posi-
tion he died at the age of 36.
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Equation 3 is easy to remember because if dyydu and duydx were quotients, then we 
could cancel du. Remember, however, that du has not been defined and duydx should not 
be thought of as an actual quotient.

 Example 1   |  Find F9sxd if Fsxd − sx 2 1 1.

SOLUTION 1 � (using Equation 2):  At the beginning of this section we expressed F as
�Fsxd − s f 8 tdsxd − f stsxdd where f sud − su  and tsxd − x 2 1 1. Since

f 9sud − 1
2 u21y2 −

1

2su 
        and        t9sxd − 2x

we have	  F9sxd − f 9stsxdd ? t9sxd

−
1

2sx 2 1 1
? 2x −

x

sx 2 1 1

SOLUTION 2 � (using Equation 3):  If we let u − x 2 1 1 and y − su , then

	  F9sxd −
dy

du
 
du

dx
−

1

2su 
 s2xd −

1

2sx 2 1 1 
 s2xd −

x

sx 2 1 1 
	 ■

When using Formula 3 we should bear in mind that dyydx refers to the derivative 
of y when y is considered as a function of x (called the derivative of y with respect  
to x), whereas dyydu refers to the derivative of y when considered as a function of u (the 
derivative of y with respect to u). For instance, in Example 1, y can be considered as a 
function of x sy − sx 2 1 1d and also as a function of u sy − su d. Note that

dy

dx
− F9sxd −

x

sx 2 1 1
        whereas      

dy

du
− f 9sud −

1

2su 

NOTE � In using the Chain Rule we work from the outside to the inside. Formula 2 
says that we differentiate the outer function f  [at the inner function tsxd] and then we 
multiply by the derivative of the inner function.

d

dx
f stsxdd − f 9 stsxdd ? t9sxd

outer
function

evaluated
at inner
function

derivative
of outer
function

evaluated
at inner
function

derivative
of inner
function

 Example 2   |  Differentiate (a) y − sinsx 2 d and (b) y − sin2x.

SOLUTION 

(a)  If y − sinsx 2 d, then the outer function is the sine function and the inner function is 
the squaring function, so the Chain Rule gives

 
dy

dx
−

d

dx
sin sx 2 d − cos sx 2 d ? 2x

outer
function

evaluated
at inner
function

derivative
of outer
function

evaluated
at inner
function

derivative
of inner
function

 − 2x cossx 2 d
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(b)  Note that sin2x − ssin xd2. Here the outer function is the squaring function and the 
inner function is the sine function. So

dy

dx
−

d

dx
 ssin xd2           −            2 ? ssin xd ? cos x

	

inner
function

derivative
of outer
function

evaluated
at inner
function

derivative
of inner
function	

inner
function

derivative
of outer
function

evaluated
at inner
function

derivative
of inner
function

The answer can be left as 2 sin x cos x or written as sin 2x (by a trigonometric identity 
known as the double-angle formula).	 ■

■ Combining the Chain Rule with Other Rules
In Example 2(a) we combined the Chain Rule with the rule for differentiating the sine 
function. In general, if y − sin u, where u is a differentiable function of x, then, by the 
Chain Rule,

dy

dx
−

dy

du
 
du

dx
− cos u 

du

dx

Thus	
d

dx
 ssin ud − cos u 

du

dx
	

In a similar fashion, all of the differentiation formulas for trigonometric functions can 
be combined with the Chain Rule.

Let’s make explicit the special case of the Chain Rule where the outer function f  is 
a power function. If y − ftsxdgn, then we can write y − f sud − un where u − tsxd. By 
using the Chain Rule and then the Power Rule, we get

dy

dx
−

dy

du
 
du

dx
− nun21 

du

dx
− nftsxdgn21t9sxd

(4) The Power Rule Combined with the Chain Rule � If n is any real num-
ber and u − tsxd is differentiable, then

d

dx
 sun d − nun21 

du

dx

Alternatively,	
d

dx
 ftsxdgn − nftsxdgn21 ? t9sxd

Notice that the derivative in Example 1 could be calculated by taking n − 1
2 in Rule 4.

 Example 3   |  Differentiate y − sx 3 2 1d100.

SOLUTION � Taking u − tsxd − x 3 2 1 and n − 100 in (4), we have

 
dy

dx
−

d

dx
 sx 3 2 1d100 − 100sx 3 2 1d99 

d

dx
 sx 3 2 1d

	   − 100sx 3 2 1d99 ? 3x 2 − 300x 2sx 3 2 1d99	 ■

See Reference Page 2 or Appendix C.
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 Example 4   |  Find f 9sxd if f sxd −
1

s3 x 2 1 x 1 1
.

SOLUTION � First rewrite f :	 f sxd − sx 2 1 x 1 1d21y3

Thus	  f 9sxd − 21
3 sx 2 1 x 1 1d24y3 

d

dx
 sx 2 1 x 1 1d

	  − 21
3 sx 2 1 x 1 1d24y3s2x 1 1d	 ■

 Example 5   |  Find the derivative of the function 

tstd − S t 2 2

2t 1 1D9

SOLUTION � Combining the Power Rule, Chain Rule, and Quotient Rule, we get 

	  t9std − 9S t 2 2

2t 1 1D8

 
d

dt
 S t 2 2

2t 1 1D
	 − 9S t 2 2

2t 1 1D8

 
s2t 1 1d ? 1 2 2st 2 2d

s2t 1 1d2  −
45st 2 2d8

s2t 1 1d10 	 ■

 Example 6   |  Differentiate y − s2x 1 1d5sx 3 2 x 1 1d4.

SOLUTION � In this example we must use the Product Rule before using the Chain 
Rule:

 
dy

dx
− s2x 1 1d5 

d

dx
 sx 3 2 x 1 1d4 1 sx 3 2 x 1 1d4 

d

dx
 s2x 1 1d5

	  − s2x 1 1d5 ? 4sx 3 2 x 1 1d3 
d

dx
 sx 3 2 x 1 1d

	        1 sx 3 2 x 1 1d4 ? 5s2x 1 1d4 
d

dx
 s2x 1 1d

	  − 4s2x 1 1d5sx 3 2 x 1 1d3s3x 2 2 1d 1 5sx 3 2 x 1 1d4s2x 1 1d4 ? 2

Noticing that each term has the common factor 2s2x 1 1d4sx 3 2 x 1 1d3, we could  
factor it out and write the answer as

	
dy

dx
− 2s2x 1 1d4sx 3 2 x 1 1d3s17x 3 1 6x 2 2 9x 1 3d	 ■

 Example 7   |  Differentiate y − e sin x.

SOLUTION � Here the inner function is tsxd − sin x and the outer function is the 
exponential function f sxd − ex. So, by the Chain Rule,

	
dy

dx
−

d

dx
 se sin x d − e sin x 

d

dx
 ssin xd − e sin x cos x	 ■

10

_10

_2 1

y

yª

Figure �1

The graphs of the functions y and y9  
in Example 6 are shown in Figure 1. 
Notice that y9 is large when y increases 
rapidly and y9 − 0 when y has a hori-
zontal tangent. So our answer appears 
to be reasonable.
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 Example 8   |  BB  � Gause’s logistic model  In an experiment with the proto-
zoan Paramecium, the biologist G. F. Gause modeled the protozoan population size 
with the logistic function

Pstd −
61

1 1 31e20.7944 t

where t is measured in days. According to this model, how fast was the population 
growing after 8 days?

Solution � We use the Reciprocal Rule as in Exercise 3.4.63 (or the Quotient Rule) 
and the Chain Rule to differentiate P:

 P9std − 2
61

s1 1 31e20.7944 td2 ?
d

dt
s1 1 31e20.7944 td

 − 2
61 ? 31 ? s20.7944de20.7944 t

s1 1 31e20.7944 td2 <
1502e20.7944 t

s1 1 31e20.7944 td2

When t − 8, we have

P9s8d −
1502e28s0.7944d

s1 1 31e28s0.7944dd2 < 2.35

So at that time the population was increasing at a rate of about two per day.	 ■

■ Exponential Functions with Arbitrary Bases
We can use the Chain Rule to differentiate an exponential function with any base b . 0. 
Recall from Section 1.5 that b − e ln b. So

bx − se ln bdx − e sln bdx

and the Chain Rule gives

 
d

dx
 sbx d −

d

dx
 se sln bdx d − e sln bdx 

d

dx
 sln bdx

 − e sln bdx ∙ ln b − bx ln b

because ln b is a constant. So we have the formula

(5)	
d

dx
 sbx d − bx ln b	

In particular, if b − 2, we get

(6)	
d

dx
 s2x d − 2x ln 2	

In Section 3.3 we gave the estimate

d

dx
 s2x d < s0.69d2x

This is consistent with the exact formula (6) because ln 2 < 0.693147.

©
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Don’t confuse Formula 5 (where x is 
the exponent) with the Power Rule 
(where x is the base):

d

dx
 sx n d − nx n21
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 Example 9   |  Viral load  In Section 1.4 we considered the function

Vstd − 96.39785 ? s0.818656d t

for the viral load in a patient with HIV after treatment with ABT-538. Find V9s10d and 
interpret it.

Solution � Using Formula 5 with b − 0.818656, we get

 V9std − 96.39785 ? s0.818656d t lns0.818656d

 < 219.288 ? s0.818656d t

So	 V9s10d < 219.288 ? s0.818656d10 < 22.6	

This means that after 10 days the viral load was decreasing at a rate of about  
2.6 RNA copiesymL per day.	 ■

■ Longer Chains
The reason for the name “Chain Rule” becomes clear when we make a longer chain by 
adding another link. Suppose that y − f sud, u − tsxd, and x − hstd, where f , t, and h are 
differentiable functions. Then, to compute the derivative of y with respect to t, we use the 
Chain Rule twice:

dy

dt
−

dy

dx
 
dx

dt
−

dy

du
 
du

dx
 
dx

dt

 Example 10   |  If f sxd − sinscosstan xdd, then

 f 9sxd − cosscosstan xdd 
d

dx
 cosstan xd

 − cosscosstan xddf2sinstan xdg 
d

dx
 stan xd

 − 2cosscosstan xdd sinstan xd sec2x

Notice that we used the Chain Rule twice.	 ■

 Example 11   |  Differentiate y − e sec 3 �.

SOLUTION � The outer function is the exponential function, the middle function is the  
secant function, and the inner function is the tripling function. So we have

 
dy

d�
− e sec 3� 

d

d�
 ssec 3�d

 − e sec 3� sec 3� tan 3� 
d

d�
 s3�d

 − 3e sec 3� sec 3� tan 3� ■

■ Implicit Differentiation
The functions that we have met so far can be described by expressing one variable 
explicitly in terms of another variable—for example,

y − sx 3 1 1        or        y − x sin x
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or, in general, y − f sxd. Some functions, however, are defined implicitly by a relation 
between x and y such as

(7)	 x 3 1 y 3 − 6xy	

It’s not easy to solve Equation 7 for y explicitly as a function of x by hand. (A com-
puter algebra system has no trouble, but the expressions it obtains are very complicated.) 
Nonetheless, (7) is the equation of a curve called the folium of Descartes shown in  
Figure 2 and it implicitly defines y as several functions of x. The graphs of three such 
functions are shown in Figure 3. When we say that f  is a function defined implicitly by 
Equation 2, we mean that the equation

x 3 1 f f sxdg3 − 6x f sxd

is true for all values of x in the domain of f .

x

y

0

˛+Á=6xy

x

y

0 x

y

0x

y

0

Figure �2
The folium of Descartes

Figure �3
Graphs of three functions defined by the folium of Descartes

Fortunately, we don’t need to solve an equation for y in terms of x in order to find the 
derivative of y. Instead we can use the method of implicit differentiation. This consists 
of differentiating both sides of the equation with respect to x and then solving the result-
ing equation for y9.

 Example 12 
(a)	 Find y9 if x 3 1 y 3 − 6xy.
(b)	 Find the tangent to the folium of Descartes x 3 1 y 3 − 6xy at the point s3, 3d.

solution

(a)	 Differentiating both sides of x 3 1 y 3 − 6xy with respect to x, we have

d

dx
sx 3 1 y 3d −

d

dx
s6xyd

Remembering that y is a function of x, and using the Chain Rule on the term y 3 and the 
Product Rule on the term 6xy, we get

 3x 2 1 3y 2y9 − 6xy9 1 6y

 x 2 1 y 2y9 − 2xy9 1 2yor

We now solve for y9:
 y 2y9 2 2xy9 − 2y 2 x 2

 sy 2 2 2xdy9 − 2y 2 x 2

 y9 −
2y 2 x 2

y 2 2 2x
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(b)	 When x − y − 3,

y9 −
2 ? 3 2 32

32 2 2 ? 3
− 21

and a glance at Figure 4 confirms that this is a reasonable value for the slope at s3, 3d. 
So an equation of the tangent to the folium at s3, 3d is

y 2 3 − 21sx 2 3d    or    x 1 y − 6 ■

 Example 13   |  BB  � Infectious disease outbreak size  Mathematical models 
have been used to predict the fraction of a population that will be infected by a disease 
under different conditions. The Kermack-McKendrick model (see Exercise 7.6.23) 
leads to the following equation:

�e2qA − 1 2 A

where A is the fraction of the population ultimately infected, q is a measure of disease 
transmissibility, and � is a measure of the fraction of the population that is initially 
susceptible to infection. How does the outbreak size A change with an increase in trans-
missibility q?

Solution � The given equation can’t be solved for A, so we use implicit differentia-
tion to find dAydq:

d

dq
 s�e2qAd −

d

dq
 s1 2 Ad

Keeping in mind that A is a function of q, we have

�e2qA ?
d

dq
 s2qAd − 2

dA

dq

Now we use the Product Rule:

�e2qAS2q 
dA

dq
2 A ? 1D − 2

dA

dq

Solving for dAydq, we get

 s2�qe2qA 1 1d 
dA

dq
− A�e2qA

 
dA

dq
−

A�e2qA

1 2 �qe2qA −
A�

eqA 2 �q

This gives the rate of increase of the outbreak size as the transmissibility changes.	 ■

■ Related Rates
In a related rates problem the idea is to compute the rate of change of one quantity in 
terms of the rate of change of another quantity. The procedure is to find an equation that 
relates the two quantities and then use the Chain Rule to differentiate both sides with 
respect to time.

0

y

x

(3, 3)

Figure �4
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 Example 14   |  BB  � Growth of a tumor  When the diameter of a spherical 
tumor is 16 mm it is growing at a rate of 0.4 mm a day. How fast is the volume of the 
tumor changing at that time?

Solution � We model the shape of the tumor by a sphere. If r is the radius of the 
sphere, then its volume is

V − 4
3�r 3

In order to use the given information, we differentiate each side of this equation with 
respect to t (time). To differentiate the right side we need to use the Chain Rule:

dV

dt
−

dV

dr
?

dr

dt
− 4�r 2 

dr

dt

At the time in question, the radius is r − 1
2s16d − 8 mm and it is increasing at a rate of

dr

dt
− 1

2s0.4d − 0.2 mmyday

So the rate of increase of the volume of the tumor is

	
dV

dt
− 4�s8d2 ? 0.2 − 51.2� < 161 mm3yday	 ■

■ How To Prove the Chain Rule
Recall that if y − f sxd and x changes from a to a 1 Dx, we define the increment of y as

Dy − f sa 1 Dxd 2 f sad

According to the definition of a derivative, we have

lim
Dx l 0

 
Dy

Dx
− f 9sad

So if we denote by « the difference between the difference quotient and the derivative,  
we obtain

lim
Dx l 0

 « − lim
Dx l 0

SDy

Dx
2 f 9sadD − f 9sad 2 f 9sad − 0

But	 « −
Dy

Dx
2 f 9sad ? Dy − f 9sad Dx 1 « Dx

If we define « to be 0 when Dx − 0, then « becomes a continuous function of Dx. Thus, 
for a differentiable function f , we can write

(8)	 Dy − f 9sad Dx 1 « Dx where     « l 0 as Dx l 0	

and « is a continuous function of Dx. This property of differentiable functions is what  
enables us to prove the Chain Rule.

Proof of the Chain Rule � Suppose u − tsxd is differentiable at a and y − f sud 
is differentiable at b − tsad. If Dx is an increment in x and Du and Dy are the corre-
sponding increments in u and y, then we can use Equation 8 to write

(9)	 Du − t9sad Dx 1 «1 Dx − ft9sad 1 «1g Dx	
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EXERCISES 3.5

	� 1–6 � Write the composite function in the form f stsxdd.  
[Identify the inner function u − tsxd and the outer function 
y − f sud.] Then find the derivative dyydx.

	 1.	 y − s3 1 1 4x 	 2.	 y − s2x 3 1 5d4

	 3.	 y − tan �x	 4.	 y − sinscot xd

	 5.	 y − esx	 6.	 y − s2 2 e x 

	� 7–36 � Find the derivative of the function.

	 7.	 Fsxd − sx 4 1 3x 2 2 2d5	 8.	 Fsxd − s4x 2 x 2d100

	 9.	 Fsxd − s1 2 2x 	 10.	 f sxd − s1 1 x 4d2y3

	 11.	 f szd −
1

z 2 1 1
	 12.	 f std − s3 1 1 tan t 

	 13.	 y − cossa3 1 x 3d	 14.	 y − a3 1 cos3x

	 15.	 hstd − t 3 2 3 t	 16.	 y − 3 cotsn�d

	 17.	 y − xe2kx	 18.	 y − e22 t cos 4t

	 19.	 y − s2x 2 5d4s8x 2 2 5d23	

	 20.	 hstd − st 4 2 1d3st 3 1 1d4

	 21.	 y − e x cos x	 22.	 y − 1012x 2

	 23.	 y − S x 2 1 1

x 2 2 1D3

	 24.	 Gsyd − S y 2

y 1 1D
5

	 25.	 y − sec 2 x 1 tan2 x	 26.	 y −
e u 2 e2u

e u 1 e2u

	 27.	 y −
r

sr 2 1 1
	 28.	 y − ek tan sx 

	 29.	 y − sinstan 2xd	 30.	 f std − Î t

t 2 1 4
 

	 31.	 y − 2sin �x	 32.	 y − sinssinssin xdd

	 33.	 y − cot2ssin �d	 34.	 y − sx 1 sx 1 sx 

	 35.	 y − cosssinstan �xd	 36.	 y − 23x 2

	� 37–40 � Find y9 and y 99.

	 37.	 y − cossx 2d	 38.	 y − cos2x

	 39.	 y − e �x sin �x	 40.	 y − ee x

	� 41–44 � Find an equation of the tangent line to the curve at the 
given point.

	 41.	 y − s1 1 2xd10,    s0, 1d	 42.	 y − s1 1 x 3 

,    s2, 3d

	 43.	 y − sinssin xd,    s�, 0d	 44.	 y − sin x 1 sin2x,    s0, 0d

	 45.	�� �If Fsxd − f stsxdd, where f s22d − 8, f 9s22d − 4,  
f 9s5d − 3, ts5d − 22, and t9s5d − 6, find F9s5d.

	 46.	�� �If hsxd − s4 1 3f sxd , where f s1d − 7 and f 9s1d − 4,  
find h9s1d.

where «1 l 0 as Dx l 0. Similarly

(10)	 Dy − f 9sbd Du 1 «2 Du − f f 9sbd 1 «2 g Du	

where «2 l 0 as Du l 0. If we now substitute the expression for Du from Equation 9 
into Equation 10, we get

Dy − f f 9sbd 1 «2 g ft9sad 1 «1g Dx

so	
Dy

Dx
− f f 9sbd 1 «2 g ft9sad 1 «1g

As Dx l 0, Equation 9 shows that Du l 0. So both «1 l 0 and «2 l 0 as Dx l 0. 
Therefore

 
dy

dx
− lim

Dx l 0
 
Dy

Dx
− lim

Dx l 0
 f f 9sbd 1 «2 g ft9sad 1 «1g

 − f 9sbd t9sad − f 9stsadd t9sad

This proves the Chain Rule.	 ■
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		��  �What is the rate of change of mRNA concentration as a 
function of time?

	 58.	� World population growth �� In Example 1.4.3 we 
modeled the world population from 1900 to 2010 with the 
exponential function

Pstd − s1436.53d ? s1.01395d t

		���  where t − 0 corresponds to the year 1900 and Pstd is 
measured in millions. According to this model, what was 
the rate of increase of world population in 1920? In 1950? 
In 2000?

	 59.	� Blood alcohol concentration �� In Section 3.1 we dis-
cussed an experiment in which the average BAC of eight 
male subjects was measured after consumption of 15 mL  
of ethanol (corresponding to one alcoholic drink). The 
resulting data were modeled by the concentration function

Cstd − 0.0225te20.0467t

		���  where t is measured in minutes after consumption and C is 
measured in mgymL.

		  (a)	 How rapidly was the BAC increasing after 10 minutes?
		  (b)	 How rapidly was it decreasing half an hour later?

	 60.	� Logistic growth in Japan �� The midyear population in 
Japan from 1960 to 2010 has been modeled by the function

Pstd − 94,000 1
32,658.5

1 1 12.75e20.1706t

		���  where t is measured in years since 1960 and Pstd is mea-
sured in thousands. According to this model, how quickly 
was the Japanese population growing in 1970? In 1990?

	 61.	��� Under certain circumstances a rumor spreads according to  
the equation

pstd −
1

1 1 ae 2k t

		��  �where pstd is the proportion of the population that has 
heard the rumor at time t and a and k are positive constants.

		  (a)	 Find lim t l ` pstd.
		  (b)	 Find the rate of spread of the rumor.
	 ;		  (c)	� Graph p for the case a − 10, k − 0.5 with t measured 

in hours. Use the graph to estimate how long it will 
take for 80% of the population to hear the rumor.

	 62.	�� �In Example 1.3.4 we arrived at a model for the length of 
daylight (in hours) in Philadelphia on the tth day of the 
year:

Lstd − 12 1 2.8 sinF 2�

365
st 2 80dG

			�   Use this model to compare how the number of hours of 
daylight is increasing in Philadelphia on March 21 and 
May 21.

	 47.	�� A table of values for f , t, f 9, and t9 is given.

x f sxd tsxd f 9sxd t9sxd

1 3 2 4 6
2 1 8 5 7
3 7 2 7 9

		  (a)	 If hsxd − f stsxdd, find h9s1d.
		  (b)	 If Hsxd − ts f sxdd, find H9s1d.

	 48.	�� Let f  and t be the functions in Exercise 47.
		  (a)	 If Fsxd − f s f sxdd, find F9s2d.
		  (b)	 If Gsxd − tstsxdd, find G9s3d.

	 49.	��� Suppose f  is differentiable on R. Let Fsxd − f se x d and 
Gsxd − e f sxd. Find expressions for (a) F9sxd and (b) G9sxd.

	 50.	��� Suppose f  is differentiable on R and � is a real number.  
Let Fsxd − f sx � d and Gsxd − f f sxdg�. Find expressions  
for (a) F9sxd and (b) G9sxd.

	 51.	��� Let rsxd − f stshsxddd, where hs1d − 2, ts2d − 3, 
h9s1d − 4, t9s2d − 5, and f 9s3d − 6. Find r9s1d.

	 52.	��� �If t is a twice differentiable function and f sxd − xtsx 2 d, 
find f 99 in terms of t, t9, and t99.

	 53.	��� Find the 50th derivative of y − cos 2x.

	 54.	��� Find the 1000th derivative of f sxd − xe2x.

	 55.	��� The displacement of a particle on a vibrating string is given 
by the equation

sstd − 10 1 1
4 sins10�td

		���  where s is measured in centimeters and t in seconds. Find 
the velocity and acceleration of the particle after t seconds.

	 56.	�O ral antibiotics �� In Example 1.3.7 we studied a model 
for antibiotic use in sinus infections. If x is the amount of 
antibiotic taken orally (in mg), then the function hsxd gives 
the amount entering the bloodstream through the stomach. 
If x mg reaches the bloodstream, then tsxd gives the 
amount that survives filtration by the liver. Finally, if x mg 
survives filtration by the liver, then f sxd is absorbed into 
the sinus cavity. Thus, for a given dose x, the amount 
making it to the sinus cavity is Asxd − f stshsxddd. Suppose 
that a dose of 500 mg is given, hs500d − 8, ts8d − 2, 
f s2d − 1.5, and h9s500d − 2.5, t9s8d − 1

4, and f 9s2d − 1. 
Calculate A9sxd and interpret your answer.

	 57.	� Gene regulation �� Genes produce molecules called 
mRNA that go on to produce proteins. High concentrations 
of protein inhibit the production of mRNA, leading to 
stable gene regulation. This process has been modeled (see 
Section 10.3) to show that the concentration of mRNA over 
time is given by the equation

mstd − 1
2e2tssin t 2 cos td 1 1

2
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	 82.	��� The logistic difference equation with migration is of the 
form

Nt11 − Nt 1 Nts1 2 Ntd 1 m

		���  where Nt is the population at time t and m is the migration 
rate. Suppose that as t l ` the population size approaches a 
limiting value N.

		  (a)	 What equation does N satisfy?
		  (b)	� Use implicit differentiation to find the rate of change of N 

with respect to m.
		  (c)	� Find an explicit expression for N as a function of m, dif-

ferentiate it, and compare with your answer to part (b).

	 83.	��� If V is the volume of a cube with edge length x and the cube 
expands as time passes, find dVydt in terms of dxydt.

	 84.	�� (a)	� If A is the area of a circle with radius r and the circle 
expands as time passes, find dAydt in terms of drydt.

		  (b)	� Suppose oil spills from a ruptured tanker and spreads in 
a circular pattern. If the radius of the oil spill increases at 
a constant rate of 1 mys, how fast is the area of the spill 
increasing when the radius is 30 m?

	 85.	��� Each side of a square is increasing at a rate of 6 cmys. At 
what rate is the area of the square increasing when the area of 
the square is 16 cm2?

	 86.	��� The length of a rectangle is increasing at a rate of 8 cmys and 
its width is increasing at a rate of 3 cmys. When the length is 
20 cm and the width is 10 cm, how fast is the area of the 
rectangle increasing?

	 87.	��� Boyle’s Law states that when a sample of gas is compressed 
at a constant temperature, the pressure P and volume V 
satisfy the equation PV − C, where C is a constant. Sup- 
pose that at a certain instant the volume is 600 cm3, the pres-
sure is 150 kPa, and the pressure is increasing at a rate of 
20 kPaymin. At what rate is the volume decreasing at this 
instant?

	 88.	�� �When air expands adiabatically (without gaining or losing 
heat), its pressure P and volume V are related by the equation 
PV 1.4 − C, where C is a constant. Suppose that at a certain 
instant the volume is 400 cm3 and the pressure is 80 kPa and 
is decreasing at a rate of 10 kPaymin. At what rate is the 
volume increasing at this instant?

	 89.	� Bone mass �� In Example 1.1.6 we found an expression for 
the mass m of a human femur of length L in terms of the outer 
radius r, the inner radius r in, and their ratio k − r inyr. More 
generally, if the bone density is �, measured in gycm3, then 
bone mass is given by the equation

m − �r 2L f� 2 s� 2 1dk 2g

		���  It may happen that both � and k change with age, t.
		  (a)	� If � changes during aging, find an expression for the rate 

of change of m with respect to t.
		  (b)	� If k changes during aging, find an expression for the rate 

of change of m with respect to t.

	� 63–64 �
	 (a)	 Find y9 by implicit differentiation.
	 (b)	� Solve the equation explicitly for y and differentiate to get y9 in 

terms of x.
	 (c)	� Check that your solutions to parts (a) and (b) are consistent by 

substituting the expression for y into your solution for part (a).

	 63.	 xy 1 2x 1 3x 2 − 4	 64.	 cos x 1 sy − 5

	� 65–76 � Find dyydx by implicit differentiation.

	 65.	 x 3 1 y3 − 1	 66.	 2sx 1 sy − 3

	 67.	 x 2 1 xy 2 y 2 − 4	 68.	 2x 3 1 x 2y 2 xy3 − 2

	 69.	 x 4sx 1 yd − y 2s3x 2 yd	 70.	 y 5 1 x 2y 3 − 1 1 ye x2

	 71.	 4 cos x sin y − 1	 72.	 1 1 x − sinsxy 2d

	 73.	 e xyy − x 2 y	 74.	 tansx 2 yd −
y

1 1 x 2

	 75.	 e y cos x − 1 1 sinsxyd	 76.	 sin x 1 cos y − sin x cos y

	� 77–80 � Use implicit differentiation to find an equation of the 
tangent line to the curve at the given point.

	 77.	�� x2 1 xy 1 y2 − 3,    s1, 1d    (ellipse)

	 78.	�� x2 1 2xy 2 y2 1 x − 2,    s1, 2d    (hyperbola)

	 79.	�� x2 1 y2 − s2x2 1 2y2 2 xd2,    s0, 12d  (cardioid)

x

y

	 80.	�� x 2y3 1 y 2y3 − 4,    s23s3, 1d  (astroid)

x

y

0 8

	 81.	�I nfectious disease outbreak size �� In Example 13 we used 
the equation

�e2qA − 1 2 A

		���  to determine the rate of increase of the outbreak size A with 
respect to the transmissibility q. Use this same equation to 
find the rate of change of A with respect to �, the fraction of 
the population that is initially susceptible to infection.
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	 93.	� Angiotensin-converting enzyme (ACE) inhibitors ��are a 
type of blood pressure medication that reduces blood pres-
sure by dilating blood vessels. Suppose that the radius R 
of a blood vessel is related to the dosage x of the medica-
tion by the function Rsxd . One version of Poiseuille’s Law 
gives the relationship between the blood pressure P and the 
radius as P − 4�lvyR 2, where v is the blood velocity at the 
center of the vessel, � is the viscosity of the blood, and l is 
the length of the blood vessel. Determine the rate of change 
of blood pressure with respect to dosage.

	 94.	� Brain size in fish �� Brain weight B as a function of body 
weight W in fish has been modeled by the power function 
B − 0.007W 2y3, where B and W are measured in grams. A 
model for body weight as a function of body length L 
(measured in centimeters) is W − 0.12L2.53. If, over 10 
million years, the average length of a certain species of fish 
evolved from 15 cm to 20 cm at a constant rate, how fast 
was this species’ brain weight increasing when the average 
length was 18 cm?

	 95.	��� Use the Chain Rule to show that if � is measured in 
degrees, then

d

d�
 ssin �d −

�

180
 cos �

		��  �(This gives one reason for the convention that radian 
measure is always used when dealing with trigonometric 
functions in calculus: The differentiation formulas would 
not be as simple if we used degree measure.)

	 96.	��� If y − f sud and u − tsxd, where f  and t are twice differen-
tiable functions, show that

d 2y

dx 2 −
d 2y

du 2 S du

dxD
2

1
dy

du
 
d 2u

dx 2
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	 90.	��� The von Bertalanffy growth function

Lstd − L ` 2 sL ` 2 L 0de2kt

		���  where k is a positive constant, models the length L of a fish as 
a function of t, the age of the fish. Here L0 is the length at birth 
and L ` is the final length. Suppose that the mass of a fish of 
length L is given by M − aL 3, where a is a positive constant. 
Calculate the rate of change of mass with respect to age.

	 91.	� Habitat fragmentation and species conservation �� The 
size of a class-structured population is modeled in Section 8.8. 
In certain situations the long-term growth rate of a population 
is given by r − 1

2(1 1 s1 1 8s ), where s is the annual 
survival probability of juveniles. Suppose this survival 
probability is related to habitat area a by a function ssad. 
Determine an expression for the rate of change of growth rate 
with respect to a change in habitat area.

	 92.	� Blood flow �� In Example 3.3.9 we discussed Poiseuille’s law 
of laminar flow:

v −
P

4�l
sR 2 2 r 2d

		���  where v is the blood velocity at a distance r from the center  
of a blood vessel (a vein or artery) in the shape of a tube with 
radius R and length l, P is the pressure difference between  
the ends of the tube, and � is the viscosity of the blood.  
In very cold weather, blood vessels in the hands and feet 
contract. Suppose that a blood vessel with l − 1 cm, 
P − 1500 dynesycm2, � − 0.027, and R − 0.01 cm contracts 
so that R9std − 20.0005 cmymin at a particular moment. 
Calculate dvydt, the rate of change of the blood flow, at the 
center of the blood vessel at that time.

3.6 Exponential Growth and Decay

In many natural phenomena, quantities grow or decay at a rate proportional to their size. 
For instance, if y − f std is the number of individuals in a population of animals or bac-
teria at time t, then it seems reasonable to expect that the rate of growth f 9std is propor-
tional to the population f std; that is, f 9std − kf std for some constant k. Why is this rea-
sonable? Suppose we have a population (of bacteria, for instance) with size P − 1000 
and at a certain time it is growing at a rate of P9 − 300 bacteria per hour. Now let’s take 
another 1000 bacteria of the same type and put them with the first population. Each half 
of the new population was growing at a rate of 300 bacteria per hour. We would expect 
the total population of 2000 to increase at a rate of 600 bacteria per hour initially (pro-
vided there’s enough room and nutrition). So if we double the size, we double the growth 
rate. In general, it seems reasonable that the growth rate should be proportional to the 
size.

Indeed, under ideal conditions (unlimited environment, adequate nutrition, immunity 
to disease) the mathematical model given by the equation f 9std − kf std predicts what 
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actually happens fairly accurately. Another example occurs in nuclear physics where the 
mass of a radioactive substance decays at a rate proportional to the mass. In chemistry, 
the rate of a unimolecular first-order reaction is proportional to the concentration of the 
substance.

In general, if ystd is the value of a quantity y at time t and if the rate of change of y 
with respect to t is proportional to its size ystd at any time, then

(1)	
dy

dt
− ky	

where k is a constant. Equation 1 is sometimes called the law of natural growth (if k . 0)  
or the law of natural decay (if k , 0). It is called a differential equation because it  
involves an unknown function y and its derivative dyydt. 

It’s not hard to think of a solution of Equation 1. This equation asks us to find a func-
tion whose derivative is a constant multiple of itself. We have met such functions in  
this chapter. Any exponential function of the form ystd − Cekt, where C is a constant, 
satisfies

y9std − Cskektd − ksCektd − kystd

We will see in Section 7.4 that any function that satisfies dyydt − ky must be of the form 
y − Cekt. To see the significance of the constant C, we observe that

ys0d − Cek?0 − C

Therefore C is the initial value of the function.

(2) Theorem � The only solutions of the differential equation dyydt − ky are the 
exponential functions

ystd − ys0dekt

■ Population Growth
What is the significance of the proportionality constant k? In the context of population 
growth, where Pstd is the size of a population at time t, we can write

(3)	
dP

dt
− kP        or      

1

P
 
dP

dt
− k	

The quantity
1

P
 
dP

dt

is the growth rate divided by the population size; it is called the relative growth rate or 
per capita growth rate. According to (3), instead of saying “the growth rate is propor-
tional to population size” we could say “the relative growth rate is constant.” Then (2) 
says that a population with constant relative growth rate must grow exponentially. Notice 
that the relative growth rate k appears as the coefficient of t in the exponential function 
Cekt. For instance, if

dP

dt
− 0.02P

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 3.6  |  Exponential Growth and Decay    217

and t is measured in years, then the relative growth rate is k − 0.02 and the population 
grows at a relative rate of 2% per year. If the population at time 0 is P0, then the expres-
sion for the population is

Pstd − P0e 0.02 t

 Example 1   |  Use the fact that the world population was 2560 million in 1950 and 
3040 million in 1960 to model the population of the world in the second half of the 
20th century. (Assume that the growth rate is proportional to the population size.) 
What is the relative growth rate? Use the model to estimate the population in 1993. At 
what rate was the population increasing in 1993? According to the model, what will the 
population be in the year 2020?

SOLUTION � We measure the time t in years and let t − 0 in the year 1950. We 
measure the population Pstd in millions of people. Then Ps0d − 2560 and Ps10d − 3040. 
Since we are assuming that dPydt − kP, Theorem 2 gives

Pstd − Ps0dekt − 2560ekt

 Ps10d − 2560e 10k − 3040

 k −
1

10
 ln 

3040

2560
< 0.017185

The relative growth rate is about 1.7% per year and the model is

Pstd − 2560e 0.017185t

We estimate that the world population in 1993 was

Ps43d − 2560e 0.017185s43d < 5360 million

At that time the rate of increase was

P9s43d − kPs43d < 92 million people per year

The model predicts that the population in 2020 will be

Ps70d − 2560e 0.017185s70d < 8524 million

The graph in Figure 1 shows that the model is fairly accurate to the end of the 20th 
century (the dots represent the actual population), so the estimate for 1993 is quite 
reliable. But the prediction for 2020 is riskier.

6000

P

t200 40
Years since 1950

Population
(in millions)

P=2560e0.017185t

■

Figure �1
A model for world population growth 
in the second half of the 20th century
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■ Radioactive Decay
Radioactive substances decay by spontaneously emitting radiation. If mstd is the mass  
remaining from an initial mass m0 of the substance after time t, then the relative decay 
rate

2
1

m
 
dm

dt

has been found experimentally to be constant. (Since dmydt is negative, the relative 
decay rate is positive.) It follows that

dm

dt
− km

where k is a negative constant. In other words, radioactive substances decay at a rate 
proportional to the remaining mass. This means that we can use (2) to show that the mass  
decays exponentially:

mstd − m0ekt

Physicists express the rate of decay in terms of half-life, the time required for half of any 
given quantity to decay.

 Example 2   |  The half-life of radium-226 is 1590 years.
(a)	 A sample of radium-226 has a mass of 100 mg. Find a formula for the mass of the 
sample that remains after t years.
(b)	 Find the mass after 1000 years correct to the nearest milligram.
(c)	 When will the mass be reduced to 30 mg?

SOLUTION
(a)	 Let mstd be the mass of radium-226 (in milligrams) that remains after t years. Then 
dmydt − km and ms0d − 100, so (2) gives

mstd − ms0dekt − 100ekt

In order to determine the value of k, we use the fact that ms1590d − 1
2 s100d. Thus

100e 1590k − 50        so        e 1590k − 1
2

and	  1590k − ln 12 − 2ln 2	

 k − 2
ln 2

1590

Therefore	 mstd − 100e2sln 2dty1590	

We could use the fact that e ln 2 − 2 to write the expression for mstd in the alternative 
form

mstd − 100 3 22ty1590

(b)	 The mass after 1000 years is

ms1000d − 100e2sln 2d1000y1590 < 65 mg

(c)	 We want to find the value of t such that mstd − 30, that is,

100e2sln 2dty1590 − 30        or        e2sln 2dty1590 − 0.3
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We solve this equation for t by taking the natural logarithm of both sides:

 2
ln 2

1590
 t − ln 0.3

 t − 21590 
ln 0.3

ln 2
< 2762 yearsThus	 ■

As a check on our work in Example 2, we use a calculator to draw the graph of 
mstd in Figure 2 together with the horizontal line m − 30. These curves intersect when 
t < 2800, and this agrees with the answer to part (c).

■ Newton’s Law of Cooling
Newton’s Law of Cooling states that the rate of cooling of an object is proportional to the 
temperature difference between the object and its surroundings, provided that this dif-
ference is not too large. (This law also applies to warming.) If we let Tstd be the temper-
ature of the object at time t and Ts be the temperature of the surroundings, then we can 
formulate Newton’s Law of Cooling as a differential equation:

dT

dt
− ksT 2 Tsd

where k is a constant. This equation is not quite the same as Equation 1, so we make the 
change of variable ystd − Tstd 2 Ts. Because Ts is constant, we have y9std − T 9std and 
so the equation becomes

dy

dt
− ky

We can then use (2) to find an expression for y, from which we can find T.

 Example 3   |  A bottle of soda pop at room temperature (72°F) is placed in a 
refrigerator where the temperature is 44°F. After half an hour the soda pop has cooled 
to 61°F.
(a)	 What is the temperature of the soda pop after another half hour?
(b)	 How long does it take for the soda pop to cool to 50°F?

SOLUTION

(a)	 Let Tstd be the temperature of the soda after t minutes. The surrounding tempera-
ture is Ts − 44°F, so Newton’s Law of Cooling states that

dT

dt
− ksT 2 44d

If we let y − T 2 44, then ys0d − Ts0d 2 44 − 72 2 44 − 28, so y satisfies

dy

dt
− ky        ys0d − 28

and by (2) we have
ystd − ys0dekt − 28ekt

We are given that Ts30d − 61, so ys30d − 61 2 44 − 17 and

28e30k − 17        e30k − 17
28

m=30
0 4000

150

m=100e_( ln 2)t/1590

Figure �2
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Taking logarithms, we have

k −
lns17

28 d
30

< 20.01663

Thus

  ystd − 28e20.01663 t

  Tstd − 44 1 28e20.01663 t

Ts60d − 44 1 28e20.01663s60d < 54.3

So after another half hour the pop has cooled to about 54°F.

(b)	 We have Tstd − 50 when

44 1 28e20.01663 t − 50

e20.01663 t − 6
28

  t −
lns 6

28d
20.01663

< 92.6

The pop cools to 50°F after about 1 hour 33 minutes.	 ■

Notice that in Example 3, we have 

lim
t l `

 Tstd − lim
t l `

 s44 1 28e20.01663 td − 44 1 28 ? 0 − 44

which is to be expected. The graph of the temperature function is shown in Figure 3.

72
T

t600 30 90

44

Figure �3

	 1.	�P rotozoan population �� �A population of protozoa develops 
with a constant relative growth rate of 0.7944 per member per 
day. On day zero the population consists of two members. 
Find the population size after six days.

	 2.	� E. coli population �� A common inhabitant of human 
intestines is the bacterium Escherichia coli. A cell of this 
bacterium in a nutrient-broth medium divides into two cells 
every 20 minutes. The initial population of a culture is  
60 cells.

		  (a)	 Find the relative growth rate.
		  (b)	� Find an expression for the number of cells after t hours.
		  (c)	 Find the number of cells after 8 hours.
		  (d)	 Find the rate of growth after 8 hours.
		  (e)	 When will the population reach 20,000 cells?

	 3.	� Bacteria population �� A bacteria culture initially contains 
100 cells and grows at a rate proportional to its size. After an 
hour the population has increased to 420.

		  (a)	� Find an expression for the number of bacteria after t hours.
		  (b)	 Find the number of bacteria after 3 hours.
		  (c)	 Find the rate of growth after 3 hours.
		  (d)	 When will the population reach 10,000?

	 4.	� Bacteria population �� A bacteria culture grows with constant 
relative growth rate. The bacteria count was 400 after 2 hours 
and 25,600 after 6 hours.

		  (a)	� What is the relative growth rate? Express your answer as a 
percentage.

		  (b)	 What was the intitial size of the culture?
		  (c)	 Find an expression for the number of bacteria after t hours.
		  (d)	 Find the number of cells after 4.5 hours.
		  (e)	 Find the rate of growth after 4.5 hours.
		  (f)	 When will the population reach 50,000?

	 5.	�� World population � The table gives estimates of the world 
population, in millions, from 1750 to 2000.

Year Population Year Population

1750 	 790 1900 	 1650
1800 	 980 1950 	 2560
1850 	 1260 2000 	 6080

		  (a)	� Use the exponential model and the population figures for 
1750 and 1800 to predict the world population in 1900 and 
1950. Compare with the actual figures.

EXERCISES 3.6
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	 10.	� Radiometric dating �� Scientists can determine the age of 
ancient objects by the method of radiometric dating. The 
bombardment of the upper atmosphere by cosmic rays  
converts nitrogen to a radioactive isotope of carbon, 14C, 
with a half-life of about 5730 years. Vegetation absorbs 
carbon dioxide through the atmosphere and animal life 
assimilates 14C through food chains. When a plant or ani-
mal dies, it stops replacing its carbon and the amount of  
14C begins to decrease through radioactive decay.  
Therefore the level of radioactivity must also decay  
exponentially.

		��  �  A discovery revealed a parchment fragment that had 
about 74% as much 14C radioactivity as does plant material 
on the earth today. Estimate the age of the parchment.

	 11.	� Dating dinosaurs �� Dinosaur fossils are too old to be 
reliably dated using carbon-14, which has a half-life of 
about 5730 years. (See Exercise 10.)  Suppose we had a  
68-million-year-old dinosaur fossil. What fraction of the 
living dinosaur’s 14C would be remaining today? Suppose 
the minimum detectable amount is 0.1%. What is the 
maximum age of a fossil that we could date using 14C?

	 12.	� Dating dinosaurs with potassium �� Dinosaur fossils are 
often dated by using an element other than carbon, such  
as potassium-40, that has a longer half-life (in this case, 
approximately 1.25 billion years). Suppose the minimum 
detectable amount is 0.1% and a dinosaur is dated with 40K 
to be 68 million years old. Is such a dating possible? In 
other words, what is the maximum age of a fossil that we 
could date using 40K?

	 13.	�� �A roast turkey is taken from an oven when its temperature 
has reached 185°F and is placed on a table in a room where 
the temperature is 75°F.

		  (a)	� If the temperature of the turkey is 150°F after half an 
hour, what is the temperature after 45 minutes?

		  (b)	 When will the turkey have cooled to 1008F?

	 14.	�� �In a murder investigation, the temperature of the corpse 
was 32.5°C at 1:30 pm and 30.3°C an hour later. Normal 
body temperature is 37.0°C and the temperature of the 
surroundings was 20.0°C. When did the murder take place?
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		  (b)	� Use the exponential model and the population figures 
for 1850 and 1900 to predict the world population in 
1950. Compare with the actual population.

		  (c)	� Use the exponential model and the population figures 
for 1900 and 1950 to predict the world population in 
2000. Compare with the actual population and try to 
explain the discrepancy.

	 6.	�I ndonesian population �� The table gives the population 
of Indonesia, in millions, for the second half of the 20th 
century.

Year Population

1950 	 83
1960 	 100
1970 	 122
1980 	 150
1990 	 182
2000 	 214

		  (a)	� Assuming the population grows at a rate proportional 
to its size, use the census figures for 1950 and 1960 
to predict the population in 1980. Compare with the 
actual figure.

		  (b)	� Use the census figures for 1960 and 1980 to predict  
the population in 2000. Compare with the actual 
population.

		  (c)	� Use the census figures for 1980 and 2000 to predict 
the population in 2010 and compare with the actual 
population of 243 million.

		  (d)	� Use the model in part (c) to predict the population in 
2020. Do you think the prediction will be too high or 
too low? Why?

	 7.	�� �The half-life of cesium-137 is 30 years. Suppose we have a 
100-mg sample.

		  (a)	� Find the mass that remains after t years.
		  (b)	 How much of the sample remains after 100 years?
		  (c)	 What is the rate of decay after 100 years?
		  (d)	� After how long will only 1 mg remain?

	 8.	�� Strontium-90 has a half-life of 28 days.
		  (a)	� A sample has a mass of 50 mg initially. Find a formula 

for the mass remaining after t days.
		  (b)	 Find the mass remaining after 40 days.
		  (c)	 What is the rate of decay after 40 days?
		  (d)	� How long does it take the sample to decay to a mass  

of 2 mg?
		  (e)	 Sketch the graph of the mass function.

	 9.	��� A sample of tritium-3 decayed to 94.5% of its original 
amount after a year.

		  (a)	 What is the half-life of tritium-3?
		  (b)	� How long would it take the sample to decay to 20% of 

its original amount?
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	 17.	�� �The rate of change of atmospheric pressure P with respect 
to altitude h is proportional to P, provided that the tempera-
ture is constant. At 15°C the pressure is 101.3 kPa at sea 
level and 87.14 kPa at h − 1000 m.

		  (a)	 What is the pressure at an altitude of 3000 m?
		  (b)	� What is the pressure at the top of Mount McKinley, at 

an altitude of 6187 m?

	 15.	��� When a cold drink is taken from a refrigerator, its tempera-
ture is 5°C. After 25 minutes in a 20°C room its temperature 
has increased to 10°C.

		  (a)	 What is the temperature of the drink after 50 minutes?
		  (b)	 When will its temperature be 15°C?

	 16.	��� A freshly brewed cup of coffee has temperature 95°C in a  
20°C room. When its temperature is 70°C, it is cooling at a 
rate of 1°C per minute. When does this occur?

■ Project  Controlling Red Blood Cell Loss During Surgery

A typical volume of blood in the human body is about 5 L. A certain percentage of that 
volume (called the hematocrit) consists of red blood cells (RBCs); typically the hemat-
ocrit is about 45% in males. Suppose that a surgery takes four hours and a male patient 
bleeds 2 L of blood. During surgery the patient’s blood volume is maintained at 5 L by 
injection of saline solution, which mixes quickly with the blood but dilutes it so that the 
hematocrit decreases as time passes.

	 1.	� ��Assuming that the rate of RBC loss is proportional to the concentration of RBCs, 
determine the patient’s concentration of RBCs by the end of the operation.

	 2.	�� �A procedure called acute normovolemic hemodilution (ANH) has been devel-
oped to minimize RBC loss during surgery. In this procedure blood is extracted 
from the patient before the operation and replaced with saline solution. This 
dilutes the patient’s blood, resulting in fewer RBCs being lost during the bleed-
ing. The extracted blood is then returned to the patient after surgery. Only a cer-
tain amount of blood can be extracted, however, because the RBC concentration 
can never be allowed to drop below 25% during surgery. What is the maximum 
amount of blood that can be extracted in the ANH procedure for the surgery 
described in this project?

	 3.	�� �What is the RBC loss without the ANH procedure? What is the loss if the proce-
dure is carried out with the volume calculated in Problem 2?
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3.7 Derivatives of the Logarithmic and Inverse Tangent Functions

In this section we use implicit differentiation to find the derivatives of the logarithmic 
functions y − logb x and, in particular, the natural logarithmic function y − ln x, as well 
as the inverse tangent function y − tan21 x.

■ Differentiating Logarithmic Functions
It can be proved that logarithmic functions are differentiable. This is certainly plausible 
from their graphs (see Figure 1.5.12). We now differentiate the general logarithmic func-
tion y − logb x by using the fact that it is the inverse function of the exponential function 
with base b.
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(1)	
d

dx
 slogb xd −

1

x ln b
	

Proof � Let y − logb x. Then

by − x

Differentiating this equation implicitly with respect to x, using Formula 3.5.5, we get

bysln bd 
dy

dx
− 1

��and so	
dy

dx
−

1

by ln b
−

1

x ln b
	 ■

If we put b − e in Formula 1, then the factor ln b on the right side becomes ln e − 1 
and we get the formula for the derivative of the natural logarithmic function loge x − ln x:

(2)	
d

dx
 sln xd −

1

x
	

By comparing Formulas 1 and 2, we see one of the main reasons that natural loga-
rithms (logarithms with base e) are used in calculus: The differentiation formula is sim-
plest when b − e because ln e − 1.

 Example 1   |  Differentiate y − lnsx 3 1 1d.

SOLUTION � To use the Chain Rule, we let u − x 3 1 1. Then y − ln u, so

	
dy

dx
−

dy

du
 
du

dx
−

1

u
 
du

dx
	

	  −  
1

x 3 1 1
 s3x 2 d −

3x 2

x 3 1 1
	 ■

In general, if we combine Formula 2 with the Chain Rule as in Example 1, we get

(3)	
d

dx
 sln ud −

1

u
 
du

dx
	 or	

d

dx
 fln tsxdg −

t9sxd
tsxd

 Example 2   |  Find 
d

dx
 lnssin xd.

SOLUTION � Using (3), we have

	
d

dx
 lnssin xd −

1

sin x
 

d

dx
 ssin xd −

1

sin x
 cos x − cot x	 ■

Formula 3.5.5 says that

d

dx
 sbxd − bx  ln b
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 Example 3   |  Differentiate f sxd − sln x .

SOLUTION � This time the logarithm is the inner function, so the Chain Rule gives

	 f 9sxd − 1
2 sln xd21y2 

d

dx
 sln xd −

1

2sln x 
?

1

x
−

1

2xsln x 
	 ■

 Example 4   |  Differentiate f sxd − log10s2 1 sin xd.

SOLUTION � Using Formula 1 with b − 10, we have

 f 9sxd −
d

dx
 log10s2 1 sin xd

 −
1

s2 1 sin xd ln 10
 

d

dx
 s2 1 sin xd

 −
cos x

s2 1 sin xd ln 10
■

 Example 5   |  Find 
d

dx
 lnS x 1 1

sx 2 2 D.

SOLUTION 1 

 
d

dx
 lnS x 1 1

sx 2 2 D −
1

x 1 1

sx 2 2 

 
d

dx
 S x 1 1

sx 2 2 D

 −
sx 2 2 

x 1 1
 
sx 2 2  ∙ 1 2 sx 1 1d(1

2 )sx 2 2d21y2

x 2 2

 −
x 2 2 2 1

2 sx 1 1d
sx 1 1dsx 2 2d

 −
x 2 5

2sx 1 1dsx 2 2d

SOLUTION 2 � If we first simplify the given function using the laws of logarithms, 
then the differentiation becomes easier:

 
d

dx
 lnS x 1 1

sx 2 2 D −
d

dx
 flnsx 1 1d 2 1

2 lnsx 2 2dg

 −
1

x 1 1
2

1

2 S 1

x 2 2D
(This answer can be left as written, but if we used a common denominator we would 
see that it gives the same answer as in Solution 1.)	 ■

x0

y

1

f

f ª

2

Figure �1

Figure 1 shows the graph of the func-
tion f  of Example 5 together with the 
graph of its derivative. It gives a visual 
check on our calculation. Notice that 
f 9sxd is large negative when f  is rapidly 
decreasing.
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 Example 6   |  Find f 9sxd if f sxd − ln | x |.
SOLUTION � Since

f sxd − Hln x

lns2xd
if x . 0

if x , 0

it follows that

	 f 9sxd −

1

x
if x . 0

1

2x
 s21d −

1

x
   if x , 0

	

Thus f 9sxd − 1yx for all x ± 0.	 ■

The result of Example 6 is worth remembering:

(4)	
d

dx
 ln | x | −

1

x
	

■ Logarithmic Differentiation
The calculation of derivatives of complicated functions involving products, quotients, or 
powers can often be simplified by taking logarithms. The method used in the following  
example is called logarithmic differentiation.

 Example 7   |  Differentiate y −
x 3y4 sx 2 1 1

s3x 1 2d5
.

SOLUTION � We take logarithms of both sides of the equation and use the Laws of 
Logarithms to simplify:

ln y − 3
4 ln x 1 1

2 lnsx 2 1 1d 2 5 lns3x 1 2d

Differentiating implicitly with respect to x gives

1

y
 
dy

dx
−

3

4
?

1

x
1

1

2
?

2x

x 2 1 1
2 5 ?

3

3x 1 2

Solving for dyydx, we get

 
dy

dx
− yS 3

4x
1

x

x 2 1 1
2

15

3x 1 2D
Because we have an explicit expression for y, we can substitute and write

	
dy

dx
−

x 3y4 sx 2 1 1

s3x 1 2d5 S 3

4x
1

x

x 2 1 1
2

15

3x 1 2D	 ■

3

_3

_3 3

f

f ª

Figure 2 shows the graph of the func-
tion f sxd − ln | x | in Example 6 and 
its derivative f 9sxd − 1yx. Notice that 
when x is small, the graph of y − ln | x | 
is steep and so f 9sxd is large (positive 
or negative).

Figure �2

If we hadn’t used logarithmic differen-
tiation in Example 7, we would have 
had to use both the Quotient Rule and 
the Product Rule. The resulting calcula-
tion would have been horrendous.
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Steps in Logarithmic Differentiation �

	1.	 Take natural logarithms of both sides of an equation y − f sxd and use the 
Laws of Logarithms to simplify.

	2.	 Differentiate implicitly with respect to x.

	3.	 Solve the resulting equation for y9.

If f sxd , 0 for some values of x, then ln f sxd is not defined, but we can write  

| y | − | f sxd | and use Equation 4. We illustrate this procedure by proving the general 
version of the Power Rule, as promised in Section 3.3.

The Power Rule � If n is any real number and f sxd − xn, then

f 9sxd − nxn21

Proof � Let y − xn and use logarithmic differentiation:

ln | y | − ln | x |n − n ln | x |        x ± 0

�Therefore	
y9

y
−

n

x

�Hence	 y9 − n 
y

x
− n 

xn

x
− nxn21	 ■

To differentiate a function of the form y − f f sxdg tsxd, where both the base and  
the exponent are functions, logarithmic differentiation can be used as in the following 
example.

 Example 8   |  Differentiate y − xsx 

.

SOLUTION 1 � Because both the base and the exponent are variable, we use logarith-
mic differentiation:

 ln y − ln xsx 

− sx  ln x

 
 y9

y
− sx ?

1

x
1 sln xd 

1

2sx 
 

 y9 − y S 1

sx 
1

ln x

2sx D − xsx S 2 1 ln x

2sx D
SOLUTION 2 � Another method is to write xsx 

− se ln x dsx 

:

	
d

dx
 sxsx d −

d

dx
 sesx  ln x d − esx  ln x 

d

dx
 ssx  ln xd

	 − xsx S 2 1 ln x

2sx D        (as in Solution 1)	 ■

If x − 0, we can show that f 9s0d − 0 
for n . 1 directly from the definition of 
a derivative.

Figure 3 illustrates Example 8 by show-
ing the graphs of f sxd − x sx 

 and its 
derivative.

1

1

f

f ª

x0

y

Figure �3
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■ The Number e as a Limit
We have shown that if f sxd − ln x, then f 9sxd − 1yx. Thus f 9s1d − 1. We now use this 
fact to express the number e as a limit.

From the definition of a derivative as a limit, we have

 f 9s1d − lim
h l 0

 
 f s1 1 hd 2 f s1d

h
− lim

x l 0
 
 f s1 1 xd 2 f s1d

x

 − lim
x l 0

 
lns1 1 xd 2 ln 1

x
− lim

x l 0
 
1

x
 lns1 1 xd

 − lim
x l 0

 lns1 1 xd1yx

Because f 9s1d − 1, we have

lim
x l 0

 lns1 1 xd1yx − 1

Then, by Theorem 2.5.7 and the continuity of the exponential function, we have

e − e1 − elimxl0 lns11xd1yx

− lim
x l 0

 elns11xd1yx

− lim
x l 0

 s1 1 xd1yx

(5)	 e − lim
x l 0

 s1 1 xd1yx	

Formula 5 is illustrated by the graph of the function y − s1 1 xd1yx in Figure 4 and a 
table of values for small values of x. This illustrates the fact that, correct to seven deci-
mal places,

e < 2.7182818

If we put n − 1yx in Formula 5, then n l ` as x l 01 and so an alternative expres-
sion for e is

(6)	 e − lim
n l `

 S1 1
1

nDn

	

■ Differentiating the Inverse Tangent Function
Recall from Section 1.5 that the only functions that have inverse functions are one-to-
one functions. The tangent function, however, is not one-to-one and so it doesn’t have an 
inverse function. But we can make it one-to-one by restricting its domain to the interval 
s2�y2, �y2d. Thus the inverse tangent function is defined as the inverse of the func-
tion f sxd − tan x, 2�y2 , x , �y2, as shown in Figure 5. It is denoted by tan21 or 
arctan.

tan21x − y    &?    tan y − x    and    2
�

2
, y ,

�

2

2

3
y=(1+x)!?®

1

0

y

x

Figure �4

x s1 1 xd1yx

0.1 2.59374246
0.01 2.70481383
0.001 2.71692393
0.0001 2.71814593
0.00001 2.71826824
0.000001 2.71828047
0.0000001 2.71828169
0.00000001 2.71828181

π
2

π
2_

y

0 x

Figure �5
y − tan x, 2�

2 , x , �
2
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The inverse tangent function, tan21 − arctan, has domain R and range s2�y2, �y2d. 
Its graph is shown in Figure 6.

We know that

lim
x ls�y2d2

tan x − `    and    lim
xl2s�y2d1

tan x − 2`

and so the lines x − 6�y2 are vertical asymptotes of the graph of tan. Since the graph 
of tan21 is obtained by reflecting the graph of the restricted tangent function about the 
line y − x, it follows that the lines y − �y2 and y − 2�y2 are horizontal asymptotes 
of the graph of tan21. This fact is expressed by the following limits:

(7)	 lim
xl`

 tan21 x −
�

2
        lim

xl2`
 tan21 x − 2

�

2
	

We can use implicit differentiation to derive the formula for the derivative of the 
arctangent function. If y − tan21 x, then tan y − x. Differentiating this latter equation 
implicitly with respect to x, we have

 sec2y 
dy

dx
− 1

 
dy

dx
−

1

sec2y
−

1

1 1 tan2y
−

1

1 1 x 2and so

(8)	
d

dx
 stan21 xd −

1

1 1 x 2 	

 Example 9   |  Differentiate:

(a)	 y −
1

tan21x
	 (b)	 f sxd − x arctan sx 

Solution

(a)  
dy

dx
−

d

dx
 stan21 xd21 − 2stan21 xd22 

d

dx
 stan21 xd

 − 2
1

stan21 xd2s1 1 x 2d

(b)	 Using the Product Rule and the Chain Rule, we have

 f 9sxd − x 
1

1 1 (sx )2  (1
2 x21y2) 1 arctan sx 

 −
sx 

2s1 1 xd
1 arctan sx ■

π
2

_ π
2

y

0
x

Figure �6
y − tan21 x − arctan x

Of all the inverse trigonometric func-
tions, the most useful for our purposes 
is the inverse tangent function, as we 
will see in Section 5.8.
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EXERCISES 3.7

	 29.	� Dialysis �� The project on page 458 models the removal of 
urea from the bloodstream via dialysis. Given that the  
initial urea concentration, measured in mgymL, is c (where 
c . 1), the duration of dialysis required for certain condi-
tions is given by the equation

t − lnS 3c 1 s9c 2 2 8c 

2 D
		���  Calculate the derivative of t with respect to c and interpret it.

	 30.	� Genetic drift �� A population of fruit flies contains two 
genetically determined kinds of individuals: white-eyed 
flies and red-eyed flies. Suppose that a scientist maintains 
the population at constant size N by randomly choosing N 
juvenile flies after reproduction to form the next generation. 
Eventually, because of the random sampling in each gener-
ation, by chance the population will contain only a single 
type of fly. This is called genetic drift. Suppose that the 
initial fraction of the population that are white-eyed  
is p0. An equation for the average number of generations 
required before all flies are white-eyed (given that this 
occurs instead of all flies being red-eyed) is

t − 22N 
1 2 p0

p0
 lns1 2 p0d

		���  Calculate the derivative of t with repect to p0 and explain its 
meaning.

	 31.	� Carbon dating �� If N is the measured amount of 14C in a 
fossil organism and N0 is the amount in living organisms, 
then the estimated age of the fossil is given by the equation

a −
5370

ln 2
 lnSN0

N D
		���  Calculate daydN and interpret it.

	 32.	��� Let f sxd − logbs3x 2 2 2d. For what value of b is f 9s1d − 3?

	� 33–41 � Use logarithmic differentiation to find the derivative of 
the function.

	 33.	 y − s2x 1 1d5sx 4 2 3d6	 34.	 y − sx e x 2sx 2 1 1d10

	 35.	 y −
sin2 x tan4 x

sx 2 1 1d2 	 36.	 y − Î x 2 1 1

x 2 2 1
 

	 37.	 y − x x	 38.	 y − x cos x

4
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	 1.	�� �Explain why the natural logarithmic function y − ln x is 
used much more frequently in calculus than the other 
logarithmic functions y − logb x.

	� 2–20 � Differentiate the function.

	 2.	 f sxd − x ln x 2 x

	 3.	 f sxd − sinsln xd	 4.	 f sxd − lnssin2xd

	 5.	 f sxd − log2s1 2 3xd	 6.	 f sxd − log5sxe xd

	 7.	 f sxd − s5 ln x 	 8.	 f sxd − ln s5 x 

	 9.	 f sxd − sin x lns5xd	 10.	 f std −
1 1 ln t

1 2 ln t

	 11.	 Fstd − ln 
s2t 1 1d3

s3t 2 1d4 	 12.	 hsxd − lnsx 1 sx 2 2 1 d

	 13.	 tsxd − lnsxsx 2 2 1 d	 14.	 Fsyd − y lns1 1 e yd

	 15.	 y − ln| 2 2 x 2 5x 2 |	 16.	 Hszd − lnÎ a 2 2 z 2

a 2 1 z 2  

	 17.	 y − lnse2x 1 xe2x d	 18.	 y − flns1 1 e xdg 2

	 19.	 y − 2x log10 sx 	 20.	 y − log2se2x cos �xd

	� 21–22 � Find y9 and y99.

	 21.	 y − x 2 lns2xd	 22.	 y −
ln x

x 2

	� 23–24 � Differentiate f  and find the domain of f .

	 23.	 f sxd −
x

1 2 lnsx 2 1d
	 24.	 f sxd − ln ln ln x

	� 25–26 � Find an equation of the tangent line to the curve at the 
given point.

	 25.	 y − lnsx 2 2 3x 1 1d��,    s3, 0d

	 26.	�� y − x 2 ln x,    s1, 0d

	 27.	�� If f sxd −
ln x

x 2 , find f 9s1d.

	 ;	 28.	��� Find equations of the tangent lines to the curve y − sln xdyx 
at the points s1, 0d and se, 1yed. Illustrate by graphing the 
curve and its tangent lines.
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3.8 Linear Approximations and Taylor Polynomials

■ Tangent Line Approximations
We have seen that a curve lies very close to its tangent line near the point of tangency. In 
fact, by zooming in toward a point on the graph of a differentiable function, we noticed 
that the graph looks more and more like its tangent line. (See Figure 3.1.5.) This observa-
tion is the basis for a method of finding approximate values of functions.

The idea is that it might be easy to calculate a value f sad of a function, but difficult 
(or even impossible) to compute nearby values of f . So we settle for the easily computed 
values of the linear function L whose graph is the tangent line of f  at sa, f sadd. (See 
Figure 1.)

In other words, we use the tangent line at sa, f sadd as an approximation to the curve 
y − f sxd when x is near a. An equation of this tangent line is

y − f sad 1 f 9sadsx 2 ad
and the approximation

(1)	 f sxd < f sad 1 f 9sadsx 2 ad	

is called the linear approximation or tangent line approximation of f  at a. The linear 
function whose graph is this tangent line, that is,

(2)	 Lsxd − f sad 1 f 9sadsx 2 ad	

is called the linearization of f  at a.

x0

y

{a, f(a)}

y=ƒ

y=L(x)

Figure �1

	� 49–50 � Find the limit.

	 49.	 lim 
x l `

 arctanse x d	 50.	 lim
x l 01

 tan21sln xd

	 51.	�� Find y9 if y − lnsx 2 1 y 2 d.

	 52.	�� Find y9 if x y − y x.

	 53.	�� Find a formula for f sndsxd if f sxd − lnsx 2 1d.

	 54.	�� Find 
d 9

dx 9 sx 8 ln xd.

	 55.	�� Use the definition of derivative to prove that

lim
x l 0

 
lns1 1 xd

x
− 1

	 56.	�� Show that lim
n l `

 S1 1
x

nDn

− e x for any x . 0.

	 39.	 y − scos xdx	 40.	 y − sx x

	 41.	 y − stan xd1yx

	 42.	�P redator-prey dynamics �� In Chapter 7 we study a model 
for the population sizes of a predator and its prey species. If 
ustd and vstd denote the prey and predator population sizes at 
time t, an equation relating the two is

ve2vu �e2�u − c

		���  where c and � are positive constants. Use logarithmic 
differentiation to obtain an equation relating the relative (per 
capita) rate of change of predator (that is, v9yv) to that of 
prey (that is, u9yu).

	� 43–48 � Find the derivative of the function. Simplify where  
possible.

	 43.	 y − stan21xd2	 44.	 y − tan21sx 2d

	 45.	 y − arctanscos �d	 46.	 f sxd − x lnsarctan xd

	 47.	 y − tan21sx 2 s1 1 x 2 d	 48.	 y − arctanÎ 1 2 x

1 1 x
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 Example 1   |  Find the linearization of the function f sxd − sx 1 3  at a − 1 and 
use it to approximate the numbers s3.98  and s4.05 . Are these approximations over-
estimates or underestimates?

SOLUTION � The derivative of f sxd − sx 1 3d1y2 is

f 9sxd − 1
2 sx 1 3d21y2 −

1

2sx 1 3 

and so we have f s1d − 2 and f 9s1d − 1
4. Putting these values into Equation 2, we see  

that the linearization is

Lsxd − f s1d 1 f 9s1dsx 2 1d − 2 1 1
4 sx 2 1d −

7

4
1

x

4

The corresponding linear approximation (1) is

sx 1 3 <
7

4
1

x

4
        (when x is near 1)

In particular, we have

s3.98 < 7
4 1 0.98

4 − 1.995        and        s4.05 < 7
4 1 1.05

4 − 2.0125

The linear approximation is illustrated in Figure 2. We see that, indeed, the tangent 
line approximation is a good approximation to the given function when x is near l. We 
also see that our approximations are overestimates because the tangent line lies above 
the curve.

Of course, a calculator could give us approximations for s3.98  and s4.05 , but the 
linear approximation gives an approximation over an entire interval.	 ■

In the following table we compare the estimates from the linear approximation in  
Example 1 with the true values. Notice from this table, and also from Figure 2, that the  
tangent line approximation gives good estimates when x is close to 1 but the accuracy of 
the approximation deteriorates when x is farther away from 1.

x From Lsxd Actual value

	s3.9 0.9 1.975 1.97484176 . . .

	s3.98 0.98 1.995 1.99499373 . . .

	s4 1 2 2.00000000 . . .

s4.05 1.05 2.0125 2.01246117 . . .

s4.1 1.1 2.025 2.02484567 . . .

s5
 2 2.25 2.23606797 . . .

s6 3 2.5 2.44948974 . . .

How good is the approximation that we obtained in Example 1? The next example 
shows that by using a graphing calculator or computer we can determine an interval 
throughout which a linear approximation provides a specified accuracy.

y=   x+3

_3 0 x

y

1

(1, 2)

y=   + x
4

7
4

œ„„„„

Figure �2
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 Example 2   |  For what values of x is the linear approximation

sx 1 3 <
7

4
1

x

4

accurate to within 0.5? What about accuracy to within 0.1?

SOLUTION � Accuracy to within 0.5 means that the functions should differ by less  
than 0.5: 

Z sx 1 3 2 S 7

4
1

x

4D Z , 0.5

Equivalently, we could write

sx 1 3 2 0.5 ,
7

4
1

x

4
, sx 1 3 1 0.5

This says that the linear approximation should lie between the curves obtained by
shifting the curve y − sx 1 3  upward and downward by an amount 0.5. Figure 3
shows the tangent line y − s7 1 xdy4 intersecting the upper curve y − sx 1 3 1 0.5 
at P and Q. Zooming in and using the cursor, we estimate that the x-coordinate of P is 
about 22.66 and the x-coordinate of Q is about 8.66. Thus we see from the graph that 
the approximation

sx 1 3 <
7

4
1

x

4

is accurate to within 0.5 when 22.6 , x , 8.6. (We have rounded to a narrower 
interval to be safe.)

Similarly, from Figure 4 we see that the approximation is accurate to within 0.1 
when 21.1 , x , 3.9.	 ■

 Example 3   |  Population growth  If Nstd represents a population size at time t 
and the rate of growth as a function of N is f sNd, what is the linear approximation of 
the growth rate at N − 0?

Solution � The growth rate is

dN

dt
− f sNd

The linearization of f sNd at N − 0 is

LsNd − f s0d 1 f 9s0dN

We can assume that f s0d − 0 because when the population has size N − 0, its growth 
rate will be zero. So LsNd − f 9s0dN. If we let the initial growth rate be f 9s0d − r, then 
the linear approximation is

dN

dt
< rN

This means that for small population sizes, the population grows approximately 
exponentially. (Recall from Theorem 3.6.2 that the only solutions of the equation 
dNydt − rN are exponential functions.)	 ■

 Example 4   |  Find the linear approximation of the sine function at 0.

4.3

_1

_4 10

y=   x+3-0.5œ„„„„

Q

P
L (x)

y=   x+3+0.5œ„„„„

Figure �3

Figure �4

3

1
_2

y=   x+3-0.1œ„„„„

Q

P

5

y=   x+3+0.1œ„„„„

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 3.8  |  Linear Approximations and Taylor Polynomials    233

Solution � If we let f sxd − sin x, then f 9sxd − cos x and so the linearization at 0 is

Lsxd − f s0d 1 f 9s0dsx 2 0d − sin 0 1 scos 0dsxd − x

So the linear approximation at 0 is

sin x < x

This approximation is used in optics when x is small: the results of calculations made 
with this linear approximation became the basic theoretical tool used to design lenses.

■

■ Newton’s Method
How would you solve an equation like cos x − x? Aside from linear and quadratic equa-
tions, most equations don’t have simple formulas for their roots. Many calculators have 
numerical rootfinders that enable us to find approximate roots of equations, though they 
need to be used with care.

How do those numerical rootfinders work? They use a variety of methods, but most of 
them make some use of Newton’s method, also called the Newton-Raphson method. 
We will explain how this method works, partly to show what happens inside a calculator 
or computer, and partly as an application of the idea of linear approximation.

The geometry behind Newton’s method is shown in Figure 5, where the root that we are  
trying to find is labeled r. We start with a first approximation x1, which is obtained by 
guessing, or from a rough sketch of the graph of f , or from a computer-generated graph  
of f . Consider the tangent line L to the curve y − f sxd at the point sx1, f sx1dd and look  
at the x-intercept of L, labeled x2. The idea behind Newton’s method is that the tangent  
line is close to the curve and so its x-intercept, x2, is close to the x-intercept of the curve  
(namely, the root r that we are seeking). Because the tangent is a line, we can easily 
find its x-intercept.

To find a formula for x2 in terms of x1 we use the fact that the slope of L is f 9sx1d, so 
its equation is

y 2 f sx1d − f 9sx1dsx 2 x1d

Since the x-intercept of L is x2, we set y − 0 and obtain

0 2 f sx1d − f 9sx1dsx2 2 x1d

If f 9sx1d ± 0, we can solve this equation for x2:

x2 − x1 2
 f sx1d
f 9sx1d

We use x2 as a second approximation to r.
Next we repeat this procedure with x1 replaced by the second approximation x2, using 

the tangent line at sx2, f sx2 dd. This gives a third approximation:

x3 − x2 2
 f sx2 d
f 9sx2 d

If we keep repeating this process, we obtain a sequence of approximations x1, x2, x3, x4, . . . 
as shown in Figure 6. In general, if the nth approximation is xn and f 9sxn d ± 0, then 
the next approximation is given by

(3)	 xn11 − xn 2
 f sxn d
f 9sxn d

	

y

0 x

{x ¡, f(x¡)}

x x¡

L

r

y=ƒ

Figure �5 

y

0 xx™ x¡x£
x¢

r

{x™, f(x™)}

{x¡, f(x¡)}

Figure �6
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If the numbers xn approach the desired root r as n becomes large, that is,

lim
n l `

 xn − r

then we use them as approximations to r. Although the sequence of successive approxi-
mations converges to the desired root for functions of the type illustrated in Figure 6, in 
certain circumstances the sequence may not converge. For example, consider the situ-
ation shown in Figure 7. You can see that x2 is a worse approximation than x1. This is 
likely to be the case when f 9sx1d is close to 0. It might even happen that an approxima-
tion (such as x3 in Figure 7) falls outside the domain of f. Then Newton’s method fails 
and a better initial approximation x1 should be chosen. See Exercises 33–34 for specific 
examples in which Newton’s method works very slowly or does not work at all.

 Example 5   |  Starting with x1 − 2, find the third approximation x3 to the root of 
the equation x 3 2 2x 2 5 − 0.

SOLUTION � We apply Newton’s method with

f sxd − x 3 2 2x 2 5        and        f 9sxd − 3x 2 2 2

Newton himself used this equation to illustrate his method and he chose x1 − 2 after 
some experimentation because f s1d − 26, f s2d − 21, and f s3d − 16. Equation 3  
becomes

xn11 − xn 2
xn

3 2 2xn 2 5

3xn
2 2 2

With n − 1 we have

 x2 − x1 2
x1

3 2 2x1 2 5

3x1
2 2 2

 − 2 2
23 2 2s2d 2 5

3s2d2 2 2
− 2.1

Then with n − 2 we obtain

 x3 − x2 2
x2

3 2 2x2 2 5

3x2
2 2 2

− 2.1 2
s2.1d3 2 2s2.1d 2 5

3s2.1d2 2 2
< 2.0946

It turns out that this third approximation x3 < 2.0946 is accurate to four decimal 
places.	 ■

Suppose that we want to achieve a given accuracy, say to eight decimal places, using 
Newton’s method. How do we know when to stop? The rule of thumb that is generally 
used is that we can stop when successive approximations xn and xn11 agree to eight deci-
mal places.

Notice that the procedure in going from n to n 1 1 is the same for all values of n. (It 
is a recursive sequence, as defined in Section 1.6.) This means that Newton’s method is 
particularly convenient for use with a programmable calculator or a computer.

 Example 6   |  Find, correct to six decimal places, the root of the equation cos x − x.

SOLUTION � We first rewrite the equation in standard form:

cos x 2 x − 0

Limits of sequences were defined in 
Section 2.1.

x

y

0
r

x™
x£ x¡

Figure �7

 TEC   In Module 3.8 you can investi-
gate how Newton’s Method works for 
several functions and what happens 
when you change x1.

Figure 8 shows the geometry behind 
the first step in Newton’s method in 
Example 5. Since f 9s2d − 10, the tan-
gent line to y − x3 2 2x 2 5 at s2, 21d 
has equation y − 10x 2 21 and so its  
x-intercept is x 2 − 2.1.

1

1.8 2.2

_2

y=10x-21

x™

y=˛-2x-5

Figure �8
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Therefore we let f sxd − cos x 2 x. Then f 9sxd − 2sin x 2 1, so Formula 3 becomes

xn11 − xn 2
cos xn 2 xn

2sin xn 2 1
− xn 1

cos xn 2 xn

sin xn 1 1

In order to guess a suitable value for x1 we sketch the graphs of y − cos x and y − x in 
Figure 9. It appears that they intersect at a point whose x-coordinate is somewhat less 
than 1, so let’s take x1 − 1 as a convenient first approximation. Then, remembering to 
put our calculator in radian mode, we get

x2 < 0.75036387

x3 < 0.73911289

x4 < 0.73908513

x5 < 0.73908513

Since x4 and x5 agree to six decimal places (eight, in fact), we conclude that the root of 
the equation, correct to six decimal places, is 0.739085.	 ■

Instead of using the rough sketch in Figure 9 to get a starting approximation for New-
ton’s method in Example 6, we could have used the more accurate graph that a calculator 
or computer provides. Figure 10 suggests that we use x1 − 0.75 as the initial approxima-
tion. Then Newton’s method gives

x2 < 0.73911114        x3 < 0.73908513        x4 < 0.73908513

and so we obtain the same answer as before, but with one fewer step.

■ Taylor Polynomials
The tangent line approximation Lsxd is the best first-degree (linear) approximation to f sxd 
near x − a because f sxd and Lsxd have the same rate of change (derivative) at a. For a bet-
ter approximation than a linear one, let’s try a second-degree (quadratic) approximation 
Psxd. In other words, we approximate a curve by a parabola instead of by a straight line. 
To make sure that the approximation is a good one, we stipulate the following:

	 (i)	 Psad − f sad	 (P and f  should have the same value at a.)

	 (ii)	 P9sad − f 9sad	 (P and f  should have the same rate of change at a.)

	 (iii)	 P99sad − f 99sad	 (The slopes of P and f  should change at the same rate at a.)

Let’s write the polynomial P in the form

Psxd − A 1 Bsx 2 ad 1 Csx 2 ad2

Then

P9sxd − B 1 2Csx 2 ad    and    P0sxd − 2C

Applying the conditions (i), (ii), and (iii), we get

	 Psad − f sad	 ?	 A − f sad

	 P9sad − f 9sad	 ?	 B − f 9sad

	 P99sad − f 99sad	 ?	 2C − f 0sad    ?    C − 1
2 f 0sad

1

y

xπ

y=cos x

y=x

π
2

Figure �9

1

0 1

y=x

y=cos x

Figure �10
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So the quadratic function that satisfies the three conditions is

(4)	 Psxd − f sad 1 f 9sadsx 2 ad 1 1
2 f 99sadsx 2 ad2	

This function is called the second-degree Taylor polynomial of f  centered at a and is 
usually denoted by T2sxd.

 Example 7   |  Find the second-degree Taylor polynomial T2sxd centered at a − 0 for 
the function f sxd − cos x. Illustrate by graphing T2, f , and the linearization Lsxd − 1.

Solution � Since f sxd − cos x, f 9sxd − 2sin x, and f 0sxd − 2cos x, the second-
degree Taylor polynomial centered at 0 is

 T2sxd − f s0d 1 f 9s0dx 1 1
2 f 0s0dx 2

 − 1 1 0 1 1
2s21dx 2 − 1 2 1

2 x 2

Figure 11 shows a graph of the cosine function together with its linear approximation 
Lsxd − 1 and its quadratic approximation T2sxd − 1 2 1

2 x 2 near 0. You can see that the 
quadratic approximation is much better than the linear one.	 ■

Instead of being satisfied with a linear or quadratic approximation to f sxd near a,  
let's try to find better approximations with higher-degree polynomials. We look for an nth- 
degree polynomial

(5)	 Tnsxd − c0 1 c1sx 2 ad 1 c2sx 2 ad2 1 c3sx 2 ad3 1 ∙ ∙ ∙ 1 cnsx 2 adn	

such that Tn and its first n derivatives have the same values at x − a as f  and its first n  
derivatives. By differentiating repeatedly and setting x − a, you are asked to show in 
Exercise 44 that these conditions are satisfied if c0 − f sad, c1 − f 9sad, c2 − 1

2 f 99 sad, and 
in general

ck −
 f skdsad

k!

where k! − 1 ? 2 ? 3 ? 4 ? ∙ ∙ ∙ ? k is called k factorial. The resulting polynomial

Tnsxd − f sad 1 f 9sadsx 2 ad 1
 f99sad

2!
sx 2 ad2 1 ∙ ∙ ∙ 1

 f sndsad
n!

sx 2 adn

is called the nth-degree Taylor polynomial of f  centered at a.

 Example 8   |  Find the first three Taylor polynomials T1, T2, and T3 for the function 
f sxd − ln x centered at a − 1.

Solution � We start by calculating the first three derivatives at a − 1:

	 f sxd − ln x	 f 9sxd −
1

x
	 f 0sxd − 2

1

x 2 	 f -sxd −
2

x 3

	 f s1d − 0	 f 9s1d − 1	 f 0s1d − 21	 f -s1d − 2

1.4

_3.5

_1.4

3.5

y � cos x

L

T™

Figure �11
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Then
 T1sxd − f s1d 1 f 9s1dsx 2 1d − x 2 1

 T2sxd − T1sxd 1
f 0s1d

2!
sx 2 1d2 − x 2 1 2 1

2sx 2 1d2

 T3sxd − T2sxd 1
f -s1d

3!
sx 2 1d3 − x 2 1 2 1

2sx 2 1d2 1 1
3sx 2 1d3

Figure 12 shows the graphs of these Taylor polynomials. Notice that these polynomial 
approximations are better when x is close to 1 and that each successive approximation 
is better than the preceding ones.

	

y

0 x1

f

T¡

T™

T£

	 ■Figure �12

	� 1–4 � Find the linearization Lsxd of the function at a.

	 1.	�� f sxd − x 4 1 3x 2,    a − 21	 2.	 f sxd − ln x,    a − 1

	 3.	 f sxd − cos x,    a − �y2	 4.	 f sxd − x 3y4,    a − 16

	 ;	 5.	�� �Find the linear approximation of the function 
f sxd − s1 2 x  at a − 0 and use it to approximate the 
numbers s0.9  and s0.99 . Illustrate by graphing f  and the 
tangent line.

	 ;	 6.	�� �Find the linear approximation of the function 
tsxd − s3 1 1 x  at a − 0 and use it to approximate the 
numbers s3 0.95  and s3 1.1 . Illustrate by graphing t and the 
tangent line.

	 ;	� 7–10 � Verify the given linear approximation at a − 0. Then 
determine the values of x for which the linear approximation is 
accurate to within 0.1.

	 7.	 s3 1 2 x < 1 2 1
3 x	 8.	  tan x < x

	 9.	 1ys1 1 2xd 4 < 1 2 8x	 10.	 e x < 1 1 x

	� 11–12 � Use a linear approximation to estimate the given number.

	 11.	 s2.001d5	 12.	 e20.015

	� 13–14 � Explain, in terms of linear approximations, why the 
approximation is reasonable.

	 13.	 ln 1.05 < 0.05	 14.	 s1.01d6 < 1.06

	 15.	�I nsecticide resistance �� If the frequency of a gene for 
insecticide resistance is p (a constant), then its frequency in 
the next generation is given by the expression

f −
ps1 1 sd
1 1 sp

		���  where s is the reproductive advantage this gene has over the 

EXERCISES 3.8
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	� 21–22 � Use Newton’s method with the specified initial approxi-
mation x1 to find x3, the third approximation to the root of the 
given equation. (Give your answer to four decimal places.)

	 21.	 x 3 1 2x 2 4 − 0,  x1 − 1

	 22.	�� 1
3 x 3 1 1

2 x 2 1 3 − 0,    x1 − 23

	� 23–26 � Use Newton’s method to find all roots of the equation 
correct to six decimal places.

	 23.	 x 4 − 1 1 x	 24.	 e x − 3 2 2x

	 25.	 sx 2 2d2 − ln x	 26.	
1

x
− 1 1 x 3

	 ;	� 27–31 � Use Newton’s method to find all the roots of the equa-
tion correct to eight decimal places. Start by drawing a graph to 
find initial approximations.

	 27.	 x 6 2 x 5 2 6x 4 2 x 2 1 x 1 10 − 0

	 28.	 x 2s4 2 x 2d −
4

x 2 1 1

	 29.	 x 2s2 2 x 2 x 2 − 1	 30.	 3 sinsx 2d − 2x

	 31.	 4e2x 2

 sin x − x 2 2 x 1 1

	 32.	�I nfectious disease outbreak size �� If 99% of a population 
is initially uninfected and each initial infected person gen-
erates, on average, two new infections, then, according to 
the model we considered in Example 3.5.13,

0.99e22A − 1 2 A

		���  where A is the fraction of the population infected at the end 
of an outbreak. Use Newton’s method to obtain an approxi-
mation (accurate to two decimal places) for the percentage 
of the population that is eventually infected.

	 33.	��� Explain why Newton’s method doesn’t work for finding the 
root of the equation x 3 2 3x 1 6 − 0 if the initial approxi-
mation is chosen to be x1 − 1.

	 34.	�� (a)	� Use Newton’s method with x1 − 1 to find the root of 
the equation x 3 2 x − 1 correct to six decimal places.

		  (b)	� Solve the equation in part (a) using x1 − 0.6 as the 
initial approximation.

		  (c)	� Solve the equation in part (a) using x1 − 0.57. (You 
definitely need a programmable calculator for this part.)

	 ;		  (d)	� Graph f sxd − x 3 2 x 2 1 and its tangent lines at 
x1 − 1, 0.6, and 0.57 to explain why Newton’s method 
is so sensitive to the value of the initial approximation.

	� 35–38 � Find the Taylor polynomial of degree  n centered at the 
number a.

	 35.	 f sxd − e x,  n − 3,  a − 0

wild type in the presence of the insecticide. Often the 
selective advantage s is very small. Approximate the 
frequency in the next generation with a linear approxima-
tion, given that s is small.

	 16.	�R elative change in blood velocity �� Suppose y − f sxd  
and x and y change by amounts Dx and Dy. A way of 
expressing a linear approximation is to write Dy < f 9sxd Dx. 
The relative change in y is Dyyy.

		���    A special case of Poiseuille’s law of laminar flow (see 
Example 3.3.9) is that at the central axis of a blood vessel 
the velocity of the blood is related to the radius R of the ves-
sel by an equation of the form v − cR2. If the radius 
changes, how is the relative change in the blood velocity 
related to the relative change in the radius? If the radius is 
increased by 10%, what happens to the velocity?

	 17.	�R elative change in blood flow �� Another law of Poiseuille 
says that when blood flows along a blood vessel, the flux F 
(the volume of blood per unit time that flows past a given 
point) is proportional to the fourth power of the radius R of 
the blood vessel:

F − kR 4

		���  (We will show why this is true in Section 6.3.) A partially 
clogged artery can be expanded by an operation called 
angioplasty, in which a balloon-tipped catheter is inflated 
inside the artery in order to widen it and restore the normal 
blood flow.

		�  ��    Show that the relative change in F is about four times the 
relative change in R. How will a 5% increase in the radius 
affect the flow of blood?

	 18.	� Volume and surface area of a tumor �� The diameter of a 
tumor was measured to be 19 mm. If the diameter increases 
by 1 mm, use linear approximations to estimate the rela- 
tive changes in the volume (V − 4

3�r 3) and surface area 
sS − 4�r 2d.

	 19.	��� The figure shows the graph of a function f . Suppose that 
Newton’s method is used to approximate the root r of the 
equation f sxd − 0 with initial approximation x1 − 1.

		  (a)	� Draw the tangent lines that are used to find x2 and x3, 
and estimate the numerical values of x2 and x3.

		  (b)	� Would x1 − 5 be a better first approximation? Explain.

x

y

0 r

1

1 s

	 20.	��� Follow the instructions for Exercise 19(a) but use x1 − 9 as 
the starting approximation for finding the root s.
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by f21.4, 1.4g and comment on how well they approxi- 
mate f .

	 43.	�H abitat fragmentation and species conservation ��  
The size of a class-structured population is modeled in 
Section 8.8. In certain situations the long-term per capita 
growth rate of the population is given by

r − 1
2(1 1 s1 1 8s )

		��  where s is the annual survival probability of juveniles.
		  (a)	� Approximate the growth rate with a Taylor polynomial 

of degree one (linear approximation) centered at 0.
		  (b)	� Approximate the growth rate with a Taylor polynomial 

of degree two centered at 0.

	 44.	��� Show that if a polynomial Tn of the form given in Equation 
5 has the same value at a and the same derivatives at x − a 
as a function f , then its coefficients are given by the 
formula

ck −
f skdsad

k!

	 36.	 f sxd − sin �x,  n − 3,  a − 0

	 37.	 f sxd − 1yx,  n − 4,  a − 1

	 38.	 f sxd − sx ,  n − 2,  a − 4

	 ;	 39.	��� Find the quadratic approximation to f sxd − sx 1 3  near 
a − 1. Graph f , the quadratic approximation, and the linear 
approximation from Example 1 on a common screen. What 
do you conclude?

	 ;	40.	��� Determine the values of x for which the quadratic approxi-
mation f sxd < T2sxd in Example 7 is accurate to within 0.1. 
[Hint: Graph y − T2sxd, y − cos x 2 0.1,  and 
y − cos x 1 0.1 on a common screen.]

	 ;	 41.	��� Find the first five Taylor polynomials for f sxd − sin x cen-
tered at 0. Graph them on the interval f24, 4g and comment 
on how well they approximate f .

	 ;	 42.	��� Find the 8th-degree Taylor polynomial centered at a − 0 for 
the function f sxd − cos x. Graph f  together with the Taylor 
polynomials T2, T4, T6, T8 in the viewing rectangle f25, 5g 

■ Project  Harvesting Renewable Resources	 BB

In Exercise 1.6.32 we considered the Ricker difference equation

xt11 − cxte2xt

where xt is the size of a population at time t and c is the per capita reproductive output 
when the population size is small. (We assume that c . 1, which means that individuals 
more than replace themselves when the population size is small.)

	 1.	�� �Suppose that as t l ` the population size approaches a limiting value x. Express 
x in terms of the growth factor c. You will find two solutions; focus only on the 
one that is strictly positive.

	 2.	�� �Now let’s consider harvesting. Assume that h individuals are harvested in each 
time step. Then our model becomes

xt11 − cxte2xt 2 h

		��  �What equation does the limiting population size x satisfy?

	 3.	�� �Even though the equation you found in Problem 2 can’t be solved explicitly for  
x, you can use implicit differentiation to find an expression for the derivative of x 
with respect to h. Do so.

	 4.	�� �Our aim is to find an expression for the limiting population size x in terms of the 
harvest rate h. As a first approximation, find the linearization of the function xshd 
at h − 0. [Note that xs0d is known from Problem 1.]

	 5.	�� �Find the second-order Taylor polynomial approximation for xshd at h − 0.
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CONCEPT CHECK

Chapter 3 Review

	 1.	��� Write an expression for the slope of the tangent line to the 
curve y − f sxd at the point sa, f sadd.

	 2.	��� Define the derivative f 9sad. Discuss two ways of interpreting 
this number.

	 3.	��� If y − f sxd and x changes from x1 to x2, write expressions for 
the following.

		  (a)	� The average rate of change of y with respect to x over the 
interval fx1, x2 g

		  (b)	� The instantaneous rate of change of y with respect to x  
at x − x1

	 4.	��� Define the second derivative of f . If f std is the position  
function of a particle, how can you interpret the second  
derivative?

	 5.	�� (a)	� What does it mean for f  to be differentiable at a?
		  (b)	� What is the relation between the differentiability and  

continuity of a function?
		  (c)	� Sketch the graph of a function that is continuous but not  

differentiable at a − 2.

	 6.	��� Describe several ways in which a function can fail to be  
differentiable. Illustrate with sketches.

	 7.	��� State each differentiation rule both in symbols and in words.
		  (a)	 The Power Rule	 (b)	 The Constant Multiple Rule
		  (c)	 The Sum Rule	 (d)	 The Difference Rule

		  (e)	 The Product Rule	 (f)	 The Quotient Rule
		  (g)	 The Chain Rule

	 8.	�� �State the derivative of each function.
		  (a)	 y − x n	 (b)	 y − e x	 (c)	 y − b x

		  (d)	 y − ln x	 (e)	 y − logb x	 (f)	 y − sin x
		  (g)	 y − cos x	 (h)	 y − tan x	 (i)	 y − csc x
		  ( j)	 y − sec x	 (k)	 y − cot x	 (l)	 y − tan21x

	 9.	��� (a)	 How is the number e defined?
		  (b)	 Express e as a limit.
		  (c)	� Why is the natural exponential function y − e x used 

more often in calculus than the other exponential func-
tions y − b x?

		  (d)	� Why is the natural logarithmic function y − ln x used 
more often in calculus than the other logarithmic func-
tions y − logb x?

	 10.	�� (a)	� Explain how implicit differentiation works. When 
should you use it?

		  (b)	� Explain how logarithmic differentiation works. When 
should you use it?

	 11.	��� Write an expression for the linearization of f  at a.

	 12.	��� Write an expression for the nth-degree Taylor polynomial 
of f  centered at a.

Answers to the Concept Check can be found on the back 
endpapers.

	� Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

	 1.	�� If f  is continuous at a, then f  is differentiable at a.

	 2.	�� If f 9srd exists, then limx l r f sxd − f srd.

	 3.	�� If f  and t are differentiable, then

d

dx
 f f sxd 1 tsxdg − f 9sxd 1 t9sxd

	 4.	�� If f  and t are differentiable, then

d

dx
 f f sxdtsxdg − f 9sxdt9sxd

	 5.	�� If f  and t are differentiable, then

d

dx
 f f stsxddg − f 9stsxddt9sxd

	 6.	�� If f  is differentiable, then 
d

dx
 sf sxd −

f 9sxd
2sf sxd 

.

	 7.	�� If f  is differentiable, then 
d

dx
 f ssx d −

 f 9sxd
2sx 

.

	 8.	�� If y − e2, then y9 − 2e.

	 9.	
d

dx
 s10 x d − x10 x21	 10.	

d

dx
 sln 10d −

1

10

	 11.	
d

dx
 stan2xd −

d

dx
 ssec2xd	 12.	

d 2y

dx 2 − S dy

dxD2

	 13.	�� If tsxd − x 5, then lim
x l 2

 
tsxd 2 ts2d

x 2 2
− 80

	 14.	��� An equation of the tangent line to the parabola y − x 2  
at s22, 4d is y 2 4 − 2xsx 1 2d.

TRUE-FALSE QUIZ
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EXERCISES

	 1.	��� For the function f  whose graph is shown, arrange the 
following numbers in increasing order:

0    1    f 9s2d    f 9s3d    f 9s5d    f 0s5d

x

y

0 1

1

	 2.	� Life expectancy �� The table shows how the life expectancy 
Lstd in Bangladesh has changed from 1990 to 2010.

t 1990 1995 2000 2005 2010

Lstd 56 61 65 68 71

		  (a)	� Calculate the average rate of change of the life expec-
tancy Lstd with respect to time over the following time 
intervals.

			   (i)	 f1990, 2000g	 (ii)	 f1995, 2000g
			   (iii)	 f2000, 2010g	 (iv)	 f2000, 2005g
		  (b)	� Estimate the value of L9s2000d.

	 3.	��� The total cost of repaying a student loan at an interest rate 
of r% per year is C − f srd.

		  (a)	� What is the meaning of the derivative f 9srd? What are 
its units?

		  (b)	 What does the statement f 9s10d − 1200 mean?
		  (c)	 Is f 9srd always positive or does it change sign?

		  4.	�� (a)	� Use the definition of a derivative to find f 9s2d, where 
f sxd − x 3 2 2x.

		  (b)	� Find an equation of the tangent line to the curve 
y − x 3 2 2x at the point (2, 4).

	 ;		  (c)	� Illustrate part (b) by graphing the curve and the tangent 
line on the same screen.

	� 5–7 � Trace or copy the graph of the function. Then sketch a 
graph of its derivative directly beneath.

	 5.	

0 x

y 	 6.	

0 x

y

	 7.	

x

y

	 8.	� Bacteria count �� Shown is a typical graph of the number  
N of bacteria grown in a bacteria culture as a function of 
time t.

		  (a)	� What is the meaning of the derivative N9std?
		  (b)	� Sketch the graph of N9std.

N

t0

	 9.	�A ntihypertension medication �� The figure shows the 
heart rate Hstd after a patient has taken nifedipine tablets.

		  (a)	� What is the meaning of the derivative H9std?
		  (b)	� Sketch the graph of H9std.

1
0

3 5

60

65

70

H

t (hours)

B
ea

ts
 p

er
 m

in
ut

e

	 10.	�� (a)	� Find the asymptotes of the graph of f sxd −
4 2 x

3 1 x
  

and use them to sketch the graph.
		  (b)	 Use your graph from part (a) to sketch the graph of f 9.
		  (c)	 Use the definition of a derivative to find f 9sxd.
	 ;		  (d)	� Use a calculator to graph f 9 and compare with your 

sketch in part (b).

	 11.	�� (a)	� If f sxd − s3 2 5x , use the definition of a derivative to  
find f 9sxd.

		  (b)	 Find the domains of f  and f 9.
	 ;		  (c)	� Graph f  and f 9 on a common screen. Compare the 

graphs to see whether your answer to part (a) is  
reasonable.
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	 19.	 y − 2xsx 2 1 1 	 20.	 y −
e x

1 1 x 2

	 21.	 y − e sin 2�	 22.	 y − e2tst 2 2 2t 1 2d

	 23.	 y −
t

1 2 t 2 	 24.	 y − emx cos nx

	 25.	 y −
e1yx

x 2 	 26.	 y − S u 2 1

u 2 1 u 1 1D
4

	 27.	 xy 4 1 x 2y − x 1 3y	 28.	 y − lnscsc 5xd

	 29.	 y −
sec 2�

1 1 tan 2�
	 30.	 x 2 cos y 1 sin 2y − xy

	 31.	 y − e cxsc sin x 2 cos xd	 32.	 y − lnsx 2e xd

	 33.	 y − log 5s1 1 2xd	 34.	 y − sln xd cos x

	 35.	 sinsxyd − x2 2 y	 36.	 y − st lnst 4d 

	 37.	 y − 3 x ln x	 38.	 xe y − y 2 1

	 39.	 y − ln sin x 2 1
2 sin2x	 40.	 y −

sx 2 1 1d4

s2x 1 1d3s3x 2 1d5

	 41.	 y − x tan21s4xd	 42.	 y − e cos x 1 cosse x d

	 43.	 y − ln | sec 5x 1 tan 5x |	 44.	 y − 10tan ��

	 45.	 y − tan2ssin �d	 46.	 y − ln Z x 2 2 4

2x 1 5 Z
	 47.	 y − sinstan s1 1 x 3 d	 48.	 y − arctansarcsin sx d
	 49.	 y − cos(estan 3x )	 50.	 y − sin2scosssin �x d

	 51.	�� If f std − s4t 1 1, find f 99s2d.

	 52.	�� If ts�d − � sin �, find t99s�y6d.

	 53.	��� If f sxd − 2 x, find f sndsxd.

	 54.	��� Find f sndsxd if f sxd − 1ys2 2 xd.

	� 55–56 � Find an equation of the tangent to the curve at the given 
point.

	 55.	�� y − 4 sin2x,    s�y6, 1d	 56.	 y −
x2 2 1

x2 1 1
,    s0, 21d

	� 57–58 � Find equations of the tangent line and normal line to the 
curve at the given point.

	 57.	 y − s2 1 xde2x,    s0, 2d

	 58.	 x2 1 4xy 1 y2 − 13,    s2, 1d

	 59.	�� (a)	 If f sxd − xs5 2 x , find f 9sxd.
		  (b)	� Find equations of the tangent lines to the curve
			   y − xs5 2 x  at the points s1, 2d and s4, 4d.

	 ;	 12.	��� The figure shows the graphs of f , f 9, and f 0. Identify each 
curve, and explain your choices.

x

y

a

b

c
0

	 13.	��� The graph of f  is shown. State, with reasons, the numbers 
at which f  is not differentiable.

x

y

20 4 6_1

	 14.	��� The total fertility rate at time t, denoted by Fstd, is an 
estimate of the average number of children born to each 
woman (assuming that current birth rates remain constant). 
The graph of the total fertility rate in the United States 
shows the fluctuations from 1940 to 2010.

		  (a)	� Estimate the values of F9s1950d, F9s1965d, and 
F9s1987d.

		  (b)	 What are the meanings of these derivatives?
		  (c)	� Can you suggest reasons for the values of these  

derivatives?

t

y

1940 1960 1970 1980 1990 2000 20101950

1.5

2.0

2.5

3.0

3.5

y=F(t)

baby
boom

baby
bust

baby
boomlet

	� 15–50 � Calculate y9.

	 15.	 y − sx 4 2 3x 2 1 5d3	 16.	 y − cosstan xd

	 17.	 y − sx 1
1

s3 x 4 
	 18.	 y −

3x 2 2

s2x 1 1 
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	 76.	��� A particle moves along a horizontal line so that its coor-
dinate at time t is x − sb 2 1 c 2t 2 , t > 0, where b and c  
are positive constants.

		  (a)	 Find the velocity and acceleration functions.
		  (b)	� Show that the particle always moves in the positive  

direction.

	 77.	��� The volume of a right circular cone is V − 1
3�r 2h, where  

r is the radius of the base and h is the height.
		  (a)	� Find the rate of change of the volume with respect to 

the height if the radius is constant.
		  (b)	� Find the rate of change of the volume with respect to 

the radius if the height is constant.

	 78.	�� The Michaelis-Menten equation for the enzyme pepsin is

v −
0.50fSg

3.0 3 1024 1 fSg

		���  where v is the rate of an enzymatic reaction and fSg is the 
concentration of a substrate S. Calculate dvyd fSg and 
interpret it.

	 79.	�H ealth care expenditures �� The US health care expendi-
tures for 1970–2008 have been modeled by the function

Estd − 101.35e 0.088128t

		���  where t is the number of years elapsed since 1970 and E is 
measured in billions of dollars. According to this model, at 
what rate were health care expenditures increasing in 1980? 
In 2000?

	 80.	� Drug concentration �� The function Cstd − Kse2at 2 e2bt d, 
where a, b, and K are positive constants and b . a, is used 
to model the concentration at time t of a drug injected into 
the bloodstream.

		  (a)	 Show that lim t l ` Cstd − 0.
		  (b)	� Find C9std, the rate of change of drug concentration in 

the blood.
		  (c)	 When is this rate equal to 0?

	 81.	� Bacteria growth �� A bacteria culture contains 200 cells 
initially and grows at a rate proportional to its size. After 
half an hour the population has increased to 360 cells.

		  (a)	� Find the number of bacteria after t hours.
		  (b)	� Find the number of bacteria after 4 hours.
		  (c)	 Find the rate of growth after 4 hours.
		  (d)	 When will the population reach 10,000?

	 82.	��� Cobalt-60 has a half-life of 5.24 years.
		  (a)	� Find the mass that remains from a 100-mg sample after  

20 years.
		  (b)	� How long would it take for the mass to decay to 1 mg?

	 83.	� Drug elimination �� Let Cstd be the concentration of a drug 
in the bloodstream. As the body eliminates the drug, Cstd 
decreases at a rate that is proportional to the amount of  
the drug that is present at the time. Thus C9std − 2kCstd, 

	 ;		  (c)	� Illustrate part (b) by graphing the curve and tangent 
lines on the same screen.

	 ;		  (d)	� Check to see that your answer to part (a) is reasonable 
by comparing the graphs of f  and f 9.

	 ;	 60.	�� (a)	� Graph the function f sxd − x 2 2 sin x in the viewing  
rectangle f0, 8g by f22, 8g.

		  (b)	� On which interval is the average rate of change larger: 
f1, 2g or f2, 3g?

		  (c)	� At which value of x is the instantaneous rate of change 
larger: x − 2 or x − 5?

		  (d)	� Check your visual estimates in part (c) by computing 
f 9sxd and comparing the numerical values of f 9s2d  
and f 9s5d.

	 61.	�� �Suppose that hsxd − f sxdtsxd and Fsxd − f stsxdd, where 
f s2d − 3, ts2d − 5, t9s2d − 4, f 9s2d − 22, and f 9s5d − 11. 
Find (a) h9s2d and (b) F9s2d.

	 62.	�� �If f  and t are the functions whose graphs are shown, let 
Psxd − f sxdtsxd, Qsxd − f sxdytsxd, and Csxd − f stsxdd.  
Find (a) P9s2d, (b) Q9s2d, and (c) C9s2d.

0

g

f

y

x1

1

	� 63–70 � Find f 9 in terms of t9.

	 63.	 f sxd − x 2tsxd	 64.	 f sxd − tsx 2 d

	 65.	 f sxd − ftsxdg2	 66.	 f sxd − tstsxdd

	 67.	 f sxd − tse x d	 68.	 f sxd − e tsxd 

	 69.	 f sxd − ln | tsxd |	 70.	 f sxd − tsln xd

	 71.	��� At what point on the curve y − flnsx 1 4dg2 is the tangent  
horizontal?

	 72.	�� (a)	� Find an equation of the tangent to the curve y − e x that 
is parallel to the line x 2 4y − 1.

		  (b)	� Find an equation of the tangent to the curve y − e x that 
passes through the origin.

	 73.	��� Find the points on the ellipse x 2 1 2y 2 − 1 where the  
tangent line has slope 1.

	 74.	��� Find a parabola y − ax 2 1 bx 1 c that passes through the 
point s1, 4d and whose tangent lines at x − 21 and x − 5 
have slopes 6 and 22, respectively.

	 75.	��� An equation of motion of the form s − Ae2ct coss�t 1 �d 
represents damped oscillation of an object. Find the velocity 
and acceleration of the object.
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	 91.	� Dialysis �� The project on page 458 models the removal of 
urea from the bloodstream via dialysis. In certain situations 
the duration of dialysis required, given that the initial urea 
concentration is c, where c . 1, is given by the equation

t − lnS 3c 1 s9c 2 2 8c 

2 D
		  (a)	� Use a linear approximation to estimate the time 

required if the initial concentration is near c − 1.
		  (b)	� Use a second-order Taylor polynomial to give a more 

accurate approximation.

	 92.	�I nfectious disease outbreak size �� We have worked with 
the model

�e2qA − 1 2 A

		���  where A is the fraction of the population infected, q is a 
measure of disease transmissibility, and � is the fraction of 
the population that is initially susceptible to infection.

		  (a)	� Use implicit differentiation to find the linear approxi-
mation of A as a function of q at q − 0.

		  (b)	� Find the second-order Taylor polynomial approxima-
tion for Asqd at q − 0.

	 93.	��� Express the limit

lim
� l �y3

 
cos � 2 0.5

� 2 �y3

		���  as a derivative and thus evaluate it.

	 94.	��� Find points P and Q on the parabola y − 1 2 x 2 so that the 
triangle ABC formed by the x-axis and the tangent lines at 
P and Q is an equilateral triangle.

x

y

P Q

A

0B C

		���  where k is a positive number called the elimination con- 
stant of the drug.

		  (a)	� If C0 is the concentration at time t − 0, find the con-
centration at time t.

		  (b)	� If the body eliminates half the drug in 30 hours, how 
long does it take to eliminate 90% of the drug?

	 84.	��� A cup of hot chocolate has temperature 80°C in a room 
kept at 20°C. After half an hour the hot chocolate cools to 
60°C.

		  (a)	� What is the temperature of the chocolate after another 
half hour?

		  (b)	� When will the chocolate have cooled to 408C?

	 85.	��� The volume of a cube is increasing at a rate of 10 cm3ymin. 
How fast is the surface area increasing when the length of 
an edge is 30 cm?

	 86.	� Yeast population �� The number of yeast cells in a 
laboratory culture increases rapidly initially but levels off 
eventually. The population is modeled by the function

n − f std −
a

1 1 be20.7t

		��  �where t is measured in hours. At time t − 0 the population 
is 20 cells and is increasing at a rate of 12 cellsyhour. Find 
the values of a and b. According to this model, what hap-
pens to the yeast population in the long run?

	 87.	��� Use Newton’s method to find the root of the equation 
x5 2 x4 1 3x2 2 3x 2 2 − 0 in the interval f1, 2g correct 
to six decimal places.

	 88.	��� Use Newton’s method to find all roots of the equation 
sin x − x 2 2 3x 1 1 correct to six decimal places.

	 89.	�� (a)	� Find the linearization of f sxd − s3 1 1 3x  at a − 0. 
State the corresponding linear approximation and use it 
to give an approximate value for s3 1.03 .

	 ;		  (b)	� Determine the values of x for which the linear approxi-
mation given in part (a) is accurate to within 0.1.

	 90.	�� (a)	� Find the first three Taylor polynomials for 
f sxd − 4sx 2 2d22 centered at 0.

	 ;		  (b)	� Graph f  and the Taylor polynomials from part (a) on 
the interval f21, 1g and comment on how well the 
polynomials approximate f .
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case study 1b  Kill Curves and Antibiotic Effectiveness

We are studying the relationship between the magnitude of antibiotic
treatment and the effectiveness of the treatment. Recall that the extent of
bacterial killing by an antibiotic is determined by both the antibiotic concen-
tration profile and the dose response relationship. Figure 1 shows the antibiotic concen-
tration profile for ciprofloxacin.1 Our first goal here is to choose an appropriate math-
ematical description of this profile.
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In Case Study 1a we modeled the initial increase in concentration as occurring 

instantly. We then need to determine how to model the decay in concentration. From 
Figure 1 it looks as though the rate of decay (that is, the slope of the relationship between 
concentration and time) is smaller for lower concentrations. We also know that the rate 
of decay must be zero when the concentration is zero. Therefore, as a simple model, let’s 
suppose that the rate of decay of concentration is proportional to the current concentra-
tion; that is,

(1)	
dc

dt
− 2kc	

for some positive constant k. Here c is measured in mgymL and t is measured in hours.

	 1.	�� �If the concentration at t − 0 is c0, verify that the concentration function 
cstd − c0e2kt satisfies Equation 1. Suppose that the antibiotic ciprofloxacin has a 
half-life of 4 hours. What is the value of k?

Next we wish to model the bacteria population dynamics. When a bacteria population 
is small, it grows at a rate that is proportional to its size because each bacterium produces 
a constant number of offspring per unit time. A simple model for the growth of the bac-
teria population size P when small is therefore

(2)	
dP

dt
− rP	

where r is a constant called the per capita growth rate (it is the rate of offspring produc-
tion by each individual bacterium). As a result, if the bacteria population starts at size P0, 
its predicted size at time t is Pstd − P0ert.

Figure �1
Antibiotic concentration profile in  

plasma of a healthy human volunteer 
after receiving 500 mg of ciprofloxacin

1.� Adapted from Imre, S. et al., “Validation of an HPLC Method for the Determination of Ciprofloxacin in 
Human Plasma,” Journal of Pharmaceutical and Biomedical Analysis 33 (2003): 125–30.
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As the population grows, resources become depleted. Eventually the bacteria popula-
tion reaches a size at which it no longer changes. For the data in Figure 22 it looks as 
though the maximum population size is around 12 CFUymL. A simple model is there-
fore that the population grows according to Equation 2 if P , 12 and it remains constant 
at P − 12 if the value of P predicted from the model in Equation 2 is ever greater than 
or equal to 12.
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Our final step is to connect the model for bacteria population growth to the model 
for the antibiotic concentration profile. The connection between the two is given by the 
dose response relationship. Recall that in Case Study 1a we modeled the dose response 
relationship with the piecewise defined function

rscd − Hr2 if c , MIC

r1 if c > MIC

where rscd is the per capita growth rate of the bacteria population and MIC is a constant 
referred to as the minimum inhibitory concentration (MIC − 0.013 mgymL in this case). 
The constants r1 and r2 give the per capita growth rate under high and low antibiotic 
concentrations, respectively, with r1 , 0 and r2 . 0 (Figure 3).
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Figure �2
The kill curves of ciprofloxacin for  
E. coli when measured in a growth 

chamber. The concentration of  
ciprofloxacin at t − 0 is indicated 

above each curve (in mgymL).

Figure �3
Dose response relationship modeled  

by the piecewise defined function rscd
Source: Adapted from W. Bär et al., “Rapid  

Method for Detection of Minimal Bactericidal 
Concentration of Antibiotics,” Journal of Micro-
biological Methods 77 (2009): 85–89, Figure 1.

2.� Adapted from A. Firsov et al., “Parameters of Bacterial Killing and Regrowth Kinetics and Antimicrobial 
Effect Examined in Terms of Area Under the Concentration–Time Curve Relationships: Action of Cipro-
floxacin against Escherichia coli in an In Vitro Dynamic Model,” Antimicrobial Agents and Chemotherapy 41 
(1997): 1281–87.
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Suppose the bacteria population starts at t − 0 at a size of 6 CFUymL. Suppose also 
that MIC − 0.013, k − 0.175, r1 − 2 1

20, and r2 − 1
3.

	 2.	�� �Using the form of the solution to Equation 2, show that the bacteria population 
size at time t is given by the function

(3a)	 Pstd − H6e ty3 if t , 2.08

12 if t > 2.08

if c0 , MIC, where MIC − 0.013. On the other hand, if c0 . MIC, show that

(3b)	 Pstd −  
6e2ty20 if t , a

6Aety3 if a < t , b

12 if t > b

	

�where the constants a, b, and A are defined by a − 5.7 lns77c0d, 
b − 6.6 lns77c0d 1 2.08, and A − s77c0d22.2.

Equations 3 are the predicted kill curves explored in Case Study 1a.

	 3.	�� �Using the form of the solution to Equation 2, show that for arbitrary MIC, k, r1, 
and r2 the bacteria population size at time t is given by

(4a)	 Pstd − H6er2 t if t , t2

12 if t > t2

if c0 , MIC, and

(4b)
	

Pstd −
   

6er1t if t , t1

6er1t1er2st2t1d if t1 < t , S1 2
r1

r2
D t1 1 t2

12 if S1 2
r1

r2
D t1 1 t2 < t

	

if c0 > MIC, where t1 −
1

k
 ln S c0

MICD and t2 −
ln 2

r2
.
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Applications of Derivatives

In the blood vascular system, 

blood vessels divide into smaller 

vessels at certain angles and 

these angles affect the resis-

tance of the blood and therefore 

the energy expended by the heart 

in pumping blood. In Example 6 

in Section 4.4 we determine the 

vascular branching angle that 

minimizes this energy.

Kage-Mikrofotografie / Agefotostock
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We have already investigated some of the applications of deriva-

tives, but now that we know the differentiation rules we are in a better posi-

tion to pursue the applications of differentiation in greater depth. Here we 

learn how derivatives affect the shape of a graph of a function and, in particular, how 

they help us locate maximum and minimum values of functions. In addition, we use 

derivatives to provide insight into the long-term behavior of discrete-time models in the 

life sciences.

4.1 Maximum and Minimum Values

Some of the most important applications of differential calculus are optimization prob-
lems, in which we are required to find the optimal (best) way of doing something. Here 
are examples of such problems that we will solve in this chapter:

■ � What is the radius of a contracted windpipe that expels air most rapidly during a 
cough?

■ �	 At what angle should blood vessels branch so as to minimize the energy expended 
by the heart in pumping blood?

These problems can be reduced to finding the maximum or minimum values of a func-
tion. Let’s first explain exactly what we mean by maximum and minimum values.

■ Absolute and Local Extreme Values
We see that the highest point on the graph of the function f  shown in Figure 1 is the 
point s3, 5d. In other words, the largest value of f  is f s3d − 5. Likewise, the smallest 
value is f s6d − 2. We say that f s3d − 5 is the absolute maximum of f  and f s6d − 2 is 
the absolute minimum. In general, we use the following definition.

(1) Definition  Let c be a number in the domain D of a function f . Then  
f scd is the

■  absolute maximum value of f  on D if f scd > f sxd for all x in D.

■  absolute minimum value of f  on D if f scd < f sxd for all x in D.

An absolute maximum or minimum is sometimes called a global maximum or mini-
mum. The maximum and minimum values of f  are called extreme values of f .

Figure 2 shows the graph of a function f  with absolute maximum at d and absolute  
minimum at a. Note that sd, f sddd is the highest point on the graph and sa, f sadd is the 
lowest point. In Figure 2, if we consider only values of x near b [for instance, if we 
restrict our attention to the interval sa, cd], then f sbd is the largest of those values of 
f sxd and is called a local maximum value of f . Likewise, f scd is called a local minimum 
value of f  because f scd < f sxd for x near c [in the interval sb, dd, for instance]. The 
function f  also has a local minimum at e. In general, we have the following definition.

(2) Definition  The number f scd is a

■  local maximum value of f  if f scd > f sxd when x is near c.

■  local minimum value of f  if f scd < f sxd when x is near c.

y

0 x

2

4

2 64

Figure �1

f(a)

f(d)

b x

y

0 d ea c

Figure �2
Abs min f sad, abs max f sdd
loc min f scd, f sed, loc max f sbd, f sdd
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In Definition 2 (and elsewhere), if we say that something is true near c, we mean that  
it is true on some open interval containing c. For instance, in Figure 3 we see that f s4d − 5 
is a local minimum because it’s the smallest value of f  on the interval I. It’s not the abso-
lute minimum because f sxd takes smaller values when x is near 12 (in the interval K,  
for instance). In fact, f s12d − 3 is both a local minimum and the absolute minimum. 
Similarly, f s8d − 7 is a local maximum, but not the absolute maximum because f  takes 
larger values near 1.

 Example 1   |  The function f sxd − cos x takes on its (local and absolute) maxi-
mum value of 1 infinitely many times, since cos 2n� − 1 for any integer n and 
21 < cos x < 1 for all x. Likewise, coss2n 1 1d� − 21 is its minimum value, where 
n is any integer.	 ■

 Example 2   |  If f sxd − x 2, then f sxd > f s0d because x 2 > 0 for all x. Therefore 
f s0d − 0 is the absolute (and local) minimum value of f . This corresponds to the fact 
that the origin is the lowest point on the parabola y − x 2. (See Figure 4.) However, 
there is no highest point on the parabola and so this function has no maximum value.	

■

 Example 3   |  From the graph of the function f sxd − x 3, shown in Figure 5, we see 
that this function has neither an absolute maximum value nor an absolute minimum 
value. In fact, it has no local extreme values either.	

	

x

y

0

y=˛

	 ■

 Example 4   |  BB   Electrocardiogram  Figure 6 shows a rhythm strip from an 
ECG. It is a graph of the electric potential function f std (measured in millivolts) as a 
function of time in a certain direction corresponding to a particular part of the heart. 
The points P, Q, R, S, and T  on the graph are labeled with the notation that is standard 
for cardiologists. We see that the function f  has local maxima at the points P, R, and  
T , with an absolute maximum at R, and local minima at Q and S, with an absolute 
minimum at S.
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Minimum value 0, no maximum

Figure �5
No minimum, no maximum

Cardiologists use the relative locations 
of the extreme points P, Q, R, S, and T 
to diagnose heart problems.

Figure �6
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Each square in the grid corresponds to a horizontal distance of 0.04 seconds and a 
vertical distance of 0.1 mV. So the maximum and minimum values in this particular 
ECG are as follows.

Local maximum values:	� At P, f s0.05d < 0.15 mV; at R, f s0.22d < 1.0 mV;  
at T, f s0.5d < 0.2 mV

Absolute maximum value:	 At R, f s0.22d < 1.0 mV

Local minimum values:	 At Q, f s0.19d < 20.06 mV; at S, f s0.24d < 20.3 mV

Absolute minimum value:	 At S, f s0.24d < 20.3 mV	 ■

We have seen that some functions have extreme values, whereas others do not. The 
following theorem gives conditions under which a function is guaranteed to possess 
extreme values.

(3) The Extreme Value Theorem � If f  is continuous on a closed interval 
fa, bg, then f  attains an absolute maximum value f scd and an absolute minimum 
value f sdd at some numbers c and d in fa, bg.

The Extreme Value Theorem is illustrated in Figure 7. Note that an extreme value can 
be taken on more than once. Although the Extreme Value Theorem is intuitively very 
plausible, it is difficult to prove and so we omit the proof.

x

y

0 ba c d x

y

0 ba c¡ d c™x

y

0 d=ba c

Figures 8 and 9 show that a function need not possess extreme values if either hypoth-
esis (continuity or closed interval) is omitted from the Extreme Value Theorem.

1

x

y

0 2

3

        

1

x

y

0 2

	

Figure �8
This function has a minimum value 
f s2d − 0, but no maximum value.

Figure �9
This continuous function t has no 
maximum or minimum.

The function f  whose graph is shown in Figure 8 is defined on the closed interval 
f0, 2g but has no maximum value. [Notice that the range of f  is [0, 3). The function 
takes on values arbitrarily close to 3, but never actually attains the value 3.] This does 

Figure �7
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not contradict the Extreme Value Theorem because f  is not continuous. [Nonetheless, a 
discontinuous function could have maximum and minimum values. See Exercise 13(c).]

The function t shown in Figure 9 is continuous on the open interval s0, 2d but has nei-
ther a maximum nor a minimum value. [The range of t is s1, `d. The function takes on  
arbitrarily large values.] This does not contradict the Extreme Value Theorem because 
the interval s0, 2d is not closed.

■ Fermat’s Theorem
The Extreme Value Theorem says that a continuous function on a closed interval has a 
maximum value and a minimum value, but it does not tell us how to find these extreme 
values. We start by looking for local extreme values.

Figure 10 shows the graph of a function f  with a local maximum at c and a local  
minimum at d. It appears that at the maximum and minimum points the tangent lines 
are horizontal and therefore each has slope 0. We know that the derivative is the slope of 
the tangent line, so it appears that f 9scd − 0 and f 9sdd − 0. The following theorem says 
that this is always true for differentiable functions.

(4) Fermat’s Theorem � If f  has a local maximum or minimum at c, and if 
f 9scd exists, then f 9scd − 0.

Our intuition suggests that Fermat’s Theorem is true. A rigorous proof, using the 
definition of a derivative, is given in Appendix E.

Although Fermat’s Theorem is very useful, we have to guard against reading too 
much into it. If f sxd − x 3, then f 9sxd − 3x 2, so f 9s0d − 0. But f  has no maximum or 
minimum at 0, as you can see from its graph in Figure 11. The fact that f 9s0d − 0 simply 
means that the curve y − x 3 has a horizontal tangent at s0, 0d. Instead of having a maxi-
mum or minimum at s0, 0d, the curve crosses its horizontal tangent there.

Thus, when f 9scd − 0, f  doesn’t necessarily have a maximum or minimum at c. (In 
other words, the converse of Fermat’s Theorem is false in general.)
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Figure �11
If f sxd − x 3, then f 9s0d − 0 but f   
has no maximum or minimum.

Figure �12
If f sxd − | x |, then f s0d − 0 is a mini-
mum value, but f 9s0d does not exist.

We should bear in mind that there may be an extreme value where f 9scd does not 
exist. For instance, the function f sxd − | x | has its (local and absolute) minimum value 
at 0 (see Figure 12), but that value cannot be found by setting f 9sxd − 0 because, as was 
shown in Example 3.2.6, f 9s0d does not exist.

Fermat’s Theorem does suggest that we should at least start looking for extreme val-
ues of f  at the numbers c where f 9scd − 0 or where f 9scd does not exist. Such numbers 
are given a special name.

0 xc d

y
{c, f (c)}

{d, f (d)}

Figure �10

Fermat
Fermat’s Theorem is named after Pierre 
Fermat (1601–1665), a French lawyer 
who took up mathematics as a hobby. 
Despite his amateur status, Fermat 
was one of the two inventors of analytic 
geometry (Descartes was the other). His 
methods for finding tangents to curves 
and maximum and minimum values 
(before the invention of limits and deriva-
tives) made him a forerunner of Newton 
in the creation of differential calculus.
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(5) Definition � A critical number of a function f  is a number c in the domain 
of f  such that either f 9scd − 0 or f 9scd does not exist.

 Example 5   |  Find the critical numbers of f sxd − x 3y5s4 2 xd.

SOLUTION � The Product Rule gives

 f 9sxd − x 3y5s21d 1 s4 2 xd(3
5 x22y5) − 2x 3y5 1

3s4 2 xd
5x 2 y5

 −
25x 1 3s4 2 xd

5x 2y5 −
12 2 8x

5x 2y5

[The same result could be obtained by first writing f sxd − 4x 3y5 2 x 8y5.] Therefore 
f 9sxd − 0 if 12 2 8x − 0, that is, x − 3

2, and f 9sxd does not exist when x − 0. Thus the 
critical numbers are 32 and 0.	 ■

In terms of critical numbers, Fermat’s Theorem can be rephrased as follows (compare 
Definition 5 with Theorem 4):

(6) � If f  has a local maximum or minimum at c, then c is a critical number of f .

■ The Closed Interval Method
To find an absolute maximum or minimum of a continuous function on a closed interval, 
we note that either it is local [in which case it occurs at a critical number by (6)] or it 
occurs at an endpoint of the interval. Thus the following three-step procedure always 
works.

The Closed Interval Method � To find the absolute maximum and minimum 
values of a continuous function f  on a closed interval fa, bg:

	1.	 Find the values of f  at the critical numbers of f  in sa, bd.
	2.	 Find the values of f  at the endpoints of the interval.

	3.	� The largest of the values from Steps 1 and 2 is the absolute maximum value;  
the smallest of these values is the absolute minimum value.

 Example 6   |  BB   The Allee effect  One of the models for the growth rate of a 
population of size N at time t reflects the fact that some populations decline to extinc-
tion unless they stay above a critical value. A particular case of this model is expressed 
by the growth rate

f sNd − NsN 2 3ds8 2 Nd

where N is measured in hundreds of individuals. [Notice that f sNd is negative when 
0 , N , 3.] Find the absolute maximum and minimum values of the growth rate 
function

f sNd − NsN 2 3ds8 2 Nd    0 < N < 9

Figure 13 shows a graph of the function 
f  in Example 5. It supports our answer 
because there is a horizontal tangent 
when x − 1.5 and a vertical tangent 
when x − 0.

3.5

_2

_0.5 5

Figure �13

The phenomenon whereby a population 
declines to extinction below a critical 
population size is referred to as an Allee 
effect after the American ecologist 
Warder Clyde Allee (1885–1955).
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Solution � Because f  is continuous on the interval f0, 9g, we can use the Closed 
Interval Method:

 f sNd − NsN 2 3ds8 2 Nd − 2N 3 1 11N 2 2 24N

 f 9sNd − 23N 2 1 22N 2 24 − 2s3N 2 4dsN 2 6d

Since f 9sNd exists for all N, the only critical numbers of f  occur when f 9sNd − 0, that 
is, N − 4

3 or N − 6. Notice that each of these critical numbers lies in the interval s0, 9d. 
The values of f  at these critical numbers are

f (4
3) − 2400

27       f s6d − 36

The values of f  at the endpoints of the interval are

f s0d − 0      f s9d − 254

Comparing these four numbers, we see that the absolute maximum value is f s6d − 36 
and the absolute minimum value is f s9d − 254.

So the population increases fastest when N − 6 (the population is 600) and the 
absolute maximum value is f s6d − 36, which means that the maximum rate of 
increase is 3600 individuals per year. The population decreases most rapidly on the 
given interval when N − 9 and the absolute minimum value is f s9d − 254. This 
means that the maximum rate of decrease is 5400 individuals per year.

Note that in this example the absolute minimum occurs at an endpoint, whereas the 
absolute maximum occurs at a critical number. The graph of f  is sketched in Figure 14.

	 ■

 Example 7   |  Blood alcohol concentration  In Section 3.1 we used the 
function

Cstd − 0.0225te20.0467t

to model the average blood alcohol concentration (BAC) of a group of eight male 
subjects after rapid consumption of 15 mL of ethanol (corresponding to one alcoholic 
drink), where t is measured in minutes after consumption and C is measured in  
mgymL. Find the maximum value of the BAC during the first hour.

Solution � We begin by differentiating the concentration function using the Product 
Rule:

 C9std − 0.0225ts20.0467de20.0467t 1 0.0225e20.0467t

 − 0.0225e20.0467ts20.0467t 1 1d

The critical number occurs when C9std − 0, that is,

0.0467t − 1      ?      t −
1

0.0467
< 21.4

The value of C at this critical number is about

Cs21.4d < 0.177

and the values of C at the endpoints of the interval f0, 60g are

Cs0d − 0      Cs60d < 0.0819

0 N3 6 8 9

f(N)
(6, 36)

(9, _54)

20

Growth rate

Figure �14
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EXERCISES 4.1

	 1.	��� Explain the difference between an absolute minimum and a 
local minimum.

	 2.	��� Suppose f  is a continuous function defined on a closed  
interval fa, bg.

		  (a)	� What theorem guarantees the existence of an absolute 
maximum value and an absolute minimum value for f ?

		  (b)	� What steps would you take to find those maximum and 
minimum values?

	� 3–4 � For each of the numbers a, b, c, d, r, and s, state whether 
the function whose graph is shown has an absolute maximum or 
minimum, a local maximum or minimum, or neither a maximum 
nor a minimum.

	 3.	

x

y

0 a b c d r s

	 4.	

x

y

0 a b c d r s

	 5.	�E lectrocardiogram �� A cardiologist looking at the rhythm 
strip shown might suspect right atrial hypertrophy because 
of the relatively tall peaked wave at P (compare with Fig-
ure 6). State the local and absolute maximum and mini-
mum values of the electric potential function f std.

mV

t

P

1

0

S

T

R

1 square=0.04 s � 0.1 mV 

	 6.	�E lectrocardiogram �� A cardiologist looking at this 
rhythm strip might suspect infarction because of the 
elevation of the graph near S and T (compare with Fig- 
ure 6). State the local and absolute maximum and mini-
mum values of the electric potential function f std.

t

P

1

0
S

T

R

1 square=0.04 s � 0.1 mV 

mV

Comparing the values of C at the critical number and at the endpoints, we see that the 
maximum value of the BAC in the first hour was about 0.177 mgymL and this occurred 
about 21 minutes after consumption. (See the graph of C in Figure 15.) Notice that the 
maximum value of 0.177 mgymL was well above the legal driving limit of 
0.08 mgymL and occurred after just one drink.

	

C

t20 40 60

0.1

(mg/mL)

	 ■Figure �15
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	 13.	�� (a)	� Sketch the graph of a function that has a local 
maximum at 2 and is differentiable at 2.

		  (b)	� Sketch the graph of a function that has a local maxi-
mum at 2 and is continuous but not differentiable at 2.

		  (c)	� Sketch the graph of a function that has a local maxi-
mum at 2 and is not continuous at 2.

	 14.	�� (a)	� Sketch the graph of a function on f21, 2g that has an  
absolute maximum but no local maximum.

		  (b)	� Sketch the graph of a function on f21, 2g that has a 
local maximum but no absolute maximum.

	 15.	�� (a)	� Sketch the graph of a function on f21, 2g that has an  
absolute maximum but no absolute minimum.

		  (b)	� Sketch the graph of a function on f21, 2g that is dis-
continuous but has both an absolute maximum and an 
absolute minimum.

	 16.	�� (a)	� Sketch the graph of a function that has two local 
maxima, one local minimum, and no absolute 
minimum.

		  (b)	� Sketch the graph of a function that has three local 
minima, two local maxima, and seven critical numbers.

	� 17–24 � Sketch the graph of f  by hand and use your sketch to  
find the absolute and local maximum and minimum values of  
f. (Use the graphs and transformations of Sections 1.2 and 1.3.)

	 17.	�� f sxd − 1
2s3x 2 1d,    x < 3

	 18.	�� f sxd − 2 2 1
3 x,    x > 22

	 19.	�� f sxd − x 2,    0 , x , 2

	 20.	 f sxd − e x

	 21.	�� f sxd − ln x,    0 , x < 2

	 22.	�� f std − cos t,    23�y2 < t < 3�y2

	 23.	 f sxd − 1 2 sx 

	 24.	 f sxd − H4 2 x 2

2x 2 1

if 22 < x , 0

if 0 < x < 2

	� 25–40 � Find the critical numbers of the function.

	 25.	 f sxd − 4 1 1
3 x 2 1

2x 2	 26.	 f sxd − x 3 1 6x 2 2 15x

	 27.	 f sxd − x 3 1 3x 2 2 24x	 28.	 f sxd − x 3 1 x 2 1 x

	 29.	 sstd − 3t 4 1 4t 3 2 6t 2	 30.	 tstd − | 3t 2 4 |
	 31.	 tsyd −

y 2 1

y 2 2 y 1 1
	 32.	 hspd −

p 2 1

p2 1 4

	 33.	 hstd − t 3y4 2 2 t 1y4	 34.	 tsxd − x 1y3 2 x22y3

	 35.	 Fsxd − x 4y5sx 2 4d2 	 36.	 ts�d − 4� 2 tan �

	 37.	 f s�d − 2 cos � 1 sin2�	 38.	 hstd − 3t 2 arcsin t

	 39.	 f sxd − x 2e23x	 40.	 f sxd − x 22 ln x

	 7.	��� In the influenza pandemic of 1918–1919 about 40 million 
people died worldwide. A study in 2007 assessed the nonphar-
maceutical interventions used in 43 US cities to combat the 
infection, including isolation, quarantines, school closures, 
and public gathering cancellations. The graph shows the 
weekly excess death rate Dstd for New York City. State the 
local and absolute maximum and minimum values of D over 
the given time period and estimate when they occurred.
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Source: H. Markel et al., “Nonpharmaceutical Interventions Implemented by 

US Cities During the 1918–1919 Influenza Pandemic,” J. Amer. Med. Assn. 298 

(2007): 644–54.

	 8.	�I nfluenza pandemic �� The study cited in Exercise 7 also 
included the corresponding graph for Denver shown here.

		  (a)	� State the corresponding local and absolute maximum and 
minimum values for Denver.

		  (b)	� Compare the graphs for New York and Denver. How do 
you think the strategies differed in the two cities?
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	� 9–12 � Sketch the graph of a function f  that is continuous on [1, 5] 
and has the given properties.

	 9.	��� Absolute minimum at 2, absolute maximum at 3,  
local minimum at 4

	 10.	��� Absolute minimum at 1, absolute maximum at 5,  
local maximum at 2, local minimum at 4

	 11.	��� Absolute maximum at 5, absolute minimum at 2,  
local maximum at 3, local minima at 2 and 4

	 12.	�� �f  has no local maximum or minimum, but 2 and 4 are critical 
numbers
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nt11 − f sntd, where the updating function is

f snd −
2n

1 1 0.25n 2

		���  Find the largest value of f  and interpret it. [Hint: Consider 
limnl` f snd.]

	 59.	� Coughing �� When a foreign object lodged in the trachea 
(windpipe) forces a person to cough, the diaphragm thrusts 
upward causing an increase in pressure in the lungs. This is 
accompanied by a contraction of the trachea, making a 
narrower channel for the expelled air to flow through. For a 
given amount of air to escape in a fixed time, it must move 
faster through the narrower channel than the wider one. The 
greater the velocity of the airstream, the greater the force on 
the foreign object. X rays show that the radius of the circular 
tracheal tube contracts to about two-thirds of its normal radius 
during a cough. According to a mathematical model of 
coughing, the velocity v of the airstream is related to the radius 
r of the trachea by the equation

vsrd − ksr0 2 rdr 2        1
2 r0 < r < r0

		���  where k is a constant and r0 is the normal radius of the trachea. 
The restriction on r is due to the fact that the tracheal wall 
stiffens under pressure and a contraction greater than 12 r0 is 
prevented (otherwise the person would suffocate).

		  (a)	� Determine the value of r in the interval f 1
2 r0, r0g at which 

v has an absolute maximum. How does this compare with 
experimental evidence?

		  (b)	� What is the absolute maximum value of v on the interval?
		  (c)	 Sketch the graph of v on the interval f0, r0 g.

	 ;	 60.	��� On May 7, 1992, the space shuttle Endeavour was launched 
on mission STS-49, the purpose of which was to install a new 
perigee kick motor in an Intelsat communications satellite. 
The table gives the velocity data for the shuttle between liftoff 
and the jettisoning of the solid rocket boosters.

Event Time (s) Velocity sftysd

Launch 0 0
Begin roll maneuver 10 185
End roll maneuver 15 319
Throttle to 89% 20 447
Throttle to 67% 32 742
Throttle to 104% 59 1325
Maximum dynamic pressure 62 1445
Solid rocket booster separation 125 4151

		  (a)	� Use a graphing calculator or computer to find the cubic 
polynomial that best models the velocity of the shuttle for 
the time interval t [ f0, 125g. Then graph this polynomial.

		  (b)	� Find a model for the acceleration of the shuttle and use it 
to estimate the maximum and minimum values of the 
acceleration during the first 125 seconds.

	� 41–54 � Find the absolute maximum and absolute minimum  
values of f  on the given interval.

	 41.	�� f sxd − 12 1 4x 2 x 2,    f0, 5g

	 42.	�� f sxd − 5 1 54x 2 2x 3,    f0, 4g

	 43.	�� f sxd − 2x 3 2 3x 2 2 12x 1 1,    f22, 3g

	 44.	�� f sxd − x 3 2 6x 2 1 9x 1 2,    f21, 4g

	 45.	�� f sxd − x 4 2 2x 2 1 3,    f22, 3g

	 46.	�� f sxd − sx2 2 1d3,    f21, 2g

	 47.	�� f std − ts4 2 t 2 ,    f21, 2g

	 48.	�� f sxd −
x 2 2 4

x 2 1 4
,    f24, 4g

	 49.	�� f sxd − xe2x2y8,    f21, 4g

	 50.	�� f sxd − x 2 ln x,    f 1
2 , 2g

	 51.	�� f sxd − lnsx 2 1 x 1 1d, f21, 1g

	 52.	�� f sxd − x 2 2 tan21x,    f0, 4g

	 53.	�� f std − 2cos t 1 sin 2t,    f0, �y2g

	 54.	�� f std − t 1 cot sty2d,    f�y4, 7�y4g

	 55.	��� If a and b are positive numbers, find the maximum value  
of f sxd − x as1 2 xdb, 0 < x < 1.

	 56.	�A ntibiotic pharmacokinetics �� After an antibiotic tablet is 
taken, the concentration of the antibiotic in the bloodstream is 
modeled by the function

Cstd − 8se20.4 t 2 e20.6t d

		���  where the time t is measured in hours and C is measured in  
mgymL. What is the maximum concentration of the antibiotic 
during the first 12 hours?

	 57.	� Disease virulence �� The Kermack-McKendrick model for 
infectious disease transmission (see Exercise 7.6.23) can be 
used to predict the population size P as a function of the 
disease’s virulence (that is, the extent to which the disease 
kills people). The population size P is large when virulence v 
is low and it is also large when virulence is high because the 
disease kills people so fast that very few people get infected. 
For a specific choice of constants, the population size is

Psvd −
10 1 v 1 v 2

1 1 v
    0 < v < 9

		���  Find the smallest and largest population sizes and the 
virulence values for which they occur.

	 58.	��� The Maynard Smith and Slatkin model for population 
growth is a discrete-time model of the form

nt11 −
�nt

1 1 �n k
t

		���  For the constants � − 2, � − 0.25, and k − 2, the model is 
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	 62.	��� A cubic function is a polynomial of degree 3; that is, it has 
the form f sxd − ax 3 1 bx 2 1 cx 1 d, where a ± 0.

		  (a)	� Show that a cubic function can have two, one, or no 
critical number(s). Give examples and sketches to illus-
trate the three possibilities.

		  (b)	� How many local extreme values can a cubic function 
have?

	 61.	��� Between 0°C and 30°C the volume V (in cubic centimeters) 
of 1 kg of water at a temperature T is given approximately 
by the formula

V − 999.87 2 0.06426T 1 0.0085043T 2 2 0.0000679T 3

		��  �Find the temperature at which water has its maximum 
density.

■ Project  The Calculus of Rainbows

Rainbows are created when raindrops scatter sunlight. They have fascinated humankind 
since ancient times and have inspired attempts at scientific explanation since the time of 
Aristotle. In this project we use the ideas of Descartes and Newton to explain the shape, 
location, and colors of rainbows.

	 1.	�� �The figure shows a ray of sunlight entering a spherical raindrop at A. Some of the 
light is reflected, but the line AB shows the path of the part that enters the drop. 
Notice that the light is refracted toward the normal line AO and in fact Snell’s 
Law says that sin � − k sin �, where � is the angle of incidence, � is the angle 
of refraction, and k < 4

3 is the index of refraction for water. At B some of the 
light passes through the drop and is refracted into the air, but the line BC shows 
the part that is reflected. (The angle of incidence equals the angle of reflection.) 
When the ray reaches C, part of it is reflected, but for the time being we are more 
interested in the part that leaves the raindrop at C. (Notice that it is refracted 
away from the normal line.) The angle of deviation Ds�d is the amount of clock-
wise rotation that the ray has undergone during this three-stage process. Thus

Ds�d − s� 2 �d 1 s� 2 2�d 1 s� 2 �d − � 1 2� 2 4�

		��  �Show that the minimum value of the deviation is Ds�d < 138° and occurs when 
� < 59.4°.

		�  �    �The significance of the minimum deviation is that when � < 59.4° we have 
D9s�d < 0, so DDyD� < 0. This means that many rays with � < 59.4° become 
deviated by approximately the same amount. It is the concentration of rays com-
ing from near the direction of minimum deviation that creates the brightness of 
the primary rainbow. The figure at the left shows that the angle of elevation from 
the observer up to the highest point on the rainbow is 180° 2 138° − 42°. (This 
angle is called the rainbow angle.)

	 2.	�� �Problem 1 explains the location of the primary rainbow, but how do we explain 
the colors? Sunlight comprises a range of wavelengths, from the red range 
through orange, yellow, green, blue, indigo, and violet. As Newton discovered in 
his prism experiments of 1666, the index of refraction is different for each color. 
(The effect is called dispersion.) For red light the refractive index is k < 1.3318 
whereas for violet light it is k < 1.3435. By repeating the calculation of Prob-
lem 1 for these values of k, show that the rainbow angle is about 42.3° for the 
red bow and 40.6° for the violet bow. So the rainbow really consists of seven 
individual bows corresponding to the seven colors.
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	 3.	�� �Perhaps you have seen a fainter secondary rainbow above the primary bow. That 
results from the part of a ray that enters a raindrop and is refracted at A, reflected 
twice (at B and C), and refracted as it leaves the drop at D (see the figure at the 
left). This time the deviation angle Ds�d is the total amount of counterclockwise 
rotation that the ray undergoes in this four-stage process. Show that

Ds�d − 2� 2 6� 1 2�

		��  �and Ds�d has a minimum value when

cos � − Î k 2 2 1

8

		�  ��Taking k − 4
3, show that the minimum deviation is about 129° and so the rainbow 

angle for the secondary rainbow is about 51°, as shown in the following figure.

42° 51°

	 4.	�� �Show that the colors in the secondary rainbow appear in the opposite order from 
those in the primary rainbow.
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4.2 How Derivatives Affect the Shape of a Graph

Many of the applications of calculus depend on our ability to deduce facts about a func-
tion f  from information concerning its derivatives. At the end of Section 3.2 we dis-
cussed one instance of this principle by conjecturing that if f  has a positive derivative, 
then it is an increasing function. Here we prove that fact and also see how the second 
derivative of a function influences the shape of its graph.

■ The Mean Value Theorem
We start with a fact, known as the Mean Value Theorem, that will be useful not only for 
present purposes but also for explaining why some of the other basic results of calculus 
are true.

The Mean Value Theorem  If f  is a differentiable function on the interval 
fa, bg, then there exists a number c between a and b such that

(1)	 f 9scd −
 f sbd 2 f sad

b 2 a
	

or, equivalently,

(2)	 f sbd 2 f sad − f 9scdsb 2 ad	

We can see that this theorem is reasonable by interpreting it geometrically. Figures 
1 and 2 show the points Asa, f sadd and Bsb, f sbdd on the graphs of two differentiable 
functions.

0 x

y

a c b

B{b, f(b)}

P{c, f(c)}

A{a, f(a)}

0 x

y

c¡ c™

BP¡

A P™

ba

Figure �1	 Figure �2

The slope of the secant line AB is

	 mAB −
 f sbd 2 f sad

b 2 a
	

which is the same expression as on the right side of Equation 1. Since f 9scd is the slope 
of the tangent line at the point sc, f scdd, the Mean Value Theorem, in the form given by 

Lagrange and the  
Mean Value Theorem
The Mean Value Theorem was first 
formulated by Joseph-Louis Lagrange 
(1736–1813), born in Italy of a French 
father and an Italian mother. He was a 
child prodigy and became a professor in 
Turin at the tender age of 19. Lagrange 
made great contributions to number 
theory, theory of functions, theory of 
equations, and analytical and celestial 
mechanics. In particular, he applied  
calculus to the analysis of the stability 
of the solar system. At the invitation 
of Frederick the Great, he succeeded 
Euler at the Berlin Academy and, when 
Frederick died, Lagrange accepted King 
Louis XVI’s invitation to Paris, where 
he was given apartments in the Louvre 
and became a professor at the Ecole 
Polytechnique. Despite all the trappings 
of luxury and fame, he was a kind and 
quiet man, living only for science.
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Equation 1, says that there is at least one point Psc, f scdd on the graph where the slope of 
the tangent line is the same as the slope of the secant line AB. In other words, there is a  
point P where the tangent line is parallel to the secant line AB. It seems clear that there is 
one such point P in Figure 1 and two such points P1 and P2 in Figure 2. (Imagine a line 
parallel to AB, starting far away and moving parallel to itself until it touches the graph 
for the first time.)

Because our intuition tells us that the Mean Value Theorem is true, we take it as 
the starting point for the development of the main facts of calculus. (When calculus is 
developed from first principles, however, the Mean Value Theorem is proved as a conse-
quence of the axioms that define the real number system.)

 Example 1   |  If an object moves in a straight line with position function s − f std, 
then the average velocity between t − a and t − b is

 f sbd 2 f sad
b 2 a

and the velocity at t − c is f 9scd. Thus the Mean Value Theorem (in the form of 
Equation 1) tells us that at some time t − c between a and b the instantaneous velocity 
f 9scd is equal to that average velocity. For instance, if a car traveled 180 km in 2 hours, 
then the speedometer must have read 90 kmyh at least once.	 ■

 Example 2   |  BB  � Compensatory growth  Experiments have been conducted 
in which individuals are deprived of food for a period of time during development and 
then placed back on a normal diet (see Figure 3). These experimental subjects display a 
period of reduced growth during the food deprivation, followed by a period of compen-
satory growth in which they catch up in size to individuals on a normal diet.
(a)	 Prove that there is always a time when an individual on a normal diet is growing at 
a rate equal to its average growth rate over the development period.
(b)	 Prove that there is always a time when an individual on a food-deprived diet is 
growing at a rate equal to its average growth rate over the development period.
(c)	 Given an example of each type of individual, show that there is a time after the 
point t1 when food deprivation starts when the growth rate is nevertheless the same for 
both of them.

W

t (time)

Normal
diet Food-deprived 

diet
Start of developmentt=a

Food deprivation startst=t¡

Normal diet restored      t=t™

End of development       t=b

(weight)

a bt¡ t™

Solution

(a)	 Let Wstd be the weight of a specific individual on a normal diet at time t. Then W  
is a continuous function and is even differentiable. Let t − a and t − b be times at the 
beginning and end of the development period. By the Mean Value Theorem, there is a 

Figure �3
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number c such that

W9scd −
Wsbd 2 Wsad

b 2 a

This equation says that at time t − c the instantaneous rate of growth is equal to the 
average rate of growth.

(b)	 Exactly the same argument as in part (a) applies here. Because of the shape of the 
graph in this case, the time c will probably be different from the time in part (a).

(c)	 Let W1 and W2 be the weight functions for the normal and food-deprived indi- 
viduals. Then the difference function Dstd − W1std 2 W2std is differentiable and 
Dst1d − W1st1d 2 W2st1d − 0 because the two individuals start with the same weight. 
Similarly, Dsbd − 0. By the Mean Value Theorem there is a time c such that

D9scd −
Dsbd 2 Dst1d

b 2 t1
−

0 2 0

b 2 t1
− 0

But D9scd − W91scd 2 W92scd and so W91scd − W92scd. So at time t − c the two individu-
als were growing at the same rate.	 ■

The main significance of the Mean Value Theorem is that it enables us to obtain infor-
mation about a function from information about its derivative. Our immediate use of  
this principle is to prove the basic facts concerning increasing and decreasing functions.

■ Increasing and Decreasing Functions
In Section 1.1 we defined increasing functions and decreasing functions and in Sec-
tion 3.2 we observed from graphs that a function with a positive derivative is increasing. 
We now deduce this fact from the Mean Value Theorem.

Increasing/Decreasing Test �

(a)  If f 9sxd . 0 on an interval, then f  is increasing on that interval.

(b)  If f 9sxd , 0 on an interval, then f  is decreasing on that interval.

proof

��(a)  Let x1 and x2 be any two numbers in the interval with x1 , x2. According to the 
definition of an increasing function (page 12), we have to show that f sx1d , f sx2 d.

Because we are given that f 9sxd . 0, we know that f  is differentiable on fx1, x2 g. 
So, by the Mean Value Theorem, there is a number c between x1 and x2 such that

(3)	 f sx2 d 2 f sx1d − f 9scdsx2 2 x1d	

�Now f 9scd . 0 by assumption and x2 2 x1 . 0 because x1 , x2. Thus the right side of 
Equation 3 is positive, and so

f sx2 d 2 f sx1d . 0        or        f sx1d , f sx2 d

�This shows that f  is increasing.
Part (b) is proved similarly.	 ■

Let’s abbreviate the name of this test to  
the I/D Test.
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 Example 3   |  Find where the function f sxd − 3x 4 2 4x 3 2 12x 2 1 5 is increasing 
and where it is decreasing.

SOLUTION � First we calculate the derivative of f :

f 9sxd − 12x 3 2 12x 2 2 24x − 12xsx 2 2dsx 1 1d

To use the I/D Test we have to know where f 9sxd . 0 and where f 9sxd , 0. This 
depends on the signs of the three factors of f 9sxd, namely, 12x, x 2 2, and x 1 1. We 
divide the real line into intervals whose endpoints are the critical numbers 21, 0, and 2 
and arrange our work in a chart. A plus sign indicates that the given expression is 
positive, and a minus sign indicates that it is negative. The last column of the chart 
gives the conclusion based on the I/D Test. For instance, f 9sxd , 0 for 0 , x , 2, so f  
is decreasing on (0, 2). (It would also be true to say that f  is decreasing on the closed 
interval f0, 2g.)

Interval 12x x 2 2 x 1 1 f 9sxd f

	 x , 21 2 2 2 2 decreasing on s2`, 21d
	 21 , x , 0 2 2 1 1 increasing on s21, 0d
	 0 , x , 2 1 2 1 2 decreasing on s0, 2d
	 x . 2 1 1 1 1 increasing on s2, `d

The graph of f  shown in Figure 4 confirms the information in the chart.	 ■

Recall from Section 4.1 that if f  has a local maximum or minimum at c, then c must 
be a critical number of f  (by Fermat’s Theorem), but not every critical number gives rise 
to a maximum or a minimum. We therefore need a test that will tell us whether or not f  
has a local maximum or minimum at a critical number.

You can see from Figure 4 that f s0d − 5 is a local maximum value of f  because f   
increases on s21, 0d and decreases on s0, 2d. Or, in terms of derivatives, f 9sxd . 0 for 
21 , x , 0 and f 9sxd , 0 for 0 , x , 2. In other words, the sign of f 9sxd changes 
from positive to negative at 0. This observation is the basis of the following test.

The First Derivative Test � Suppose that c is a critical number of a continuous  
function f .

(a) � If f 9 changes from positive to negative at c, then f  has a local maximum at c.

(b) � If f 9 changes from negative to positive at c, then f  has a local minimum at c.

(c) � If f 9 does not change sign at c (for example, if f 9 is positive on both sides of c 
or negative on both sides), then f  has no local maximum or minimum at c.

The First Derivative Test is a consequence of the I/D Test. In part (a), for instance, 
since the sign of f 9sxd changes from positive to negative at c, f  is increasing to the left of 
c and decreasing to the right of c. It follows that f  has a local maximum at c.

It is easy to remember the First Derivative Test by visualizing diagrams such as those 
in Figure 5.
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(d) No maximum or minimum(c) No maximum or minimum

c0 x

y

fª(x)>0
fª(x)>0
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y

fª(x)<0 fª(x)>0

(b) Local minimum

 Example 4   |  Find the local minimum and maximum values of the function f  in  
Example 3.

SOLUTION � From the chart in the solution to Example 3 we see that f 9sxd changes 
from negative to positive at 21, so f s21d − 0 is a local minimum value by the First 
Derivative Test. Similarly, f 9 changes from negative to positive at 2, so f s2d − 227 is 
also a local minimum value. As previously noted, f s0d − 5 is a local maximum value 
because f 9sxd changes from positive to negative at 0.	 ■

■ Concavity
Let’s see how the sign of f 0sxd affects the appearance of the graph of f . Since f 0 − s f 9d9,  
we know that if f 0sxd is positive, then f 9 is an increasing function. This says that the 
slopes of the tangent lines of the curve y − f sxd increase from left to right. Figure 6 
shows the graph of such a function. The slope of this curve becomes progressively larger 
as x increases and we observe that, as a consequence, the curve bends upward. [It can 
be proved that this is equivalent to saying that the graph of f  lies above all of its tangent 
lines.] Such a curve is called concave upward. In Figure 7, however, f 0sxd is negative, 
which means that f 9 is decreasing. Thus the slopes of f  decrease from left to right and 
the curve bends downward. This curve is called concave downward. We summarize our 
discussion as follows.

y=ƒ y=ƒ

x

y

0 x

y

0

Figure �6
Since f 0sxd . 0, the slopes increase 
and f  is concave upward.

Figure �7
Since f 0sxd , 0, the slopes decrease 
and f  is concave downward.

Concavity Test �

(a)  If f 0sxd . 0 for all x in I, then the graph of f  is concave upward on I.

(b)  If f 0sxd , 0 for all x in I, then the graph of f  is concave downward on I.

Figure �5
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 Example 5   |  BB  � Species–area relationship  In Example 1.5.14 we 
explored the notion of species–area relationships by plotting the number of species S of 
bats against the areas A of their caves in central Mexico. We found that a log-log plot 
(log S as a function of log A) was approximately linear and so a power model (for S as 
a function of A) was appropriate. We also found that a log-log plot was linear for the 
number of tree species in a given area of a rain forest in Malaysia (see Exercise 1.5.67). 
In both cases this means that, on a log scale, the rate of increase in number of species 
with an increase in area is the same no matter what the area is.

A recent study, however, has demonstrated that log-log plots are no longer linear 
when we consider areas that are substantially larger.1 Figure 8 (from that study) shows 
a plot of log S versus log A for amphibians in Africa. You can see that log S is not a 
linear function of log A because its graph is concave upward. This means that, on a log 
scale, the rate of increase in the number of amphibian species with an increase in area 
is larger for big areas than for small ones. Put another way, the species–area relation-
ship “accelerates” as the area increases.	 ■

 Example 6   |  BB  � Risk aversion in junco foraging2  Different junco 
habitats yield different amounts of seeds, and individuals can choose which habitat to 
feed in. The amount of energy reward E obtained from feeding in different habitats 
increases with the seed abundance s in the habitat but it does so at a decelerating rate 
(see Figure 9).
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Suppose a bird can choose to feed exclusively in a habitat with s − 3 seeds per unit 
area or it can divide its time equally between two habitats with 1 and 5 seeds per unit 
area, respectively. For both choices the bird experiences an average of 3 seeds per unit 
area. Which choice provides the greatest energy reward?

Solution � The function Essd graphed in Figure 9 gives the energy reward as a 
function of seed density. Because the graph of E is concave downward, it lies below its 
tangent lines and above its secant lines. If we draw the secant line from s1, Es1dd to 
s5, Es5dd, it will lie below the curve. The height of the secant line when s − 3 is the 
average of the heights when s − 1 and s − 5. Therefore
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1.� D. Storch et al., “Universal Species–Area and Endemics–Area Relationships at Continental Scales,” 
Nature 488 (2012): 78–83.
2.� T. Caraco et al., “An Empirical Demonstration of Risk-Sensitive Foraging Preferences,” Animal Behavior 
28 (1980): 820–30.
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This means that the junco gets more energy reward in a habitat with 3 seeds per unit 
area than it does by splitting its time between habitats with 1 and 5 seeds per unit area.
	 ■

Figure 10 shows the graph of a function that is concave upward (abbreviated CU) on 
the intervals sb, cd, sd, ed, and se, pd and concave downward (CD) on the intervals sa, bd, 
sc, dd, and sp, qd.

a b c d e p q

B
C

D
P

x

y

0

CD CU CD CU CDCU

Notice in Figure 10 that the curve changes its direction of concavity when x − b, c,  
d, and p. The corresponding points on the curve (B, C, D, and P) are called inflection 
points. In general, a point P on a curve y − f sxd is called an inflection point if f  is con-
tinuous there and the curve changes from concave upward to concave downward or from 
concave downward to concave upward at P.

In view of the Concavity Test, there is a point of inflection at any point where the 
second derivative changes sign.

 Example 7   |  Sketch a possible graph of a function f  that satisfies the following  
conditions:

	  sid f 9sxd . 0 on s2`, 1d, f 9sxd , 0 on s1, `d

	  siid f 0sxd . 0 on s2`, 22d and s2, `d, f 0sxd , 0 on s22, 2d

	  siiid lim
x l

 

2`
 f sxd − 22,  lim

x l
 

`
 f sxd − 0

SOLUTION � Condition (i) tells us that f  is increasing on s2`, 1d and decreasing on 
s1, `d. Condition (ii) says that f  is concave upward on s2`, 22d and s2, `d, and 
concave downward on s22, 2d. From condition (iii) we know that the graph of f  has 
two horizontal asymptotes: y − 22 and y − 0.

We first draw the horizontal asymptote y − 22 as a dashed line (see Figure 11). We 
then draw the graph of f  approaching this asymptote at the far left, increasing to its 
maximum point at x − 1 and decreasing toward the x-axis as at the far right. We also 
make sure that the graph has inflection points when x − 22 and 2. Notice that we 
made the curve bend upward for x , 22 and x . 2, and bend downward when x is 
between 22 and 2.	 ■

A consequence of the Concavity Test is the following test for maximum and mini-
mum values.

The Second Derivative Test � Suppose f 0 is continuous near c.

(a)  If f 9scd − 0 and f 0scd . 0, then f  has a local minimum at c.

(b)  If f 9scd − 0 and f 0scd , 0, then f  has a local maximum at c.

Figure �10
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Figure �11

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



268    Chapter 4  |  Applications of Derivatives

For instance, part (a) is true because f 0sxd . 0 near c and so f  is concave upward  
near c. This means that the graph of f  lies above its horizontal tangent at c and so f  has  
a local minimum at c. (See Figure 12.)

 Example 8   |  Discuss the curve y − x 4 2 4x 3 with respect to concavity, points of  
inflection, and local maxima and minima. Use this information to sketch the curve.

SOLUTION � If f sxd − x 4 2 4x 3, then

 f 9sxd − 4x 3 2 12x 2 − 4x 2sx 2 3d

 f 0sxd − 12x 2 2 24x − 12xsx 2 2d

To find the critical numbers we set f 9sxd − 0 and obtain x − 0 and x − 3. To use the 
Second Derivative Test we evaluate f 0 at these critical numbers:

f 0s0d − 0            f 0s3d − 36 . 0

Since f 9s3d − 0 and f 0s3d . 0, f s3d − 227 is a local minimum. Since f 0s0d − 0, the 
Second Derivative Test gives no information about the critical number 0. But since 
f 9sxd , 0 for x , 0 and also for 0 , x , 3, the First Derivative Test tells us that f  
does not have a local maximum or minimum at 0.

Since f 0sxd − 0 when x − 0 or 2, we divide the real line into intervals with these 
numbers as endpoints and complete the following chart.

Interval f 0sxd − 12xsx 2 2d Concavity

s2`, 0d 1 	 upward
	 s0, 2d 2 downward
	 s2, `d 1 	 upward

The point s0, 0d is an inflection point since the curve changes from concave upward to 
concave downward there. Also s2, 216d is an inflection point since the curve changes 
from concave downward to concave upward there.

Using the local minimum, the intervals of concavity, and the inflection points, we 
sketch the curve in Figure 13.	 ■

Note  The Second Derivative Test is inconclusive when f 0scd − 0. In other words, 
at such a point there might be a maximum, there might be a minimum, or there might be 
neither (as in Example 8). This test also fails when f 0scd does not exist. In such cases the 
First Derivative Test must be used. In fact, even when both tests apply, the First Deriva-
tive Test is often the easier one to use.

 Example 9   |  Sketch the graph of the function f sxd − x 2y3s6 2 xd1y3.

SOLUTION � Calculation of the first two derivatives gives 

f 9sxd −
4 2 x

x 1y3s6 2 xd2y3             f 0sxd −
28

x 4y3s6 2 xd5y3

Since f 9sxd − 0 when x − 4 and f 9sxd does not exist when x − 0 or x − 6, the critical 
numbers are 0, 4, and 6.

f ª(c)=0
f(c)

ƒ

c

P

x x

y

0

f

Figure �12
f 0sxd . 0, f  is concave upward
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inflection
points

(0, 0)

Figure �13

Use the differentiation rules to check  
these calculations.
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Interval 4 2 x x 1y3 s6 2 xd2y3 f 9sxd f

	 x , 0 1 2 1 2 decreasing on s2`, 0d
	 0 , x , 4 1 1 1 1 increasing on s0, 4d
	 4 , x , 6 2 1 1 2 decreasing on s4, 6d
	 x . 6 2 1 1 2 decreasing on s6, `d

To find the local extreme values we use the First Derivative Test. Because f 9 
changes from negative to positive at 0, f s0d − 0 is a local minimum. Since f 9 changes 
from positive to negative at 4, f s4d − 25y3 is a local maximum. The sign of f 9 does not 
change at 6, so there is no minimum or maximum there. (The Second Derivative Test 
could be used at 4 but not at 0 or 6 because f 0 does not exist at either of these  
numbers.)

Looking at the expression for f 0sxd and noting that x 4y3 > 0 for all x, we have 
f 0sxd , 0 for x , 0 and for 0 , x , 6 and f 0sxd . 0 for x . 6. So f  is concave 
downward on s2`, 0d and s0, 6d and concave upward on s6, `d, and the only inflection 
point is s6, 0d. The graph is sketched in Figure 14. Note that the curve has vertical 
tangents at s0, 0d and s6, 0d because | f 9sxd | l ` as x l 0 and as x l 6.	 ■

 Example 10   |  Bee population  A population of honeybees raised in an apiary 
started with 50 bees at time t − 0 and was modeled by the function

Pstd −
75,200

1 1 1503e20.5932 t

where t is the time in weeks, 0 < t < 25. Use a graph to estimate the time at which the 
bee population was growing fastest. Then use derivatives to give a more accurate 
estimate.

Solution � The population grows fastest when the population curve y − Pstd has the 
steepest tangent line. From the graph of P in Figure 15, we estimate that the steepest 
tangent occurs when t < 12, so the bee population was growing most rapidly after 
about 12 weeks.

For a better estimate we calculate the derivative P9std, which is the rate of increase 
of the bee population:

P9std −
67,046,785.92e20.5932 t

s1 1 1503e20.5932 td2

We graph P9 in Figure 16 and observe that P9 has its maximum value when t < 12.3.
To get a still better estimate we note that f 9 has its maximum value when f 9 

changes from increasing to decreasing. This happens when f  changes from concave 
upward to concave downward, that is, when f  has an inflection point. So we ask a CAS 
to compute the second derivative:

P0std <
119,555,093,144e21.1864 t

s1 1 1503e20.5932 td3 2
39,772,153e20.5932 t

s1 1 1503e20.5932 td2

We could plot this function to see where it changes from positive to negative, but 
instead let’s have the CAS solve the equation P0std − 0. It gives the answer 
t < 12.3318.	 ■

Try reproducing the graph in Figure 14 
with a graphing calculator or computer. 
Some machines produce the complete 
graph, some produce only the portion 
to the right of the y-axis, and some pro-
duce only the portion between x − 0 
and x − 6. An equivalent expression 
that gives the correct graph is

y − sx 2 d1y3 ?
6 2 x

| 6 2 x | | 6 2 x |1y3

y

x0

2
3

4

1 2 3 4 5 7

(4, 2%?# )

y=x @ ?#(6-x)! ?#
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■ Graphing with Technology
When we use technology to graph a curve, our strategy is different from the one we’ve 
been using until now. Here we start with a graph produced by a graphing calculator 
or computer and then we refine it. We use calculus to make sure that we reveal all the 
important aspects of the curve. And with the use of graphing devices we can tackle 
curves that would be far too complicated to consider without technology.

 Example 11   |  Graph the polynomial f sxd − 2x 6 1 3x 5 1 3x 3 2 2x 2. Use the 
graphs of f 9 and f 0 to estimate all maximum and minimum points and intervals of 
concavity.

SOLUTION � If we specify a domain but not a range, many graphing devices will 
deduce a suitable range from the values computed. Figure 17 shows the plot from one 
such device if we specify that 25 < x < 5. Although this viewing rectangle is useful 
for showing that the asymptotic behavior (or end behavior) is the same as for y − 2x 6, 
it is obviously hiding some finer detail. So we change to the viewing rectangle f23, 2g 
by f250, 100g shown in Figure 18.

From this graph it appears that there is an absolute minimum value of about 215.33 
when x < 21.62 (by using the cursor) and f  is decreasing on s2`, 21.62d and 
increasing on s21.62, `d. Also there appears to be a horizontal tangent at the origin 
and inflection points when x − 0 and when x is somewhere between 22 and 21.

Now let’s try to confirm these impressions using calculus. We differentiate and get 

 f 9sxd − 12x 5 1 15x 4 1 9x 2 2 4x

 f 0sxd − 60x 4 1 60x 3 1 18x 2 4

When we graph f 9 in Figure 19 we see that f 9sxd changes from negative to positive 
when x < 21.62; this confirms (by the First Derivative Test) the minimum value that 
we found earlier. But, perhaps to our surprise, we also notice that f 9sxd changes from 
positive to negative when x − 0 and from negative to positive when x < 0.35. This 
means that f  has a local maximum at 0 and a local minimum when x < 0.35, but these 
were hidden in Figure 18. Indeed, if we now zoom in toward the origin in Figure 20, 
we see what we missed before: a local maximum value of 0 when x − 0 and a local 
minimum value of about 20.1 when x < 0.35.
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What about concavity and inflection points? From Figures 18 and 20 there appear to  
be inflection points when x is a little to the left of 21 and when x is a little to the right 
of 0. But it’s difficult to determine inflection points from the graph of f , so we graph 

41,000

_1000
_5 5

y=ƒ

Figure �17

100

_50

_3 2

y=ƒ

Figure �18

270    Chapter 4  |  Applications of Derivatives

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 4.2  |  How Derivatives Affect the Shape of a Graph    271

the second derivative f 0 in Figure 21. We see that f 0 changes from positive to negative 
when x < 21.23 and from negative to positive when x < 0.19. So, correct to two 
decimal places, f  is concave upward on s2`, 21.23d and s0.19, `d and concave 
downward on s21.23, 0.19d. The inflection points are s21.23, 210.18d and 
s0.19, 20.05d.

10

_30

_3 2

y=f·(x)

We have discovered that no single graph reveals all the important features of this 
polynomial. But Figures 18 and 20, when taken together, do provide an accurate 
picture.	 ■

Figure �21

	 1.	��� Use the graph of f  to estimate the values of c that satisfy the 
conclusion of the Mean Value Theorem for the interval f0, 8g.

y

y =ƒ

1

x0 1

	 2.	� Foraging �� Many animals forage on resources that are 
distributed in discrete patches. For example, bumblebees  
visit many flowers, foraging on nectar from each. The 
amount of nectar Nstd consumed from any flower increases 
with the amount of time spent at that flower, but with 
diminishing returns, as illustrated.

0

N   (mg)

t5 10

0.1

(seconds)

		  (a)	� What does this mean about the first and second deriva-
tives of N?

		  (b)	� What is the average rate at which nectar is consumed 
over the first 10 seconds?

		  (c)	� The Mean Value Theorem tells us that there exists a time 
at which the instantaneous rate of nectar consumption is 
equal to the average found in part (b). Illustrate this idea 
graphically and estimate the time at which this occurs.

	 3.	��� Suppose that 3 < f 9sxd < 5 for all values of x. Show that 
18 < f s8d 2 f s2d < 30.

	� 4–5 � Use the given graph of f  to find the following.
	 (a)	 The open intervals on which f  is increasing.
	 (b)	 The open intervals on which f  is decreasing.
	 (c)	 The open intervals on which f  is concave upward.
	 (d)	 The open intervals on which f  is concave downward.
	 (e)	 The coordinates of the points of inflection.

	 4.	 y

0 x

1

1

	 5.	 y

0 x

1

1

	 6.	��� Suppose you are given a formula for a function f .
		  (a)	� How do you determine where f  is increasing or  

decreasing?
		  (b)	� How do you determine where the graph of f  is concave 

upward or concave downward?
		  (c)	 How do you locate inflection points?

EXERCISES 4.2
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	� 11–20 �
	 (a)	 Find the intervals on which f  is increasing or decreasing.
	 (b)	 Find the local maximum and minimum values of f .
	 (c)	 Find the intervals of concavity and the inflection points.

	 11.	� f sxd − 2x 3 1 3x 2 2 36x

	 12.	� f sxd − 4x 3 1 3x 2 2 6x 1 1

	 13.	 f sxd − x4 2 2x2 1 3

	 14.	 f sxd −
x 2

x 2 1 3

	 15.	 f sxd − sin x 1 cos x,    0 < x < 2�

	 16.	�� f sxd − cos2x 2 2 sin x,    0 < x < 2�

	 17.	 f sxd − e2x 1 e2x	 18.	 f sxd − x 2 ln x

	 19.	 f sxd − sln xdysx 	 20.	 f sxd − sx e2x

	� 21–22 � Find the local maximum and minimum values of f  using 
both the First and Second Derivative Tests. Which method do you 
prefer?

	 21.	 f sxd − x 1 s1 2 x 	 22.	 f sxd −
x

x 2 1 4

	 23.	��� Suppose f 0 is continuous on s2`, `d.
		  (a)	� If f 9s2d − 0 and f 0s2d − 25, what can you say about f ?
		  (b)	� If f 9s6d − 0 and f 0s6d − 0, what can you say about f ?

	 24.	�� (a)	 Find the critical numbers of f sxd − x 4sx 2 1d3.
		  (b)	� What does the Second Derivative Test tell you about the 

behavior of f  at these critical numbers?
		  (c)	 What does the First Derivative Test tell you?

	� 25–36 �
	 (a)	 Find the intervals of increase or decrease.
	 (b)	 Find the local maximum and minimum values.
	 (c)	 Find the intervals of concavity and the inflection points.
	 (d)	� Use the information from parts (a)–(c) to sketch the graph. 

Check your work with a graphing device if you have one.

	 25.	 f sxd − 2x 3 2 3x 2 2 12x	 26.	 f sxd − 2 1 3x 2 x 3

	 27.	 f sxd − 2 1 2x 2 2 x 4	 28.	 tsxd − 200 1 8x 3 1 x 4

	 29.	 hsxd − sx 1 1d5 2 5x 2 2	 30.	 hsxd − x 5 2 2x 3 1 x

	 31.	 Asxd − xsx 1 3 	 32.	 Bsxd − 3x 2y3 2 x

	 33.	� Csxd − x1y3sx 1 4d	 34.	 f sxd − lnsx 4 1 27d

	 35.	�� �f s�d − 2 cos � 1 cos2�,    0 < � < 2�

	 36.	 f std − t 1 cos t,    22� < t < 2�

	 7.	�� (a)	 State the First Derivative Test.
		  (b)	� State the Second Derivative Test. Under what circum­

stances is it inconclusive? What do you do if it fails?

	 8.	��� The graph of the first derivative f 9 of a function f  is shown.
		  (a)	 On what intervals is f  increasing? Explain.
		  (b)	� At what values of x does f  have a local maximum or  

minimum? Explain.
		  (c)	� On what intervals is f  concave upward or concave down­

ward? Explain.
		  (d)	� What are the x-coordinates of the inflection points of f ? 

Why?
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0 x5 71 9
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	 9.	��� �In each part state the x-coordinates of the inflection points  
of f . Give reasons for your answers.

		  (a)	 The curve is the graph of f .
		  (b)	 The curve is the graph of f 9.
		  (c)	 The curve is the graph of f 0.

2

y

0 x4 6 8

	 10.	�HI V prevalence �� The table gives the number of HIV-infected 
men in San Francisco from 1982 to 1991.

Year
Number of  
infections Year

Number of  
infections

1982 	 80 1987 3500
1983 	 300 1988 4500
1984 	 700 1989 6000
1985 	 1500 1990 7200
1986 2500 1991 9000

		  (a)	� If Hstd is the number of infected men at time t, plot the 
values of Hstd. What does the direction of concavity 
appear to be? Provide a biological interpretation.

		  (b)	� Use the table to construct a table of estimated values  
for H9std.

		  (c)	� Use the table of values of H9std in part (b) to construct a 
table of values for H 0std. Do the values corroborate your 
answer to part (a)?
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	 50.	�A ntibiotic pharmacokinetics �� Suppose that antibiotics 
are injected into a patient to treat a sinus infection. The 
antibiotics circulate in the blood, slowly diffusing into the 
sinus cavity while simultaneously being filtered out of the 
blood by the liver. In Chapter 10 we will derive a model for 
the concentration of the antibiotic in the sinus cavity as a 
function of time since the injection:

cstd −
e2�t 2 e2�t

� 2 �
    where � . � . 0

		  (a)	� At what time does c have its maximum value?
		  (b)	� At what time does the inflection point occur? What is 

the significance of the inflection point for the concen­
tration function?

		  (c)	 Sketch the graph of c.

	 51.	��� A drug-loading curve describes the level of medication  
in the bloodstream after a drug is administered. A surge 
function Sstd − At pe2kt is often used to model the loading  
curve, reflecting an initial surge in the drug level and then a 
more gradual decline.  If, for a particular drug, A − 0.01, 
p − 4, k − 0.07, and t is measured in minutes, estimate the 
times corresponding to the inflection points and explain 
their significance.  If you have a graphing device, use it to 
graph the drug response curve.

	 52.	� Mutation accumulation �� When a population is subjected 
to a mutagen, the fraction of the population that contains  
at least one mutation increases with the duration of the 
exposure. A commonly used equation describing this 
fraction is f std − 1 2 e2� t, where � is the mutation rate 
and is positive. Suppose we have two populations, A and B. 
Population A is subjected to the mutagen for 3 min 
whereas, with population B, half of the individuals are 
subjected to the mutagen for 2 min and the other half for 
4 min. Which population will have the largest fraction of 
mutants? Explain your answer using derivatives.

	 53.	��� A dose response curve in pharmacology is a plot of  
the effectiveness R of a drug as a function of the drug 
concentration c. Such curves typically increase with an 
S-shape, a simple mathematical model being

Rscd −
c 2

3 1 c 2

		  (a)	� At what drug concentration does the inflection point 
occur?

		  (b)	� Suppose we have two different treatment protocols, 
one where the concentration is held steady at 2 and 
another in which the concentration varies through time, 
spending equal amounts of time at 1.5 and 2.5. Which 
protocol would have the greater response?

	 54.	��� The family of bell-shaped curves

	 y −
1

�s2� 
 e2sx2�d2ys2�2d

	� 37–44 �
	 (a)	 Find the vertical and horizontal asymptotes.
	 (b)	 Find the intervals of increase or decrease.
	 (c)	 Find the local maximum and minimum values.
	 (d)	 Find the intervals of concavity and the inflection points.
	 (e)	� Use the information from parts (a)–(d) to sketch the graph  

of f.

	 37.	 f sxd −
x 2

x 2 2 1
	 38.	 f sxd −

x 2

sx 2 2d2

	 39.	 f sxd − sx 2 1 1 2 x

	 40.	 f sxd − x tan x,    2�y2 , x , �y2

	 41.	 f sxd − lns1 2 ln xd	 42.	 f sxd −
e x

1 1 e x

	 43.	 f sxd − e21ysx11d	 44.	 f sxd − earctan x

	 45.	�� �Suppose the derivative of a function f  is 
f 9sxd − sx 1 1d2sx 2 3d5sx 2 6d4. On what interval is f  
increasing?

	 46.	�� �Use the methods of this section to sketch the curve 
y − x 3 2 3a 2x 1 2a 3, where a is a positive constant. What do 
the members of this family of curves have in common? How 
do they differ from each other?

	 47.	��� Let f std be the temperature at time t where you live and 
suppose that at time t − 3 you feel uncomfortably hot. How 
do you feel about the given data in each case?

		  (a)	 f 9s3d − 2,    f 0s3d − 4
		  (b)	 f 9s3d − 2,    f 0s3d − 24
		  (c)	 f 9s3d − 22,    f 0s3d − 4
		  (d)	 f 9s3d − 22,    f 0s3d − 24

	 48.	��� �Suppose f s3d − 2,  f 9s3d − 1
2, and f 9sxd . 0 and f 0sxd , 0 

for all x.
		  (a)	 Sketch a possible graph for f .
		  (b)	� How many solutions does the equation f sxd − 0 have? 

Why?
		  (c)	 Is it possible that f 9s2d − 1

3? Why?

	 49.	��� Coffee is being poured into the mug shown in the figure at a 
constant rate (measured in volume per unit time). Sketch a 
rough graph of the depth of the coffee in the mug as a function 
of time. Account for the shape of the graph in terms of concav­
ity. What is the significance of the inflection point?
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4.3 L’Hospital’s Rule: Comparing Rates of Growth

■ Indeterminate Quotients
Suppose we are trying to analyze the behavior of the function

Fsxd −
ln x

x 2 1

Although F is not defined when x − 1, we need to know how F behaves near 1. In 

	 60.	 f sxd − x 6 2 15x 5 1 75x 4 2 125x 3 2 x

	 61.	 f sxd − x 2 2 4x 1 7 cos x,    24 < x < 4

	 62.	 f sxd − tan x 1 5 cos x

	 63.	� Growth rate �� A 20-year-old university student weighs  
138 lb and had a birth weight of 6 lb. Prove that at some 
point in her life she was growing at a rate of 6.6 pounds per 
year.

	 64.	�A ntibiotic concentration �� Suppose an antibiotic is 
administered orally. It is first absorbed into the bloodstream, 
from which it passes into the sinus cavity. It is also 
metabolized from both sites. The concentrations C1std in the 
blood and C2std in the sinus cavity are shown. Prove that 
there is a time when the concentration in each site is increas-
ing at the same rate. Prove that there is also a time when the 
concentration in each site is decreasing at the same rate.

0

C

t

0.5

2 4 6 8

C¡ C™

	 65.	��� Show that a cubic function (a third-degree polynomial)  
always has exactly one point of inflection. If its graph has 
three x-intercepts x1, x2, and x3, show that the x-coordinate 
of the inflection point is sx1 1 x2 1 x3 dy3.

	 ;	 66.	��� �For what values of c does the polynomial 
Psxd − x 4 1 cx 3 1 x 2 have two inflection points? One 
inflection point? None? Illustrate by graphing P for several 
values of c. How does the graph change as c decreases?

		��  �occurs in probability and statistics, where it is called the 
normal density function. The constant � is called the mean 
and the positive constant � is called the standard deviation. 
For simplicity, let’s scale the function so as to remove the

		���  factor 1ys�s2� d and let’s analyze the special case where 
� − 0. So we study the function

f sxd − e2x2ys2�2d

		  (a)	� Find the asymptote, maximum value, and inflection 
points of f.

		  (b)	 What role does � play in the shape of the curve?
	 ;		  (c)	� Illustrate by graphing four members of this family on 

the same screen.

	 55.	��� In the theory of relativity, the mass of a particle is

m −
m0

s1 2 v2yc2 

		��  �where m0 is the rest mass of the particle, m is the mass when 
the particle moves with speed v relative to the observer, and 
c is the speed of light. Sketch the graph of m as a function  
of v.

	 56.	�� �In the theory of relativity, the energy of a particle is

E − sm0
2 c4 1 h2 c 2y�2 

		���  where m0 is the rest mass of the particle, � is its wave 
length, and h is Planck’s constant. Sketch the graph of E as a 
function of �. What does the graph say about the energy?

	 57.	��� Find a cubic function f sxd − ax 3 1 bx 2 1 cx 1 d that 
has a local maximum value of 3 at x − 22 and a local 
minimum value of 0 at x − 1.

	 58.	��� For what values of the numbers a and b does the function

f sxd − axe bx2

		��  have the maximum value f s2d − 1?

	 ;	� 59–62 � Produce graphs of f  that reveal all the important aspects 
of the curve. In particular, you should use graphs of f 9 and f 0 to 
estimate the intervals of increase and decrease, extreme values, 
intervals of concavity, and inflection points.

	 59.	 f sxd − 4x 4 2 32x 3 1 89x 2 2 95x 1 29
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particular, we would like to know the value of the limit

(1)	 lim
x l1

 
ln x

x 2 1
	

In computing this limit we can’t apply Law 5 of limits (the limit of a quotient is the 
quotient of the limits, see Section 2.4) because the limit of the denominator is 0. In fact,  
although the limit in (1) exists, its value is not obvious because both numerator and 
denominator approach 0 and 00 is not defined.

In general, if we have a limit of the form

lim
x l a

 
 f sxd
tsxd

where both f sxd l 0 and tsxd l 0 as x l a, then this limit may or may not exist and is 
called an indeterminate form of type 00. We met some limits of this type in Chapter 2. 
For rational functions, we can cancel common factors:

lim
x l1

 
x 2 2 x

x 2 2 1
− lim

x l1
 

xsx 2 1d
sx 1 1dsx 2 1d

− lim
x l1

 
x

x 1 1
−

1

2

We used a geometric argument to show that

lim
x l 0

 
sin x

x
− 1

But these methods do not work for limits such as (1), so in this section we introduce 
a systematic method, known as l’Hospital’s Rule, for the evaluation of indeterminate 
forms.

Another situation in which a limit is not obvious occurs when we look for a horizontal 
asymptote of F and need to evaluate the limit

(2)	 lim
x l `

 
ln x

x 2 1
	

It isn’t obvious how to evaluate this limit because both numerator and denominator 
become large as x l `. There is a struggle between numerator and denominator. If the 
numerator wins, the limit will be `; if the denominator wins, the answer will be 0. Or 
there may be some compromise, in which case the answer will be some finite positive 
number.

In general, if we have a limit of the form

lim
x l a

 
 f sxd
tsxd

where both f sxd l ` (or 2`) and tsxd l ` (or 2`), then the limit may or may not exist 
and is called an indeterminate form of type ỳ̀ . We saw in Section 2.2 that this type  
of limit can be evaluated for certain functions, including rational functions, by dividing  
numerator and denominator by the highest power of x that occurs in the denominator. 
For instance,

lim
x l `

 
x 2 2 1

2x 2 1 1
− lim

x l `
 

1 2
1

x 2

2 1
1

x 2

−
1 2 0

2 1 0
−

1

2
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This method does not work for limits such as (2), but l’Hospital’s Rule also applies to this 
type of indeterminate form.

L’Hospital’s Rule � Suppose f  and t are differentiable and t9sxd ± 0 near a 
(except possibly at a). Suppose that

 lim
x l a

 f sxd − 0            and         lim
x l a

 tsxd − 0

or that	  lim
x l a

 f sxd − 6`        and         lim
x l a

 tsxd − 6`

(In other words, we have an indeterminate form of type 00 or ỳ`.) Then

lim
x l a

 
 f sxd
tsxd

− lim
x l a

 
 f 9sxd
t9sxd

if the limit on the right side exists (or is ` or 2`).

Note 1 � L’Hospital’s Rule says that the limit of a quotient of functions is equal to the 
limit of the quotient of their derivatives, provided that the given conditions are satisfied. 
It is especially important to verify the conditions regarding the limits of f  and t before 
using l’Hospital’s Rule.

Note 2 � L’Hospital’s Rule is also valid for one-sided limits and for limits at infin-
ity or negative infinity; that is, “x l a” can be replaced by any of the symbols x l a1, 
x l a2, x l `, or x l 2`.

Note 3 � For the special case in which f sad − tsad − 0, f 9 and t9 are continuous, 
and t9sad ± 0, it is easy to see why l’Hospital’s Rule is true. In fact, using the alternative 
form of the definition of a derivative, we have

 lim
x l a

 
 f 9sxd
t9sxd

−
 f 9sad
t9sad

−

lim
x l a

 
 f sxd 2 f sad

x 2 a

lim
x l a

 
tsxd 2 tsad

x 2 a

− lim
x l a

 

 
 f sxd 2 f sad

x 2 a

 
tsxd 2 tsad

x 2 a

  − lim
x l a

 
 f sxd 2 f sad
tsxd 2 tsad

− lim
x l a

 
 f sxd
tsxd

The general version of l’Hospital’s Rule is more difficult; its proof can be found in 
more advanced books.

 Example 1   |  Find lim
x l 1

 
ln x

x 2 1
.

SOLUTION � Since

lim
x l1

 ln x − ln 1 − 0        and        lim
x l1

 sx 2 1d − 0

L’Hospital
L’Hospital’s Rule is named after a French 
nobleman, the Marquis de l’Hospital 
(1661–1704), but was discovered by a 
Swiss mathematician, John Bernoulli 
(1667–1748). You might sometimes see 
l’Hospital spelled as l’Hôpital, but he 
spelled his own name l’Hospital, as was 
common in the 17th century. See Exer-
cise 57 for the example that the Marquis 
used to illustrate his rule.

0

y

xa

y=m¡(x-a)

y=m™(x-a)

0

y

xa

f

g

Figure 1 suggests visually why 
l’Hospital’s Rule might be true. The 
first graph shows two differentiable 
functions f  and t, each of which 
approaches 0 as x l a. If we were to 
zoom in toward the point sa, 0d, the 
graphs would start to look almost lin-
ear. But if the functions actually were 
linear, as in the second graph, then their 
ratio would be

m1sx 2 ad
m2sx 2 ad

−
m1

m2

which is the ratio of their derivatives. 
This suggests that

lim
x l a

 
f sxd
tsxd

− lim 
x l a

 
 f 9sxd
t9sxd

Figure �1
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we can apply l’Hospital’s Rule:

 lim
x l 1

 
ln x

x 2 1
− lim

x l 1
 

d

dx
 sln xd

d

dx
 sx 2 1d

− lim
x l 1

 
1yx

1

− lim
x l 1

 
1

x
− 1

■

 Example 2   |  Calculate lim
x l `

 
ex

x 2 .

SOLUTION � We have lim x l ` ex − ` and lim x l ` x 2 − `, so l’Hospital’s Rule gives

lim
x l `

ex

x 2 − lim
x l `

 

d

dx
sex d

d

dx
sx 2d

− lim
x l `

 
ex

2x

Since ex l ` and 2x l ` as x l `, the limit on the right side is also indeterminate, 
but a second application of l’Hospital’s Rule gives

	 lim
x l `

 
ex

x 2 − lim
x l `

 
ex

2x
− lim

x l `
 
ex

2
− `	 ■

 Example 3   |  Calculate lim
x l `

 
ln x

sx .

SOLUTION � Since ln x l ` and sx  l ` as x l `, l’Hospital’s Rule applies:

lim
x l `

 
ln x

sx 
− lim

x l `
 

1yx
1
2 x21y2

Notice that the limit on the right side is now indeterminate of type 00. But instead of 
applying l’Hospital’s Rule a second time as we did in Example 2, we simplify the 
expression and see that a second application is unnecessary:

	 lim
xl`

 
ln x

sx 
− lim

xl`
 

1yx
1
2 x21y2 − lim

xl`
 

2

sx − 0	 ■

 Example 4   |  Glucose administration  In Exercise 7.4.43 you are asked to 
derive an equation for the concentration of glucose in the bloodstream during intrave­
nous injection. For a specific choice of constants, the concentration one minute after 
injection begins is

C −
r

k
s1 2 e2kd

where r is the injection rate and k is the rate at which glucose is metabolized from the 
blood. Different patients metabolize glucose at different rates, meaning they have 
different values of k. You can verify that C is a decreasing function of k and therefore, 
by taking the limit as k l 0, we obtain an upper bound for the predicted concentration 
of any patient. Find this limit.

 Notice that when using l’Hospital’s 
Rule we differentiate the numerator and 
denominator separately. We do not use 
the Quotient Rule.

The graph of the function of Example 2 
is shown in Figure 2. We have noticed 
previously that exponential functions 
grow far more rapidly than power func­
tions, so the result of Example 2 is not 
unexpected. See also Exercise 55.

y=´
≈

10

20

0

Figure �2

The graph of the function of Exam­
ple 3 is shown in Figure 3. We have 
discussed previously the slow growth 
of logarithms, so it isn’t surprising that 
this ratio approaches 0 as x l `. See 
also Exercise 56.

0

_1

2

10,000

y= ln x
œ„x

Figure �3
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Solution � Because k l 0 and 1 2 e2k  l  0, we can apply l’Hospital’s Rule:

 lim
kl0

 C − lim
kl0

 r ?
1 2 e2k

k
− r lim

kl0
 
e2k

1

 − r ? 1 − r

Thus the upper bound for the concentration is r, the same as the injection rate.	 ■

 Example 5   |  Find lim
x l �2

 sin x

1 2 cos x
.

SOLUTION � If we blindly attempted to use l’Hospital’s Rule, we would get

lim
x l �2

 sin x

1 2 cos x
− lim

x l �2
 
cos x

sin x
− 2`

This is wrong! Although the numerator sin x l 0 as x l �2, notice that the denomi-
nator s1 2 cos xd does not approach 0, so l’Hospital’s Rule can’t be applied here.

The required limit is, in fact, easy to find because the function is continuous at � 
and the denominator is nonzero there:

	 lim
x l �2

 sin x

1 2 cos x
−

sin �

1 2 cos �
−

0

1 2 s21d
− 0	 ■

Example 5 shows what can go wrong if you use l’Hospital’s Rule without thinking. 
Other limits can be found using l’Hospital’s Rule but are more easily found by other 
methods. (See Examples 2.4.3, 2.4.5, and 2.2.5 and the discussion at the beginning of 
this section.) So when evaluating any limit, you should consider other methods before 
using l’Hospital’s Rule.

■ Which Functions Grow Fastest?
L’Hospital’s Rule enables us to compare the rates of growth of functions. Suppose we 
have two functions f sxd and tsxd that both become large as x becomes large, that is,

lim
xl`

 f sxd − `    and    lim
xl`

 tsxd − `

We say that f sxd approaches infinity more quickly than tsxd if

lim
xl`

 
f sxd
tsxd

− `

and that f sxd approaches infinity more slowly than tsxd if

lim
xl`

 
f sxd
tsxd

− 0

For example, we used l’Hospital’s Rule in Example 2 to show that

lim
xl`

 
ex

x 2 − `

and so the exponential function y − ex grows more quickly than y − x 2. In fact y − ex 
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grows more quickly than all the power functions y − xn (see Exercise 55). This fact is 
illustrated in Figure 4, where you can see that y − x 3 exceeds y − ex some of the time 
but after about x − 4.5 the exponential function overtakes the other functions.

0

y

x5

100

y=´

y=≈

y=˛

 Example 6   |  Rank the following functions in order of how quickly they approach 
infinity as x l `:

y − ln x    y − x    y − e 0.1x    y − sx 

Solution � If we try to decide the ranking by plotting the four functions as in Figure 
5(a), we get a misleading picture: it looks as if y − x is the winner. But l’Hospital’s 
Rule tells us that can’t be true:

lim
xl`

 
x

e 0.1x − lim
xl`

 
1

0.1e 0.1x − 0

so y − x grows more slowly than y − e 0.1x.
We know from Example 3 that y − ln x grows more slowly than y − sx . Also, 

y − sx  grows more slowly than y − x because

sx 

x
−

1

sx 
 l 0    as x l `

So the ranking, from fastest to slowest, is as follows:

y − e 0.1x    y − x    y − sx     y − ln x

This ranking is illustrated in Figure 5(b).

0

y

x

4

4

y=ln x
y=x
y=e0.1x

y=œx     

0

y

x

40

40

(a) (b)

■

Figure �4

Figure �5
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 Example 7   |  Analyze the limiting behavior of the function

f sxd −
x 1 x 4

1 1 x 2 1 ex

by considering just the dominant terms in the numerator and denominator.

Solution � The dominant term in the numerator is x 4 because it becomes large more 
quickly than x. We know from Example 2 that ex is the dominant term in the denomi-
nator. If we retain just the two dominant terms, we get the simpler function

tsxd −
x 4

ex

The exponential function grows faster than any power of x and so limxl` tsxd − 0. 
Therefore we expect that limxl` f sxd − 0 too. This could be verified directly with four 
applications of l’Hospital’s Rule, but the important thing is to recognize that our 
intuition about orders of magnitude leads us to the correct answer. In Figure 6 we see 
that the functions f  and t have practically identical behavior for large values of x.	 ■

■ Indeterminate Products
If lim x l a f sxd − 0 and lim x l a tsxd − ` (or 2`), then it isn’t clear what the value of 
lim x l a f sxd tsxd, if any, will be. There is a struggle between f  and t. If f  wins, the limit 
will be 0; if t wins, the answer will be ` (or 2`). Or there may be a compromise where  
the answer is a finite nonzero number. This kind of limit is called an indeterminate 
form of type 0 ? `. We can deal with it by writing the product ft as a quotient:

ft −
 f

1yt         or        ft −
t

1yf

This converts the given limit into an indeterminate form of type 00 or ỳ` so that we can 
use l’Hospital’s Rule.

 Example 8   |  Evaluate lim x l 01 x ln x. Use the knowledge of this limit, together 
with information from derivatives, to sketch the curve y − x ln x.

Solution � The given limit is indeterminate because, as x l 01, the first factor sxd  
approaches 0 while the second factor sln xd approaches 2`. Writing x − 1ys1yxd, we 
have 1yx l ` as x l 01, so l’Hospital’s Rule gives

 lim
x l 01

 x ln x − lim
x l 01

 ln x

1yx
− lim

x l 01

 1yx

21yx 2
− lim

x l 01
 s2xd − 0

If f sxd − x ln x, then

f 9sxd − x ?
1

x
1 ln x − 1 1 ln x

so f 9sxd − 0 when ln x − 21, which means that x − e21. In fact, f 9sxd . 0 when 
x . e21 and f 9sxd , 0 when x , e21, so f  is increasing on s1ye, `d and decreasing on 
s0, 1yed. Thus, by the First Derivative Test, f s1yed − 21ye is a local (and absolute) 
minimum. Also, f 0sxd − 1yx . 0, so f  is concave upward on s0, `d. We use this 
information, together with the crucial knowledge that lim x l 01 f sxd − 0, to sketch the 
curve in Figure 7.	 ■

0

y

x

f

g

2

5

Figure �6

0

y

x1

y=x ln x

Figure �7
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Note � In solving Example 8 another possible option would have been to write

lim
x l 01

 x ln x − lim
x l 01

 
x

1yln x
 

�This gives an indeterminate form of the type 00, but if we apply l’Hospital’s Rule we get 
a more complicated expression than the one we started with. In general, when we rewrite 
an indeterminate product, we try to choose the option that leads to the simpler limit.

 Example 9   |  Blood alcohol concentration  In Sections 3.1 and 4.1 we 
modeled the blood alcohol concentration (BAC) after rapid consumption of one 
alcoholic drink by the function

Cstd − 0.0225te20.0467t

where t is measured in minutes after consumption and C is measured in mgymL. 
Calculate lim tl` Cstd.

Solution � The limit is an indeterminate product because 0.0225t l ` and 
e20.0467t l 0 as t l `. If we write Cstd as a quotient instead of a product and then use 
l’Hospital’s Rule, we get

 lim
t l`

 Cstd − lim
t l`

 0.0225te20.0467t − lim
t l`

 
0.0225t

e 0.0467t

 − lim
t l`

 
0.0225

0.0467e 0.0467t − 0

because the denominator approaches infinity as t l `. This result is not surprising; it 
is to be expected that the BAC eventually approaches 0 as time passes. Figure 8 illus-
trates the result.	 ■

■ Indeterminate Differences
If lim x l a f sxd − ` and lim x l a tsxd − `, then the limit

lim
x l a

 f f sxd 2 tsxdg

is called an indeterminate form of type ` 2 ̀ . Again there is a contest between f  and  
t. Will the answer be ` ( f  wins) or will it be 2` (t wins) or will they compromise on a 
finite number? To find out, we try to convert the difference into a quotient (for instance, 
by using a common denominator, or rationalization, or factoring out a common factor) 
so that we have an indeterminate form of type 00 or ỳ`.

 Example 10   |  Compute lim
x l s�y2d2 

ssec x 2 tan xd.

SOLUTION � First notice that sec x l ` and tan x l ` as x l s�y2d2, so the limit is 
indeterminate. Here we use a common denominator:

 lim
x l

 

s�y2d2
 ssec x 2 tanxd − lim

x l
 

s�y2d2
 S 1

cos x
2

sin x

cos xD
 − lim

x l
 

s�y2d2
 
1 2 sin x

cos x
− lim

x l
 

s�y2d2
 
2cos x

2sin x
− 0

Note that the use of l’Hospital’s Rule is justified because 1 2 sin x l 0 and cos x l 0 
as x l s�y2d2.	 ■
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EXERCISES 4.3

	� 1–34 � Find the limit. Use l’Hospital’s Rule where appropri-
ate. If there is a more elementary method, consider using it. If 
l’Hospital’s Rule doesn’t apply, explain why.

	 1.	 lim
x l

 

1
 
x 2 2 1

x 2 2 x
	 2.	 lim

xl1
 
x a 2 1

x b 2 1

	 3.	 lim
xls�y2d1

 cos x

1 2 sin x
	 4.	 lim

xl0
 
sin 4x

tan 5x

	 5.	 lim
t l 0

 
e t 2 1

t 3 	 6.	 lim
t l 0

 
e 3t 2 1

t

	 7.	 lim
x l `

 
ln x

sx 
	 8.	 lim

� l �y2
 
1 2 sin �

csc �

	 9.	 lim
x l 01

 
ln x

x
	 10.	 lim

xl`
 
sln xd2

x

	 11.	 lim
x l 0

 
s1 1 2x 2 s1 2 4x 

x

	 12.	 lim
xl1

 
ln x

sin �x

	 13.	 lim
t l 0

 
5 t 2 3 t

t
	 14.	 lim

ul `
 
e uy10

u3

	 15.	 lim
x l 0

 
e x 2 1 2 x

x 2 	 16.	 lim
x l 0

 
cos mx 2 cos nx

x 2

	 17.	 lim
x l 1

 
1 2 x 1 ln x

1 1 cos �x
	 18.	 lim

x l 0
 

x

tan21s4xd

	 19.	 lim
x l 1

 
x a 2 ax 1 a 2 1

sx 2 1d2 	 20.	 lim
x l 0

 
e x 2 e2x 2 2x

x 2 sin x

	 21.	 lim
x l 0

 
cos x 2 1 1 1

2 x 2

x 4 	 22.	 lim
x l

 

a1 
cos x lnsx 2 ad

lnse x 2 ea d

	 23.	 lim
x l `

 x sins�yxd	 24.	 lim
xl2`

 x 2e x

	 25.	 lim
x l 0

 cot 2x sin 6x	 26.	 lim
x l 01

 sin x ln x

	 27.	 lim
x l `

 x 3e 2x2

	 28.	 lim
x l `

 x tans1yxd

	 29.	 lim
x l 1

 S x

x 2 1
2

1

ln xD	 30.	 lim
x l 0

 scsc x 2 cot xd

	 31.	 lim
xl`

 (sx 2 1 x 2 x)	 32.	 lim
x l

 

01
 Scot x 2

1

xD
	 33.	 lim

x l `
 sx 2 ln xd	 34.	 lim

xl`
 sxe1yx 2 xd

	� 35–38 � Use l’Hospital’s Rule to help find the asymptotes of f . 
Then use them, together with information from f 9 and f 0, to 
sketch the graph of f . Check your work with a graphing device.

	 35.	 f sxd − xe2x	 36.	 f sxd − e xyx

	 37.	 f sxd − sln xdyx	 38.	 f sxd − xe2x2

	� 39–42 � Rank the functions in order of how quickly they grow  
as x l `.

	 39.	 y − x 5,    y − lnsx 10d,  y − e 2x,  y − e 3x

	 40.	 y − 2 x,  y − 3 x,  y − e xy2,  y − e xy3

	 41.	 y − sln xd2,  y − sln xd3,  y − sx ,  y − s3 x 

	 42.	 y − x 1 e2x,  y − 10 ln x,  y − 5sx ,  y − xsx 

 Example 11   |  Calculate lim
xl`

 sex 2 xd.

Solution � This is an indeterminate difference because both ex and x approach 
infinity. We would certainly expect the answer to be infinity because ex l ` much 
faster than x. But we can verify this by factoring out x:

ex 2 x − xS ex

x
2 1D

The term exyx l ` as x l ` by l’Hospital’s Rule and so we now have a product in 
which both factors grow large:

	 lim
xl`

 sex 2 xd − lim
xl`

 FxS ex

x
2 1DG − `	 ■
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		��  sensed at the retina can be described by

P −
100s1 2 10 2�r 2d

�r 2 ln 10

		���  where � is an experimentally determined constant, typically 
about 0.05.

B

A

		�  A light beam A that enters through the center of the pupil measures 
brighter than a beam B entering near the edge of the pupil.

		  (a)	� If light enters a pupil at a distance of 3 mm from the 
center, what is the percentage of luminance that is 
sensed at the retina?

		  (b)	� Compute the percentage of luminance sensed if light 
enters the pupil at a distance of 2 mm from the center. 
Does it make sense that it is larger than the answer to 
part (a)?

		  (c)	� Compute lim r l 0 P. Is the result what you would expect?
	 �Source: Adapted from W. Stiles et al., “The Luminous Efficiency of Rays 

Entering the Eye Pupil at Different Points.” Proceedings of the Royal Society 

of London. Series B, 112 (1933): 428–50.

	 52.	�A ntibiotic concentration for large patients �� Suppose an 
antibiotic is administered at a constant rate through 
intravenous supply to a patient and is metabolized. It can be 
shown using the type of mixing models discussed in 
Exercises 7.4.45–48 that the concentration of antibiotic after 
one unit of time is

csV d − c0e21yV 1 �Vs1 2 e21yV d

		���  where c0 is the initial concentration, � is the rate of supply, 
and V is the volume of the patient’s blood. What is the 
predicted value for large patients (that is, for large values  
of V )?

	 53.	� Drug pharmacokinetics �� So-called two-compartment 
models are often used to describe drug pharmacokinetics, 
with the blood being one compartment and the internal 
organs being the other (see Section 10.3). If the rate of flow 
from the blood to the organs is � and the rate of metabolism 
from the organs is �, then under certain conditions the con-
centration of drug in the organ at time t is given by

e2�t 2 e2�t

� 2 �

		���  What is the predicted concentration at time t if the values of 
� and � are very close to one another?

	� 43–44 � Guess the value of the limit by considering the 
dominant terms in the numerator and denominator. Then use 
l’Hospital’s Rule to confirm your guess.

	 43.	 lim
xl`

 
e22x 1 x 1 e 0.1x

x 3 2 x 2 	 44.	 lim
xl`

 
x 2 2 x 1 ln x

x 1 2 x

	� 45–46 � Rank the functions in order of how quickly they 
approach 0 as x l `.

	 45.	 y −
1

x
,    y −

1

x 2 ,    y − e2x,    y − x 21y2

	 46.	 y − e2x,    y − xe2x,    y − e2x 2

,    y − xe2x 2

	 	� 47–48 � What happens if you try to use l’Hospital’s Rule to find 
the limit? Evaluate the limit using another method.

	 47.	 lim
xl `

 
x

sx 2 1 1
	 48.	 lim

x l
 

s�y2d2
 
sec x

tan x

	 49.	� Models of population growth ��have the general form 
dNydt − f sNd, where f sNd is a function such that f s0d − 0 
and f sNd is positive for some positive values of N. The per 
capita growth rate is defined to be the population growth 
rate divided by the population size.

		  (a)	� What is the per capita growth rate for the model 
dNydt − rN?

		  (b)	� What is the per capita growth rate for the model 
dNydt − rNs1 2 NyKd when N is small (that is, when 
N l 0)?

		  (c)	� Express the per capita growth rate when N l 0 for the 
general model dNydt − f sNd in terms of the function f  
and/or its derivative.

	 50.	� Foraging �� In Exercise 4.2.2 we let Nstd be the amount of 
nectar foraged from a flower by a bumblebee in t seconds.

		  (a)	� What is the average rate of nectar consumption over a 
period of t seconds?

		  (b)	� Find the average rate of nectar consumption for very 
short foraging visits by using l’Hospital’s Rule to calcu-
late the limit of the answer to part (a) as t l 0.

	 51.	� Stiles-Crawford effect �� Light enters the eye through 
the pupil and strikes the retina, where photoreceptor cells 
sense light and color. W. Stanley Stiles and B. H. Crawford 
studied the phenomenon in which measured brightness 
decreases as light enters farther from the center of the pupil. 
(See the figure.) They detailed their findings of this phenom-
enon, known as the Stiles-Crawford effect of the first kind, in 
a paper published in 1933. In particular, they observed that 
the amount of luminance sensed was not proportional to the 
area of the pupil. The percentage P of the luminance enter-
ing a pupil at a distance of r mm from the center that is 
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	 56.	��� Prove that

lim
x l `

 
ln x

x p − 0

		��  �for any number p . 0. This shows that the logarithmic 
function approaches infinity more slowly than any power  
of x.

	 57.	��� The first appearance in print of l’Hospital’s Rule was in  
the book Analyse des Infiniment Petits published by the 
Marquis de l’Hospital in 1696. This was the first calculus 
textbook ever published and the example that the Marquis 
used in that book to illustrate his rule was to find the limit of 
the function

y −
s2a 3x 2 x 4 2 as3 aax 

a 2 s4 ax 3 

		���  as x approaches a, where a . 0. (At that time it was 
common to write aa instead of a 2.) Solve this problem.

	 58.	�� If f 9 is continuous, f s2d − 0, and f 9s2d − 7, evaluate

lim
x l 0

 
 f s2 1 3xd 1 f s2 1 5xd

x

	 54.	� Drug pharmacokinetics �� The level of medication in the 
bloodstream after a drug is administered is often modeled 
by a function of the form

Sstd − At pe2kt

		���  where A, p, and k are positive constants. This is called a 
surge function because its graph shows an initial surge in the 
drug level followed by a more gradual decline. (Particular 
cases have been investigated in Example 9 and Exercise 
4.2.51.)

		  (a)	� Use l’Hospital’s Rule to show that lim tl` Sstd − 0 for 
all positive values of A, p, and k.

	 ;	 	 (b)	� Investigate the family of surge functions for A − 1 and 
positive values of p and k. What features do these curves 
have in common? How do they differ from one another? 
In particular, what happens to the maximum and mini-
mum points and inflection points as p and k change? 
Illustrate by graphing several members of the family.

	 55.	��� Prove that

lim
x l `

 
e x

x n − `

		���  for any positive integer n. This shows that the exponential 
function approaches infinity faster than any power of x.

■ Project  Mutation-Selection Balance in Genetic Diseases

Several human diseases––such as Tay-Sachs disease, phenylketonuria, neurofibromato-
sis, and Huntington’s disease––occur if an individual carries a mutated copy of a specific 
gene. Because the carriers of such deleterious genes are less likely to survive and repro-
duce, the frequency of such genes in the population is usually quite low.

In population-genetic terms the frequency of such disease-causing genes reflects a 
balance between their spontaneous appearance through mutation and selection against 
them through reduced survival. Moreover, some diseases (like Tay-Sachs and phenyl- 
ketonuria) are recessive, meaning that only individuals carrying two copies of the mutated 
gene are affected, while others (like neurofibromatosis and Huntington’s disease) are 
dominant, meaning that individuals carrying even a single copy will be affected.

Let’s model the mutation-selection balance for an arbitrary disease to predict the fre-
quency of the mutation in the population. We will use A to denote the disease-causing 
variant and a to denote the normal version of the gene. For simplicity we will assume 
that generations are discrete in time and we will model the dynamics of the disease-
causing gene using a difference equation.

Suppose the probability of surviving one time step for an aa individual is standard-
ized to 1, and that for an AA individual is 1 2 s, where s is a constant and 0 , s , 1. We 
can incorporate different levels of dominance by supposing that the probability of sur-
vival of Aa individuals is 1 2 sh, where h is a constant and 0 < h < 1. When h − 1 the 
disease is dominant since Aa individuals are just as affected by the disease as AA indi-
viduals. When h − 0 the disease is recessive because only AA individuals are affected. 
The case h − 1

2 is called codominant, meaning that the survival of Aa individuals lies 
exactly halfway between those of AA and aa individuals.
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To describe how selection will change the frequency of the A gene, we can follow a 
derivation similar to that used in the project on page 78. Using pt for the frequency of A 
at time t, we obtain the following expression for the frequency of A after selection has 
occurred:

pt
2s1 2 sd 1 pts1 2 ptds1 2 shd

pt
2s1 2 sd 1 2pts1 2 ptds1 2 shd 1 s1 2 ptd2

	 1.	�� �Suppose that, in a single time step, first selection occurs as described by this 
expression and then a fraction � of the a variants mutate to the disease-causing 
variant A. Obtain an expression for pt11 in terms of pt.

	 2.	�� �At mutation-selection balance, the frequency of A will no longer change, mean-
ing that pt11 − pt. Using p̂ to denote this equilibrium frequency, show that p̂ 
satisfies a cubic equation. Further, show that this cubic equation can be reduced 
to a quadratic equation if we are interested only in solutions satisfying p̂ ± 1.

	 3.	�� �Show that one root of the quadratic equation obtained in Problem 2 is

p̂ −
shs1 1 �d 2 sfshs1 1 �dg 2 2 4s�s2h 2 1d 

2ss2h 2 1d

	 4.	�� �Assume that 2� , s. What is the predicted frequency of genes that cause reces-
sive diseases (that is, the frequency as h l 0)?

	 5.	�� �Assume that 2� , s. Use l’Hospital’s Rule to determine the predicted frequency 
of genes that cause codominant diseases (that is, the frequency as h l 12 ).

4.4 Optimization Problems

There are many situations in the life sciences in which it is desirable to find an optimal 
outcome: maximizing the yield of an agricultural crop by controlling the nitrogen level 
of the soil, minimizing the energy required for fish to swim or birds to fly during migra-
tion, determining the dosage of a drug for the best result. In this section we use the 
methods of this chapter to determine such optimal outcomes.

In solving these problems the greatest challenge is often to convert the word problem 
into a mathematical optimization problem by setting up the function that is to be maxi-
mized or minimized. The following steps may be useful.

Steps in Solving Optimization Problems

	1.	 Understand the Problem  The first step is to read the problem carefully until it is 
clearly understood. Ask yourself: What is the unknown? What are the given quanti-
ties? What are the given conditions?

	2.	 Draw a Diagram  In most problems it is useful to draw a diagram and identify the 
given and required quantities on the diagram.

	3.	I ntroduce Notation  Assign a symbol to the quantity that is to be maximized or 
minimized (let’s call it Q for now). Also select symbols sa, b, c, . . . , x, yd for other 
unknown quantities and label the diagram with these symbols. It may help to use 
initials as suggestive symbols—for example, A for area, h for height, t for time.
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	4.	 Express Q in terms of some of the other symbols from Step 3.

	5.	 �If Q has been expressed as a function of more than one variable in Step 4, use the 
given information to find relationships (in the form of equations) among these 
variables. Then use these equations to eliminate all but one of the variables in the 
expression for Q. Thus Q will be expressed as a function of one variable x, say, 
Q − f sxd. Write the domain of this function.

	6.	 �Use the methods of Sections 4.1 and 4.2 to find the absolute maximum or minimum 
value of f. In particular, if the domain of f  is a closed interval, then the Closed 
Interval Method in Section 4.1 can be used.

 Example 1   |  A farmer has 2400 ft of fencing and wants to fence off a rectangular 
field that borders a river with a straight bank. He needs no fence along the river. What 
are the dimensions of the field that has the largest area?

SOLUTION � In order to get a feeling for what is happening in this problem, let’s 
experiment with some special cases. Figure 1 (not to scale) shows three possible ways 
of laying out the 2400 ft of fencing.

100
2200

100

Area=100 · 2200=220,000 ft@

700

1000

700

Area=700 · 1000=700,000 ft@

1000

400

1000

Area=1000 · 400=400,000 ft@

Figure �1

We see that when we try shallow, wide fields or deep, narrow fields, we get rela-
tively small areas. It seems plausible that there is some intermediate configuration that 
produces the largest area.

Figure 2 illustrates the general case. We wish to maximize the area A of the rect-
angle. Let x and y be the depth and width of the rectangle (in feet). Then we express A 
in terms of x and y:

A − xy

We want to expre      ss A as a function of just one variable, so we eliminate y by 
expressing it in terms of x. To do this we use the given information that the total length 
of the fencing is 2400 ft. Thus

2x 1 y − 2400

From this equation we have y − 2400 2 2x, which gives

A − xs2400 2 2xd − 2400x 2 2x 2

Note that x > 0 and x < 1200 (otherwise A , 0). So the function that we wish to 
maximize is

Asxd − 2400x 2 2x 2        0 < x < 1200

The derivative is A9sxd − 2400 2 4x, so to find the critical numbers we solve the  

x

y

A x

Figure �2
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equation
2400 2 4x − 0

which gives x − 600. The maximum value of A must occur either at this critical 
number or at an endpoint of the interval. Since As0d − 0, As600d − 720,000,  
and As1200d − 0, the Closed Interval Method gives the maximum value as 
As600d − 720,000.

[Alternatively, we could have observed that A0sxd − 24 , 0 for all x, so A is 
always concave downward and the local maximum at x − 600 must be an absolute 
maximum.]

Thus the rectangular field should be 600 ft deep and 1200 ft wide.	 ■

 Example 2   |  BB   Nectar foraging by bumblebees  Many animals forage 
on resources that are distributed in discrete patches. For example, bumblebees visit 
many flowers, foraging on nectar from each. The amount of nectar Nstd consumed 
from any flower increases with the amount of time spent at that flower, but with dimin-
ishing returns (see Figure 3). Suppose this function is given by

Nstd −
0.3t

t 1 2

where t is measured in seconds and N in milligrams. Suppose also that the time it 
takes a bee to travel from one flower to the next is 4 seconds.
(a)	 If a bee spends t seconds at each flower, find an equation for the average amount of 
nectar consumed per second, from the beginning of a visit to a flower until the begin-
ning of the visit to the next flower.
(b)	 Suppose bumblebees forage on a given flower for an amount of time that maxi-
mizes the average rate of energy gain obtained in part (a). What is this optimal 
foraging time?

solution
(a)	 The total time to complete one cycle of foraging and traveling is t 1 4. So the 
average amount of nectar consumed per second over one cycle is

f std −
Nstd
t 1 4

−
0.3t

st 1 2dst 1 4d
−

0.3t

t 2 1 6t 1 8

(b)	 The derivative of f  is

f 9std −
st 2 1 6t 1 8ds0.3d 2 s0.3tds2t 1 6d

st 2 1 6t 1 8d 2 −
20.3t 2 1 2.4

st 2 1 6t 1 8d 2

Then f 9std − 0 when t 2 − 2.4y0.3 − 8. But t > 0, so the only critical number is 
t − s8 − 2s2 .

Since the domain of f  is f0, `d, we can’t use the argument of Example 1 concerning 
endpoints. But we observe that f 9std . 0 for 0 < t , 2s2  and f 9std , 0 for t . 2s2 , 
so f  is increasing for all t to the left of the critical number and decreasing for all t to 
the right. So the optimal foraging time is

t − 2s2 < 2.83 seconds

This result is illustrated by the graph of f  in Figure 4.	 ■
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NOTE 1 � The argument used in Example 2 to justify the absolute maximum is a variant 
of the First Derivative Test (which applies only to local maximum or minimum values) 
and is stated here for future reference.

First Derivative Test for Absolute Extreme Values � Suppose that c is a 
critical number of a continuous function f  defined on an interval.

(a) � If f 9sxd . 0 for all x , c and f 9sxd , 0 for all x . c, then f scd is the absolute 
maximum value of f.

(b) � If f 9sxd , 0 for all x , c and f 9sxd . 0 for all x . c, then f scd is the absolute 
minimum value of f.

NOTE 2 � In Example 4.1.7 we found the maximum value of the blood alcohol concen-
tration during the first hour by using the Closed Interval Method. But if we use the First 
Derivative Test for Absolute Extreme Values, we can see that it is the absolute maximum. 
The formula

C9std − 0.0225e20.0467ts1 2 0.0467td

�shows that C9std . 0 for all t , 1y0.0467 and C9std , 0 for all t . 1y0.0467. It follows 
that the absolute maximum of the BAC is Cs1y0.0467d < 0.177 mgymL.

 Example 3   |  A man launches his boat from point A on a bank of a straight water 
channel, 3 km wide, and wants to reach point B, 8 km south on the opposite bank, as 
quickly as possible (see Figure 5). He could row his boat directly across the channel to 
point C and then run to B, or he could row directly to B, or he could row to some point 
D between C and B and then run to B. If he can row 6 kmyh and run 8 kmyh, where 
should he land to reach B as soon as possible? (We assume that the water in the channel 
is not moving.)

SOLUTION � If we let x be the distance from C to D, then the running distance  
is | DB | − 8 2 x and the Pythagorean Theorem gives the rowing distance as 

| AD | − sx 2 1 9 . We use the equation

time −
distance

rate

Then the rowing time is sx 2 1 9 y6 and the running time is s8 2 xdy8, so the total 
time T  as a function of x is

Tsxd −
sx 2 1 9 

6
1

8 2 x

8

The domain of this function T  is f0, 8g. Notice that if x − 0, he rows to C and if x − 8, 
he rows directly to B. The derivative of T  is

T9sxd −
x

6sx 2 1 9 
2

1

8

 TEC   Module 4.4 takes you through 
six additional optimization problems, 
including animations of the physical 
situations.

8 km

C

D

B

A

3 km

x

Figure �5
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Thus, using the fact that x > 0, we have

	 T9sxd − 0    &?  
x

6sx 2 1 9 
−

1

8
    &?    4x − 3sx 2 1 9  

	 &?    16x 2 − 9sx 2 1 9d	 &?	 7x 2 − 81

	 &?    x −
9

s7 

The only critical number is x − 9ys7 . To see whether the minimum occurs at this 
critical number or at an endpoint of the domain f0, 8g, we evaluate T  at all three points:

Ts0d − 1.5            TS 9

s7 D − 1 1
s7 

8
< 1.33            Ts8d −

s73 

6
< 1.42 

Since the smallest of these values of T  occurs when x − 9ys7 , the absolute minimum 
value of T  must occur there. Figure 6 illustrates this calculation by showing the graph  
of T.

Thus the man should land the boat at a point 9ys7  km (<3.4 km) south from his 
starting point.	 ■

 Example 4   |  BB   Aquatic birds1 forage underwater and periodically return to 
the surface to replenish their oxygen stores. Oxygen stores increase with the amount of 
time spent on the surface but in a diminishing way, according to the model

Ostd −
20t

5 1 t

where t is the amount of time spent at the surface (in seconds). Suppose the round-
trip travel time to and from the underwater foraging area is T  seconds and oxygen is 
depleted at a constant rate of r mLys while a bird is underwater. Furthermore, suppose 
the bird forages until it has just enough oxygen to return to the surface.
(a)	 If Q is the fraction of a single dive cycle that the bird spends foraging, find an 
equation for Q as a function of the surface time t.
(b)	 If T − 2 seconds and r − 1 mLys, find the surface time t that maximizes the 
fraction of time spent foraging.

solution

(a)	 Let f  be the time spent foraging during a single cycle. Because the surface time is 
t seconds and the total travel time for a single cycle is T  seconds, the fraction of a cycle 
spent foraging is

Q −
f

t 1 T 1 f

This expression for Q involves the constant T  and the two variables t and f . We want to 
express Q in terms of just one variable and so we eliminate f  by expressing it in terms 

x

T

0

1

2 4 6

y=T(x)

Figure �6
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1. L. Halsey et al., “Optimal Diving Behaviour and Respiratory Gas Exchange in Birds,” Respiratory Physi-
ology and Neurobiology 154 (2006): 268–83.
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of t. To do this we use the information given—that all of the oxygen Ostd obtained at 
the surface is used for foraging and travel. In other words, Ostd − rT 1 r f . Solving 
this equation for f  gives

f −
Ostd 2 rT

r

Therefore

 Qstd −

Ostd 2 rT

r

t 1 T 1
Ostd 2 rT

r

−
Ostd 2 rT

Ostd 1 rt

 −

20t

5 1 t
2 rT

20t

5 1 t
1 rt

−
s20 2 rT dt 2 5rT

20t 1 5rt 1 rt 2

(b)	 With r − 1 and T − 2 we have

Qstd −
18t 2 10

t 2 1 25t

and so the derivative of Q is

Q9std −
st 2 1 25tds18d 2 s18t 2 10ds2t 1 25d

st 2 1 25td2 − 2
2s9t 2 2 10t 2 125d

st 2 1 25td2

Solving the equation Q9std − 0 with the quadratic formula, and retaining only the 
positive root, we get

t − 5
9 (1 1 s46 ) < 4.32 seconds

This value of t gives the largest fraction of foraging time because Q9std is positive to
the left and negative to the right of t − 5

9 (1 1 s46 ).	 ■

 Example 5   |  BB   Sustainable harvesting2  For many natural fish popula-
tions, the net number of new recruits to the population in a given year can be modeled 
as a function of the existing population size N by an equation of the form

RsNd − rNS1 2
N

KD
where r and K are positive constants. (K is called the carrying capacity.) The popula-
tion will increase if the net number of recruits RsNd is positive and it will decrease if 
RsNd is negative. Thus, because RsNd is positive when 0 , N , K and RsNd is 
negative when N . K, we expect the population to stabilize at a constant size of 
N − K.

If the population is subject to harvesting, N will begin to change and once the popu-
lation has stabilized again, the number of fish harvested each year, which we denote  
by H, must equal the net recruitment for that year; that is, RsNd − H.
(a)	 Suppose H − hN, where h is a measure of the “fishing effort” expended. What is 
the population size once it has stabilized?

290    Chapter 4  |  Applications of Derivatives

2. C. Clark, “The Economics of Overexploitation,” Science 181 (1973): 630–34.
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(b)	 Express the total harvest rate H as a function of h once the population has stabi-
lized, and determine the fishing effort that results in the largest possible harvest rate.
(c)	 What is the population size once it has stabilized if this fishing effort is used, and 
what is the total harvest?

solution

(a)	 Since H − hN, once the population has stabilized we have

hN − H − rNS1 2
N

KD
and so

h − rS1 2
N

KD      ?    
rN

K
− r 2 h

Solving this equation for N, we get

N −
K

r
sr 2 hd − KS1 2

h

rD
This is the population size once it has become stable.

(b)	 With the expression for N from part (a), we have

H − hN − KSh 2
h 2

r D
and so	

dH

dh
− KS1 2

2h

r D − 0   when h −
r

2
	

Also, dHydh is positive when h , 1
2r and negative when h . 1

2r. So the largest 
possible total harvest rate occurs when h − 1

2 r.

(c)	 If this optimal fishing effort is used, then the ultimate population size is

N − KS1 2
1
2r

r D − K(1 2 1
2) −

K

2

and the total harvest is

	 H − hN −
r

2
?

K

2
−

rK

4
	 ■

 Example 6   |  Branching blood vessels  The blood vascular system consists 
of blood vessels (arteries, arterioles, capillaries, and veins) that convey blood from the 
heart to the organs and back to the heart. This system should work so as to minimize 
the energy expended by the heart in pumping the blood. In particular, this energy is 
reduced when the resistance of the blood is lowered. One of Poiseuille’s Laws gives the 
resistance R of the blood as

R − C
L

r 4

where L is the length of the blood vessel, r is the radius, and C is a positive constant 
determined by the viscosity of the blood. (Poiseuille established this law experimen-
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tally, but it also follows from the results of Section 6.3.) Figure 7 shows a main blood 
vessel with radius r1 branching at an angle � into a smaller vessel with radius r2.

b

A D

B

r¡

r™

¨

C

a

(a)	 Express the total resistance R of the blood along the path ABC as a function of the 
branching angle �.
(b)	 Show that R is minimized when

cos � −
r 4

2

r4
1

(c)	 Find the optimal branching angle (correct to the nearest degree) when the radius of 
the smaller blood vessel is two-thirds the radius of the larger vessel.

solution
(a)	 From Figure 7 we see that

sin � −
b

| BC |     ?    | BC | − b csc �

and

cos � − | BD |
| BC |     ?    | BC | − (a 2 | AB |) sec �

Equating the expressions for | BC |, we have

b csc � − (a 2 | AB |) sec �    ?    b cot � − a 2 | AB |
so | AB | − a 2 b cot �

Then, from Poiseuille’s Law, the total resistance is

Rs�d − C | AB |
r 4

1
1 C | BC |

r 4
2

− CS a 2 b cot �

r 4
1

1
b csc �

r 4
2
D

(b)	 Differentiating the expression for Rs�d in part (a), we get

R9s�d − CS b csc2 �

r 4
1

2
b csc � cot �

r 4
2

D − bC csc �S csc �

r 4
1

2
cot �

r 4
2
D

So

R9s�d − 0    &?  
csc �

r 4
1

−
cot �

r 4
2

    &?  
r 4

2

r 4
1

−
cot �

csc �
− cos �

Figure �7
Vascular branching
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Now

R9s�d . 0    &?  
csc �

r 4
1

.
cot �

r 4
2

    &?    cos � ,
r 4

2

r 4
1

and

R9s�d , 0    when    cos � .
r 4

2

r 4
1

Noting that cos � is a decreasing function of � for 0 , � , �, we conclude from the 
First Derivative Test that the resistance has an absolute minimum value when

cos � −
r 4

2

r 4
1

(c)	 When r2 − 2
3r1 we have cos � − (2

3)4 and so

	 � − cos21 (2
3)4 < 79°	 ■

	 1.	��� Consider the following problem: Find two numbers whose 
sum is 23 and whose product is a maximum.

		  (a)	� Make a table of values, like the following one, so that the 
sum of the numbers in the first two columns is always 23. 
On the basis of the evidence in your table, estimate the 
answer to the problem.

First number Second number Product

1 22 22
2 21 42
3 20 60

f f f

		  (b)	� Use calculus to solve the problem and compare with your 
answer to part (a).

	 2.	��� Find two numbers whose difference is 100 and whose product 
is a minimum.

	 3.	�� �Find two positive numbers whose product is 100 and whose 
sum is a minimum.

	 4.	�� �The sum of two positive numbers is 16. What is the smallest 
possible value of the sum of their squares?

	 5.	�� �Find the dimensions of a rectangle with perimeter 100 m 
whose area is as large as possible.

	 6.	�P hotosynthesis �� The rate sin mg carbonym3yhd at which 
photosynthesis takes place for a species of phytoplankton is 
modeled by the function

P −
100 I

I 2 1 I 1 4

		��  �where I is the light intensity (measured in thousands of foot-
candles). For what light intensity is P a maximum?

	 7.	� Crop yield �� A model used for the yield Y of an agricultural 
crop as a function of the nitrogen level N in the soil (mea-
sured in appropriate units) is

Y −
kN

1 1 N 2

		��  �where k is a positive constant. What nitrogen level gives the 
best yield?

	 8.	��� The measles pathogenesis function

f std − 2tst 2 21dst 1 1d

		���  is used in Section 5.1 to model the development of the 
disease, where t is measured in days and f std represents the 
number of infected cells per milliliter of plasma. What is the 
peak infection time for the measles virus?

	 9.	��� Consider the following problem: A farmer with 750 ft of  
fencing wants to enclose a rectangular area and then divide 
it into four pens with fencing parallel to one side of the rect-
angle. What is the largest possible total area of the four pens?

		  (a)	� Draw several diagrams illustrating the situation, some 
with shallow, wide pens and some with deep, narrow 
pens. Find the total areas of these configurations. Does it 
appear that there is a maximum area? If so, estimate it.

		  (b)	� Draw a diagram illustrating the general situation. Intro-
duce notation and label the diagram with your symbols.

		  (c)	 Write an expression for the total area.
		  (d)	� Use the given information to write an equation that 

relates the variables.

EXERCISES 4.4
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		���  different ways. Suppose � is a constant representing mortal-
ity rate. Find the optimal age at maturity for the following 
models.

		  (a)	 r −
lnsae2�ad

a
	 (b)	 R − ae2�a

Source: Adapted from D. Roff, The Evolution of Life Histories: Theory and 

Analysis (New York: Chapman and Hall, 1992).

	 18.	�E nzootic stability �� Suppose the rate at which people of 
age a get infected with a pathogen is given by �e2�a, where 
� is a positive constant. Not all infections develop into 
disease. Suppose that, of those individuals of age a that get 
infected, a fraction pa develop the disease (where p is a 
number chosen so that 0 , pa , 1 over the ages of 
interest). At what age is the rate of disease development the 
highest?

Source: Adapted from P. Coleman et al., “Endemic Stability––A Veterinary 

Idea Applied to Public Health,” The Lancet 357 (2001): 1284–86.

	 19.	��� If Csxd is the cost of producing x units of a commodity, then 
the average cost per unit is csxd − Csxdyx. The marginal 
cost is the rate of change of the cost with respect to the 
number of items produced, that is, the derivative C9sxd.

		  (a)	� Show that if the average cost is a minimum, then the 
marginal cost equals the average cost.

		  (b)	� If Csxd − 16,000 1 200x 1 4x 3y2, in dollars, find  
(i) the cost, average cost, and marginal cost at a produc-
tion level of 1000 units; (ii) the production level that 
will minimize the average cost; and (iii) the minimum 
average cost.

	 20.	��� If Rsxd is the revenue that a company receives when it sells 
x units of a product, then the marginal revenue function is 
the derivative R9sxd. The profit function is

Psxd − Rsxd 2 Csxd

		���  where C is the cost function from Exercise 19.
		  (a) �Show that if the profit Psxd is a maximum, then the 

marginal revenue equals the marginal cost.
		�  (b) �If Csxd − 16,000 1 500x 2 1.6x 2 1 0.004x 3 is the 

cost function and Rsxd − 1700x 2 7x 2 is the revenue 
function, find the production level that will maximize 
profit.

	 21.	� Sustainable harvesting �� Example 5 was based on the 
assumption that we want to maximize the total harvest  
size H, but instead we might want to maximize profit.

		  (a)	� Suppose the selling price of a unit of harvest is p dollars 
and the cost per unit harvested is C dollars. (Assume 
p . C.) Show that the fishing effort that maximizes 
profit is the same as the effort that maximizes the har-
vest size H.

		  (b)	� Suppose the selling price of a unit of harvest is p dollars 
and the unit cost is inversely proportional to the fishing 
effort h (that is, C − �yh). Assume � , rp. What is the 
fishing effort that maximizes profit? What is the limiting 
population size, assuming this fishing effort is used?

		  (e)	� Use part (d) to write the total area as a function of one  
variable.

		  (f)	� Finish solving the problem and compare the answer 
with your estimate in part (a).

	 10.	�� �Consider the following problem: A box with an open top is 
to be constructed from a square piece of cardboard, 3 ft 
wide, by cutting out a square from each of the four corners 
and bending up the sides. Find the largest volume that such 
a box can have.

		  (a)	� Draw several diagrams to illustrate the situation, some 
short boxes with large bases and some tall boxes with 
small bases. Find the volumes of several such boxes. 
Does it appear that there is a maximum volume? If so, 
estimate it.

		  (b)	� Draw a diagram illustrating the general situation. Intro-
duce notation and label the diagram with your symbols.

		  (c)	 Write an expression for the volume.
		  (d)	� Use the given information to write an equation that 

relates the variables.
		  (e)	� Use part (d) to write the volume as a function of one  

variable.
		  (f)	� Finish solving the problem and compare the answer 

with your estimate in part (a).

	 11.	��� If 1200 cm2 of material is available to make a box with a 
square base and an open top, find the largest possible 
volume of the box.

	 12.	��� A box with a square base and open top must have a volume 
of 32,000 cm3. Find the dimensions of the box that mini
mize the amount of material used.

	 13.	�� (a)	� Show that of all the rectangles with a given area, the 
one with smallest perimeter is a square.

		  (b)	� Show that of all the rectangles with a given perimeter, 
the one with greatest area is a square.

	 14.	��� A rectangular storage container with an open top is to 
have a volume of 10 m3. The length of its base is twice the 
width. Material for the base costs $10 per square meter. 
Material for the sides costs $6 per square meter. Find the 
cost of materials for the cheapest such container.

	 15.	�� �Find the point on the line y − 2x 1 3 that is closest to the  
origin.

	 16.	��� Find the point on the curve y − sx  that is closest to the  
point s3, 0d.

	 17.	�A ge and size at maturity �� Most organisms grow for a 
period of time before maturing reproductively. For many 
species of insects and fish, the later the age a at maturity, 
the larger the individual will be, and this translates into a 
greater reproductive output. At the same time, however, the 
probability of surviving to maturity decreases as the age of 
maturity increases. These contrasting effects can be com-
bined into a single measure of reproductive success in 
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		��  �where �1 (the angle of incidence) and �2 (the angle of 
refraction) are as shown. This equation is known as Snell’s 
Law.

C

A

B

¨¡

¨™

	 26.	��� The graph shows the fuel consumption c of a car (measured 
in gallons per hour) as a function of the speed v of the 
car. At very low speeds the engine runs inefficiently, so 
initially c decreases as the speed increases. But at high 
speeds the fuel consumption increases. You can see that  
csvd is minimized for this car when v < 30 miyh. How- 
ever, for fuel efficiency, what must be minimized is not  
the consumption in gallons per hour but rather the fuel 
consumption in gallons per mile. Let’s call this consump-
tion G. Using the graph, estimate the speed at which G has 
its minimum value.

√

c

0 20 40 60

	 27.	� Beehives �� In a beehive, each cell is a regular hexagonal 
prism, open at one end with a trihedral angle at the other 
end as in the figure.

s

trihedral
angle ̈rear

of cell

front
of cell

h

b

		���  It is believed that bees form their cells in such a way as 
to minimize the surface area for a given side length and 
height, thus using the least amount of wax in cell construc-
tion. Examination of these cells has shown that the measure 

		  (c)	� Explain how and why your answer to part (b) differs 
from that of part (a).

	 22.	��� The von Bertalanffy model for the growth of an individual 
fish assumes that an individual acquires energy at a rate that 
is proportional to its length squared, but that it uses energy 
for metabolism at a rate proportional to its length cubed. The 
underlying idea is that energy acquisition is proportional to a 
fish’s surface area, while energy utilization for metabolism  
is proportional to its mass (and thus its volume). Suppose the 
net energy available for growth at any time is the difference 
between acquisition and utilization through metabolism. 
What is the length at which growth will be fastest, as a 
function of the constants of proportionality?

	 23.	�N ectar foraging by bumblebees �� Suppose that, instead  
of the specific nectar function in Example 2, we have an 
arbitrary function N with Ns0d − 0, Nstd > 0, N9std . 0, 
N 0std , 0, and arbitrary travel time T.

		  (a)	� Interpret the conditions on the function N.
		  (b)	� Show that the optimal foraging time t satisfies the  

equation

N9std −
Nstd

t 1 T

		  (c)	� Show that, for any foraging time t satisfying the equa-
tion in part (b), the second derivative condition for a 
maximum value of the foraging function f  in Example 2 
is satisfied.

	 24.	� Aquatic birds �� Suppose that, instead of the specific oxy-
gen function in Example 4, we have an arbitrary function 
O with Os0d − 0, Ostd > 0, O9std . 0, O 0std , 0, and 
arbitrary travel time T.

		  (a)	� Interpret the conditions on the function O.
		  (b)	� Show that the optimal surface time t satisfies the  

equation

O9std −
Ostd 2 rT

t 1 T

		  (c)	� Show that, for any surface time t satisfying the equa-
tion in part (b), the second derivative condition for a 
maximum value of the foraging function Q in Example 4 
is satisfied.

	 25.	�� �Let v1 be the velocity of light in air and v2 the velocity of 
light in water. According to Fermat’s Principle, a ray of  
light will travel from a point A in the air to a point B in the 
water by a path ACB that minimizes the time taken. Show 
that

sin �1

sin �2
−

v1

v2
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Determine the ratio WyL corresponding to the mini-
mum expenditure of energy.

		  (c)	� What should the value of WyL be in order for the bird  
to fly directly to its nesting area D? What should the 
value of WyL be for the bird to fly to B and then along 
the shoreline to D?

		  (d)	� If the ornithologists observe that birds of a certain spe-
cies reach the shore at a point 4 km from B, how many 
times more energy does it take a bird to fly over water 
than over land?

13 km
B

C D

island

5 km

nest

	 30.	� Crows and whelks �� Crows on the west coast of Canada 
feed on whelks by carrying them to heights of about 5 m 
and dropping them onto rocks (several times if necessary)  
to break open their shells. Two of the questions raised by 
the author of a study of this phenomenon were “Do crows 
drop whelks from the best height for breaking?” and “How 
energetically profitable is dropping of whelks?” The author 
constructed poles and dropped whelks from various heights. 
A model based on the study’s data for the number of times a 
whelk needs to be dropped from a height h to be broken is

nshd −
h 1 14.8

h 2 1.2

		��  �where h is measured in meters. The energy expended by a 
crow in this activity is proportional to the height h and to 
the number nshd:

E − khnshd −
khsh 1 14.8d

h 2 1.2

		  (a)	� What value of h minimizes the energy expended by the 
crows?

		  (b)	� How does your answer to part (a) compare with the 
observed average dropping height of 5.3 m that is 
actually used by crows? Does the model support the 
existence of an optimal foraging strategy?

Source: Adapted from R. Zach, “Decision-making and Optimal Foraging in 

Northwestern Crows,” Behaviour 68 (1979): 106–17.

		���  of the apex angle � is amazingly consistent. Based on the 
geometry of the cell, it can be shown that the surface area S 
is given by

S − 6sh 2 3
2 s2 cot � 1 s3s 2s3 y2d csc �

		��  �where s, the length of the sides of the hexagon, and h, the 
height, are constants.

		  (a)	 Calculate dSyd�.
		  (b)	 What angle should the bees prefer?
		  (c)	� Determine the minimum surface area of the cell (in 

terms of s and h).

		��  �Note: Actual measurements of the angle � in beehives have 
been made, and the measures of these angles seldom differ 
from the calculated value by more than 2°.

	 28.	� Swimming speed of fish �� For a fish swimming at a speed 
v relative to the water, the energy expenditure per unit time 
is proportional to v 3. It is believed that migrating fish try to 
minimize the total energy required to swim a fixed distance. 
If the fish are swimming against a current u su , vd, then 
the time required to swim a distance L is Lysv 2 ud and the 
total energy E required to swim the distance is given by

Esvd − av3 ?
L

v 2 u

		��  where a is the proportionality constant.
		  (a)	 Determine the value of v that minimizes E.
		  (b)	 Sketch the graph of E.

		���  Note: This result has been verified experimentally; migrat-
ing fish swim against a current at a speed 50% greater than 
the current speed.

	 29.	� Bird flight paths �� Ornithologists have determined that 
some species of birds tend to avoid flights over large bodies 
of water during daylight hours. It is believed that more 
energy is required to fly over water than over land because 
air generally rises over land and falls over water during the 
day. A bird with these tendencies is released from an  
island that is 5 km from the nearest point B on a straight 
shoreline, flies to a point C on the shoreline, and then flies 
along the shoreline to its nesting area D. Assume that the 
bird instinctively chooses a path that will minimize its 
energy expenditure. Points B and D are 13 km apart.

		  (a)	� In general, if it takes 1.4 times as much energy to fly 
over water as it does over land, to what point C should 
the bird fly in order to minimize the total energy 
expended in returning to its nesting area?

		  (b)	� Let W and L denote the energy (in joules) per kilo-
meter flown over water and land, respectively. What 
would a large value of the ratio WyL mean in terms 
of the bird’s flight? What would a small value mean? 
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■ Project  Flapping and Gliding

Small birds like finches alternate between flapping their wings and keeping them folded 
while gliding (see Figure 1). In this project we analyze this phenomenon and try to deter-
mine how frequently a bird should flap its wings. Some of the principles are the same as 
for fixed-wing aircraft and so we begin by considering how required power and energy 
depend on the speed of airplanes.1

Path of wing tip 

	 1.	� The power needed to propel an airplane forward at velocity v is

P − Av 3 1
BL 2

v

		�  �where A and B are positive constants specific to the particular aircraft and L is 
the lift, the upward force supporting the weight of the plane. Find the speed that 
minimizes the required power.

	 2.	�� The speed found in Problem 1 minimizes power but a faster speed might use less 
fuel. The energy needed to propel the airplane a unit distance is E − Pyv. At 
what speed is energy minimized?

	 3.	�� How much faster is the speed for minimum energy than the speed for minimum 
power?

	 4.	�� When applying the equation of Problem 1 to bird flight, we split the term Av 3 
into two parts: Abv 3 for the bird’s body and Awv 3 for its wings. Let x be the frac-
tion of flying time spent in flapping mode. If m is the bird’s mass and all the lift 
occurs during flapping, then the lift is mtyx, where t is the acceleration due to 
gravity, and so the power needed during flapping is

Pflap − sAb 1 Awdv 3 1
Bsmtyxd2

v

		�  �The power while wings are folded is Pfold − Abv 3. Show that the average power 
over an entire flight cycle is

P − xPflap 1 s1 2 xdPfold − Abv 3 1 xAwv 3 1
Bm2t 2

xv

	 5.	�� For what value of x is the average power a minimum? What can you conclude if 
the bird flies slowly? What can you conclude if the bird flies increasingly faster?

	 6.	�� The average energy over a cycle is E − Pyv. What value of x minimizes E?

	 7.	�� Compare your answers to Problems 5 and 6. What do you notice?

Figure �1
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1.� Adapted from R. Alexander, Optima for Animals (Princeton, NJ: Princeton University Press, 1996).
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■ Project  The Tragedy of the Commons: An Introduction to Game Theory

In Example 4.4.5 we explored sustainable fish harvesting. We assumed that a single 
company is exploiting the resource and found that the steady-state population size in the 
presence of harvesting satisfied the equation

rNS1 2
N

KD − hN

where N is the population size, r and K are positive constants, and h is the fishing effort. 
In reality, fish stocks are part of the “Commons,” meaning that no single person has 
exclusive rights to them. Suppose, for example, that a second company begins to exploit 
the same population. Then there are two fishing efforts, h1 and h2, one for each company. 
Once the population size has stabilized, the equation

rNS1 2
N

KD − h1N 1 h2N

must hold, where h1N and h2N are the total harvests for companies 1 and 2, respectively. 
Suppose you run company 1 and before company 2 arrives you are using the optimal h 
calculated in Example 4.4.5, that is, h1 − 1

2r.

	 1.	�� When company 2 arrives, it needs to decide upon a fishing effort h2. What value 
of h2 maximizes its harvest once the population has reached a steady state, 
assuming that you continue using h1?

	 2.	�� Once your competitor is using their rate obtained in Problem 1, your harvesting 
rate will no longer be optimal for you. What is your new optimal rate h*

1, given 
that your competitor continues to use the rate found in Problem 1?

	 3.	�� More generally, determine your optimal fishing effort as a function of the rate 
your competitor uses and your competitor’s optimal fishing effort as a function of 
the rate you use. These are referred to as the “best response” fishing efforts.

	 4.	�� The harvesting problem can be viewed as a game played between the two 
companies, where the payoff to each depends on both of their choices of fishing 
effort. An area of mathematics called game theory has been developed to ana-
lyze such problems. A key concept in game theory is that of a Nash equilibrium, 
which is a pair of values h*

1 and h *
2 that simultaneously satisfy both best response 

functions. At a Nash equilibrium each party is doing the best that it can, given the 
choice of its competitor. What is the Nash equilibrium pair of fishing efforts?

	 5.	�� What is the total population size at the Nash equilibrium, and what are the total 
harvests of you and your competitor?

	 6.	�� Demonstrate that both you and your competitor could have a higher total harvest 
than that attained at the Nash equilibrium if you could agree to cooperate and to 
split the harvest that you were obtaining before your competitor showed up.

	 7.	�� Problem 6 shows that both you and your competitor are worse off at the Nash 
equilibrium than you would be if you agreed to cooperate. Show that, in terms of 
population size, the fish population is also worse off. This is the “Tragedy of the 
Commons.”

©
 h

aa
k7

8 
/ S

hu
tt

er
st

oc
k.

co
m

Nash
John F. Nash, Jr. (1928–) is an Ameri-
can mathematician best known for his 
work in game theory. He developed the 
idea now known as a Nash equilibrium 
in his 28-page doctoral thesis in 1950. 
In 1994 he was awarded the Nobel 
Prize in Economics for this work. Nash 
also made several other foundational 
contributions to advanced mathematics, 
despite suffering from schizophrenia. 
His extraordinary life is chronicled in the 
book A Beautiful Mind by Sylvia Nasar 
and in a Hollywood movie of the same 
name. 
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4.5 Recursions: Equilibria and Stability

In Section 1.6 we looked at recursive sequences, which we also called difference equa-
tions or discrete-time models. These are defined by a recursion of the form

an11 − f sand    or    xt11 − f sxtd    or    Nt11 − f sNtd

where f  is the updating function, Nt is the number of individuals in a population at time 
t, and Nt11 is the population one unit of time into the future. Then in Section 2.1 we 
investigated the long-term behavior of such recursions. In particular, we saw that some 
recursive sequences approach a limiting value as t becomes large:

lim
t l`

 xt − L

Here we assume that the updating function f  that defines the recursion is a differen-
tiable function and learn that the values of its derivative play a role in determining the 
limiting behavior of the sequence.

■ Equilibria

(1) Definition � An equilibrium of a recursive sequence xt11 − f sxtd is a num-
ber x̂ that is left unchanged by the function f , that is,

f sx̂d − x̂

It’s helpful to think of an equilibrium as a point on a number line. An equilibrium is 
sometimes called a fixed point because f  leaves the point x̂ fixed. Notice that if x̂ is an 
equilibrium and if, for instance, x6 − x̂, then

x7 − f sx6d − f sx̂d − x̂

and, similarly, all of the following terms in the sequence are also equal to x̂.
To find the equilibria algebraically, we solve the equation f sxd − x, if possible. To 

locate them geometrically we graph the curves y − f sxd and y − x (the diagonal line) 
and see where they intersect. Because the recursion is xt11 − f sxtd, when we graph f  
we label the horizontal and vertical axes xt and xt11 , as in Figure 1. For that particular 
recursion we see that there are three points of intersection and therefore three equilibria, 
0, a, and b.

(2) Definition � An equilibrium is called stable if solutions that begin close to 
the equilibrium approach that equilibrium. It is called unstable if solutions that 
start close to the equilibrium move away from it.

So when we say that x̂ is a stable equilibrium of the recursion xt11 − f sxtd we mean 
that if xt is a solution of the recursion and x0 is sufficiently close to x̂, then xt l x̂  
as t l `.

0

xt+1

xt

xt+1=xt

a b

f
b

a

Figure �1
The recursion xt11 − f sxtd has three 
equilibria
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 Example 1   |  Determine the equilibrium of the difference equation Nt11 − RNt, 
where R . 0, and classify it as stable or unstable.

Solution � The equilibrium N̂ satisfies the equation N̂ − RN̂. The only solution of 
sR 2 1dN̂ − 0 is N̂ − 0, unless R − 1. We know that the solution of the recursion 
Nt11 − RNt is Nt − N0 ? Rt. There are three cases:

■ � If 0 , R , 1, then Nt − N0 ? Rt l 0 as t l `, so Nt l N̂ − 0. Therefore the 
equilibrium N̂ − 0 is stable in this case.

■ �	 If R . 1, then Nt − N0 ? Rt l ` as t l `, and so the equilibrium N̂ − 0 is 
unstable in this case.

■ �	 If R − 1, then Nt − N0 for all t. This case is called neutral.	 ■

■ Cobwebbing
There is a graphical method for finding equilibria and determining whether they are 
stable or unstable. It is called cobwebbing and is illustrated in Figure 2. We start with an 
initial value x0 on the horizontal axis and locate x1 − f sx0d as the distance from the point 
x0 up to the point sx0, x1d on the graph of f. Then we draw the horizontal line segment 
from sx0, x1d to the point sx1, x1d on the diagonal line. The point x1 lies directly beneath 
sx1, x1d on the horizontal axis.

0

xt+1

xtx¸ x¡

(x¸, x¡)

f xt+1=xt

(x¡, x¡)x¡

(a)

0

xt+1

xtx¸

f xt+1=xt

(b)

In Figure 2(b) we repeat this procedure to obtain x2 from x1, drawing a vertical line 
segment from sx1, x1d to sx1, x2d on the graph of f  and then a horizontal line segment 
over to the diagonal. Continuing in this manner we create a zigzag path that reflects off 
the diagonal line and shows how the successive terms in the sequence can be obtained 
geometrically.

 Example 2   |  Use cobwebbing to determine whether the equilibria x̂ − 0, x̂ − a, 
and x̂ − b in Figure 1 are stable or unstable.

Figure �2
Cobwebbing
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Solution � Figure 3 is a larger version of Figure 1. We experiment with different 
initial values and use cobwebbing to visualize the values of xt. We notice that

 if  a , x0 , b,  then  lim
t l`

 xt − b

 but if  0 , x0 , a,  then  lim
t l`

 xt − 0

0

xt+1

xt+1=xt

a b

f

xtx¸ x¸

b

a

Solutions that start close to b approach b, so x̂ − b is a stable equilibrium. Likewise, 
solutions that start close to 0 approach 0, so x̂ − 0 is also a stable equilibrium. But solu-
tions that start close to a (on either side of a) move away from a. So x̂ − a is an unstable 
equilibrium.	 ■

So far we have used cobwebbing only with increasing functions f. Figure 4 shows 
what happens when f  decreases. We apply cobwebbing with initial value x0 to a dif-
ference equation xt11 − f sxtd with decreasing f. Instead of the zigzag paths in Figures 
2 and 3, you can see that we get spiral paths and the values of xt oscillate around the 
equilibrium x̂. In Figure 4(a), xt l x̂ as t l `, so x̂ is stable. In Figure 4(b), however, the 
values of xt move away from x̂, so x̂ is unstable.

xt+1

0

f

xt+1=xt

xt

(a) Stable spiral (b) Unstable spiral

xt+1

0

f

xt+1=xt

xtx̂x̂x¸ x¸

Figure 3
Cobwebbing with stable and  

unstable equilibria

Figure �4  Spiral cobwebbing
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■ Stability Criterion
An equilibrium occurs when the graph of f  crosses the diagonal line, which has slope 1. 
Figure 5 shows the increasing function f  from Figure 3 and we see that at the stable 
equilibrium x̂ − b the curve crosses the diagonal from above to below, so f 9sbd , 1. At 
the unstable equilibrium x̂ − a the curve crosses the diagonal from below to above, so 
f 9sad . 1.

If f  is decreasing, we see from diagrams like Figure 4 that stable spirals occur when 
21 , f 9sx̂d , 0 and unstable spirals occur for steeper curves, that is, f 9sx̂d , 21.

To summarize, our intuition tells us that equilibria are stable when 21 , f 9sx̂d , 1 
and unstable when f 9sx̂d . 1 or f 9sx̂d , 21. So the following theorem appears plau-
sible. A proof, using the Mean Value Theorem, appears in Appendix E.

(3) The Stability Criterion for Recursive Sequences � Suppose that x̂ is 
an equilibrium of the recursive sequence xt11 − f sxtd, where f 9 is continuous. If 

| f 9sx̂d | , 1, the equilibrium is stable. If | f 9sx̂d | . 1, the equilibrium is unstable.

Let’s revisit some of the difference equations we studied in Section 2.1 and see how 
the Stability Criterion applies to those equations.

 Example 3   |  BB   Drug concentration  In Example 2.1.5 we considered the 
difference equation

Cn11 − 0.3Cn 1 0.2

where Cn is the concentration of a drug in the bloodstream of a patient after injection on 
the nth day, 30% of the drug remains in the bloodstream the next day, and the daily dose 
raises the concentration by 0.2 mgymL.

Here the recursion is of the form Cn11 − f sCnd, where f sxd − 0.3x 1 0.2. The equi-
librium concentration is Ĉ, where 0.3Ĉ 1 0.2 − Ĉ. Solving this equation gives Ĉ − 2

7. 
The derivative of f  is f 9sĈd − 0.3, which is less than 1, so the equilibrium is stable, as 
illustrated by the cobwebbing in Figure 6. In fact, in Section 2.1 we calculated that

	 lim
nl`

 Cn −
2

7
	 ■

 Example 4   |  BB   Logistic difference equation  In Example 2.1.8 we 
examined the long-term behavior of the terms defined by the logistic difference 
equation

xt11 − cxts1 2 xtd

for different positive values of c. Use the Stability Criterion to explain that behavior.

Solution � We can write the logistic equation as xt11 − f sxtd, where

f sxd − cxs1 2 xd

We first find the equilibria by solving the equation f sxd − x:

cxs1 2 xd − x &? x − 0 or cs1 2 xd − 1

So one equilibrium is x̂ − 0. To find the other one, note that

c 2 cx − 1 &? c 2 1 − cx &? x −
c 2 1

c
− 1 2

1

c

0

xt+1

xt

xt+1=xt

a b

slope<1

slope>1

f

b

a

Figure �5

0

Cn+1

Cn

Cn+1=Cn

2/7

Figure �6
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So the other equilibrium is

x̂ − 1 2
1

c

The derivative of f sxd − csx 2 x 2d is f 9sxd − cs1 2 2xd. For the first equilibrium, 
x̂ − 0, we have f 9s0d − c, so the Stability Criterion tells us that x̂ − 0 is stable if 
0 , c , 1 and unstable if c . 1.

For the second equilibrium, x̂ − 1 2 1yc, we have

f 9S1 2
1

cD − cF1 2 2S1 2
1

cDG − cS 2

c
2 1D − 2 2 c

The Stability Criterion says that this equilibrium is stable if | 2 2 c | , 1. But

| 2 2 c | , 1 &? 21 , 2 2 c , 1 &? 1 , c , 3

We also note that f 9sx̂d is negative when 2 2 c , 0, that is, c . 2, so oscillation 
occurs when c . 2. Let’s compile all this information in the following chart:

x̂ − 0 x̂ − 1 2
1

c

0 , c , 1 stable
1 , c , 2 unstable stable
2 , c , 3 unstable stable (oscillation)
c . 3 unstable unstable (oscillation)

Referring to the chart, we find an explanation for what we noticed in Example 2.1.8. 
When c , 3, one of the equilibria is stable and so the terms converge to that number. 
But when c . 3 both equilibria are unstable and so the terms have nowhere to go; they 
don’t approach any fixed number.	 ■

 Example 5   |  BB   Ricker equation  W. E. Ricker introduced the discrete- 
time model

xt11 − cxte2xt    c . 0

in the context of modeling fishery populations. Find the equilibria and determine the 
values of c for which they are stable.

Solution � The Ricker equation is xt11 − f sxtd, where

f sxd − cxe2x

To find the equilibria we solve the equation f sxd − x:

cxe2x − x &? x − 0 or ce2x − 1

One equilibrium is x̂ − 0. The other satisfies

ce2x − 1 &? c − ex &? x − ln c

The second equilibrium is x̂ − ln c.

In Exercises 17–20 you are asked to 
illustrate the four cases in the chart in 
Example 4 both by cobwebbing and by 
graphing the recursive sequence.
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We use the Product Rule to differentiate f :

f 9sxd − cxs2e2xd 1 ce2x − cs1 2 xde2x

For x̂ − 0 we have f 9s0d − c, so it is stable if 0 , c , 1 and unstable if c . 1. For 
x̂ − ln c we get

f 9sln cd − cs1 2 ln cde2ln c − cs1 2 ln cd ?
1

c
− 1 2 ln c

Therefore

| f 9sx̂d | , 1 &? | 1 2 ln c | , 1 &? 21 , 1 2 ln c , 1

Now

1 2 ln c , 1 &? ln c . 0 &? c . 1

and

21 , 1 2 ln c &? ln c , 2 &? c , e 2

By the Stability Criterion, x̂ − ln c is stable when

1 , c , e 2

When 0 , c , 1 or c . e 2, x̂ − ln c is unstable.
We also note that oscillation occurs when f 9sx̂d , 0, so

1 2 ln c , 0 ? ln c . 1 ? c . e

Figure 7 illustrates cobwebbing for the Ricker equation for three values of c.

0

xt+1

xt0

xt+1

xt+1=xt

xt

f

c=2.5 stable

0

xt+1

xt

c=6 stable spiral c=9 unstable spiral

ln cln c ln c

■Figure �7
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EXERCISES 4.5

	 7.	 xt11 −
xt

0.2 1 xt
	 8.	 xt11 −

3xt

1 1 xt

	 9.	 xt11 − 10xt e22xt	 10.	 xt11 − xt
3 2 3xt

2 1 3xt

	� 11–12 � Find the equilibria of the difference equation and 
classify them as stable or unstable. Use cobwebbing to find 
lim tl` xt for the given initial values.

	 11.	�� xt11 −
4xt

2

xt
2 1 3

,  x0 − 0.5,  x0 − 2

	 12.	�� xt11 −
7xt

2

xt
2 1 10

,  x0 − 1,  x0 − 3

	� 13–14 � Find the equilibria of the difference equation. Deter-
mine the values of c for which each equilibrium is stable.

	 13.	 xt11 −
cxt

1 1 xt
	 14.	 xt11 −

xt

c 1 xt

	 15.	� Drug pharmacokinetics �� A patient takes 200 mg of a 
drug at the same time every day. Just before each tablet is 
taken, 10% of the drug remains in the body.

		  (a)	� If Qn is the quantity of the drug in the body just after 
the nth tablet is taken, write a difference equation 
expressing Qn11 in terms of Qn.

		  (b)	� Find the equilibria of the equation in part (a).
		  (c)	 Draw a cobwebbing diagram for the equation.

	 16.	� Drug pharmacokinetics �� A patient is injected with a 
drug every 8 hours. Immediately before each injection the 
concentration of the drug has been reduced by 40% and the 
new dose increases the concentration by 1.2 mgymL.

		  (a)	� If Qn is the concentration of the drug in the body just 
after the nth injection is given, write a difference equa-
tion expressing Qn11 in terms of Qn.

		  (b)	� Find the equilibria of the equation in part (a).
		  (c)	 Draw a cobwebbing diagram for the equation.

	� 17–20 � Logistic difference equation  Illustrate the results of 
Example 4 for the logistic difference equation by cobwebbing 
and by graphing the first ten terms of the sequence for the given 
values of c and x0.

	 17.	 c − 0.8,  x0 − 0.6

	 18.	 c − 1.8,  x0 − 0.1

	 19.	 c − 2.7,  x0 − 0.1

	 20.	 c − 3.6,  x0 − 0.4

	� 1–4 � The graph of the function f  for a recursive sequence 
xt11 − f sxtd is shown. Estimate the equilibria and classify them 
as stable or unstable. Confirm your answer by cobwebbing.

	 1.	

0

0.5

0.5

xt+1

f

xt

	 2.	

0

0.5

0.5

xt+1

f

xt

	 3.	

0

1

1 2

xt+1

f

xt

	 4.	

0

1

2

1 2

xt+1

f

xt

	� 5–10 � Find the equilibria of the difference equation and classify 
them as stable or unstable.

	 5.	 xt11 − 1
2 xt

2	 6.	 xt11 − 1 2 xt
2
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		���  a gene for drug resistance in malaria:

pt11 −
pt

2WRR 1 pts1 2 ptdWRS

pt
2WRR 1 2pts1 2 ptdWRS 1 s1 2 ptd2WSS

		���  where WRR, WRS, and WSS are constants representing the 
probability of survival of the three genotypes. In fact this 
model applies to the evolutionary dynamics of any gene in a 
population of diploid individuals.

		  (a)	� Find the equilibria of the model in terms of the  
constants.

		  (b)	� Suppose that WRR − 3
4, WRS − 1

2, and WSS − 1
4. Deter-

mine the stability of each equilibrium (provided it lies 
between 0 and 1). Plot the cobwebbing diagram and 
interpret your results.

		  (c)	� Suppose that WRR − 1
2, WRS − 3

4, and WSS − 1
4. Determine 

the stability of each equilibrium. Plot the cobwebbing 
diagram and interpret your results.

	 25.	� Blood cell production �� A simple model of blood cell pro-
duction is given by

Rt11 − Rts1 2 dd 1 FsRtd

		���  where d is the fraction of red blood cells that die from one 
day to the next and Fsxd is a function specifying the number 
of new cells produced in a day, given that the current number 
is x. Find the equilibria and determine the stability in each 
case.

		  (a)	� Fsxd − �sK 2 xd, where � and K are positive constants

		  (b)	� Fsxd −
ax

b 1 x 2 , where a and b are positive constants

			   and a . bd

Source: Adapted from N. Mideo et al., “Understanding and Predicting 

Strain-Specific Patterns of Pathogenesis in the Rodent Malaria Plasmodium 

chabaudi,” The American Naturalist 172 (2008): E214–E328.

4.6 Antiderivatives

Suppose you know the rate at which a bacteria population is increasing and want to know 
the size of the population at some future time. Or suppose you know the rate of decrease 
of your blood alcohol concentration and want to know your BAC an hour from now. In 
each case, the problem is to find a function F whose derivative is a known function f. If 
such a function F exists, it is called an antiderivative of f.

Definition � A function F is called an antiderivative of f  on an interval I if 
F9sxd − f sxd for all x in I.

For instance, let f sxd − x 2. It isn’t difficult to discover an antiderivative of f  if we keep 
the Power Rule in mind. In fact, if Fsxd − 1

3 x 3, then F9sxd − x 2 − f sxd. But the function 
Gsxd − 1

3 x 3 1 100 also satisfies G9sxd − x 2. Therefore both F and G are antiderivatives  
of f . Indeed, any function of the form Hsxd − 1

3 x 3 1 C, where C is a constant, is an anti-
derivative of f . The following theorem says that f  has no other antiderivative. A proof of 
Theorem 1, using the Mean Value Theorem, is outlined in Exercise 46.

	 21.	� Sustainable harvesting �� In Example 4.4.5 we looked at a 
model of sustainable harvesting, which can be formulated as 
a discrete-time model:

Nt11 − Nt 1 rNtS1 2
Nt

K D 2 hNt

		��  Find the equilibria and determine when each is stable.

	 22.	�H eart excitation �� A simple model for the time xt it takes 
for an electrical impulse in the heart to travel through the 
atrioventricular node of the heart is

xt11 −
375

xt 2 90
1 100    xt . 90

		  (a)	� Find the relevant equilibrium and determine when it  
is stable.

		  (b)	 Draw a cobwebbing diagram.

Source: Adapted from D. Kaplan et al., Understanding Nonlinear Dynamics 

(New York: Springer-Verlag, 1995).

	 23.	� Species discovery curves ��  A common assumption is that 
the rate of discovery of new species is proportional to the 
fraction of currently undiscovered species. If dt is the frac-
tion of species discovered by time t, a recursion equation 
describing this process is

dt11 − dt 1 as1 2 dtd

		���  where a is a constant representing the discovery rate and 
satisfies 0 , a , 1. Find the equilibria and determine the 
stability.

	 24.	� Drug resistance in malaria �� In the project on page 78 we 
developed the following recursion equation for the spread of 
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(1) Theorem � If F is an antiderivative of f  on an interval I, then the most gen-
eral antiderivative of f  on I is

Fsxd 1 C

where C is an arbitrary constant.

Going back to the function f sxd − x 2, we see that the general antiderivative of f  is 
1
3 x 3 1 C. By assigning specific values to the constant C, we obtain a family of functions 
whose graphs are vertical translates of one another (see Figure 1). This makes sense 
because each curve must have the same slope at any given value of x.

 Example 1   |  Find the most general antiderivative of each of the following  
functions.
(a)  f sxd − sin x            (b)  f sxd − 1yx            (c)  f sxd − xn,    n ± 21

SOLUTION 

(a)  If Fsxd − 2cos x, then F9sxd − sin x, so an antiderivative of sin x is 2cos x. By 
Theorem 1, the most general antiderivative is Gsxd − 2cos x 1 C.

(b)  Recall from Section 3.7 that

d

dx
 sln xd −

1

x

So on the interval s0, `d the general antiderivative of 1yx is ln x 1 C. We also learned 
that

d

dx
 sln | x |d −

1

x

for all x ± 0. Theorem 1 then tells us that the general antiderivative of f sxd − 1yx is 
ln | x | 1 C on any interval that doesn’t contain 0. In particular, this is true on each of 
the intervals s2`, 0d and s0, `d. So the general antiderivative of f  is

Fsxd − Hln x 1 C1

lns2xd 1 C2

if  x . 0

if  x , 0

(c)  We use the Power Rule to discover an antiderivative of xn. In fact, if n ± 21, then

d

dx
 S xn11

n 1 1D −
sn 1 1dxn

n 1 1
− xn

Thus the general antiderivative of f sxd − xn is

Fsxd −
xn11

n 1 1
1 C

This is valid for n > 0 since then f sxd − xn is defined on an interval. If n is negative 
(but n ± 21), it is valid on any interval that doesn’t contain 0.	 ■

As in Example 1, every differentiation formula, when read from right to left, gives 
rise to an antidifferentiation formula. In Table 2 we list some particular antiderivatives. 
Each formula in the table is true because the derivative of the function in the right col-
umn appears in the left column. In particular, the first formula says that the antideriva-

x

y

0
y= ˛

3

y=    -2˛
3

y=    -1˛
3

y=    +1˛
3

y=    +2˛
3

y=    +3˛
3

Figure �1
Members of the family of antideriva-
tives of f sxd − x 2
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tive of a constant times a function is the constant times the antiderivative of the function. 
The second formula says that the antiderivative of a sum is the sum of the antideriva-
tives. (We use the notation F9− f , G9 − t.)

(2) Table of Antidifferentiation Formulas

Function
Particular  

antiderivative Function
Particular  

antiderivative

cf sxd cFsxd cos x sin x

f sxd 1 tsxd Fsxd 1 Gsxd sin x 2cos x

x n sn ± 21d x n11

n 1 1
sec 2 x tan x

1yx ln | x | sec x tan x sec x

e x e x 1

1 1 x 2
tan21 x

e cx 1

c
e cx

 Example 2   |  Find all functions t such that

t9sxd − 4 sin x 1
2x 5 2 sx 

x

SOLUTION � We first rewrite the given function as follows:

t9sxd − 4 sin x 1
2x 5

x
2

sx 

x
− 4 sin x 1 2x 4 2

1

sx 

Thus we want to find an antiderivative of

t9sxd − 4 sin x 1 2x 4 2 x21y2

Using the formulas in Table 2 together with Theorem 1, we obtain

 tsxd − 4s2cos xd 1 2 
x 5

5
2

x1y2

1
2

1 C

− 24 cos x 1 2
5 x 5 2 2sx 1 C ■

In applications of calculus it is very common to have a situation as in Example 2, where 
it is required to find a function, given knowledge about its derivatives. An equation that  
involves the derivatives of a function is called a differential equation. These will be  
studied in some detail in Chapter 7, but for the present we can solve some elementary 
differential equations. The general solution of a differential equation involves an arbi-
trary constant (or constants) as in Example 2. However, there may be some extra condi-
tions given that will determine the constants and therefore uniquely specify the solution.

To obtain the most general anti
derivative from the particular ones in 
Table 2, we have to add a constant (or 
constants), as in Example 1.
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A differential equation of the form

dy

dt
− f std

is called a pure-time differential equation because the right side of the equation does 
not depend on y; it depends only on t (time). The solution will be a family of antideriva-
tives of f. The initial value of the solution may be specified by an initial condition of 
the form y − y0 when t − t0. Then the problem of finding a solution of the differential 
equation that also satisfies the initial condition is called an initial-value problem:

dy

dt
− f std        y − y0 when t − t0

 Example 3   |  Find f  if f 9sxd − ex 1 20s1 1 x 2 d21 and f s0d − 22.

SOLUTION � The general antiderivative of

f 9sxd − ex 1
20

1 1 x 2

is	 f sxd − ex 1 20 tan21x 1 C

To determine C we use the fact that f s0d − 22:

f s0d − e 0 1 20 tan21 0 1 C − 22

Thus we have C − 22 2 1 − 23, so the particular solution is

	 f sxd − ex 1 20 tan21x 2 3	 ■

 Example 4   |  HIV incidence and prevalence  The rate I at which people 
were becoming infected with HIV (termed the incidence) in New York in the early 
1980s is plotted in Figure 3. We can see from the figure that the data are well approxi-
mated by the linear function I std − 16 1 242t, where t measures the number of years 
since 1982. Suppose there were 80 infections at year t − 0. What is the number of 
infections expected in 1990 (termed the prevalence)?

Solution � Let Pstd be the prevalence in year t, that is, the number of infections. We 
are given that

dP

dt
− I std − 16 1 242t        Ps0d − 80

This is an initial-value problem for a pure-time differential equation. The general 
solution is given by the antiderivative of dPydt:

Pstd − 16t 1 121t 2 1 C

Then Ps0d − C, but we are given that Ps0d − 80, so C − 80. The solution is

Pstd − 80 1 16t 1 121t 2

40

_2 3
f

fª

_25

Figure �2

Figure 2 shows the graphs of the func-
tion f 9 in Example 3 and its antideriva-
tive f. Notice that f 9sxd . 0, so f  is 
always increasing. Also notice that 
when f 9 has a maximum or minimum, 
f  appears to have an inflection point. 
So the graph serves as a check on our 
calculation.

19831982 1984 1985 1986

I

t

800

400

Figure �3
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The projected number of infections in 1990 is

Ps8d − 80 1 16 ? 8 1 121 ? 82 − 7952

The actual number was estimated to be 7200.	 ■

 Example 5   |  Find f  if f 0sxd − 12x 2 1 6x 2 4, f s0d − 4, and f s1d − 1.

SOLUTION � The general antiderivative of f 0sxd − 12x 2 1 6x 2 4 is

f 9sxd − 12 
x 3

3
1 6 

x 2

2
2 4x 1 C − 4x 3 1 3x 2 2 4x 1 C

Using the antidifferentiation rules once more, we find that

f sxd − 4 
x 4

4
1 3 

x 3

3
2 4 

x 2

2
1 Cx 1 D − x 4 1 x 3 2 2x 2 1 Cx 1 D

To determine C and D we use the given conditions that f s0d − 4 and f s1d − 1. Since 
f s0d − 0 1 D − 4, we have D − 4. Since

f s1d − 1 1 1 2 2 1 C 1 4 − 1

we have C − 23. Therefore the required function is

	 f sxd − x 4 1 x 3 2 2x 2 2 3x 1 4	 ■

Antidifferentiation is particularly useful in analyzing the motion of an object moving 
in a straight line. Recall that if the object has position function s − f std, then the veloc-
ity function is vstd − s9std. This means that the position function is an antiderivative of 
the velocity function. Likewise, the acceleration function is astd − v9std, so the velocity 
function is an antiderivative of the acceleration. If the acceleration and the initial values 
ss0d and vs0d are known, then the position function can be found by antidifferentiating 
twice.

 Example 6   |  A particle moves in a straight line and has acceleration given by 
astd − 6t 1 4. Its initial velocity is vs0d − 26 cmys and its initial displacement is 
ss0d − 9 cm. Find its position function sstd.

SOLUTION � Since v9std − astd − 6t 1 4, antidifferentiation gives

vstd − 6 
t 2

2
1 4t 1 C − 3t 2 1 4t 1 C

Note that vs0d − C. But we are given that vs0d − 26, so C − 26 and

vstd − 3t 2 1 4t 2 6

Since vstd − s9std, s is the antiderivative of v:

sstd − 3 
t 3

3
1 4 

t 2

2
2 6t 1 D − t 3 1 2t 2 2 6t 1 D

This gives ss0d − D. We are given that ss0d − 9, so D − 9 and the required position 
function is

	 sstd − t 3 1 2t 2 2 6t 1 9	 ■
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EXERCISES 4.6

	� 1–20 � Find the most general antiderivative of the function.  
(Check your answer by differentiation.)

	 1.	 f sxd − 1
2 1 3

4 x 2 2 4
5 x 3	 2.	 f sxd − 8x 9 2 3x 6 1 12x 3

	 3.	 f sxd − sx 1 1ds2x 2 1d	 4.	 f sxd − x s2 2 xd2

	 5.	 f sxd − 5x 1y4 2 7x 3y4	 6.	 f sxd − 2x 1 3x 1.7

	 7.	 f sxd − 6sx 2 s6 x 	 8.	 f sxd − s4 x 3 1 s3 x 4 

	 9.	 f sxd − s2 	 10.	 f sxd − e 2

	 11.	 cstd −
3

t 2 ,  t . 0	 12.	 hsmd −
2

sm 

	 13.	 ts�d − cos � 2 5 sin �	 14.	 f sxd − 2sx 1 6 cos x

	 15.	 vssd − 4s 1 3e s	 16.	 usrd − e 22r

	 17.	 f sud −
u 4 1 3su 

u 2 	 18.	 f sxd − 3e x 1 7 sec 2 x

	 19.	 f std −
t 4 2 t 2 1 1

t 2 	 20.	 f sxd −
1 1 x 2 x 2

x

	� 21–28 � Solve the initial-value problem.

	 21.	
dy

dt
− t 2 1 1,  t > 0,  y − 6 when t − 0

	 22.	
dy

dt
− 1 1

2

t
,  t . 0,  y − 5 when t − 1

	 23.	
dP

dt
− 2e 3t,  t > 0,  Ps0d − 1

	 24.	
dm

dt
− 100e20.4 t,  t > 0,  ms0d − 50

	 25.	
dr

d�
− cos � 1 sec � tan �,  0 , � , �y2,  rs�y3d − 4

	 26.	
dy

dx
− x 2 1 1 1

1

x 2 1 1
,  y − 0 when x − 1

	 27.	
du

dt
− st 1

2

st 
,  t . 0,  us1d − 5

	 28.	
dv

dt
− e2ts1 1 e 2 td,  t > 0,  vs0d − 3

	� 29–40 � Find f .

	 29.	 f 0sxd − 6x 1 12x 2	 30.	 f 0sxd − 2 1 x 3 1 x 6

	 31.	 f 0sxd − 2
3 x 2y3	 32.	 f 0sxd − 6x 1 sin x

	 33.	 f 9sxd − 1 2 6x,  f s0d − 8

	 34.	 f 9sxd − 8x 3 1 12x 1 3,  f s1d − 6

	 35.	�� f 9sxd − sx s6 1 5xd,  f s1d − 10

	 36.	�� f 9sxd − 2x 2 3yx 4,  x . 0,  f s1d − 3

	 37.	 f 0s�d − sin � 1 cos �,  f s0d − 3,  f 9s0d − 4

	 38.	 f 0sxd − 8x 3 1 5,   f s1d − 0,   f 9s1d − 8

	 39.	 f 0sxd − 2 2 12x,  f s0d − 9,  f s2d − 15

	 40.	�� f 0std − 2e t 1 3 sin t,    f s0d − 0,    f s�d − 0

	 41.	� Bacteria culture �� A culture of the bacterium Rhodobacter 
sphaeroides initially has 25 bacteria and t hours later 
increases at a rate of 3.4657e 0.1386 t bacteria per hour. Find the 
population size after four hours.

	 42.	��� A sample of cesium-37 with an initial mass of 75 mg decays  
t years later at a rate of 1.7325e20.0231t mgyyear. Find the  
mass of the sample after 20 years.

	 43.	��� A particle moves along a straight line with velocity function 
vstd − sin t 2 cos t and its initial displacement is ss0d − 0 m. 
Find its position function sstd.

	 44.	��� A particle moves with acceleration function 
astd − 5 1 4t 2 2t 2. Its initial velocity is vs0d − 3 mys and 
its initial displacement is ss0d − 10 m. Find its position after 
t seconds.

	 45.	��� A stone is dropped from the upper observation deck (the 
Space Deck) of the CN Tower, 450 m above the ground. 

		  (a)	� Find the distance of the stone above ground level at  
time t. Use the fact that acceleration due to gravity is 
t < 9.8 mys2.

		  (b)	 How long does it take the stone to reach the ground?
		  (c)	 With what velocity does it strike the ground?

	 46.	��� To prove Theorem 1, let F and G be any two antiderivatives 
of f  on I and let H − G 2 F.

		  (a)	� If x1 and x2 are any two numbers in I with x1 , x2, apply 
the Mean Value Theorem on the interval fx1, x2g to show 
that Hsx1d − Hsx2d. Why does this show that H is a con-
stant function?

		  (b)	� Deduce Theorem 1 from the result of part (a).

	 47.	��� The graph of f 9 is shown in the figure. Sketch the graph of f  
if f  is continuous on f0, 3g and f s0d − 21.

_1
x

y

0 1 2

1

2
y=fª(x)

	 48.	��� Find a function f  such that f 9sxd − x 3 and the line x 1 y − 0 
is tangent to the graph of f.

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



312    Chapter 4  |  Applications of Derivatives

	 7.	�� (a)	 What does l’Hospital’s Rule say?
		  (b)	� How can you use l’Hospital’s Rule if you have a product 

f sxd tsxd where f sxd l 0 and tsxd l ` as x l a?
		  (c)	� How can you use l’Hospital’s Rule if you have a differ-

ence f sxd 2 tsxd where f sxd l ` and tsxd l ` as  
x l a?

	 8.	�� (a)	� What is an equilibrium of the recursive sequence 
xt11 − f sxtd?

		  (b)	� What is a stable equilibrium? An unstable equilibrium?
		  (c)	 State the Stability Criterion.

	 9.	�� (a)	 What is an antiderivative of a function f ?
		  (b)	� Suppose F1 and F2 are both antiderivatives of f  on an  

interval I. How are F1 and F2 related?

Answers to the Concept Check can be found on the back 
endpapers.

	 1.	�� �Explain the difference between an absolute maximum and a 
local maximum. Illustrate with a sketch.

	 2.	�� (a)	 What does the Extreme Value Theorem say?
		  (b)	 Explain how the Closed Interval Method works.

	 3.	�� (a)	 State Fermat’s Theorem.
		  (b)	 Define a critical number of f.

	 4.	��� State the Mean Value Theorem and give a geometric  
interpretation.

	 5.	�� (a)	 State the Increasing/Decreasing Test.
		  (b)	� What does it mean to say that f  is concave upward on an 

interval I?
		  (c)	 State the Concavity Test.
		  (d)	 What are inflection points? How do you find them?

	 6.	�� (a)	 State the First Derivative Test.
		  (b)	 State the Second Derivative Test.
		  (c)	� What are the relative advantages and disadvantages of  

these tests?

CONCEPT CHECK

Chapter 4 Review

	� Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

	 1.	�� If f 9scd − 0, then f  has a local maximum or minimum at c.

	 2.	�� If f  has an absolute minimum value at c, then f 9scd − 0.

	 3.	��� If f  is continuous on sa, bd, then f  attains an absolute max-
imum value f scd and an absolute minimum value f sd d at 
some numbers c and d in sa, bd.

	 4.	�� �If f  is differentiable and f s21d − f s1d, then there is a 
number c such that | c | , 1 and f 9scd − 0.

	 5.	�� �If f 9sxd , 0 for 1 , x , 6, then f  is decreasing on (1, 6).

	 6.	�� �If f 0s2d − 0, then s2, f s2dd is an inflection point of the  
curve y − f sxd.

	 7.	��� If f 9sxd − t9sxd for 0 , x , 1, then f sxd − tsxd for 
0 , x , 1.

	 8.	�� �There exists a function f  such that f s1d − 22, f s3d − 0, 
and f 9sxd . 1 for all x.

	 9.	�� �There exists a function f  such that f sxd . 0, f 9sxd , 0, and 
f 0 sxd . 0 for all x.

	 10.	�� �There exists a function f  such that f sxd , 0, f 9sxd , 0, 
and f 0 sxd . 0 for all x.

	 11.	�� �If f  and t are increasing on an interval I, then f 1 t is  
increasing on I.

	 12.	�� �If f  and t are increasing on an interval I, then f 2 t is  
increasing on I.

	 13.	��� If f  and t are increasing on an interval I, then ft is  
increasing on I.

	 14.	��� If f  and t are positive increasing functions on an interval I, 
then ft is increasing on I.

	 15.	��� If f  is increasing and f sxd . 0 on I, then tsxd − 1yf sxd is 
decreasing on I.

	 16.	�� If f  is even, then f 9 is even.

	 17.	�� If f  is periodic, then f 9 is periodic.

	 18.	 lim
x l 0

 
x

e x − 1

TRUE-FALSE QUIZ
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	� 1–6 � Find the local and absolute extreme values of the function  
on the given interval.

	 1.	�� f sxd − x 3 2 6x 2 1 9x 1 1,    f2, 4g

	 2.	�� f sxd − xs1 2 x  ,    f21, 1g

	 3.	�� f sxd −
3x 2 4

x 2 1 1
,    f22, 2g

	 4.	 f sxd − sx 2 1 2xd3,    f22, 1g

	 5.	 f sxd − x 1 sin 2x,    f0, �g

	 6.	 f sxd − sln xdyx 2,    f1, 3g

	� 7–14 �
	 (a)	 Find the vertical and horizontal asymptotes, if any.
	 (b)	 Find the intervals of increase or decrease.
	 (c)	 Find the local maximum and minimum values.
	 (d)	 Find the intervals of concavity and the inflection points.
	 (e)	� Use the information from parts (a)–(d) to sketch the graph 

of f. Check your work with a graphing device.

	 7.	 f sxd − 2 2 2x 2 x 3	 8.	 f sxd − x 4 1 4x 3

	 9.	 f sxd − x 1 s1 2 x 	 10.	 f sxd −
1

1 2 x 2

	 11.	 y − sin2 x 2 2 cos x	 12.	 y − e 2x2x2

	 13.	 y − e x 1 e23x	 14.	 y − lnsx 2 2 1d

	 15.	�A ntibiotic pharmacokinetics �� A model for the concen-
tration of an antibiotic drug in the bloodstream t hours after 
the administration of the drug is

Cstd − 2.5se20.3t 2 e20.7td

		���  where C is measured in mgymL.
		  (a)	� At what time does the concentration have its maximum 

value? What is the maximum value?
		  (b)	� At what time does the inflection point occur? What is 

the significance of the inflection point?

	 16.	� Drug pharmacokinetics �� Another model for the concen-
tration of a drug in the bloodstream is

Cstd − 0.5t 2e20.6 t

		���  where t is measured in hours and C is measured in  mgymL.
		  (a)	� At what time does the concentration have its largest 

value? What is the largest value?
		  (b)	� How many inflection points are there? At what times do 

they occur? What is the significance of each inflection 
point?

	 ;		  (c)	� Compare the graphs of this concentration function and 
the one in Exercise 15. How are the graphs similar? 
How are they different?

	 17.	�P opulation bound �� Suppose that an initial population size 
is 300 individuals and the population grows at a rate of at 
most 120 individuals per week. What can you say about the 
population size after five weeks?

	 18.	��� Sketch the graph of a function that satisfies the following  
conditions:

		���  �f s0d − 0,    f  is continuous and even,  

		��  f 9sxd − 2x if 0 , x , 1, f 9sxd − 21 if 1 , x , 3,

		��  f 9sxd − 1 if x . 3

	� 19–25 � Evaluate the limit.

	 19.	 lim
xl0

 
tan �x

lns1 1 xd
	 20.	 lim

xl0
 
1 2 cos x

x 2 1 x

	 21.	 lim
xl 0

 
e4x 2 1 2 4x

x2 	 22.	 lim
xl `

 
e4x 2 1 2 4x

x2

	 23.	 lim
xl`

 x 3e2x	 24.	 lim
x l01

 x 2 ln x

	 25.	 lim
x l 11

 S x

x 2 1
2

1

ln xD
	 26.	��� Rank the functions in order of how quickly they grow  

as x l `.

y − s4 x     y − lns10xd    y − 10 x    y − s1 1 e x 

	 27.	��� Find two positive integers such that the sum of the first 
number and four times the second number is 1000 and the 
product of the numbers is as large as possible.

	 28.	��� Find the point on the hyperbola xy − 8 that is closest to the 
point s3, 0d.

	 29.	��� The velocity of a wave of length L in deep water is

v − KÎ L

C
1

C

L
 

		��  �where K and C are known positive constants. What is the 
length of the wave that gives the minimum velocity?

	 30.	��� The Ricker model for population growth is a discrete-time 
model of the form

nt11 − cnte2�nt

		���  For the constants c − 2 and � − 3, the model is 
nt11 − f sntd, where the updating function is

f snd − 2ne23n

		���  Find the largest value of f  and interpret it.

	 31.	� Drug resistance evolution �� A simple model for the 
spread of drug resistance is given by Dp − ps1 2 pds, 
where s is a measure of the reproductive advantage of the 
drug resistance gene in the presence of drugs, p is the 

EXERCISES
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314    Chapter 4  |  Applications of Derivatives

	� 37–40 � Find the most general antiderivative of the function.

	 37.	�� f sxd − sin x 1 sec x tan x,  0 < x , �y2

	 38.	 tstd − s1 1 tdyst 

	 39.	 qstd − 2 1 st 1 1dst 2 2 1d

	 40.	 ws�d − 2� 2 3 cos �

	� 41–42 � Solve the initial-value problem.

	 41.	
dy

dt
− 1 2 e� t,  y − 0 when t − 0

	 42.	
dr

dt
−

4

1 1 t 2 ,  rs1d − 2

	� 43–44 � Find f sxd.

	 43.	 f 0sxd − 1 2 6x 1 48x 2,    f s0d − 1,    f 9s0d − 2

	 44.	�� f 0sxd − 2x 3 1 3x 2 2 4x 1 5,    f s0d − 2,    f s1d − 0

	 45.	��� A particle moves in a straight line with acceleration 
astd − sin t 1 3 cos t, initial displacement ss0d − 0, and 
initial velocity vs0d − 2. Find its position function sstd.

	 46.	��� Sketch the graph of a continuous, even function f  such that 
f s0d − 0, f 9sxd − 2x if 0 , x , 1, f 9sxd − 21 if 
1 , x , 3, and f 9sxd − 1 if x . 3.

	 47.	��� If a rectangle has its base on the x-axis and two vertices on 
the curve y − e 2x2

, show that the rectangle has the largest 
possible area when the two vertices are at the points of 
inflection of the curve.

frequency of the drug resistance gene in the population, and 
Dp is the change in the frequency of the drug resistance 
gene in the population after one year. Notice that the 
amount of change in the frequency Dp differs depending on 
the gene’s current frequency p. What current frequency 
makes the rate of evolution Dp the largest?

	 32.	��� The thermic effect of food (TEF) is the increase in 
metabolic rate after a meal. Researchers used the functions

f std − 175.9te2ty1.3    tstd − 113.6te2ty1.85

		���  to model the TEF (measured in kJyh) for a lean person and 
an obese person, respectively.

		  (a)	� Find the maximum value of the TEF for both  
individuals.

	 ;		  (b)	� Graph the TEF functions for both individuals. Describe 
how the graphs are similar and how they differ.

Source: Adapted from G. Reed et al., “Measuring the Thermic Effects of 

Food,” American Journal of Clinical Nutrition 63 (1996): 164–69.

	� 33–34 � Find the equilibria of the difference equation and clas-
sify them as stable or unstable.

	 33.	 xt11 −
4xt

1 1 5xt
	 34.	 xt11 − 5xte24xt

	 35.	��� Find the equilibria of the difference equation

xt11 −
6xt

2

xt
2 1 8

		���  and classify them as stable or unstable. Use cobwebbing to 
evaluate lim tl` xt for x0 − 1 and x0 − 3.

	 ;	 36.	��� Let f sxd − 1.07x 1 sin x, 0 < x < 11. How many equi-
libria does the recursion xt11 − f sxtd have? Estimate  
their values and explain why they are stable or unstable.
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5.1  Areas, Distances, and Pathogenesis

5.2  The Definite Integral

5.3  �The Fundamental Theorem of Calculus
Project: The Outbreak Size of an Infectious Disease

5.4  The Substitution Rule

5.5  �Integration by Parts

5.6  Partial Fractions

5.7  Integration Using Tables and Computer Algebra Systems

5.8  Improper Integrals

CASE STUDY 1c: Kill Curves and Antibiotic Effectiveness

Shown is a transmission electron 

micrograph of a measles virus. 

In Sections 5.1 and 5.3 we will 

see how an integral can be used 

to represent the total amount 

of infection needed to develop 

symptoms of measles.

Scott Camazine / Alamy
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316    Chapter 5  |  Integrals

5.1 Areas, Distances, and Pathogenesis

In this section we discover that in trying to find the area under a curve or the distance  
traveled by a car, we end up with the same special type of limit.

Why would a biologist be interested in calculating an area? A botanist might want to 
know the area of a leaf and compare it with the leaf’s area at other stages of its develop-
ment. An ecologist might want to know the area of a lake and compare it with the area 
in previous years. An oncologist might want to know the area of a tumor and compare it 
with the areas at prior times to see how quickly it is growing. But there are also indirect 
ways in which areas are of interest. We will see at the end of this section, for example, 
that the area beneath part of the pathogenesis curve for a measles infection represents the 
amount of infection needed to develop symptoms of the disease.

■ The Area Problem
We begin by attempting to solve the area problem: Find the area of the region S that lies 
under the curve y − f sxd from a to b. This means that S, illustrated in Figure 1, is 
bounded by the graph of a continuous function f  [where f sxd > 0], the vertical lines 
x − a and x − b, and the x-axis.

0

y

a b x

y=ƒ

S
x=a

x=b

In trying to solve the area problem we have to ask ourselves: What is the meaning 
of the word area? This question is easy to answer for regions with straight sides. For a 
rectangle, the area is defined as the product of the length and the width. The area of a 
triangle is half the base times the height. The area of a polygon is found by dividing it 
into triangles (as in Figure 2) and adding the areas of the triangles.

h

b

A=   bh   A=A¡+A™+A£+A¢A=lw
l

w

1
2

A¡

A™ A£

A¢

Figure �1

S − hsx,yd | a < x < b, 0 < y < f sxdj

Figure �2

In chapter 3 we used the problems of finding tangent lines and rates of increase 

to introduce the derivative, which is the central idea in differential calculus. In much 

the same way, this chapter starts with the area and distance problems and uses them to 

formulate the idea of a definite integral, which is the basic concept of integral calculus. 

We will see in this chapter and the next how to use integrals to solve problems concern-

ing disease development, population dynamics, biological control, blood flow, and car-

diac output, among others.

There is a connection between integral calculus and differential calculus. The Funda-

mental Theorem of Calculus relates the integral to the derivative, and we will see in this 

chapter that it greatly simplifies the solution of many problems.
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However, it isn’t so easy to find the area of a region with curved sides. We all have an 
intuitive idea of what the area of a region is. But part of the area problem is to make this  
intuitive idea precise by giving an exact definition of area.

Recall that in defining a tangent we first approximated the slope of the tangent line 
by slopes of secant lines and then we took the limit of these approximations. We pursue 
a similar idea for areas. We first approximate the region S by rectangles and then we take 
the limit of the areas of these rectangles as we increase the number of rectangles. The 
following example illustrates the procedure.

 Example 1   |  Use rectangles to estimate the area under the parabola y − x 2 from 0 
to 1 (the parabolic region S illustrated in Figure 3).

SOLUTION � We first notice that the area of S must be somewhere between 0 and 1 
because S is contained in a square with side length 1, but we can certainly do better 
than that. Suppose we divide S into four strips S1, S2, S3, and S4 by drawing the vertical 
lines x − 1

4, x − 1
2, and x − 3

4 as in Figure 4(a).

(b)

0 1

(1, 1)

3
4

1
2

1
4

(a)

0

y

x1

(1, 1)

y=≈

3
4

1
2

1
4

S¢

S£S™
S¡

y

x

We can approximate each strip by a rectangle that has the same base as the strip and 
whose height is the same as the right edge of the strip [see Figure 4(b)]. In other words, 
the heights of these rectangles are the values of the function f sxd − x 2 at the right end-

points of the subintervals f0, 14 g, f1
4 , 12 g, f1

2 , 34 g, and f3
4 , 1g.

Each rectangle has width 14 and the heights are ( 1
4 )2

, ( 1
2 )2

, ( 3
4 )2

, and 12. If we let R4 be 
the sum of the areas of these approximating rectangles, we get

R4 − 1
4 ? (1

4)2
1 1

4 ? (1
2)2

1 1
4 ? (3

4)2
1 1

4 ? 12 − 15
32 − 0.46875

From Figure 4(b) we see that the area A of S is less than R4, so

A , 0.46875

Instead of using the rectangles in Figure 4(b) we could use the smaller rectangles in 
Figure 5 whose heights are the values of f  at the left endpoints of the subintervals. (The 
leftmost rectangle has collapsed because its height is 0.) The sum of the areas of these 
approximating rectangles is

L4 − 1
4 ? 02 1 1

4 ? ( 1
4 )2

1 1
4 ? (1

2)2
1 1

4 ? (3
4)2

− 7
32 − 0.21875

�We see that the area of S is larger than L4, so we have lower and upper estimates for A:

0.21875 , A , 0.46875

0

y

x1

(1, 1)

y=≈

S

Figure �3

Figure �4

0

y

x1

(1, 1)

3
4

1
2

1
4

y=≈

Figure �5
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We can repeat this procedure with a larger number of strips. Figure 6 shows what 
happens when we divide the region S into eight strips of equal width.

(a) Using left endpoints (b) Using right endpoints

0 1

(1, 1)

1
8

0 11
8

y=≈
(1, 1)

y

x

y

x

By computing the sum of the areas of the smaller rectangles sL8 d and the sum of the 
areas of the larger rectangles sR8 d, we obtain better lower and upper estimates for A:

0.2734375 , A , 0.3984375

So one possible answer to the question is to say that the true area of S lies some-
where between 0.2734375 and 0.3984375.

We could obtain better estimates by increasing the number of strips. The table at  
the left shows the results of similar calculations (with a computer) using n rectangles 
whose heights are found with left endpoints sLn d or right endpoints sRn d. In particular, 
we see by using 50 strips that the area lies between 0.3234 and 0.3434. With 1000 
strips we narrow it down even more: A lies between 0.3328335 and 0.3338335. A good 
estimate is obtained by averaging these numbers: A < 0.3333335.	 ■

From the values in the table in Example 1, it looks as if Rn is approaching 1
3 as n  

increases. We confirm this in the next example.

 Example 2   |  For the region S in Example 1, show that the sum of the areas of the 
upper approximating rectangles approaches 13, that is,

lim
n l `

 Rn − 1
3

SOLUTION � Rn is the sum of the areas of the n rectangles in Figure 7. Each rectangle 
has width 1yn and the heights are the values of the function f sxd − x 2 at the points 
1yn, 2yn, 3yn, . . . , nyn; that is, the heights are s1ynd2, s2ynd2, s3ynd2, . . . , snynd2. Thus

 Rn −
1

n
 S 1

nD2

1
1

n
 S 2

nD2

1
1

n
 S 3

nD2

1 ∙ ∙ ∙ 1
1

n
 S n

nD2

 −
1

n
 ∙ 

1

n 2  s12 1 22 1 32 1 ∙ ∙ ∙ 1 n 2 d

 −
1

n 3  s12 1 22 1 32 1 ∙ ∙ ∙ 1 n 2 d

Here we need the formula for the sum of the squares of the first n positive integers:

(1)	 12 1 22 1 32 1 ∙ ∙ ∙ 1 n 2 −
nsn 1 1ds2n 1 1d

6
	

Perhaps you have seen this formula before. It is proved in Example 5 in Appendix F.

Figure �6
Approximating S with eight rectangles 

n Ln Rn

	 10 0.2850000 	 0.3850000
	 20 0.3087500 	 0.3587500
	 30 0.3168519 	 0.3501852
	 50 0.3234000 	 0.3434000
	 100 0.3283500 	 0.3383500
	1000 0.3328335 	 0.3338335

1
n

0

y

x1

(1, 1)

y=≈

Figure �7
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Putting Formula 1 into our expression for Rn, we get

Rn −
1

n 3  ∙ 
nsn 1 1ds2n 1 1d

6
−

sn 1 1ds2n 1 1d
6n 2

Now we compute the limit of the sequence Rn:

 lim
n l `

 Rn − lim
n l `

 
sn 1 1ds2n 1 1d

6n 2

 − lim
n l `

 
1

6
 S n 1 1

n DS 2n 1 1

n D
 − lim

n l `
 
1

6
 S1 1

1

nDS2 1
1

nD
	 −

1

6
? 1 ? 2 −

1

3
	 ■

It can be shown that the lower approximating sums also approach 13, that is,

lim
n l `

 Ln − 1
3

From Figures 8 and 9 it appears that, as n increases, both Ln and Rn become better and 
better approximations to the area of S. Therefore we define the area A to be the limit of 
the sums of the areas of the approximating rectangles, that is,

A − lim
n l `

 Rn − lim
n l `

 Ln − 1
3

10

y

n=50    R∞¸=0.3434

10

y

n=30    R£¸Å0.3502

10 x x x

y

n=10    R¡¸=0.385

10

y

n=10    L¡¸=0.285

10x x

y

n=30    L£¸Å0.3169

10 x

y

n=50    L∞¸=0.3234

Figure �9  The area is the number that is smaller than all upper sums and larger than all lower sums.

 TEC   In Visual 5.1 you can create 
pictures like those in Figures 8 and 9 
for other values of n.

Figure �8

Limits of sequences were introduced in 
Section 2.1.
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Let’s apply the idea of Examples 1 and 2 to the more general region S of Figure 1. We 
start by subdividing S into n strips S1, S2, . . . , Sn of equal width as in Figure 10.

ba0

y

x.  .  ..  .  .

y=ƒ

S¡ S™ S£ Si Sn

xixi-1 xn-1¤⁄ ‹

The width of the interval fa, bg is b 2 a, so the width of each of the n strips is

Dx −
b 2 a

n

These strips divide the interval fa, bg into n subintervals

fx0, x1g, fx1, x2 g, fx2, x3 g, . . . , fxn21, xn g

where x0 − a and xn − b. The right endpoints of the subintervals are

x1 − a 1 Dx,

x2 − a 1 2 Dx,

x3 − a 1 3 Dx,

	 ∙ 
	 ∙ 
	 ∙

Let’s approximate the ith strip Si by a rectangle with width Dx and height f sxid, which 
is the value of f  at the right endpoint (see Figure 11). Then the area of the ith rectangle 
is f sxid Dx. What we think of intuitively as the area of S is approximated by the sum of 
the areas of these rectangles, which is

Rn − f sx1d Dx 1 f sx2 d Dx 1 ∙ ∙ ∙ 1 f sxn d Dx

0

y

x

Îx

f(xi)

xixi-1a b¤⁄ ‹

Figure 12 shows this approximation for n − 2, 4, 8, and 12. Notice that this approxi-
mation appears to become better and better as the number of strips increases, that is, as 
n l `. Therefore we define the area A of the region S in the following way.

Figure �10

Figure �11
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0

y

xa ⁄

(a) n=2

0

y

xa ⁄ ¤ ‹

(b) n=4

0

y

xa

(c) n=8

0

y

xab b b b

(d) n=12

(2) Definition � The area A of the region S that lies under the graph of the  
continuous function f  is the limit of the sum of the areas of approximating  
rectangles:

A − lim
n l `

 Rn − lim
n l `

f f sx1d Dx 1 f sx2 d Dx 1 ∙ ∙ ∙ 1 f sxn d Dxg

It can be proved that the limit in Definition 2 always exists, since we are assuming 
that f  is continuous. It can also be shown that we get the same value if we use left end-
points:

(3)	 A − lim
n l `

 Ln − lim
n l `

 f f sx0 d Dx 1 f sx1d Dx 1 ∙ ∙ ∙ 1 f sxn21d Dxg	

In fact, instead of using left endpoints or right endpoints, we could take the height of the ith  
rectangle to be the value of f  at any number xi* in the ith subinterval fxi21, xig. We call 
the numbers x1*, x2*, . . . , xn* the sample points. Figure 13 shows approximating rect-
angles when the sample points are not chosen to be endpoints. So a more general expres-
sion for the area of S is

(4)	 A − lim
n l ` 

f f sx1*d Dx 1 f sx2*d Dx 1 ∙ ∙ ∙ 1 f sxn* d Dxg	

xixi-10

y

xa b¤⁄ ‹ xn-1

x¡* x™* x£* xn*xi*

Îx

f(xi*)

We often use sigma notation to write sums with many terms more compactly. For 
instance,

o
n

i−1
 f sxid Dx − f sx1d Dx 1 f sx2 d Dx 1 ∙ ∙ ∙ 1 f sxn d Dx

Figure �13

This tells us to
end with i=n.

This tells us
to add.

This tells us to
start with i=m.

µ f(xi) Îx
n

i=m

Figure �12
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So the expressions for area in Equations 2, 3, and 4 can be written as follows:

 A − lim
n l `

 o
n

i−1
 f sxid Dx

 A − lim
n l `

 o
n

i−1
 f sxi21d Dx

 A − lim
n l `

 o
n

i−1
 f sxi*d Dx

We can also rewrite Formula 1 in the following way:

o
n

i−1
 i 2 −

nsn 1 1ds2n 1 1d
6

 Example 3   |  Let A be the area of the region that lies under the graph of f sxd − e2x 
between x − 0 and x − 2.
(a)	 Using right endpoints, find an expression for A as a limit. Do not evaluate the limit.
(b)	 Estimate the area by taking the sample points to be midpoints and using four 
subintervals and then ten subintervals.

SOLUTION

(a)	 Since a − 0 and b − 2, the width of a subinterval is

Dx −
2 2 0

n
−

2

n

So x1 − 2yn, x2 − 4yn, x3 − 6yn, xi − 2iyn, and xn − 2nyn. The sum of the areas of 
the approximating rectangles is

 Rn − f sx1d Dx 1 f sx2 d Dx 1 ∙ ∙ ∙ 1 f sxn d Dx

 − e2x1 Dx 1 e2x2 Dx 1 ∙ ∙ ∙ 1 e2xn Dx

 − e22ynS 2

nD 1 e24ynS 2

nD 1 ∙ ∙ ∙ 1 e22nynS 2

nD
According to Definition 2, the area is

A − lim
n l `

 Rn − lim
n l `

 
2

n
 se22yn 1 e24yn 1 e26yn 1 ∙ ∙ ∙ 1 e22nyn d

Using sigma notation we could write

A − lim
n l `

 
2

n
 o

n

i−1
 e22iyn

It is difficult to evaluate this limit directly by hand, though it isn’t hard with the help of 
a computer algebra system. In Section 5.3 we will be able to find A more easily using a 
different method.

(b)	 With n − 4 the subintervals of equal width Dx − 0.5 are f0, 0.5g, f0.5, 1g, f1, 1.5g, 
and f1.5, 2g. The midpoints of these subintervals are x1* − 0.25, x2* − 0.75, x3* − 1.25, 
and x4* − 1.75, and the sum of the areas of the four approximating rectangles (see 

If you need practice with sigma nota-
tion, look at the examples and try some 
of the exercises in Appendix F.
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Figure 14) is

 M4 − o
4

i−1
 f sxi*d Dx

 − f s0.25d Dx 1 f s0.75d Dx 1 f s1.25d Dx 1 f s1.75d Dx

 − e20.25s0.5d 1 e20.75s0.5d 1 e21.25s0.5d 1 e21.75s0.5d

 − 1
2 se20.25 1 e20.75 1 e21.25 1 e21.75 d < 0.8557

So an estimate for the area is

A < 0.8557

With n − 10 the subintervals are f0, 0.2g, f0.2, 0.4g, . . . , f1.8, 2g and the midpoints are 
x1* − 0.1, x2* − 0.3, x3* − 0.5, . . . , x10* − 1.9. Thus

 A < M10 − f s0.1d Dx 1 f s0.3d Dx 1 f s0.5d Dx 1 ∙ ∙ ∙ 1 f s1.9d Dx

 − 0.2se20.1 1 e20.3 1 e20.5 1 ∙ ∙ ∙ 1 e21.9 d < 0.8632

From Figure 15 it appears that this estimate is better than the estimate with n − 4.	 ■

■ The Distance Problem
Now let’s consider the distance problem: Find the distance traveled by an object during 
a certain time period if the velocity of the object is known at all times. (In a sense this is 
the inverse problem of the velocity problem that we discussed in Section 2.3.) If the 
velocity remains constant, then the distance problem is easy to solve by means of the 
formula

distance − velocity 3 time

But if the velocity varies, it’s not so easy to find the distance traveled. We investigate the 
problem in the following example.

 Example 4   |  Suppose the odometer on our car is broken and we want to estimate 
the distance driven over a 30-second time interval. We take speedometer readings 
every five seconds and record them in the following table:

Time (s) 	 0 	 5 10 15 20 25 30

Velocity smiyhd 17 21 24 29 32 31 28

In order to have the time and the velocity in consistent units, let’s convert the velocity 
readings to feet per second (1 miyh − 5280y3600 ftys):

Time (s) 	 0 	 5 10 15 20 25 30

Velocity sftysd 25 31 35 43 47 45 41

During the first five seconds the velocity doesn’t change very much, so we can estimate 
the distance traveled during that time by assuming that the velocity is constant. If we 
take the velocity during that time interval to be the initial velocity (25 ftys), then we 
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obtain the approximate distance traveled during the first five seconds:

25 ftys 3 5 s − 125 ft

Similarly, during the second time interval the velocity is approximately constant and 
we take it to be the velocity when t − 5 s. So our estimate for the distance traveled 
from t − 5 s to t − 10 s is

31 ftys 3 5 s − 155 ft

If we add similar estimates for the other time intervals, we obtain an estimate for the 
total distance traveled:

s25 3 5d 1 s31 3 5d 1 s35 3 5d 1 s43 3 5d 1 s47 3 5d 1 s45 3 5d − 1130 ft

We could just as well have used the velocity at the end of each time period instead  
of the velocity at the beginning as our assumed constant velocity. Then our estimate 
becomes

s31 3 5d 1 s35 3 5d 1 s43 3 5d 1 s47 3 5d 1 s45 3 5d 1 s41 3 5d − 1210 ft

If we had wanted a more accurate estimate, we could have taken velocity readings 
every two seconds, or even every second.	 ■

Perhaps the calculations in Example 4 remind you of the sums we used earlier to 
estimate areas. The similarity is explained when we sketch a graph of the velocity func-
tion of the car in Figure 16 and draw rectangles whose heights are the initial velocities 
for each time interval. The area of the first rectangle is 25 3 5 − 125, which is also 
our estimate for the distance traveled in the first five seconds. In fact, the area of each 
rectangle can be interpreted as a distance because the height represents velocity and  
the width represents time. The sum of the areas of the rectangles in Figure 16 is 
L6 − 1130, which is our initial estimate for the total distance traveled.

In general, suppose an object moves with velocity v − f std, where a < t < b and 
f std > 0 (so the object always moves in the positive direction). We take velocity read-
ings at times t0 s− ad, t1, t2, . . . , tn s− bd so that the velocity is approximately constant on 
each subinterval. If these times are equally spaced, then the time between consecutive 
readings is Dt − sb 2 adyn. During the first time interval the velocity is approximately 
f st0 d and so the distance traveled is approximately f st0 d Dt. Similarly, the distance trav-
eled during the second time interval is about f st1d Dt and the total distance traveled dur-
ing the time interval fa, bg is approximately

f st0 d Dt 1 f st1d Dt 1 ∙ ∙ ∙ 1 f stn21d Dt − o
n

i−1
 f sti21d Dt

If we use the velocity at right endpoints instead of left endpoints, our estimate for the 
total distance becomes

f st1d Dt 1 f st2 d Dt 1 ∙ ∙ ∙ 1 f stn d Dt − o
n

i−1
 f stid Dt

The more frequently we measure the velocity, the more accurate our estimates become, 
so it seems plausible that the exact distance d traveled is the limit of such expressions:

(5)	 d − lim
nl`

 o
n

i−1
 f sti21d Dt − lim

nl`
 o

n

i−1
 f stid Dt	

We will see in Section 5.3 that this is indeed true.
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Because Equation 5 has the same form as our expressions for area in Equations 2 
and 3, it follows that the distance traveled is equal to the area under the graph of the 
velocity function.

■ Pathogenesis
Measles is a highly contagious infection of the respiratory system and is caused by a 
virus. Despite the fact that more than 80% of the world’s population is vaccinated for it, 
measles remains the fifth leading cause of death worldwide.

In general, the term pathogenesis refers to the way a disease originates and develops 
over time. In the case of measles, the virus enters through the respiratory tract and repli-
cates there before spreading into the bloodstream and then the skin. In a person with no 
immunity to measles the characteristic rash usually appears about 12 days after infec-
tion. The virus reaches a peak density in the blood at about 14 days. The virus level then 
decreases fairly rapidly over the next few days as a result of the immune response. This 
progression is reflected in the pathogenesis curve in Figure 17. Notice that the vertical 
axis is measured in units of number of infected cells per mL of blood plasma.
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Let’s denote by f the measles pathogenesis function in Figure 17. Therefore f std gives 
the number of infected cells per mL of plasma on day t. Measles symptoms are thought 
to develop only after the immune system has been exposed to a threshold “amount  
of infection.” The amount of infection is determined by both the number of infected  
cells per mL and by the duration over which these cells are exposed to the immune  
system. If the density of infected cells were constant during infection, then the total 
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Measles pathogenesis curve

Source: J. M. Heffernan et al., “An In-Host Model 

of Acute Infection: Measles as a Case Study,” 

Theoretical Population Biology  

73 (2008): 134–47.
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amount of infection would be measured as

amount of infection − density of infected cells 3 time

with the units being (number of cells per mL) 3 days. Of course the density is not con-
stant, but we can break the duration of infection into shorter time intervals over which 
the density changes very little. If each of these shorter time intervals has width Dt, we 
could add the areas f stid Dt of the rectangles in Figure 18 and get an approximation to 
the amount of infection over the first 12 days. Then we take the limit as Dt l 0 and the 
number of rectangles becomes large. By an argument like the one that led to Equation 5, 
we conclude that the amount of infection needed to stimulate the appearance of symp-
toms is as follows.

0

N

t12

N=f(t)1000

The area under the pathogenesis curve N − f std from t − 0 to t − 12 (shaded in 
Figure 19) is equal to the total amount of infection needed to develop symptoms.

0

N

t21

N=f(t)

(days)

1000

12

The measles pathogenesis curve has been modeled by the polynomial

f std − 2tst 2 21dst 1 1d

In Exercise 9 you are asked to use this model to estimate the area under the curve  
N − f std and therefore the total amount of infection needed for the patient to be  
symptomatic.

Figure �18

Figure �19
Area under pathogenesis curve  
up to 12 days is the amount of  

infection needed for symptoms.
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EXERCISES 5.1

rectangles. Sketch the curve and the approximating 
rectangles.

		  (b)	 Repeat part (a) using left endpoints.
		  (c)	 Repeat part (a) using midpoints.
		  (d)	� From your sketches in parts (a)–(c), which appears to  

be the best estimate?

	 ;	 6.	�� (a)	� Graph the function

f sxd − x 2 2 ln x  1 < x < 5

		  (b)	� Estimate the area under the graph of f  using four 
approximating rectangles and taking the sample points 
to be (i) right endpoints and (ii) midpoints. In each case 
sketch the curve and the rectangles.

		  (c)	� Improve your estimates in part (b) by using eight  
rectangles.

	 7.	�� �The speed of a runner increased steadily during the first 
three seconds of a race. Her speed at half-second intervals is 
given in the table. Find lower and upper estimates for the 
distance that she traveled during these three seconds.

t ssd 0 0.5 1.0 1.5 2.0 2.5 3.0

v sftysd 0 6.2 10.8 14.9 18.1 19.4 20.2

	 8.	�� �Speedometer readings for a motorcycle at 12-second 
intervals are given in the table.

		  (a)	� Estimate the distance traveled by the motorcycle during 
this time period using the velocities at the beginning of 
the time intervals.

		  (b)	� Give another estimate using the velocities at the end of 
the time periods.

		  (c)	� Are your estimates in parts (a) and (b) upper and lower  
estimates? Explain.

t ssd 0 12 24 36 48 60

v sftysd 30 28 25 22 24 27

	 9.	 Measles pathogenesis �� The function

f std − 2tst 2 21dst 1 1d

		��  �can be used to model the measles pathogenesis curve in 
Figures 17 and 19. Suppose symptoms appear after 12 days. 
Use six subintervals and their midpoints to estimate the total 
amount of infection needed to develop symptoms.

	 10.	� Measles pathogenesis �� If a patient has had previous 
exposure to measles, the immune system responds more 
quickly. This results in a suppression of the level of virus in 

	 1.	�� (a)	� By reading values from the given graph of f, use four 
rectangles to find a lower estimate and an upper 
estimate for the area under the given graph of f  from 
x − 0 to x − 8. In each case sketch the rectangles that 
you use.

		  (b)	 Find new estimates using eight rectangles in each case.

y

0 x

2

4

84

	 2.	�� (a)	� Use six rectangles to find estimates of each type for the 
area under the given graph of f  from x − 0 to x − 12.

			   (i)	� L6	 (sample points are left endpoints)
			   (ii)	� R6	 (sample points are right endpoints)
			   (iii)	� M6	 (sample points are midpoints)
		  (b)	� Is L6 an underestimate or overestimate of the true area?
		  (c)	 Is R6 an underestimate or overestimate of the true area?
		  (d)	� Which of the numbers L6, R6, or M6 gives the best  

estimate? Explain.

y

x0 4

4

8

y=ƒ

8 12

	 3.	�� (a)	� Estimate the area under the graph of f sxd − cos x from 
x − 0 to x − �y2 using four approximating rectangles 
and right endpoints. Sketch the graph and the rect-
angles. Is your estimate an underestimate or an 
overestimate?

		  (b)	� Repeat part (a) using left endpoints.

	 4.	�� (a)	� Estimate the area under the graph of f sxd − sx  from 
x − 0 to x − 4 using four approximating rectangles and 
right endpoints. Sketch the graph and the rectangles. Is 
your estimate an underestimate or an overestimate?

		  (b)	� Repeat part (a) using left endpoints.

	 5.	�� (a)	� Estimate the area under the graph of f sxd − 1 1 x 2 
from x − 21 to x − 2 using three rectangles and right 
endpoints. Then improve your estimate by using six 
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	 13.	��� The velocity graph of a braking car is shown. Use it to 
estimate the distance traveled by the car while the brakes 
are applied.

√

t
(seconds)

0 2

20

40

60

4 6

(ft /s)

	 14.	��� The velocity graph of a car accelerating from rest to a speed 
of 120 kmyh over a period of 30 seconds is shown. Estimate 
the distance traveled during this period.

40

80

√
(km/h)

t
(seconds)

0 10 20 30

	� 15–17 � Use Definition 2 to find an expression for the area under 
the graph of f  as a limit. Do not evaluate the limit.

	 15.	�� f sxd −
2x

x 2 1 1
,    1 < x < 3

	 16.	�� f sxd − x 2 1 s1 1 2x ,    4 < x < 7

	 17.	�� f sxd − x cos x,  0 < x < �y2

	 18.	�� (a)	� Use Definition 2 to find an expression for the area under 
the curve y − x 3 from 0 to 1 as a limit.

		  (b)	� The following formula for the sum of the cubes of the 
first n integers is proved in Appendix E. Use it to evalu-
ate the limit in part (a).

13 1 23 1 33 1 ∙ ∙ ∙ 1 n 3 − F nsn 1 1d
2 G2

	 19.	�� �Let A be the area under the graph of an increasing con- 
tinuous function f  from a to b, and let Ln and Rn be the  
approximations to A with n subintervals using left and right 
endpoints, respectively.

		  (a)	� How are A, Ln, and Rn related?
		  (b)	� Show that

Rn 2 Ln −
b 2 a

n
 f f sbd 2 f sadg

		���  the plasma during an infection. Suppose that such previous 
exposure causes the viral density in the plasma to be 35 of 
that in a patient with no previous exposure. This means that 
the level of virus in the plasma is given by 35 f std, where 
f std − 2tst 2 21dst 1 1d as in Exercise 9.

		  (a)	� Use subintervals of width 2 days and their midpoints to 
estimate the total amount of infection at t − 12 days.

		  (b)	� If 7848 cells per mL 3 days is the total amount of 
infection required to develop symptoms, use subinter-
vals of width 2 days and their midpoints to estimate the 
day when symptoms will appear.

	 11.	� SARS incidence �� The table shows the number of people 
per day who died from SARS in Singapore at two-week 
intervals beginning on March 1, 2003.

Date Deaths per day Date Deaths per day

March 1 0.0079 April 26 0.5620
March 15 0.0638 May 10 0.4630
March 29 0.1944 May 24 0.2897
April 12 0.4435

		���  Estimate the number of people who died of SARS in Singa-
pore between March 1 and May 24, 2003, using both left 
endpoints and right endpoints.

Source: Adapted from A. Gumel et al., “Modelling Strategies for Controlling 

SARS Outbreaks,” Proceedings of the Royal Society of London: Series B 271 

(2004): 2223–32.

	 12.	� Niche overlap �� The extent to which species compete for 
resources is often measured by the niche overlap. If the 
horizontal axis represents a continuum of different resource 
types (for example, seed sizes for certain bird species), then 
a plot of the degree of preference for these resources is 
called a species’ niche. The degree of overlap of two 
species’ niches is then a measure of the extent to which they 
compete for resources. The niche overlap for a species is the 
fraction of the area under its preference curve that is also 
under the other species’ curve. The niches displayed in the 
figure are given by

 n1sxd − sx 2 1ds3 2 xd  1 < x < 3

 n2sxd − sx 2 2ds4 2 xd  2 < x < 4

		���  Estimate the niche overlap for species 1 using midpoints. 
(Choose the number of subintervals yourself.)
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y

x
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1 2 3

n¡ n™
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	 CAS 	 23.	�� �Find the exact area under the cosine curve y − cos x from 
x − 0 to x − b, where 0 < b < �y2. (Use a computer  
algebra system both to evaluate the sum and compute the 
limit.) In particular, what is the area if b − �y2?

	 24.	�� (a)	� Let An be the area of a polygon with n equal sides 
inscribed in a circle with radius r. By dividing the 
polygon into n congruent triangles with central angle 
2�yn, show that

An − 1
2 nr 2 sinS2�

n D
		  (b)	� Show that limn l ` An − �r 2. [Hint: Use Equation 2.4.6 

on page 133.]

		  (c)	 Deduce that

Rn 2 A ,
b 2 a

n
 f f sbd 2 f sadg

	 20.	�� �If A is the area under the curve y − e x from 1 to 3, use  
Exercise 19 to find a value of n such that Rn 2 A , 0.0001.

	 CAS 	 21.	�� (a)	� Express the area under the curve y − x 5 from 0 to 2 as  
a limit.

		  (b)	� Use a computer algebra system to find the sum in your 
expression from part (a).

		  (c)	 Evaluate the limit in part (a).

	 CAS 	 22.	��� Find the exact area of the region under the graph of 
y − e2x from 0 to 2 by using a computer algebra system to 
evaluate the sum and then the limit in Example 3(a). 
Compare your answer with the estimate obtained in 
Example 3(b).

5.2 The Definite Integral

We saw in Section 5.1 that a limit of the form

(1)	 lim
n l `

 o
n

i−1
 f sxi*d Dx − lim

n l `
 f f sx1*d Dx 1 f sx2*d Dx 1 ∙ ∙ ∙ 1 f sxn*d Dxg	

arises when we compute an area. We also saw that it arises when we try to find the 
distance traveled by an object or the total amount of infection needed to show measles 
symptoms. It turns out that this same type of limit occurs in a wide variety of situations 
even when f  is not necessarily a positive function. In Chapter 6 we will see that limits 
of the form (1) also arise in finding volumes of tumors, cardiac output, blood flow, and 
many other quantities. We therefore give this type of limit a special name and notation.

(2) Definition of a Definite Integral � If f  is a function defined for a < x < b, 
we divide the interval fa, bg into n subintervals of equal width Dx − sb 2 adyn. 
We let x0 s− ad, x1, x2, . . . , xn ( − b) be the endpoints of these subintervals and 
we let x1*, x2*, . . . , xn* be any sample points in these subintervals, so xi* lies in the 
ith subinterval fxi21, xig. Then the definite integral of f  from a to b is

yb

a
 f sxd dx − lim

n l `
 o

n

i−1
 f sxi*d Dx

provided that this limit exists. If it does exist, we say that f  is integrable on fa, bg.

Note 1 � The symbol y was introduced by Leibniz and is called an integral sign. It 
is an elongated S and was chosen because an integral is a limit of sums. In the notation 
yb
a  f sxd dx, f sxd is called the integrand and a and b are called the limits of integration; 

a is the lower limit and b is the upper limit. For now, the symbol dx has no meaning  
by itself; yb

a  f sxd dx is all one symbol. The dx simply indicates that the independent vari
able is x. The procedure of calculating an integral is called integration.

A precise definition of this type of limit 
is given in Appendix D.
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Note 2 � The definite integral yb

a  f sxd dx is a number; it does not depend on x. In fact, 
we could use any letter in place of x without changing the value of the integral:

yb

a
 f sxd dx − yb

a
 f std dt − yb

a
 f srd dr

Note 3 � The sum

o
n

i−1
 f sxi*d Dx

that occurs in Definition 2 is called a Riemann sum after the German mathematician 
Bernhard Riemann (1826–1866). So Definition 2 says that the definite integral of an 
integrable function can be approximated to within any desired degree of accuracy by a 
Riemann sum.

We know that if f  happens to be positive, then the Riemann sum can be interpreted as 
a sum of areas of approximating rectangles (see Figure 1). By comparing Definition 
2 with the definition of area in Section 5.1, we see that the definite integral yb

a  f sxd dx can 
be interpreted as the area under the curve y − f sxd from a to b. (See Figure 2.)

xi*0

y

xa

Îx y=ƒ

0

y

xab b

Figure �1
If ƒ˘0, the Riemann sum µ f(xi*) Îx
is the sum of areas of rectangles.

Figure �2
If ƒ˘0, the integral j  ƒ dx is the
area under the curve y=ƒ from a to b.

a

b

If f  takes on both positive and negative values, as in Figure 3, then the Riemann sum 
is the sum of the areas of the rectangles that lie above the x-axis and the negatives of the 
areas of the rectangles that lie below the x-axis (the areas of the blue rectangles minus 
the areas of the gold rectangles). When we take the limit of such Riemann sums, we get 
the situation illustrated in Figure 4. A definite integral can be interpreted as a net area, 
that is, a difference of areas:

yb

a
 f sxd dx − A1 2 A2

where A1 is the area of the region above the x-axis and below the graph of f, and A2 is 
the area of the region below the x-axis and above the graph of f.

Note 4 � Although we have defined yb
a  f sxd dx by dividing fa, bg into subintervals of 

equal width, there are situations in which it is advantageous to work with subintervals  
of unequal width. For instance, if in a biological experiment data are collected at times 
that are not equally spaced, then we can still estimate the area under a curve. If the sub-
interval widths are Dx1, Dx2, . . . , Dxn, we have to ensure that all these widths approach 
0 in the limiting process. This happens if the largest width, maxDxi, approaches 0. So in 
this case the definition of a definite integral becomes

yb

a
 f sxd dx − lim

max Dxi l 0
  o

n

i−1
 f sxi*d Dxi

Riemann
Bernhard Riemann received his Ph.D. 
under the direction of the legendary 
Gauss at the University of Göttingen and 
remained there to teach. Gauss, who 
was not in the habit of praising other 
mathematicians, spoke of Riemann’s  
“creative, active, truly mathematical 
mind and gloriously fertile originality.” 
The definition (2) of an integral that we 
use is due to Riemann. He also made 
major contributions to the theory of func-
tions of a complex variable, mathemati-
cal physics, number theory, and the 
foundations of geometry. Riemann’s 
broad concept of space and geom-
etry turned out to be the right setting, 
50 years later, for Einstein’s general 
relativity theory. Riemann’s health was 
poor throughout his life, and he died of 
tuberculosis at the age of 39.
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µ f(xi*) Îx is an approximation to
the net area.

Figure �3

j  ƒ dx is the net area.
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b

Figure �4
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Note 5 � We have defined the definite integral for an integrable function, but not all 
functions are integrable. The following theorem shows that the most commonly occur-
ring functions are in fact integrable. It is proved in more advanced courses.

(3) Theorem � If f  is continuous on fa, bg, or if f  has only a finite number of 
jump discontinuities, then f  is integrable on fa, bg; that is, the definite integral 
yb
a  f sxd dx exists.

If f  is integrable on fa, bg, then the limit in Definition 2 exists and gives the same 
value no matter how we choose the sample points xi*. To simplify the calculation of the 
integral we often take the sample points to be right endpoints. Then xi* − xi and the 
definition of an integral simplifies as follows.

(4) Theorem � If f  is integrable on fa, bg, then

yb

a
 f sxd dx − lim

nl`
o

n

i−1
 f sxid Dx

where	 Dx −
b 2 a

n
        and        xi − a 1 i Dx

 Example 1   |  Express

lim
n l `

 o
n

i−1
 sxi

3 1 xi sin xid Dx

as an integral on the interval f0, �g.

SOLUTION � Comparing the given limit with the limit in Theorem 4, we see that they 
will be identical if we choose f sxd − x 3 1 x sin x. We are given that a − 0 and  
b − �. Therefore, by Theorem 4, we have

	 lim
n l `

 o
n

i−1
 sxi

3 1 xi sin xid Dx − y�

0
sx 3 1 x sin xd dx	 ■

Later, when we apply the definite integral in biological contexts, it will be impor-
tant  to recognize limits of sums as integrals, as we did in Example 1. When Leibniz 
chose the notation for an integral, he chose the ingredients as reminders of the limiting 
process. In general, when we write

lim
n l `

 o
n

i−1
 f sx i*d Dx − yb

a
 f sxd dx

we replace lim g  by y, xi* by x, and Dx by dx.

■ Calculating Integrals
When we use a limit to evaluate a definite integral, we need to know how to work with 
sums. The following three equations give formulas for sums of powers of positive inte-
gers. Equation 5 may be familiar to you from a course in algebra. Equations 6 and 7 were 
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discussed in Section 5.1 and are proved in Appendix F.

(5)	  o
n

i−1
 i −

nsn 1 1d
2

	

(6)	  o
n

i−1
 i 2 −

nsn 1 1ds2n 1 1d
6

	

(7)	  o
n

i−1
 i 3 − F nsn 1 1d

2 G2

	

The remaining formulas are simple rules for working with sigma notation:

(8)	  o
n

i−1
 c − nc 	

(9)	  o
n

i−1
 cai − c o

n

i−1
 ai 	

(10)	  o
n

i−1
 sai 1 bid − o

n

i−1
 ai 1 o

n

i−1
 bi	

(11)	  o
n

i−1
 sai 2 bid − o

n

i−1
 ai 2 o

n

i−1
 bi	

 Example 2 
(a)  Evaluate the Riemann sum for f sxd − x 3 2 6x, taking the sample points to be right 
endpoints and a − 0, b − 3, and n − 6.

(b)  Evaluate y3

0
 sx 3 2 6xd dx.

SOLUTION

(a)  With n − 6 the interval width is

Dx −
b 2 a

n
−

3 2 0

6
−

1

2

and the right endpoints are x1 − 0.5, x2 − 1.0, x3 − 1.5, x4 − 2.0, x5 − 2.5, and 
x6 − 3.0. So the Riemann sum is

 R6 − o
6

i−1
 f sxid Dx

 − f s0.5d Dx 1 f s1.0d Dx 1 f s1.5d Dx 1 f s2.0d Dx 1 f s2.5d Dx 1 f s3.0d Dx

 − 1
2 s22.875 2 5 2 5.625 2 4 1 0.625 1 9d

 − 23.9375

Notice that f  is not a positive function and so the Riemann sum does not represent a 
sum of areas of rectangles. But it does represent the sum of the areas of the blue 
rectangles (above the x-axis) minus the sum of the areas of the gold rectangles (below 
the x-axis) in Figure 5.

Formulas 8–11 are proved by writing 
out each side in expanded form. The 
left side of Equation 9 is

ca1 1 ca2 1 ∙ ∙ ∙ 1 can

The right side is

csa1 1 a2 1 ∙ ∙ ∙ 1 an d

These are equal by the distributive 
property. The other formulas are dis-
cussed in Appendix F.

0

y

3 x

5 y=˛-6x

Figure �5

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



section 5.2  |  The Definite Integral    333

(b)  With n subintervals we have

Dx −
b 2 a

n
−

3

n

Thus x0 − 0, x1 − 3yn, x2 − 6yn, x3 − 9yn, and, in general, xi − 3iyn. Since we are 
using right endpoints, we can use Theorem 4:

 y3

0
 sx 3 2 6xd dx − lim

n l `
 o

n

i−1
 f sxid Dx − lim

n l `
 o

n

i−1
 fS 3i

n D 
3

n

 − lim 
n l `

 
3

n
 o

n

i−1
 FS 3i

n D3

2 6S 3i

n DG	 (Equation 9 with c − 3yn)

 − lim 
n l `

 
3

n
 o

n

i−1
 F 27

n 3  i 3 2
18

n
 iG	

 − lim 
n l `

 F 81

n 4  o
n

i−1
 i 3 2

54

n 2  o
n

i−1
 iG	 (Equations 11 and 9)

 − lim 
n l `

 H 81

n 4  F nsn 1 1d
2 G2

2
54

n 2  
nsn 1 1d

2 J	 (Equations 7 and 5)

 − lim 
n l `

 F 81

4
 S1 1

1

nD2

2 27S1 1
1

nDG	

 −
81

4
2 27 − 2

27

4
− 26.75 	

This integral can’t be interpreted as an area because f  takes on both positive and 
negative values. But it can be interpreted as the difference of areas A1 2 A2, where A1 
and A2 are shown in Figure 6.

Figure 7 illustrates the calculation by showing the positive and negative terms 
in the right Riemann sum Rn for n − 40. The values in the table show the Riemann 
sums approaching the exact value of the integral, 26.75, as n l `.

0

y

3 x

5 y=˛-6x

	 ■

A much simpler method for evaluating the integral in Example 2 will be given in  
Section 5.3 after we have proved the Evaluation Theorem.

In the sum, n is a constant (unlike i), so 
we can move 3yn in front of the g  sign.

A™

A¡

0

y

3 x

5 y=˛-6x

Figure �6

j  (˛-6x) dx=A¡-A™=_6.75
0

3

Figure �7
R40 < 26.3998

n Rn

40 26.3998
100 26.6130
500 26.7229

1000 26.7365
5000 26.7473
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 Example 3   |  Evaluate the following integrals by interpreting each in terms of 
areas.

(a)	 y1

0
 s1 2 x 2 dx	 (b)	 y3

0
 sx 2 1d dx

SOLUTION

(a)  Since f sxd − s1 2 x 2 > 0, we can interpret this integral as the area under the
curve y − s1 2 x 2  from 0 to 1. But, since y 2 − 1 2 x 2, we get x 2 1 y 2 − 1, which 
shows that the graph of f  is the quarter-circle with radius 1 in Figure 8. Therefore

y1

0
 s1 2 x 2 dx − 1

4 �s1d2 −
�

4

(b)	 The graph of y − x 2 1 is the line with slope 1 shown in Figure 9. We compute 
the integral as the difference of the areas of the two triangles:

y3

0
 sx 2 1d dx − A1 2 A2 − 1

2 s2 ∙ 2d 2 1
2 s1 ∙ 1d − 1.5

x

y

10

1

y=   1-≈
or

≈+¥=1

œ„„„„„

          

x

y

10

_1

3

y=x-1

A¡

(3, 2)

A™

Figure �8	 Figure �9 	 ■

■ The Midpoint Rule
We often choose the sample point xi* to be the right endpoint of the ith subinterval 
because it is convenient for computing the limit. But if the purpose is to find an approxi-
mation to an integral, it is usually better to choose xi* to be the midpoint of the interval, 
which we denote by xi. Any Riemann sum is an approximation to an integral, but if we 
use midpoints we get the following approximation.

Midpoint Rule �

y
b

a
 f sxd dx < o

n

i−1
 f sxid Dx − Dx f f sx1d 1 ∙ ∙ ∙ 1 f sxn dg

where	  Dx −
b 2 a

n
	

and	  xi − 1
2 sxi21 1 xid − midpoint of fxi21, xig	

 Example 4   |  Use the Midpoint Rule with n − 5 to approximate y2

1
 
1

x
 dx.

SOLUTION � The endpoints of the five subintervals are 1, 1.2, 1.4, 1.6, 1.8, and 2.0,  
so the midpoints are 1.1, 1.3, 1.5, 1.7, and 1.9. The width of the subintervals is 

 TEC   Module 5.2 shows how the  
Midpoint Rule estimates improve as  
n increases.
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Dx − s2 2 1dy5 − 1
5, so the Midpoint Rule gives 

 y2

1
 
1

x
 dx < Dx f f s1.1d 1 f s1.3d 1 f s1.5d 1 f s1.7d 1 f s1.9dg

 −
1

5
 S 1

1.1
1

1

1.3
1

1

1.5
1

1

1.7
1

1

1.9D
 < 0.691908

Since f sxd − 1yx . 0 for 1 < x < 2, the integral represents an area, and the approxi
mation given by the Midpoint Rule is the sum of the areas of the rectangles shown in 
Figure 10.	 ■

If we apply the Midpoint Rule to the integral in Example 2, we get the picture in 
Figure 11. The approximation M40 < 26.7563 is much closer to the true value 26.75 
than the right endpoint approximation, R40 < 26.3998, shown in Figure 7.

0

y

3 x

5 y=˛-6x

 Example 5   |  Aspirin pharmacokinetics  In a study1 of the effects of low-
dose aspirin, 10 young males were given a single 80-mg dose of ASA (acetylsalicylic 
acid) on three separate days. Blood samples were obtained for 24 hours after each dose 
and peak plasma ASA levels of about 1 mgymL were reached within 30 minutes. After 
the results for the 10 volunteers were averaged, the concentration of ASA in the blood-
stream was modeled by the function

Cstd − 32t 2e24.2t

where t is measured in hours and C is measured in mgymL. The graph of C is shown in 
Figure 12. Use the Midpoint Rule with 10 subintervals to estimate the value of the 
integral y 2

0 Cstd dt. What are the units?

SOLUTION � If we divide the interval f0, 2g into 10 subintervals, then the midpoints 
are 0.1, 0.3, 0.5, . . . , 1.7, 1.9 and the width of each subinterval is Dt − 0.2. Using the 
Midpoint Rule, we have

 y2

0
 Cstd dt < Dtf f s0.1d 1 f s0.3d 1 f s0.5d 1 ∙ ∙ ∙ 1 f s1.9dg

 < 0.2f0.2103 1 0.8169 1 0.9797 1 0.8289 1 0.5916

      1 0.3815 1 0.2300 1 0.1322 1 0.0733 1 0.0395

 − 0.8568

0 x

y

1 2

y= 1
x

Figure �10 

 TEC   In Visual 5.2 you can compare 
left, right, and midpoint approximations 
to the integral in Example 2 for differ-
ent values of n.

Figure �11
M40 < 26.7563

0

C

t

1

1 2

Figure �12
Area under the ASA concentration 
function

1.� I. H. Benedek et al., “Variability in the Pharmacokinetics and Pharmacodynamics of Low Dose Aspirin in 
Healthy Male Volunteers,” Journal of Clinical Pharmacology 35 (1995): 1181–86.
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The units for C are micrograms per milliliter (mgymL) and the units for t are hours, so 
the units for the integral are micrograms per milliliter times hours:

	 y2

0
 Cstd dt < 0.8568 smgymL) ? h	 ■

How would we interpret biologically the integral we computed in Example 5? In 
the biological literature it is denoted simply by AUC (area under the curve), but what 
does that mean in this context? For a drug to work, it needs to be “available” to interact 
with the target tissue (or target pathogen if the drug is an antibiotic). Availability can 
be increased by increasing the concentration or by increasing the time the drug lingers 
before it is cleared through metabolism. AUC is a combined measure of these, and there-
fore is a composite measure of the overall “availability.”

■ Properties of the Definite Integral
When we defined the definite integral yb

a  f sxd dx, we implicitly assumed that a , b. But 
the definition as a limit of Riemann sums makes sense even if a . b. Notice that if we 
reverse a and b, then Dx changes from sb 2 adyn to sa 2 bdyn. Therefore

ya

b
 f sxd dx − 2yb

a
 f sxd dx

If a − b, then Dx − 0 and so

ya

a
 f sxd dx − 0

We now develop some basic properties of integrals that will help us to evaluate inte-
grals in a simple manner. We assume that f  and t are continuous functions.

Properties of the Integral �

1.  yb

a
 c dx − csb 2 ad,    where c is any constant

2.  yb

a
 f f sxd 1 tsxdg dx − yb

a
 f sxd dx 1 yb

a
 tsxd dx

3.  yb

a
 cf sxd dx − c yb

a
 f sxd dx,    where c is any constant

4.  yb

a
 f f sxd 2 tsxdg dx − yb

a
 f sxd dx 2 yb

a
 tsxd dx

Property 1 says that the integral of a constant function f sxd − c is the constant 
times  the length of the interval. If c . 0 and a , b, this is to be expected because 
csb 2 ad is the area of the shaded rectangle in Figure 13.

Property 2 says that the integral of a sum is the sum of the integrals. For positive func-
tions it says that the area under f 1 t is the area under f  plus the area under t. Figure 14 
helps us understand why this is true: In view of how graphical addition works, the corre
sponding vertical line segments have equal height.

0

y

xa b

c y=c

area=c(b-a)

Figure �13

j  c dx=c(b-a)
a

b
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In general, Property 2 follows from Theorem 4 and the fact that the limit of a sum 
is the sum of the limits:

 yb

a
 f f sxd 1 tsxdg dx − lim

n l `
 o

n

i−1
 f f sxid 1 tsxidg Dx

 − lim
n l `

 Fo
n

i−1
 f sxid Dx 1 o

n

i−1
 tsxid DxG

 − lim
n l `

 o
n

i−1
 f sxid Dx 1 lim

n l `
 o

n

i−1
 tsxid Dx

 − yb

a
 f sxd dx 1 yb

a
 tsxd dx

Property 3 can be proved in a similar manner and says that the integral of a constant 
times a function is the constant times the integral of the function. In other words, a 
constant (but only a constant) can be taken in front of an integral sign. Property 4 is 
proved by writing f 2 t − f 1 s2td and using Properties 2 and 3 with c − 21.

 Example 6   |  Use the properties of integrals to evaluate y1

0
 s4 1 3x 2 d dx.

SOLUTION � Using Properties 2 and 3 of integrals, we have

y1

0
 s4 1 3x 2 d dx − y1

0
 4 dx 1 y1

0
 3x 2 dx − y1

0
 4 dx 1 3 y1

0
 x 2 dx

We know from Property 1 that

y1

0
 4 dx − 4s1 2 0d − 4

and we found in Example 5.1.2 that y1

0
 x 2 dx − 1

3. So

 y1

0
 s4 1 3x 2 d dx − y1

0
 4 dx 1 3 y1

0
 x 2 dx

	  − 4 1 3 ∙ 13 − 5 	 ■

The next property tells us how to combine integrals of the same function over adja-
cent intervals:

5.	 yc

a
 f sxd dx 1 yb

c
 f sxd dx − yb

a
 f sxd dx	

This is not easy to prove in general, but for the case where f sxd > 0 and a , c , b 
Property 5 can be seen from the geometric interpretation in Figure 15: The area under 
y − f sxd from a to c plus the area from c to b is equal to the total area from a to b.

y

0 xa b

f
g

f+g

Figure �14

j   [ƒ+©] dx=

j   ƒ dx+j   © dx
a

b

a

b

a

b

Property 3 seems intuitively reason-
able because we know that multiplying 
a function by a positive number c 
stretches or shrinks its graph vertically 
by a factor of c. So it stretches or 
shrinks each approximating rectangle 
by a factor c and therefore it has the 
effect of multiplying the area by c.

0

y

xa bc

y=ƒ

Figure �15 
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 Example 7   |  If it is known that y10
0  f sxd dx − 17 and y8

0 f sxd dx − 12, find

y10
8  f sxd dx.

SOLUTION � By Property 5, we have

y8

0
 f sxd dx 1 y10

8
 f sxd dx − y10

0
 f sxd dx

so	 y10

8
 f sxd dx − y10

0
 f sxd dx 2 y8

0
 f sxd dx − 17 2 12 − 5	 ■

Properties 1–5 are true whether a , b, a − b, or a . b. The following properties, in 
which we compare sizes of functions and sizes of integrals, are true only if a < b. Again 
we assume that the functions are continuous.

Comparison Properties of the Integral �

6.  If f sxd > 0 for a < x < b, then yb

a
 f sxd dx > 0.

7.  If f sxd > tsxd for a < x < b, then yb

a
 f sxd dx > yb

a
 tsxd dx.

8.  If m < f sxd < M for a < x < b, then

msb 2 ad < yb

a
 f sxd dx < Msb 2 ad

If f sxd > 0, then yb

a
 f sxd dx represents the area under the graph of f, so the geometric 

interpretation of Property 6 is simply that areas are positive. (It also follows directly 
from the definition because all the quantities involved are positive.) Property 7 says 
that a bigger function has a bigger integral. It follows from Properties 6 and 4 because 
f 2 t > 0.

Property 8 is illustrated by Figure 16 for the case where f sxd > 0. If f  is continuous 
we could take m and M to be the absolute minimum and maximum values of f  on the 
interval fa, bg. In this case Property 8 says that the area under the graph of f  is greater 
than the area of the rectangle with height m and less than the area of the rectangle with 
height M.

Proof of Property 8 � Since m < f sxd < M, Property 7 gives

yb

a
 m dx < yb

a
 f sxd dx < yb

a
 M dx

Using Property 1 to evaluate the integrals on the left and right sides, we obtain

	 msb 2 ad < yb

a
 f sxd dx < Msb 2 ad	 ■

 Example 8   |  Measles pathogenesis  In Exercise 5.1.10 we were told that if a 
patient has had previous exposure to measles, then the level of virus in the plasma 
during an infection is suppressed (due to stronger immunity). The threshold amount of 
infection required to develop symptoms is 7848 infected cells per mL 3  days. 
Suppose you and your friend Bob are both infected with measles at the same time but 
Bob has stronger immunity than you (so that your pathogenesis curve is always at least 

Because we are assuming that f  and 
t are continuous, the inequalities >
and < can be replaced by the strict 
inequalities . and , .

0

y

m

M

xa b

y=ƒ

Figure �16
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as high as his). Use Property 7 to show that, if Bob starts to display symptoms on day 
T, then you must necessarily also display symptoms by this day.

SOLUTION � Let’s use f std and tstd to be the pathogenesis curves for you and Bob. 
Because Bob has stronger immunity than you, we know that f std > tstd at all times 
(your pathogenesis curve is always at least as high as his). Now if Bob starts to display 
symptoms on day T, then yT

0  tstd dt − 7848. Furthermore, after T  days the level of 
infection experienced by you will be yT

0  f std dt. Using Property 7, we see that  

y T

0
 f std dt > y T

0
 tstd dt

Therefore we have that yT
0  f std dt > 7848, meaning that by day T  you will also have 

reached the threshold amount of infection required to display symptoms.	 ■

As the next example shows, Property 8 is useful when all we want is a rough estimate 
of the size of an integral without going to the bother of using the Midpoint Rule.

 Example 9   |  Use Property 8 to estimate y1

0
 e2x 2

 dx.

SOLUTION � Because f sxd − e2x 2

 is a decreasing function on f0, 1g, its absolute 
maximum value is M − f s0d − 1 and its absolute minimum value is m − f s1d − e21. 
Thus, by Property 8,

 e21s1 2 0d < y1

0
 e2x 2

 dx < 1s1 2 0d

or	  e21 < y1

0
 e2x 2

dx < 1	

Since e21 < 0.3679, we can write

	 0.367 < y1

0
 e2x 2

 dx < 1	 ■

The result of Example 9 is illustrated in Figure 17. The integral is greater than the 
area of the lower rectangle and less than the area of the square.

y

x10

1
y=1

y=e–x2

y=1/e

Figure �17

	 1.	�� �Evaluate the Riemann sum for f sxd − 3 2 1
2 x, 

2 < x < 14, with six subintervals, taking the sample points 
to be left endpoints. Explain, with the aid of a diagram, 
what the Riemann sum represents.

	 2.	�� �If f sxd − x 2 2 2x, 0 < x < 3, evaluate the Riemann sum 
with n − 6, taking the sample points to be right endpoints. 
What does the Riemann sum represent? Illustrate with a 
diagram.

	 3.	�� �If f sxd − e x 2 2, 0 < x < 2, find the Riemann sum with 
n − 4 correct to six decimal places, taking the sample 
points to be midpoints. What does the Riemann sum 
represent? Illustrate with a diagram.

	 4.	�� (a)	� Find the Riemann sum for f sxd − sin x, 
0 < x < 3�y2, with six terms, taking the sample 

points to be right endpoints. (Give your answer correct 
to six decimal places.) Explain what the Riemann sum 
represents with the aid of a sketch.

		  (b)	� Repeat part (a) with midpoints as the sample points.

	 5.	��� The graph of a function f  is given. Estimate y 8
0 f sxd dx 

using four subintervals with (a) right endpoints, (b) left 
endpoints, and (c) midpoints.

x

y

0

f

1

1

EXERCISES 5.2
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	 14.	� Salicylic acid pharmacokinetics �� In the study cited in 
Example 5, the metabolite salicylic acid (SA) was rapidly 
formed and peak SA levels of about 4.2 mgymL were 
reached after an hour. The concentration of SA was 
modeled by the function

Cstd − 11.4te2t

		���  where t is measured in hours and C is measured in mgymL. 
Use the Midpoint Rule with eight subintervals to estimate 
the integral y4

0  Cstd dt. State the units.

	� 15–18 � Express the limit as a definite integral on the given  
interval.

	 15.	 lim
n l `

 o
n

i−1
 xi lns1 1 xi

2d Dx, f2, 6g

	 16.	 lim
n l `

 o
n

i−1
 
cos xi

xi
 Dx, f�, 2�g

	 17.	 lim
n l `

 o
n

i−1
 s2xi

* 1 sxi
*d2  Dx, f1, 8g

	 18.	 lim
n l `

 o
n

i−1
 f4 2 3sxi

*d2 1 6sxi
*d5g Dx, f0, 2g

	� 19–23 � Use the form of the definition of the integral given in  
Theorem 4 to evaluate the integral.

	 19.	 y5

21
 s1 1 3xd dx	 20.	 y4

1
 sx 2 1 2x 2 5d dx

	 21.	 y2

0
 s2 2 x 2d dx	 22.	 y5

0
 s1 1 2x 3d dx

	 23.	 y2

1
 x 3 dx

	 24.	�� (a)	� Find an approximation to the integral y4
0  sx 2 2 3xd dx 

using a Riemann sum with right endpoints and n − 8.
		  (b)	� Draw a diagram like Figure 3 to illustrate the approxi-

mation in part (a).
		  (c)	 Use Theorem 4 to evaluate y4

0  sx 2 2 3xd dx.
		  (d)	� Interpret the integral in part (c) as a difference of areas 

and illustrate with a diagram like Figure 4.

	� 25–26 � Express the integral as a limit of Riemann sums. Do not 
evaluate the limit.

	 25.	 y6

2
 

x

1 1 x 5 dx	 26.	 y10

1
 sx 2 4 ln xd dx

	 27.	��� The graph of f  is shown. Evaluate each integral by 
interpreting it in terms of areas.

		  (a)	 y2

0
 f sxd dx	 (b)	 y5

0
 f sxd dx

		  (c)	 y7

5
 f sxd dx	 (d)	 y9

0
 f sxd dx

	 6.	�� �The graph of t is shown. Estimate y 3
23 tsxd dx with six 

subintervals using (a) right endpoints, (b) left endpoints, 
and (c) midpoints.

x

y

0

g

1

1

	 7.	��� A table of values of an increasing function f  is shown. Use 
the table to find lower and upper estimates for y30

10  f sxd dx.

x 	 10 	 14 	 18 22 26 30

f sxd 212 26 22 1 3 8

	 8.	��� The table gives the values of a function obtained from an 
experiment. Use them to estimate y9

3  f sxd dx using three 
equal subintervals with (a) right endpoints, (b) left end-
points, and (c) midpoints. If the function is known to be an 
increasing function, can you say whether your estimates 
are less than or greater than the exact value of the integral?

x 	 3 	 4 	 5 6 7 8 9

f sxd 23.4 22.1 20.6 0.3 0.9 1.4 1.8

	� 9–12 � Use the Midpoint Rule with the given value of n to 
approximate the integral. Round the answer to four decimal 
places.

	 9.	�� y10

2
 sx 3 1 1 dx,    n − 4	 10.	 y�y2

0
 cos4x dx,    n − 4

	 11.	 y1

0
 sinsx 2d dx,    n − 5	 12.	 y5

1
 x 2e2x dx, n − 4

	 13.	� Drug pharmacokinetics �� During testing of a new drug, 
researchers measured the plasma drug concentration of 
each test subject at 10-minute intervals. The average 
concentrations Cstd are shown in the table, where t is 
measured in minutes and C is measured in mgymL. Use

		���  the Midpoint Rule to estimate the integral y100
0  Cstd dt.  

State the units.

t 0 10 20 30 40 50

Cstd 0 1.3 1.8 2.2 2.4 2.5

t 60 70 80 90 100

Cstd 2.4 2.3 2.0 1.6 1.1
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	 41.	�� �For the function f  whose graph is shown, list the following 
quantities in increasing order, from smallest to largest, and 
explain your reasoning.

		  (A)	 y8
0  f sxd dx	 (B)	 y3

0  f sxd dx	 (C)	 y8
3  f sxd dx

		  (D)	 y8
4  f sxd dx	 (E)	 f 9s1d

y

0 x

2

5

	 42.	�� �If Fsxd − yx
2 f std dt, where f  is the function whose graph is 

given, which of the following values is largest?
		  (A)	 Fs0d	 (B)	 Fs1d	 (C)	 Fs2d
		  (D)	 Fs3d	 (E)	 Fs4d

y

0 t1 2 3 4

y=f(t)

	 43.	��� Each of the regions A, B, and C bounded by the graph of f  
and the x-axis has area 3. Find the value of

y2

24
 f f sxd 1 2x 1 5g dx

y

0 x_4 _2 2A

B

C

	 44.	��� Suppose f  has absolute minimum value m and absolute 
maximum value M. Between what two values must  
y2
0  f sxd dx lie? Which property of integrals allows you to 

make your conclusion?

	 45.	��� Use the properties of integrals to verify that

2 < y1

21
 s1 1 x 2 dx < 2s2 

	 46.	�� Use Property 8 to estimate the value of the integral

y2

0
 

1

1 1 x 2
 dx

	� 47–48 � Express the limit as a definite integral.

	 47.	�� lim
n l `

 o
n

i−1
 
i 4

n 5     [Hint: Consider f sxd − x 4.]

	 48.	 lim
n l `

 
1

n
 o

n

i−1
 

1

1 1 siynd2

x

y

0

2

4 6 82

y=ƒ

	 28.	��� The graph of t consists of two straight lines and a semi- 
circle. Use it to evaluate each integral.

		  (a)	 y2

0
 tsxd dx            (b)  y6

2
 tsxd dx            (c)  y7

0
 tsxd dx

x

y

0

2

4 7

4

y=©

	� 29–34 � Evaluate the integral by interpreting it in terms of areas.

	 29.	 y3

0
 ( 1

2 x 2 1) dx	 30.	 y2

22
 s4 2 x 2  dx

	 31.	 y0

23
 s1 1 s9 2 x 2 d dx	 32.	 y3

21
 s3 2 2xd dx

	 33.	 y2

21
 | x | dx	 34.	 y10

0
 | x 2 5 | dx

	 35.	�� Evaluate y�

�
 sin2x cos4x dx.

	 36.	��� Given that y1

0
 3xsx 2 1 4  dx − 5s5 2 8, what is

		��  y0

1
 3usu 2 1 4  du?

	 37.	��� Write as a single integral in the form yb
a f sxd dx:

y2

22 
 f sxd dx 1 y5

2
 f sxd dx 2 y21

22
 f sxd dx

	 38.	�� If y5
1  f sxd dx − 12 and y5

4  f sxd dx − 3.6, find y4
1  f sxd dx.

	 39.	�� �If y9
0  f sxd dx − 37 and y9

0  tsxd dx − 16, find 

		��  y9
0  f2 f sxd 1 3tsxdg dx.

	 40.	�� Find y5
0  f sxd dx if

f sxd − H3     for x , 3

x     for x > 3
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5.3 The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus is appropriately named because it establishes a 
connection between the two branches of calculus: differential calculus and integral calcu-
lus. Differential calculus arose from the tangent problem, whereas integral calculus arose 
from a seemingly unrelated problem, the area problem. Newton’s mentor at Cambridge, 
Isaac Barrow (1630–1677), discovered that these two problems are actually closely related.  
In fact, he realized that differentiation and integration are inverse processes. The Funda-
mental Theorem of Calculus gives the precise inverse relationship between the deriva-
tive and the integral. It was Newton and Leibniz who exploited this relationship and used 
it to develop calculus into a systematic mathematical method.

■ Evaluating Definite Integrals
In Section 5.2 we computed integrals from the definition as a limit of Riemann sums and 
we saw that this procedure is sometimes long and difficult. Newton and Leibniz realized 
that they could calculate y b

a f sxd dx if they happened to know an antiderivative F of f. 
Their discovery, called the Evaluation Theorem, is part of the Fundamental Theorem of 
Calculus, which is discussed later in this section.

Evaluation Theorem � If f  is continuous on the interval fa, bg, then

yb

a
 f sxd dx − Fsbd 2 Fsad

where F is any antiderivative of f , that is, F9 − f .

This theorem states that if we know an antiderivative F of f, then we can evaluate 
y b

a f sxd dx simply by subtracting the values of F at the endpoints of the interval fa, bg. It 
is very surprising that y b

a f sxd dx, which was defined by a complicated procedure involv-
ing all of the values of f sxd for a < x < b, can be found by knowing the values of Fsxd 
at only two points, a and b.

For instance, we know from Section 4.6 that an antiderivative of the function 
f sxd − x 2 is Fsxd − 1

3 x 3, so the Evaluation Theorem tells us that

y1

0
 x 2 dx − Fs1d 2 Fs0d − 1

3 ? 13 2 1
3 ? 03 − 1

3

Comparing this method with the calculation in Example 5.1.2, where we found the area 
under the parabola y − x 2 from 0 to 1 by computing a limit of sums, we see that the 
Evaluation Theorem provides us with a simple and powerful method.

Although the Evaluation Theorem may be surprising at first glance, it becomes plau-
sible if we interpret it in physical terms. If vstd is the velocity of an object and sstd is 
its position at time t, then vstd − s9std, so s is an antiderivative of v. In Section 5.1 we 
considered an object that always moves in the positive direction and made the guess that 
the area under the velocity curve is equal to the distance traveled. In symbols:

yb

a
 vstd dt − ssbd 2 ssad

That is exactly what the Evaluation Theorem says in this context.
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proof of the evaluation theorem � We divide the interval fa, bg into  
n subintervals with endpoints x0 s− ad, x1, x2, . . . , xn s− bd and with length 
Dx − sb 2 adyn. Let F be any antiderivative of f. By subtracting and adding like 
terms, we can express the total difference in the F values as the sum of the differences 
over the subintervals:

 Fsbd 2 Fsad − Fsxnd 2 Fsx0d

 − Fsxnd 2 Fsxn21d 1 Fsxn21d 2 Fsxn22d 1 ∙ ∙ ∙ 1 Fsx2d 2 Fsx1d 1 Fsx1d 2 Fsx0d

 − o
n

i−1
 fFsxid 2 Fsxi21dg

Now F is continuous (because it’s differentiable) and so we can apply the Mean 
Value Theorem to F on each subinterval fxi21, xig. Thus there exists a number xi* 
between xi21 and xi such that

Fsxid 2 Fsxi21d − F9sxi*dsxi 2 xi21d − f sxi*d Dx

Therefore	 Fsbd 2 Fsad − o
n

i−1
 f sxi*d Dx

Now we take the limit of each side of this equation as n l ` . The left side is a 
constant and the right side is a Riemann sum for the function f , so

	 Fsbd 2 Fsad − lim
nl`

 o
n

i−1
 f sxi*d Dx − yb

a
 f sxd dx	 ■

When applying the Evaluation Theorem we use the notation

Fsxdg a

b
− Fsbd 2 Fsad

and so we can write

yb

a
 f sxd dx − Fsxdg a

b
        where        F9− f

Other common notations are Fsxd |a
b  and fFsxdg a

b.

 Example 1   |  Evaluate y3

1
 ex dx.

solution � An antiderivative of f sxd − ex is Fsxd − ex, so we use the Evaluation 
Theorem as follows:

	 y3

1
 ex dx − exg1

3
− e 3 2 e	 ■

You can see from Example 1 that it is quite easy to calculate y3
1 ex dx with the Evalu-

ation Theorem. Without the Evaluation Theorem it would be very difficult to calculate 
the integral. In fact if we use Theorem 5.2.4 with f sxd − ex, a − 1, and b − 3, we get 
a challenging limit:

y3

1
 ex dx − lim

nl`
 o

n

i−1
 f sxid Dx − lim

nl`
 
2

n
 o

n

i−1
e112iyn

This limit can be evaluated but it isn’t easy to do so. The method of Example 1 is much 
easier.

The Mean Value Theorem was  
discussed in Section 4.2.

In applying the Evaluation Theorem  
we use a particular antiderivative F  
of f. It is not necessary to use the most 
general antiderivative se x 1 Cd.
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 Example 2   |  Find the area under the cosine curve from 0 to b, where 
0 < b < �y2.

SOLUTION � Since an antiderivative of f sxd − cos x is Fsxd − sin x, we have

A − yb

0
 cos x dx − sin xg0

b
− sin b 2 sin 0 − sin b

In particular, taking b − �y2, we have proved that the area under the cosine curve 
from 0 to �y2 is sins�y2d − 1. (See Figure 1.)	 ■

When the French mathematician Gilles de Roberval first found the area under the 
sine and cosine curves in 1635, this was a very challenging problem that required a great 
deal of ingenuity. If we didn’t have the benefit of the Evaluation Theorem, we would have 
to compute a difficult limit of sums using obscure trigonometric identities (or a computer 
algebra system as in Exercise 5.1.23). It was even more difficult for Roberval because 
the apparatus of limits had not been invented in 1635. But in the 1660s and 1670s, when 
the Evaluation Theorem was discovered by Newton and Leibniz, such problems became 
very easy, as you can see from Example 2.

■ Indefinite Integrals
We need a convenient notation for antiderivatives that makes them easy to work with. 
Because of the relation given by the Evaluation Theorem between antiderivatives and 
integrals, the notation y f sxd dx is traditionally used for an antiderivative of f  and is 
called an indefinite integral. Thus

y f sxd dx − Fsxd        means        F9sxd − f sxd

You should distinguish carefully between definite and indefinite integrals. A definite 
integral yb

a  f sxd dx is a number, whereas an indefinite integral y f sxd dx is a function (or 
family of functions). The connection between them is given by the Evaluation Theorem: 
If f  is continuous on fa, bg, then

yb

a
 f sxd dx − y f sxd dxga

b

Recall from Section 4.6 that if F is an antiderivative of f  on an interval I, then the 
most general antiderivative of f  on I is Fsxd 1 C, where C is an arbitrary constant. For 
instance, the formula

y 
1

x
 dx − ln | x | 1 C

is valid (on any interval that doesn’t contain 0) because sdydxd ln | x | − 1yx. So an 
indefinite integral y f sxd dx can represent either a particular antiderivative of f  or an 
entire family of antiderivatives (one for each value of the constant C).

The effectiveness of the Evaluation Theorem depends on having a supply of anti­
derivatives of functions. We therefore restate the Table of Antidifferentiation Formulas 
from Section 4.6, together with a few others, in the notation of indefinite integrals. Any 
formula can be verified by differentiating the function on the right side and obtaining 

y

0

1

x

y=cos x

area=1
π
2

Figure �1
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the integrand. For instance,

y sec2x dx − tan x 1 C        because      
d

dx
 stan x 1 Cd − sec2x 

(1) Table of Indefinite Integrals �

y f f sxd 1 tsxdg dx − y f sxd dx 1 y tsxd dx	 y cf sxd dx − c y f sxd dx

y xn dx −
xn11

n 1 1
1 C    sn ± 21d	 y 

1

x
 dx − ln | x | 1 C

y ex dx − ex 1 C	 y ekx dx −
1

k
ekx 1 C

y ax dx −
ax

ln a
1 C	 y sin x dx − 2cos x 1 C

y cos x dx − sin x 1 C	 y sec2x dx − tan x 1 C

y csc2x dx − 2cot x 1 C	 y sec x tan x dx − sec x 1 C

y csc x cot x dx − 2csc x 1 C	 y 
1

x 2 1 1
 dx − tan21x 1 C

 Example 3   |  Find the general indefinite integral

y s10x 4 2 2 sec2xd dx

SOLUTION � Using our convention and Table 1 and properties of integrals, we have

 y s10x 4 2 2 sec2xd dx − 10 y x 4 dx 2 2 y sec2x dx

 − 10 
x 5

5
2 2 tan x 1 C

 − 2x 5 2 2 tan x 1 C

You should check this answer by differentiating it.	 ■

 Example 4   |  Evaluate y3

0
 sx 3 2 6xd dx.

SOLUTION � Using the Evaluation theorem and Table 1, we have 

 y3

0
 sx 3 2 6xd dx −

x 4

4
2 6 

x 2

2 G0

3

 − s1
4 ? 34 2 3 ? 32 d 2 s1

4 ? 04 2 3 ? 02 d
 − 81

4 2 27 2 0 1 0 − 26.75

Compare this calculation with Example 5.2.2(b).	 ■

The indefinite integral in Example 3 is 
graphed in Figure 2 for several values 
of C. Here the value of C is the  
y-intercept.

4

_4

_1.5 1.5

Figure �2
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 Example 5   |  Find y2

0
 S2x 3 2 6x 1

3

x 2 1 1D dx and interpret the result in terms 
of areas.

SOLUTION � The Evaluation Theorem gives

 y2

0
 S2x 3 2 6x 1

3

x 2 1 1D dx − 2 
x 4

4
2 6 

x 2

2
1 3 tan21xG

0

2

 − 1
2 x 4 2 3x 2 1 3 tan21xg 0

2

 − 1
2 s24 d 2 3s22 d 1 3 tan21 2 2 0

 − 24 1 3 tan21 2

This is the exact value of the integral. If a decimal approximation is desired, we can 
use a calculator to approximate tan21 2. Doing so, we get

y2

0
 S2x 3 2 6x 1

3

x 2 1 1D dx < 20.67855

Figure 3 shows the graph of the integrand. We know from Section 5.2 that the value of 
the integral can be interpreted as a net area: the sum of the areas labeled with a plus 
sign minus the area labeled with a minus sign.	 ■

 Example 6   |  Evaluate y9

1
 
2t 2 1 t 2 st  

2 1
t 2  dt.

SOLUTION � First we need to write the integrand in a simpler form by carrying out the 
division:

 y9

1
 
2t 2 1 t 2 st  2 1

t 2  dt − y9

1
 s2 1 t 1y2 2 t22 d dt

 − 2t 1
t 3y2

3
2

2
t21

21G1

9

− 2t 1 2
3
 t 3y2 1

1

t G1

9

 − s2 ? 9 1 2
3 ? 93y2 1 1

9d 2 s2 ? 1 1 2
3 ? 13y2 1 1

1d

 − 18 1 18 1 1
9 2 2 2 2

3 2 1 − 32 4
9 ■

■ The Net Change Theorem
The Evaluation Theorem says that if f  is continuous on fa, bg, then

yb

a
 f sxd dx − Fsbd 2 Fsad

where F is any antiderivative of f. This means that F9 − f , so the equation can be rewritten  
as

yb

a
 F9sxd dx − Fsbd 2 Fsad

We know that F9sxd represents the rate of change of y − Fsxd with respect to x and 
Fsbd 2 Fsad is the change in y when x changes from a to b. [Note that y could, for 

0

y

2 x

3

Figure �3
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instance, increase, then decrease, then increase again. Although y might change in both 
directions, Fsbd 2 Fsad represents the net change in y.] So we can reformulate the Evalu­
ation Theorem in words as follows.

Net Change Theorem � The integral of a rate of change is the net change: 

yb

a
 F9sxd dx − Fsbd 2 Fsad

 Example 7   |  Integrating rate of growth  If Nstd is the size of a population at 
time t, explain the biological meaning of

y t2

t1

 
dN

dt
 dt

SOLUTION � The derivative dNydt is the rate of growth of the population. According 
to the Net Change Theorem, we have

y t2

t1

  
dN

dt
 dt − Nst2 d 2 Nst1d

This is the net change in population during the time period from t1 to t2. The popula­
tion increases when births happen and decreases when deaths occur. The net change 
takes into account both births and deaths.	 ■

 Example 8   |  If an object moves along a straight line with position function sstd, 
then its velocity is vstd − s9std, so the Net Change Theorem says, in this context, that

y t2

t1

 vstd dt − sst2d 2 sst1d

This is the net change of position, or displacement, of the particle during the time 
period from t1 to t2. In Section 5.1 we guessed that this was true for the case where the 
object moves in the positive direction, but now we have proved that it is always true.	 ■

■ The Fundamental Theorem
The first part of the Fundamental Theorem deals with functions defined by an equation 
of the form

(2)	 tsxd − y x

a
 f std dt	

where f  is a continuous function on fa, bg and x varies between a and b. Observe that t 
depends only on x, which appears as the variable upper limit in the integral. If x is a fixed 
number, then the integral yx

a f std dt is a definite number. If we then let x vary, the number 
yx
a f std dt also varies and defines a function of x denoted by tsxd.

If f  happens to be a positive function, then tsxd can be interpreted as the area under 
the graph of f  from a to x, where x can vary from a to b. (Think of t as the “area so far” 
function; see Figure 4.)

0

y

ta bx

area=©

y=f(t)

Figure �4
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 Example 9   |  If tsxd − yx
a f std dt, where a − 1 and f std − t 2, find a formula for 

tsxd and calculate t9sxd.

SOLUTION � In this case we can compute tsxd explicitly using the Evaluation  
Theorem:

 tsxd − yx

1
t 2 dt −

t 3

3 G1

x

−
x 3 2 1

3

Then	 t9sxd −
d

dx
(1

3 x 3 2 1
3) − x 2	 ■

For the function in Example 9, notice that t9sxd − x 2, that is, t9 − f. In other words, if  
t is defined as the integral of f  by Equation 2, then t turns out to be an antiderivative of  
f, at least in this case. To see why this might be generally true we consider any continu­
ous function f  with f sxd > 0. Then tsxd − yx

a f std dt can be interpreted as the area under 
the graph of f  from a to x, as in Figure 4.

In order to compute t9sxd from the definition of a derivative we first observe that,  
for h . 0, tsx 1 hd 2 tsxd is obtained by subtracting areas, so it is the area under the 
graph of f  from x to x 1 h (the blue area in Figure 5). For small h you can see from the 
figure that this area is approximately equal to the area of the rectangle with height f sxd 
and width h:

 tsx 1 hd 2 tsxd < hf sxd

so	  
tsx 1 hd 2 tsxd

h
< f sxd 	

Intuitively, we therefore expect that

t9sxd − lim
h l 0

 
tsx 1 hd 2 tsxd

h
− f sxd

The fact that this is true, even when f  is not necessarily positive, is the first part of the 
Fundamental Theorem of Calculus.

The Fundamental Theorem of Calculus, Part 1 � If f  is continuous on 
fa, bg, then the function t defined by

tsxd − y x

a
 f std dt        a < x < b

is an antiderivative of f , that is, t9sxd − f sxd for a , x , b.

Using Leibniz notation for derivatives, we can write this theorem as

d

dx yx

a
 f std dt − f sxd

when f  is continuous. Roughly speaking, this equation says that if we first integrate f  
and then differentiate the result, we get back to the original function f.

It is easy to prove the Fundamental Theorem if we make the assumption that f   
possesses an antiderivative F. (This is certainly plausible.) Then, by the Evaluation  
Theorem,

yx

a
 f std dt − Fsxd 2 Fsad

y

0 ta b
x x+h

h

ƒ

Figure �5

We abbreviate the name of this theorem 
as FTC1. In words, it says that the 
derivative of a definite integral with 
respect to its upper limit is the inte­
grand evaluated at the upper limit.

 TEC   Module 5.3 provides visual 
evidence for FTC1.
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for any x between a and b. Therefore

d

dx yx

a
 f std dt −

d

dx
 fFsxd 2 Fsadg − F9sxd − f sxd

as required.

 Example 10   |  Measles pathogenesis  In Section 5.1 we saw that the amount 
of infection exposed to the immune system by day t of a measles infection is

Astd − y t

0
 f ssd ds

where f ssd − 2sss 2 21dss 1 1d. What is the rate of change of the total amount of 
infection Astd at time t?

Solution � Since f  is continuous, Part 1 of the Fundamental Theorem of Calculus 
implies that the rate of change of Astd at time t is

	 A9std −
d

dt y t

0
 f ssd ds − f std − 2tst 2 21dst 1 1d	 ■

 Example 11   |  Find  
d

dx
 y x4

1
 sec t dt.

SOLUTION � Here we have to be careful to use the Chain Rule in conjunction with 
Part 1 of the Fundamental Theorem. Let u − x 4. Then

	  
d

dx
 y x4

1
 sec t dt −

d

dx
 yu

1
 sec t dt

 −
d

du
 Fyu

1
 sec t dtG 

du

dx
      (by the Chain Rule)

	  − sec u  
du

dx
      (by FTC1)

	  − secsx 4 d ? 4x 3 	 ■

■ Differentiation and Integration as Inverse Processes
We now bring together the two parts of the Fundamental Theorem. We regard Part 1 as 
fundamental because it relates integration and differentiation. But the Evaluation Theo­
rem also relates integrals and derivatives, so we rename it as Part 2 of the Fundamental 
Theorem.

The Fundamental Theorem of Calculus � Suppose f  is continuous on fa, bg.

1.  If tsxd − yx

a
 f std dt, then t9sxd − f sxd.

2.  yb

a
 f sxd dx − Fsbd 2 Fsad, where F is any antiderivative of f , that is, F9− f.

We noted that Part 1 can be rewritten as

d

dx
 y x

a
 f std dt − f sxd

The amount of infection was defined  
on page 326.
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which says that if f  is integrated and then the result is differentiated, we arrive back at 
the original function f. And we reformulated Part 2 as the Net Change Theorem:

yb

a
 F9sxd dx − Fsbd 2 Fsad

This version says that if we take a function F, first differentiate it, and then integrate the 
result, we arrive back at the original function F, but in the form Fsbd 2 Fsad. Taken 
together, the two parts of the Fundamental Theorem of Calculus say that differentiation 
and integration are inverse processes. Each undoes what the other does.

The Fundamental Theorem of Calculus is unquestionably the most important theo­
rem in calculus and, indeed, it ranks as one of the great accomplishments of the human 
mind. Before it was discovered, from the time of Eudoxus and Archimedes to the time of 
Galileo and Fermat, problems of finding areas, volumes, and lengths of curves were so 
difficult that only a genius could meet the challenge. But now, armed with the systematic 
method that Newton and Leibniz fashioned out of the Fundamental Theorem, we will 
see in the chapters to come that these challenging problems are accessible to all of us.

	� 1–28 � Evaluate the integral.

	 1.	 y3

22
 sx 2 2 3d dx	 2.	 y2

1
 x 22 dx

	 3.	 y2

0
 (x 4 2 3

4 x 2 1 2
3 x 2 1) dx	 4.	 y1

0
 s1 1 1

2 u 4 2 2
5 u9d du

	 5.	 y1

0
 x 4y5 dx	 6.	 y8

1
 s3 x  dx

	 7.	 y0

21
 s2x 2 e xd dx	 8.	 y5

25
 e dx

	 9.	 y2

1
 s1 1 2yd2 dy	 10.	 y2

0
 sy 2 1ds2y 1 1d dy

	 11.	 y9

1
 
x 2 1

sx  
 dx	 12.	 y1

21
 ts1 2 td2 dt

	 13.	 y1

0
 xss3 x 1 s4 x d dx	 14.	 y�y4

0
 sec � tan � d�

	 15.	 y�y4

0
 sec2t dt	 16.	 y18

1
Î 3

z
  
dz

	 17.	 y9

1
 

1

2x
 dx	 18.	 y5

0
 s2e x 1 4 cos xd dx

	 19.	 y1

0
 sx e 1 e xd dx	 20.	 y1

0
 10 x dx

	 21.	 y1

21
 eu11 du	 22.	 y1

0
 

4

t 2 1 1
 dt

	 23.	 y2

1
 
v3 1 3v6

v4  dv

	 24.	 y�y3

0
 
sin � 1 sin � tan2�

sec2�
 d�

	 25.	 y�y4

0
 
1 1 cos2�

cos2�
 d�	 26.	 y2

1
 
sx 2 1d3

x 2  dx

	 27.	 y1ys3

0
 
t 2 2 1

t 4 2 1
 dt	 28.	 y2

0
 | 2x 2 1 | dx

	� 29–30 � What is wrong with the equation?

	 29.	 y3

21
 

1

x 2  dx −
x 21

21G21

3

− 2
4

3

	 30.	 y�

0
 sec2x dx − tan xg 0

�

− 0

	 ;	� 31–32 � Use a graph to give a rough estimate of the area of the 
region that lies beneath the given curve. Then find the exact 
area.

	 31.	�� y − sin x,  0 < x < �	 32.	 y − sec2x,  0 < x < �y3

	� 33–34 � Evaluate the integral and interpret it as a difference of 
areas. Illustrate with a sketch.

	 33.	 y2

21
 x 3 dx	 34.	 y2�

2�y2
 cos x dx

	� 35–36 � Verify by differentiation that the formula is correct.

	 35.	 y cos3 x dx − sin x 2 1
3 sin3 x 1 C

	 36.	 y x cos x dx − x sin x 1 cos x 1 C

EXERCISES 5.3
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	 50.	� Bacteria growth �� A bacteria colony increases in size at a 
rate of 4.0553e1.8 t bacteria per hour. If the initial population 
is 46 bacteria, find the population four hours later.

	 51.	��� In a chemical reaction, the rate of reaction is the derivative 
of the concentration fCgstd of the product of the reaction. 
What does

y t2

t1

 
d fCg

dt
 dt

		���  represent?

	 52.	��� A honeybee population starts with 100 bees and increases 
at a rate of n9std bees per week. What does the expression
100 1 y15

0  n9std dt represent?

	 53.	��� If oil leaks from a tank at a rate of rstd gallons per minute at 
time t, what does y120

0  rstd dt represent?

	 54.	��� Suppose that a volcano is erupting and readings of the rate 
rstd at which solid materials are spewed into the atmosphere 
are given in the table. The time t is measured in seconds and 
the units for rstd are tonnes (metric tons) per second.

t 0 1 2 3 4 5 6

rstd 2 10 24 36 46 54 60

		  (a)	� Give upper and lower estimates for the total quantity 
Qs6d of erupted materials after 6 seconds.

		  (b)	� Use the Midpoint Rule to estimate Qs6d.

	 55.	��� Water flows from the bottom of a storage tank at a rate of 
rstd − 200 2 4t liters per minute, where 0 < t < 50. Find  
the amount of water that flows from the tank during the first 
10 minutes.

	 56.	��� Water flows into and out of a storage tank. A graph of the 
rate of change rstd of the volume of water in the tank, in 
liters per day, is shown. If the amount of water in the tank at 
time t − 0 is 25,000 L, use the Midpoint Rule to estimate 
the amount of water in the tank four days later.

3

2000

_1000

r

t0 1 2 4

1000

	 57.	� Von Bertalanffy growth �� Many fish grow in a way that is 
described by the von Bertalanffy growth equation. For a fish 
that starts life with a length of 1 cm and has a maximum 
length of 30 cm, this equation predicts that the growth rate 
is 29e2a cmyyear, where a is the age of the fish. How long 
will the fish be after 5 years?

	 ;	� 37–38 � Find the general indefinite integral. Illustrate by graph­
ing several members of the family on the same screen.

	 37.	 y scos x 1 1
2 xd dx	 38.	 y se x 2 2x 2d dx

	� 39–44 � Find the general indefinite integral.

	 39.	 y s1 2 tds2 1 t 2d dt	 40.	 y vsv 2 1 2d2 dv

	 41.	 y s1 1 tan2�d d�	 42.	 y sec t ssec t 1 tan td dt

	 43.	 y 
sin x

1 2 sin2x
 dx	 44.	 y 

sin 2x

sin x
 dx

	 45.	� Measles pathogenesis �� The function

f std − 2tst 2 21dst 1 1d
		���  has been used to model the measles virus concentration in 

an infected individual. The area under the graph of f  repre­
sents the total amount of infection. We saw in Section 5.1 
that at t − 12 days this total amount of infection reaches the 
threshold beyond which symptoms appear. Use the Evalua­
tion Theorem to calculate this threshold value.

	 46.	��� If V9std is the rate at which water flows into a reservoir at 
time t, what does the integral

y t2

t1

 V9std dt

		���  represent?

	 47.	� Growth rate �� If w9std is the rate of growth of a child in 
pounds per year, what does y10

5  w9std dt represent?

	 48.	� Age-structured populations �� Suppose the number of 
individuals of age a is given by the function Nsad (number 
of individuals per age a). What does the integral y15

0  Nsad da 
represent?

	 49.	�S ea urchins �� Integration is sometimes used when cen-
susing a population. For example, suppose the density of 
sea urchins at different points x along a coastline is given 
by the function f sxd individuals per meter, where x is the 
distance (in meters) along the coast from the start of the 
species’ range. What does the integral yb

a  f sxd dx represent?

©
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so between times t − 0 and t − a. Express D in terms 
of Psad and your result from part (a).

		  (c)	� Let dstd be the rate at which people are dying or recov-
ering from infection at time t. What is the relationship 
between D and dstd?

	 61.	�P hotosynthesis �� The rate of primary production refers to 
the rate of conversion of inorganic carbon to organic car-
bon via photosynthesis. It is measured as a mass of carbon 
fixed per unit biomass, per unit time. The rate of primary 
production depends on light intensity, measured as the flux 
of photons (that is, number of photons per unit area per 
unit time). One model for this relationship is

PsId − Pmax s1 2 e2aI d

		���  where P is the rate of primary production as a function of 
light intensity I. Suppose that light intensity changes with 
time according to the equation Istd − kt, where k is a 
constant.

		  (a)	� What is the rate of primary production as a function of 
time?

		  (b)	� What is the total amount of primary production over 
the first five units of time?

		  (c)	� What is the total amount of primary production over 
the first t units of time?

		  (d)	� What is the rate of change of total primary production 
at time t?

Source: Adapted from A. Jassby et al., “Mathematical Formulation of the 

Relationship between Photosynthesis and Light for Phytoplankton,” Limnol-

ogy and Oceanography 21 (1976): 540–7.

	 62.	�P hotosynthesis �� Much of the earth’s photosynthesis 
occurs in the oceans. The rate of primary production (as 
discussed in Exercise 61) depends on light intensity, 
measured as the flux of photons (that is, number of photons 
per unit area per unit time). For monochromatic light, 
intensity decreases with water depth according to Beer’s 
Law, which states that Isxd − e2kx, where x is water depth. 
A simple model for the relationship between rate of 
photosynthesis and light intensity is PsId − aI, where a is 
a constant and P is measured as a mass of carbon fixed per 
volume of water, per unit time.

		  (a)	� What is the rate of photosynthesis as a function of 
water depth?

		  (b)	� What is the total rate of photosynthesis of a water 
column that is one unit in surface area and four units 
deep?

		  (c)	� What is the total rate of photosynthesis of a water col-
umn that is one unit in surface area and x units deep?

		  (d)	� What is the rate of change of the total photosynthesis 
with respect to the depth x?

Source: Adapted from A. Jassby et al., “Mathematical Formulation of the 

Relationship between Photosynthesis and Light for Phytoplankton,” Limnol-

ogy and Oceanography 21 (1976): 540–7.

	 63.	�� (a)	� Show that 1 < s1 1 x 3 < 1 1 x 3 for x > 0.

		  (b)	 Show that 1 < y1
0 s1 1 x 3 dx < 1.25.

	 58.	� Niche overlap �� The extent to which species compete for 
resources is often measured by the niche overlap. If the 
horizontal axis represents a continuum of different resource 
types (for example, seed sizes for certain bird species), 
then a plot of the degree of preference for these resources 
is called a species’ niche. The degree of overlap of two 
species’ niches is then a measure of the extent to which 
they compete for resources. The niche overlap for a species 
is the fraction of the area under its preference curve that is 
also under the other species’ curve. The niches displayed in 
the figure are given by

 n1sxd − sx 2 1ds3 2 xd  1 < x < 3

 n2sxd − sx 2 2ds4 2 xd  2 < x < 4

		���  Use the Evaluation Theorem to calculate the niche overlap 
for species 1.

0

y

x

1

1 2 3

	 59.	� Medical imaging ��devices like CT scans work by passing 
an X-ray beam through part of the body and measuring 
how much the intensity of the beam attenuates (in other 
words, is reduced). The amount of attenuation depends on 
the density and composition of the tissue.

		  (a)	� If Asxd is the attenuation rate at position x in the tissue 
and L is the thickness of the tissue through which the 
beam passes, what is the total attenuation of the beam 
during this procedure?

		  (b)	� Suppose the maximum and minimum attenuation rates 
in the tissue are � and �, respectively. Find upper and 
lower bounds for the total attenuation of the beam as it 
passes through the tissue. Justify your answer using the 
properties of integrals in Section 5.2.

Source: Adapted from T. Feeman, The Mathematics of Medical Imaging 

(New York: Springer Science + Business Media, 2011).

0 xL

tissue

X ray

	 60.	� Incidence and prevalence �� The incidence istd of an 
infectious disease at time t is the rate at which new infec-
tions are occurring at that time. The prevalence Pstd at time 
t is the total number of infected individuals at that time. 
Let’s suppose that Ps0d − 0.

		  (a)	� Express the total number of new infections between 
times t − 0 and t − a as a definite integral.

		  (b)	� Suppose that all individuals either die or recover from 
infection, and that D is the total number that have done 

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



section 5.3  |  The Fundamental Theorem of Calculus    353

	 73.	 Fsxd − y0

x
 s1 1 sec t  dt

		  FHint: y0

x
s1 1 sec t  dt − 2yx

0
 s1 1 sec t  dtG

	 74.	 Gsxd − y1

x
 cos st  dt

	 75.	 hsxd − y1yx

2
 arctan t dt	 76.	 hsxd − yx2

0
 s1 1 r 3  dr	

	 77.	 y − y tan x

0
 st 1 st    dt	 78.	 y − y0

ex
 sin3t dt

	 79.	�� �If f s1d − 12, f 9 is continuous, and y4
1  f 9sxd dx − 17, what is 

the value of f s4d?

	 80.	��� The error function

erfsxd −
2

s�  
 y x

0
 e2t 2

 dt

		��  is used in probability, statistics, and engineering.

		  (a)	� Show that yb
a e

2t 2 dt − 1
2 s�  

 

ferfsbd 2 erfsadg.
		  (b)	� Show that the function y − e x 2erfsxd satisfies the differ-

ential equation y9 − 2xy 1 2ys�  
 

.

	 81.	��� Suppose h is a function such that hs1d − 22, h9s1d − 2, 
h0s1d − 3, hs2d − 6, h9s2d − 5, h0s2d − 13, and h 0 is  
continuous everywhere. Evaluate y2

1  h0sud du.

	 82.	��� The area labeled B is three times the area labeled A. Express 
b in terms of a.

0

y

xa
A

y=´

0

y

xb

B

y=´

	� 83–84 � Evaluate the limit by first recognizing the sum as a 
Riemann sum for a function defined on f0, 1g.

	 83.	 lim
n l `

 o
n

i−1
 
i 3

n 4

	 84.	 lim
n l `

 
1

n
 SÎ 1

n
 1Î 2

n
 1Î 3

n
 1 ∙ ∙ ∙ 1Î n

n
 D

	 85.	��� Find a function f  and a number a such that

6 1 y x

a
 
 f std
t 2  dt − 2sx   for all x . 0

	 64.	�� (a)	 Show that cossx 2d > cos x for 0 < x < 1.

		  (b)	 Deduce that y�y6
0  cossx 2d dx > 1

2.

	 65.	�� ��Let tsxd − yx

0 f std dt, where f  is the function whose graph  
is shown.

1 5 t

y

1

0

f

		  (a)	 Evaluate ts0d, ts1d, ts2d, ts3d, and ts6d.
		  (b)	 On what interval is t increasing?
		  (c)	 Where does t have a maximum value?
		  (d)	 Sketch a rough graph of t.

	 66.	��� Let tsxd − yx

0 f std dt, where f  is the function whose graph  
is shown.

		  (a)	� Evaluate tsxd for x − 0, 1, 2, 3, 4, 5, and 6.
		  (b)	� Estimate ts7d.
		  (c)	� Where does t have a maximum value? Where does it 

have a minimum value?
		  (d)	� Sketch a rough graph of t.

t

y

0

1

1 4 6

	� 67–68 � Sketch the area represented by tsxd. Then find t9sxd in 
two ways: (a) by using Part 1 of the Fundamental Theorem  
and (b) by evaluating the integral using Part 2 and then  
differentiating.

	 67.	 tsxd − yx

0
 s1 1 t 2d dt	 68.	 tsxd − yx

0
 (1 1 st ) dt

	� 69–78 � Use Part 1 of the Fundamental Theorem of Calculus to 
find the derivative of the function.

	 69.	 tsxd − yx

1
 

1

t 3 1 1
 dt	 70.	 tsxd − yx

3
 et 22t dt

	 71.	 tsyd − yy

2
 t 2 sin t dt	 72.	 tsrd − yr

0
 sx 2 1 4  dx
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5.4 The Substitution Rule

■ Substitution in Indefinite Integrals
Because of the Fundamental Theorem, it’s important to be able to find antiderivatives. 
But our antidifferentiation formulas don’t tell us how to evaluate integrals such as

(1)	 y 2xs1 1 x 2 dx	

Our strategy is to simplify the integral by introducing a new variable. Suppose that we 
let u be the quantity under the root sign in (1): u − 1 1 x 2. Then duydx − 2x. Up until 

■ Project  The Outbreak Size of an Infectious Disease	 BB

In Sections 7.6 and 10.4 we will analyze the Kermack-McKendrick model for infectious 
disease dynamics. If Sstd is the number of people susceptible to infection at time t and 
Istd is the number of people already infected at this time, then a simplified version of the 
model specifies the derivatives of S and I with respect to time as

(1)	
dS

dt
− 2�SI	

(2)	
dI

dt
− �SI 2 �I	

where � and � are positive constants and the numbers of susceptible and infected people 
at time t − 0 are Ss0d and Is0d, respectively.

	 1.	�� �Use Equation 1 to express the quantity 2�yT
0 SstdIstd dt in terms of the function 

Sstd.

	 2.	�� �Use Equation 1 to express the quantity 2� y�
0  Istd dt in terms of the function Sstd.

	 3.	�� Use Equation 2 to express the quantity � y�
0  SstdIstd dt 2 � y �

0  Istd dt in terms of 
the function Istd.

	 4.	�� Use the results from Problems 1–3 to obtain a single equation that Ss0d, SsTd, 
IsTd, and Is0d must satisfy and that does not involve integrals.

	 5.	�� �It can be shown that lim Tl` IsTd − 0 and that lim Tl` SsTd − S`, where S` is a 
positive constant. What equation do you get if you let T l ` in your answer to 
Problem 4?

	 6.	�� �Suppose that the number of people initially infected, Is0d, is negligibly small and 
define q − �Ss0dy� and A − 1 2 S`ySs0d. Here q is a measure of the transmis-
sibility of the infection and A is the fraction of the original susceptible popula-
tion Ss0d that ultimately gets infected (that is, the outbreak size). Show that your 
answer to Problem 5 can be written as

(3)	 e2qA − 1 2 A	

		��  �Equation 3 is a special case of an equation seen previously in many exercises 
and examples. For instance, see Example 3.5.13, Exercises 3.5.81, 3.8.32, 
3.Review.92, and Example 9.4.6.
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now we have not interpreted duydx as a ratio of two quantities du and dx, but in this 
context it is useful to do so. Here we regard the symbols du and dx as separate entities 
called differentials and we write the equation duydx − 2x as

du − 2x dx

Then formally, without justifying our calculation, we could write

(2)	  y 2xs1 1 x 2  dx − y s1 1 x 2  2x dx − y su
  du 	

 − 2
3 u3y2 1 C − 2

3 s1 1 x 2d3y2 1 C

But now we can check that we have the correct answer by using the Chain Rule to dif-
ferentiate the final function of Equation 2: 

d

dx
 f2

3 s1 1 x 2d3y2 1 Cg − 2
3 ? 3

2 s1 1 x 2d1y2 ? 2x − 2xs1 1 x 2  

In general, this method works whenever we have an integral that we can write in the 
form y f stsxdd t9sxd dx. Observe that if F9− f, then

(3)	 y F9stsxdd t9sxd dx − Fstsxdd 1 C	

because, by the Chain Rule,

d

dx
 fFstsxddg − F9stsxdd t9sxd

If we make the “change of variable” or “substitution” u − tsxd, then from Equation 
3 we have 

y F9stsxdd t9sxd dx − Fstsxdd 1 C − Fsud 1 C − y F9sud du

or, writing F9 − f , we get

y f stsxdd t9sxd dx − y f sud du

Thus we have proved the following rule.

(4) The Substitution Rule � If u − tsxd is a differentiable function whose 
range is an interval I and f  is continuous on I, then

y f stsxdd t9sxd dx − y f sud du

Notice that the Substitution Rule for integration was proved using the Chain Rule 
for differentiation. Notice also that if u − tsxd, then duydx − t9sxd, which we write in 
terms of differentials: du − t9sxd dx. This is probably the best way to remember the 
Substitution Rule.

 Example 1   |  Find y x 3 cossx 4 1 2d dx.

SOLUTION � We make the substitution u − x 4 1 2 because its differential is 
du − 4x 3 dx, which, apart from the constant factor 4, occurs in the integral. Thus, 
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using x 3 dx − 1
4 du and the Substitution Rule, we have

 y x 3 cossx 4 1 2d dx − y cos u ? 1
4 du − 1

4 y cos u du

 − 1
4 sin u 1 C

 − 1
4 sinsx 4 1 2d 1 C

Notice that at the final stage we had to return to the original variable x.	 ■

The idea behind the Substitution Rule is to replace a relatively complicated integral 
by a simpler integral. This is accomplished by changing from the original variable x 
to a new variable u that is a function of x. Thus in Example 1 we replaced the integral 
y x 3 cossx 4 1 2d dx by the simpler integral 14 y cos u du.

The main challenge in using the Substitution Rule is to think of an appropriate sub-
stitution. You should try to choose u to be some function in the integrand whose differ-
ential also occurs (except for a constant factor). This was the case in Example 1. If that 
is not possible, try choosing u to be some complicated part of the integrand (perhaps the 
inner function in a composite function). Finding the right substitution is a bit of an art. 
It’s not unusual to guess wrong; if your first guess doesn’t work, try another substitution.

 Example 2   |  Evaluate y s2x 1 1 dx.

SOLUTION 1 � Let u − 2x 1 1. Then du − 2 dx, so dx − 1
2 du. Thus the Substitution 

Rule gives

 y s2x 1 1 dx − y su  ? 1
2 du − 1

2 y u 1y2 du

 −
1

2
?

u 3y2

3y2
1 C − 1

3 u 3y2 1 C

 − 1
3 s2x 1 1d3y2 1 C

SOLUTION 2 � Another possible substitution is u − s2x 1 1. Then

du −
dx

s2x 1 1
        so        dx − s2x 1 1 du − u du

(Or observe that u 2 − 2x 1 1,  so 2u du − 2 dx.) Therefore

 y s2x 1 1  dx − y u ? u du − y u2 du

	  −
u 3

3
1 C − 1

3 s2x 1 1d3y2 1 C	 ■

 Example 3   |  Find y 
x

s1 2 4x 2 
 dx.

SOLUTION � Let u − 1 2 4x 2. Then du − 28x dx, so x dx − 21
8 du and

 y 
x

s1 2 4x 2 
 dx − 21

8 y 
1

su  du − 21
8 y u21y2 du

	  − 21
8 (2su ) 1 C − 21

4 s1 2 4x 2 1 C	 ■

Check the answer by differentiating it.
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The answer to Example 3 could be checked by differentiation, but instead let’s check  
it with a graph. In Figure 1 we have used a computer to graph both the integrand
f sxd − xys1 2 4x 2  and its indefinite integral tsxd − 21

4 s1 2 4x 2  (we take the case 
C − 0). Notice that tsxd decreases when f sxd is negative, increases when f sxd is positive, 
and has its minimum value when f sxd − 0. So it seems reasonable, from the graphical 
evidence, that t is an antiderivative of f.

 Example 4   |  Calculate y e 5x dx.

SOLUTION � If we let u − 5x, then du − 5 dx, so dx − 1
5 du. Therefore

	 y e 5x dx − 1
5 y eu du − 1

5 eu 1 C − 1
5 e 5x 1 C	 ■

Note � With some experience, you might be able to evaluate integrals like those in 
Examples 1–4 without going to the trouble of making an explicit substitution. By recog-
nizing the pattern in Equation 3, where the integrand on the left side is the product of the 
derivative of an outer function and the derivative of the inner function, we could work 
Example 1 as follows:

y x 3 cossx 4 1 2d dx − y cossx 4 1 2d ? x 3 dx − 1
4 y cossx 4 1 2d ? s4x 3d dx

   − 1
4 y cossx 4 1 2d ?

d

dx
 sx 4 1 2d dx − 1

4 sinsx 4 1 2d 1 C

Similarly, the solution to Example 4 could be written like this:

y e 5x dx − 1
5 y 5e 5x dx − 1

5 y 
d

dx
 se 5xd dx − 1

5 e 5x 1 C

The following example, however, is more complicated and so an explicit substitution is 
advisable.

 Example 5   |  Calculate y tan x dx.

SOLUTION � First we write tangent in terms of sine and cosine:

y tan x dx − y 
sin x

cos x
 dx

This suggests that we should substitute u − cos x, since then du − 2sin x dx and so 
sin x dx − 2du:

 y tan x dx − y 
sin x

cos x
 dx − 2y 

1

u
 du

	  − 2ln | u | 1 C − 2ln | cos x | 1 C	 ■

Since 2ln | cos x | − lns| cos x |21d − lns1y|cos x |d − ln | sec x |, the result of Exam
ple 5 can also be written as

y tan x dx − ln | sec x | 1 C

1

_1

_1 1

©=� ƒ dx

f

Figure �1

©=j ƒ dx=_   œ„„„„„„

x
œ„„„„„„1-4≈

1-4≈1
4

ƒ=
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■ Substitution in Definite Integrals
When evaluating a definite integral by substitution, two methods are possible. One method 
is to evaluate the indefinite integral first and then use the Evaluation Theorem. For 
instance, using the result of Example 2, we have 

 y4

0
 s2x 1 1 dx − y s2x 1 1 dxg0

4

 − 1
3 s2x 1 1d3y2g0

4
− 1

3 s9d3y2 2 1
3 s1d3y2

 − 1
3 s27 2 1d − 26

3

Another method, which is usually preferable, is to change the limits of integration when 
the variable is changed.

(5) The Substitution Rule for Definite Integrals � If t9 is continuous on 
fa, bg and f  is continuous on the range of u − tsxd, then

yb

a
 f stsxdd t9sxd dx − ytsbd

tsad
 f sud du

Proof � Let F be an antiderivative of f. Then, by (3), Fstsxdd is an antiderivative of 
f stsxdd t9sxd, so by the Evaluation Theorem, we have

yb

a
 f stsxdd t9sxd dx − Fstsxddgb

a − Fstsbdd 2 Fstsadd

But, applying the Evaluation Theorem a second time, we also have

	 ytsbd

tsad
 f sud du − Fsudgtsad

tsbd
− Fstsbdd 2 Fstsadd	 ■

 Example 6   |  Evaluate y4

0
 s2x 1 1 dx using (5).

SOLUTION � Using the substitution from Solution 1 of Example 2, we have 
u − 2x 1 1 and dx − 1

2 du. To find the new limits of integration we note that

when x − 0, u − 2s0d 1 1 − 1        and        when x − 4, u − 2s4d 1 1 − 9

Therefore	  y4

0
 s2x 1 1  dx − y9

1
 12 su  du − 1

2 ? 2
3u 3y2g1

9
	

 − 1
3 s93y2 2 13y2 d − 26

3

Observe that when using (5) we do not return to the variable x after integrating. We  
simply evaluate the expression in u between the appropriate values of u.	 ■

 Example 7   |  Evaluate y2

1
 

dx

s3 2 5xd2 .

SOLUTION � Let u − 3 2 5x. Then du − 25 dx, so dx − 21
5 du. When x − 1, 

This rule says that when using a 
substitution in a definite integral, we 
must put everything in terms of the new 
variable u, not only x and dx but also 
the limits of integration. The new limits 
of integration are the values of u that 
correspond to x − a and x − b.

The integral given in Example 7 is an  
abbreviation for

y2

1
 

1

s3 2 5xd2  dx
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�u − 22 and when x − 2, u − 27. �Thus

 y2

1
 

dx

s3 2 5xd2 − 2
1

5
 y27

22
 
du

u 2

 − 2
1

5
 F2

1

uG22

27 
−

1

5uG22

27

	  −
1

5
 S2

1

7
1

1

2D −
1

14
	 ■

 Example 8   |  Metabolism  A model for the basal metabolism rate, in kcalyh,  
of a young man is

Rstd − 85 2 0.18 coss�ty12d

where t is the time in hours measured from 5:00 am. What is the total basal metabo-
lism of this man, y 24

0  Rstd dt, over a 24-hour time period?

Solution � We make the substitution u − �ty12. Then du − s�y12d dt and u − 2� 
when t − 24. So

 y24

0
 Rstd dt − y24

0
 F85 2 0.18 cosS�t

12DG dt − y2�

0
 s8.5 2 0.18 cos ud ?

12

�
 du

 −
12

�
 f85u 2 0.18 sin ug 0

2�

−
12

�
 s85 ? 2� 2 0d − 2040

The total metabolism for the 24-hour period was 2040 kcal.	 ■

■ Symmetry
The next theorem uses the Substitution Rule for Definite Integrals (5) to simplify the 
calculation of integrals of functions that possess symmetry properties.

(6) Integrals of Symmetric Functions � Suppose f  is continuous on f2a, ag.

(a)  If f  is even f f s2xd − f sxdg, then ya
2a f sxd dx − 2 ya

0 f sxd dx.

(b)  If f  is odd f f s2xd − 2f sxdg, then ya
2a f sxd dx − 0.

Proof � We split the integral in two:

(7)	 ya

2a
 f sxd dx − y0

2a
 f sxd dx 1 ya

0
 f sxd dx − 2y2a

0
 f sxd dx 1 ya

0
 f sxd dx	

��In the first integral on the far right side we make the substitution u − 2x. Then 
du − 2dx and when x − 2a, u − a. Therefore

2y2a

0
 f sxd dx − 2ya

0
 f s2ud s2dud − ya

0
 f s2ud du
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and so Equation 7 becomes

(8)	 ya

2a
 f sxd dx − ya

0
 f s2ud du 1 ya

0
 f sxd dx	

(a)	 If f  is even, then f s2ud − f sud so Equation 8 gives

ya

2a
 f sxd dx − ya

0
 f sud du 1 ya

0
 f sxd dx − 2 ya

0
 f sxd dx

(b)	 If f  is odd, then f s2ud − 2f sud and so Equation 8 gives

	 ya

2a
 f sxd dx − 2ya

0
 f sud du 1 ya

0
 f sxd dx − 0	 ■

Theorem 6 is illustrated by Figure 2. For the case where f  is positive and even, part 
(a) says that the area under y − f sxd from 2a to a is twice the area from 0 to a because 
of symmetry. Recall that an integral yb

a  f sxd dx can be expressed as the area above the  
x-axis and below y − f sxd minus the area below the axis and above the curve. Thus part 
(b) says the integral is 0 because the areas cancel.

 Example 9   |  Since f sxd − x 6 1 1 satisfies f s2xd − f sxd, it is even and so

 y2

22
 sx 6 1 1d dx − 2 y2

0
 sx 6 1 1d dx

	  − 2f1
7 x 7 1 xg0

2
− 2(128

7 1 2) − 284
7 	 ■

 Example 10   |  Since f sxd − stan xdys1 1 x 2 1 x 4 d satisfies f s2xd − 2f sxd, it is 
odd and so

	 y1

21
 

tan x

1 1 x 2 1 x 4  dx − 0	 ■

0

y

x_a a

(a) ƒ even, j    ƒ dx=2 j  ƒ dx
0

a

_a

a

0
x

_a
a

y

(b) ƒ odd, j    ƒ dx=0
_a

a

Figure �2

	� 1–6 � Evaluate the integral by making the given substitution.

	 1.	 y e2x dx, u − 2x

	 2.	 y x 3s2 1 x 4d5 dx,   u − 2 1 x 4

	 3.	 y x 2 sx 3 1 1 dx, u − x 3 1 1

	 4.	 y 
dt

s1 2 6td4 ,    u − 1 2 6t

	 5.	 y cos3� sin � d�,    u − cos �

	 6.	 y 
sec2s1yxd

x 2  dx,    u − 1yx

	� 7–36 � Evaluate the indefinite integral.

	 7.	 y x sinsx 2d dx	 8.	 y x 2sx 3 1 5d9 dx

	 9.	 y s3x 2 2d20 dx	 10.	 y s3t 1 2d2.4 dt

	 11.	 y sin � t dt	 12.	 y e x cosse xd dx

	 13.	 y 
sln xd2

x
 dx	 14.	 y 

x

sx 2 1 1d2  dx

	 15.	 y 
dx

5 2 3x
	 16.	 y 

sin sx 

sx 
 dx

	 17.	 y 
a 1 bx 2

s3ax 1 bx 3 
 dx	 18.	 y 

z 2

z 3 1 1
 dz

	 19.	 y e x s1 1 e x  dx	 20.	 y sec 2� tan 2� d�

	 21.	 y 
cos x

sin2x
 dx	 22.	 y 

tan21x

1 1 x 2  dx

	 23.	 y sx 2 1 1dsx 3 1 3xd4 dx	 24.	 y 
sinsln xd

x
 dx

EXERCISES 5.4
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	 56.	��� A bacteria population starts with 400 bacteria and grows at 
a rate of rstd − s450.268de1.12567t bacteria per hour. How 
many bacteria will there be after three hours?

	 57.	��� An oil storage tank ruptures at time t − 0 and oil leaks from 
the tank at a rate of rstd − 100e20.01t liters per minute. How 
much oil leaks out during the first hour?

	 58.	� Fish biomass �� The rate of growth of a fish population was 
modeled by the equation

Gstd −
60,000e20.6 t

s1 1 5e20.6 td2

		���  where t is measured in years since 2000 and G in kilograms 
per year. If the biomass was 25,000 kg in the year 2000, 
what is the predicted biomass for the year 2020?

	 59.	� Breathing ��is cyclic and a full respiratory cycle from the 
beginning of inhalation to the end of exhalation takes  
about 5 s. The maximum rate of air flow into the lungs is 
about 0.5 Lys. This explains, in part, why the function 
f std − 1

2 sins2� ty5d has often been used to model the rate of 
air flow into the lungs. Use this model to find the volume of 
inhaled air in the lungs at time t.

	 60.	� Dialysis treatment ��removes urea and other waste products 
from a patient’s blood by diverting some of the bloodflow 
externally through a machine called a dialyzer. The rate at 
which urea is removed from the blood (in mgymin) is often 
well described by the equation

cstd −
K

V
 c0 e2KtyV

		���  where K is the rate of flow of blood through the dialyzer (in 
mLymin), V is the volume of the patient’s blood (in mL), 
and c0 is the amount of urea in the blood (in mg) at time 
t − 0. Evaluate the integral y30

0  cstd dt and interpret it.

	 61.	� Gompertz tumor growth �� In Chapter 7 we will explore a 
model for tumor growth in which the growth rate is given by

tstd − 212e2te2t ln 2 mm3ymonth

		���  By how much is the volume of the tumor predicted to 
increase over the first year?

	 62.	� Photosynthesis �� The rate of primary production refers to 
the rate of conversion of inorganic carbon to organic carbon 
via photosynthesis. It is measured as a mass of carbon fixed 
per unit biomass, per unit time. A common model for this 
relationship is

PsId −
aI

s1 1 bI 2 

		���  where P is the rate of primary production as a function of 
light intensity I. Suppose the light intensity changes with 
time according to the equation Istd − kt, where k is a 
constant.

		  (a)	� What is the rate of primary production as a function of 
time?

	 25.	 y scot x  csc2x dx	 26.	 y 
coss�yxd

x 2  dx

	 27.	 y e 2r sinse 2rd dr	 28.	 y 
dt

cos2 ts1 1 tan t 

	 29.	 y sec3x tan x dx	 30.	 y x 2s2 1 x  dx

	 31.	 y xs2x 1 5d8 dx	 32.	 y 
e x

e x 1 1
 dx

	 33.	 y 
sin 2x

1 1 cos2x
 dx	 34.	 y 

sin x

1 1 cos2x
 dx

	 35.	 y 
1 1 x

1 1 x 2  dx	 36.	 y 
x

1 1 x 4  dx

	� 37–51 � Evaluate the definite integral.

	 37.	 y1

0
 coss� ty2d dt	 38.	 y1

0
 s3t 2 1d50 dt

	 39.	 y1

0
 s3 1 1 7x  dx	 40.	 ys� 

0
 x cossx 2d dx

	 41.	 y1

0
 x 2s1 1 2x 3d5 dx	 42.	 y1y2

1y6
 csc � t cot � t dt

	 43.	 y4

1
 
e sx 

sx 
 dx	 44.	 y�y2

0
 cos x sinssin xd dx

	 45.	 y�y4

2�y4
 sx 3 1 x 4 tan xd dx	 46.	 y�y2

2�y2
 
x 2 sin x

1 1 x 6  dx

	 47.	 y2

1
 xsx 2 1 dx	 48.	 ya

0
 xsa 2 2 x 2  dx

	 49.	 y1

0
 
e z 1 1

e z 1 z
 dz	 50.	 yTy2

0
 sins2� tyT 2 �d dt

	 51.	 y1

0
 

dx

s1 1 sx d4

	 52.	��� Verify that f sxd − sin s3 x  is an odd function and use that 
fact to show that

0 < y3

22
 sin s3 x  dx < 1

	 53.	��� Evaluate y2
22 sx 1 3ds4 2 x 2 dx by writing it as a sum of  

two integrals and interpreting one of those integrals in terms 
of an area.

	 54.	�� �Evaluate y1
0 xs1 2 x 4 dx by making a substitution and 

interpreting the resulting integral in terms of an area.

	 55.	�� �Which of the following areas are equal? Why?

y=2x´

0 x

y

1

y=esin x sin 2x

0 x

y

π
2

1

y=eœ„x

0 x

y

1
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	 64.	�� If f  is continuous and y9

0
 f sxd dx − 4, find y3

0
 xf sx 2 d dx.

	 65.	��� �If f  is continuous and y4

0
 f sxd dx − 10, find y2

0
 f s2xd dx.

	 66.	��� If f  is continuous on R, prove that

yb

a
 f sx 1 cd dx − yb1c

a1c
 f sxd dx

		��  �For the case where f sxd > 0, draw a diagram to interpret this 
equation geometrically as an equality of areas.

	 67.	�� If a and b are positive numbers, show that

y1

0
 x as1 2 xdb dx − y1

0
 x bs1 2 xda dx

		  (b)	� What is the total amount of primary production over the 
first five units of time?

Source: Adapted from A. Jassby et al., “Mathematical Formulation of the  

Relationship between Photosynthesis and Light for Phytoplankton,” Limnol-

ogy and Oceanography 21 (1976): 540–7.

	 63.	� Growing degree days �� The rate of development of many 
plant species depends on the temperature of the environment 
in such a way that maturity is reached only after a certain 
number of “degree-days.” Suppose that temperature T as a 
function of time t is given by

T std − 15S1 1 sin 
2�t

60 D  0 < t < 60

		���  where t is measured in days. If maturity is reached on day 
t − 20, what is the number of degree-days required?  
[Hint: What are the units for y20

0  T std dt?]

5.5 Integration by Parts

Every differentiation rule has a corresponding integration rule. For instance, the Substi-
tution Rule for integration corresponds to the Chain Rule for differentiation. The rule 
that corresponds to the Product Rule for differentiation is called the rule for integration 
by parts.

■ Indefinite Integrals
The Product Rule states that if f  and t are differentiable functions, then

d

dx
 f f sxdtsxdg − f sxdt9sxd 1 tsxd f 9sxd

In the notation for indefinite integrals this equation becomes

 y f f sxdt9sxd 1 tsxd f 9sxdg dx − f sxdtsxd

 y f sxdt9sxd dx 1 y tsxd f 9sxd dx − f sxdtsxdor

We can rearrange this equation as

(1)	 y f sxdt9sxd dx − f sxdtsxd 2 y tsxd f 9sxd dx	

Formula 1 is called the formula for integration by parts. It is perhaps easier to 
remember in the following notation. Let u − f sxd and v − tsxd. Then the differentials 
are du − f 9sxd dx and dv − t9sxd dx, so, by the Substitution Rule, the formula for inte-
gration by parts becomes

(2)	 y u dv − uv 2 y v du	

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Section 5.5  |  Integration by Parts    363

 Example 1   |  Find y x sin x dx.

SOLUTION USING FORMULA 1 � Suppose we choose f sxd − x and t9sxd − sin x. 
Then f 9sxd − 1 and tsxd − 2cos x. (For t we can choose any antiderivative of t9.) 
Thus, using Formula 1, we have

 y x sin x dx − f sxdtsxd 2 y tsxd f 9sxd dx

 − xs2cos xd 2 y s2cos xd dx

 − 2x cos x 1 y cos x dx

 − 2x cos x 1 sin x 1 C

It’s wise to check the answer by differentiating it. If we do so, we get x sin x, as 
expected.

SOLUTION USING FORMULA 2 � Let

 u − x  dv − sin x dx

Then	  du − dx  v − 2cos x	

and so

 y x sin x dx − y x  sin x dx − x s2cos xd 2 y s2cos xd dx

 − 2x cos x 1 y cos x dx

	  − 2x cos x 1 sin x 1 C 	 ■

Note � Our aim in using integration by parts is to obtain a simpler integral than 
the one we started with. Thus in Example 1 we started with y x sin x dx and expressed 
it in terms of the simpler integral y cos x dx. If we had instead chosen u − sin x and 
dv − x dx, then du − cos x dx and v − x 2y2, so integration by parts gives

y x sin x dx − ssin xd 
x 2

2
2

1

2
 y x 2 cos x dx

Although this is true, y x 2 cos x dx is a more difficult integral than the one we started 
with. In general, when deciding on a choice for u and dv, we usually try to choose 
u − f sxd to be a function that becomes simpler when differentiated (or at least not more 
complicated) as long as dv − t9sxd dx can be readily integrated to give v.

 Example 2   |  Evaluate y ln x dx.

SOLUTION � Here we don’t have much choice for u and dv. Let

 u − ln x dv − dx

Then	  du −
1

x
 dx v − x	

It is helpful to use the pattern:

 u − �         dv − �

 du − �         v − �

u d√ u √ √ du
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Integrating by parts, we get

 y ln x dx − x ln x 2 y x 
dx

x

 − x ln x 2 y dx

 − x ln x 2 x 1 C

Integration by parts is effective in this example because the derivative of the function 
f sxd − ln x is simpler than f.	 ■

 Example 3   |  Find y t 2et dt.

SOLUTION � Notice that t 2 becomes simpler when differentiated (whereas et is 
unchanged when differentiated or integrated), so we choose

 u − t 2     dv − et dt

Then	   du − 2t dt v − et 	

Integration by parts gives

(3)	 y t 2et dt − t 2et 2 2 y tet dt	

The integral that we obtained, y tet dt, is simpler than the original integral but is still 
not obvious. Therefore we use integration by parts a second time, this time with u − t 
and dv − et dt. Then du − dt, v − et, and

 y tet dt − tet 2 y et dt

 − tet 2 et 1 C

Putting this in Equation 3, we get

 y t 2et dt − t 2et 2 2 y tet dt

 − t 2et 2 2stet 2 et 1 Cd

 − t 2et 2 2tet 1 2et 1 C1 where C1 − 22C ■

 Example 4   |  Evaluate y ex sin x dx.

SOLUTION � Neither ex nor sin x becomes simpler when differentiated, but we try 
choosing u − ex and dv − sin x dx anyway. Then du − ex dx and v − 2cos x, so 
integration by parts gives

(4)	 y ex sin x dx − 2ex cos x 1 y ex cos x dx	

The integral that we have obtained, y ex cos x dx, is no simpler than the original one, 
but at least it’s no more difficult. Having had success in the preceding example inte-
grating by parts twice, we persevere and integrate by parts again. This time we use 
u − ex and dv − cos x dx. Then du − ex dx, v − sin x, and

(5)	 y ex cos x dx − ex sin x 2 y ex sin x dx	

It’s customary to write y 1 dx as y dx.

Check the answer by differentiating it.

An easier method, using complex 
numbers, is given in Exercise 50 in 
Appendix G.
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At first glance, it appears as if we have accomplished nothing because we have 
arrived at y ex sin x dx, which is where we started. However, if we put the expression 
for y ex cos x dx from Equation 5 into Equation 4 we get

y ex sin x dx − 2ex cos x 1 ex sin x 2 y ex sin x dx

This can be regarded as an equation to be solved for the unknown integral. Adding 
y ex sin x dx to both sides, we obtain

2 y ex sin x dx − 2ex cos x 1 ex sin x

Dividing by 2 and adding the constant of integration, we get

	 y ex sin x dx − 1
2 exssin x 2 cos xd 1 C	 ■

■ Definite Integrals
If we combine the formula for integration by parts with the Evaluation Theorem, we can 
evaluate definite integrals by parts. Evaluating both sides of Formula 1 between a and b, 
assuming f 9 and t9 are continuous, and using the Evaluation Theorem, we obtain

(6)	 yb

a
 f sxdt9sxd dx − f sxdtsxdg a

b
2 yb

a

 tsxd f 9sxd dx	

 Example 5   |  Aspirin pharmacokinetics  In Example 5.2.5 we used data from 
a paper1 and modeled the average concentration of low-dose aspirin in the bloodstream 
of 10 volunteers by the function

Cstd − 32t 2e24.2 t

where t is measured in hours and C is measured in mgymL. There we used the Mid-
point Rule to estimate y2

0 Cstd dt and interpreted the integral in terms of the availability 
of the drug. Here we use integration by parts to evaluate y2

0 Cstd dt.

Solution � Notice that t 2 becomes simpler when differentiated (whereas e24.2 t 
doesn’t). So we choose

	  u − 32t 2 	  dv − e24.2 t dt 	

Then

	  du − 64t dt 	  v − 2
1

4.2
e24.2 t	

Formula 6 gives

(7)	 y2

0
 32t 2e24.2 t dt − 2

32

4.2
t 2e24.2 tG2

0
 2 y2

0
 S2

64

4.2Dte24.2 t dt	

	 − 2
32

4.2
s4e28.4d 1

64

4.2
 y2

0
 te24.2 t dt

_3

_4

12

6

F

f

Figure 1 illustrates Example 4 by  
showing the graphs of f sxd − e x sin x
and Fsxd − 1

2 e xssin x 2 cos xd. As a 
visual check on our work, notice that 
f sxd − 0 when F has a maximum or 
minimum.

Figure �1

1.� I. H. Benedek et al., “Variability in the Pharmacokinetics and Pharmacodynamics of Low Dose Aspirin in 
Healthy Male Volunteers,” Journal of Clinical Pharmacology 35 (1995): 1181–86.
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The integral that we obtained, y2
0 te24.2 t dt, is simpler than the original integral but is 

still not obvious. Therefore we use integration by parts a second time, this time with 
u − t and dv − e24.2 t dt. Then

du − dt    and    v − 2
1

4.2
e24.2 t

so

 y2

0
 te24.2 t dt − 2

t

4.2
 e24.2 tG2

0

1
1

4.2 y2

0
 e24.2 t dt

 − 2
2

4.2
 e28.4 1

1

4.2F e24.2 t

24.2G
2

0

− 2
2

4.2
 e28.4 2

e28.4 2 1

s4.2d2

Putting this in Equation 7, we get

y2

0
 Cstd dt −

1

4.2 F2128e28.4 1 64S2
2

4.2
e28.4 2

e28.4 2 1

s4.2d2 DG
Approximating this expression to four decimal places, we get

	 y2

0
 Cstd dt < 0.8552 (mgymLd ? h	 ■

 Example 6   |  Calculate y1

0
 tan21x dx.

SOLUTION � Let

 u − tan21x dv − dx

 du −
dx

1 1 x 2              v − xThen

So Formula 6 gives

 y1

0
 tan21x dx − x tan21xg0

1
2 y1

0
 x

1 1 x 2
 dx

 − 1 ? tan21 1 2 0 ? tan21 0 2 y1

0
 

x

1 1 x 2  dx

 −
�

4
2 y1

0
 

x

1 1 x 2  dx

To evaluate this integral we use the substitution t − 1 1 x 2 (since u has another 
meaning in this example). Then dt − 2x dx, so x dx − 1

2 dt. When x − 0, t − 1; when 
x − 1, t − 2; so

 y1

0
 

x

1 1 x 2  dx − 1
2 y2

1
 
dt

t
− 1

2 ln | t |g1

2

 − 1
2 sln 2 2 ln 1d − 1

2 ln 2

Therefore	 y1

0
 tan21x dx −

�

4
2 y1

0
 

x

1 1 x 2  dx −
�

4
2

ln 2

2
	 ■

Comparing the answer in Example 5 
with the estimate of 0.8568 that we got 
in Example 5.2.5, we see that the Mid-
point Rule gave a reasonably accurate 
estimate.

Since tan21x > 0 for x > 0, the integral 
in Example 6 can be interpreted as the 
area of the region shown in Figure 2.

y

0
x1

y=tan–!x

Figure �2
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	� 1–2 � Evaluate the integral using integration by parts with the  
indicated choices of u and dv.

	 1.	�� y x 2 ln x dx;    u − ln x,  dv − x 2 dx

	 2.	�� y � cos � d�;    u − �,  dv − cos � d�

	� 3–20 � Evaluate the integral.

	 3.	 y x cos 5x dx	 4.	 y xe2x dx

	 5.	 y re ry2 dr	 6.	 y t sin 2t dt

	 7.	 y x 2 sin �x dx	 8.	 y x 2 cos mx dx

	 9.	 y ln s3 x  dx	 10.	 y p5 ln p dp

	 11.	 y e 2� sin 3� d�	 12.	 y e2� cos 2� d�

	 13.	 y�

0
 t sin 3t dt	 14.	 y1

0
 sx 2 1 1de2x dx

	 15.	 y2

1
 
ln x

x 2  dx	 16.	 y9

4
 
ln y

sy  
 dy

	 17.	 y1

0
 

y

e2y  dy	 18.	 ys3

1
 arctans1yxd dx

	 19.	 y2

1
 sln xd2 dx	 20.	 y1

0
 

r 3

s4 1 r 2 
 dr

	� 21–26 � First make a substitution and then use integration by 
parts to evaluate the integral.

	 21.	 y cos sx  dx	 22.	 y t 3e2t 2

 dt

	 23.	 ys�

s�y2
 � 3 coss� 2 d d�	 24.	 y�

0
 e cos t sin 2t dt

	 25.	 y x lns1 1 xd dx	 26.	 y sinsln xd dx

	 27.	�� (a)	� If n > 2 is an integer, show that

y sinnx dx − 2
1

n
 cos x sinn21x 1

n 2 1

n y sinn22x dx

			�   This is called a reduction formula because the exponent 
n has been reduced to n 2 1 and n 2 2.

		  (b)	 Use the reduction formula in part (a) to show that

y sin2x dx −
x

2
2

sin 2x

4
1 C

		  (c)	� Use parts (a) and (b) to evaluate y sin4x dx.

	 28.	�� (a)	� Prove the reduction formula

y cosnx dx −
1

n
 cosn21x sin x 1

n 2 1

n
 y cosn22x dx

		  (b)	 Use part (a) to evaluate y cos2x dx.
		  (c)	 Use parts (a) and (b) to evaluate y cos4x dx.

	� 29–30 � Use integration by parts to prove the reduction formula.

	 29.	 y sln xdn dx − x sln xdn 2 n y sln xdn21 dx

	 30.	 y x ne x dx − x ne x 2 n y x n21e x dx

	 31.	��� Use Exercise 29 to find y sln xd3 dx.

	 32.	�� Use Exercise 30 to find y x 4e x dx.

	 33.	� Salicylic acid pharmacokinetics �� In the article cited in 
Example 5 the authors also studied the formation and 
concentration of salicylic acid in the bloodstream of 10 
volunteers. A model for the concentration is

Cstd − 11.4te2t

		���  where t is measured in hours and C in mgymL. Calculate 
y4
0 Cstd dt and include the units in your answer.

	 34.	�R umen microbial ecosystem �� The rumen is the first 
chamber in the stomach of ruminants such as cattle, sheep, 
and deer. Fermentation reactions by symbiotic organisms 
begin digesting plant matter in the rumen. If � is the frac-
tion of matter entering or leaving the rumen per unit time in 
a model for continuous fermentation, then the integral

y1

0
 �e2� t s1 2 td dt

		���  is the fraction of soluble material passing from the rumen in 
the first hour without being fermented. Evaluate this 
integral.

 

Chewing, swallowing, regurgitation, rechewing,
and reswallowing of food through esophagus

To small
intestine

Rumen

Esophagus

Reticulum

Omasum

Abomasum
(gastric
stomach)

Source: Adapted from R. E. Hungate, “The Rumen Microbial Ecosystem,” 

Annual Review of Ecology and Systematics 6 (1975): 39–66.

EXERCISES 5.5
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5.6 Partial Fractions

In Chapter 7 we will study the logistic model for population growth and in solving the 
logistic differential equation we will need to be able to integrate the function

FsNd −
K

NsK 2 Nd

where K is a positive constant. The integration techniques we have learned so far don’t 
enable us to integrate this function, but in this section we learn how to do so. (See 
Example 2.)

The idea is to express a rational function as a sum of simpler functions, called partial 
fractions, that we already know how to integrate. To illustrate the method, observe that 
by taking the fractions 2ysx 2 1d and 1ysx 1 2d to a common denominator we obtain

2

x 2 1
2

1

x 1 2
−

2sx 1 2d 2 sx 2 1d
sx 2 1dsx 1 2d

−
x 1 5

x 2 1 x 2 2

If we now reverse the procedure, we see how to integrate the function on the right side 
of this equation:

 y 
x 1 5

x 2 1 x 2 2
 dx − y S 2

x 2 1
2

1

x 1 2D dx

 − 2 ln | x 2 1 | 2 ln | x 1 2 | 1 C

More generally, let’s consider a rational function

f sxd −
Psxd
Qsxd

where P and Q are polynomials. It’s possible to express f  as a sum of simpler frac-
tions provided that the degree of P is less than the degree of Q. If that’s not the case, 
then we must take the preliminary step of dividing Q into P (by long division) until a 
remainder Rsxd is obtained whose degree is less than the degree of Q. As the following 
example illustrates, sometimes this preliminary step is all that is required.

 Example 1   |  Find y 
x 3 1 x

x 2 1
 dx.

SOLUTION � Since the degree of the numerator is greater than the degree of the 

that 0 < T < 1 and T − 0 results in no development, 
whereas T − 1 is a lethal temperature. Suppose the daily 
temperature oscillates according to the equation 
T std − a cos2t, where � units of time equals one day, and  
a is the factor between 0 and 1 by which the temperature 
oscillates over the course of a day. Use Exercise 28 to 
determine the cumulative amount of development that 
happens over the first week for the case where k − 3.

	 37.	��� Suppose that f s1d − 2, f s4d − 7, f 9s1d − 5, f 9s4d − 3, and 
f 0 is continuous. Find the value of y4

1  xf 0sxd dx.

	 38.	��� �If f s0d − ts0d − 0 and f 0 and t 0 are continuous, show that

ya

0
 f sxdt 0sxd dx − f sadt9sad 2 f 9sadtsad 1 ya

0
 f 0sxdtsxd dx

	 35.	� Gene regulation �� In Section 10.3 a model of gene regula-
tion is analyzed and it is shown that the concentration of 
protein in a cell as a function of time is given by the equation

pstd − 1
2 2 1

2e2t ssin t 1 cos td

		���  The bioavailability of this protein is defined as the integral of 
this concentration over time. What is the bioavailability of 
the protein over the first unit of time?

	 36.	�I nsect metamorphosis �� The rate of development of  
many insects increases gradually with temperature up to  
a maximum and then rapidly falls to zero. This can be 
approximated by the function T 2 T k, where k is a positive 
integer and T is a standardized measure of temperature such 
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denominator, we first perform the long division. This enables us to write

 y 
x 3 1 x

x 2 1
 dx − y Sx 2 1 x 1 2 1

2

x 2 1D dx

 −
x 3

3
1

x 2

2
1 2x 1 2 ln | x 2 1 | 1 C ■

The next step is to factor the denominator Qsxd as far as possible. We concentrate on 
the case where Qsxd is a product of distinct linear factors of the form ax 1 b. (Other 
cases are explored in the exercises.)

Then we express the function RsxdyQsxd as a sum of partial fractions of the form

A

ax 1 b

Each factor ax 1 b of Qsxd has a corresponding partial fraction. The constants in the 
numerators can be determined as in the following examples.

 Example 2   |  BB   Logistic model  If K is a constant, evaluate the integral

y 
K

NsK 2 Nd

SOLUTION � Because there are two linear factors, we write

(1)	
K

NsK 2 Nd
−

A

N
1

B

K 2 N
	

where A and B are constants. To determine the values of A and B, we multiply both 
sides of Equation 1 by the product of denominators, NsK 2 Nd:

 K − AsK 2 Nd 1 BN

 K − sB 2 AdN 1 AK

Comparing the left and right sides, we see that this equation is satisfied if B 2 A − 0 
and A − 1. So the solution is A − B − 1 and we have

K

NsK 2 Nd
−

1

N
1

1

K 2 N

This new form of the function allows us to integrate more easily:

 y 
K

NsK 2 Nd
 dN − yS 1

N
1

1

K 2 ND dN

 − ln | N | 2 ln | K 2 N | 1 C ■

 Example 3   |  Evaluate y 
x 2 1 2x 2 1

2x 3 1 3x 2 2 2x
 dx.

SOLUTION � Since the degree of the numerator is less than the degree of the denomi-
nator, we don’t need to divide. We factor the denominator as

2x 3 1 3x 2 2 2x − xs2x 2 1 3x 2 2d − xs2x 2 1dsx 1 2d

Since the denominator has three distinct linear factors, the partial fraction decomposi-

x-1
≈+x +2

˛-≈
≈+x
≈-x

2x
2x-2

2

˛ +x)

Notice that in integrating the second 
term we made the mental substitution 
u − K 2 N and so du − 2dN.
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tion of the integrand has the form

(2)	
x 2 1 2x 2 1

xs2x 2 1dsx 1 2d
−

A

x
1

B

2x 2 1
1

C

x 1 2
	

To determine the values of A, B, and C, we multiply both sides of this equation by the 
product of the denominators, xs2x 2 1dsx 1 2d, obtaining

(3)	 x 2 1 2x 2 1 − As2x 2 1dsx 1 2d 1 Bxsx 1 2d 1 Cxs2x 2 1d	

Expanding the right side of Equation 3 and writing it in the standard form for poly- 
nomials, we get

(4)	 x 2 1 2x 2 1 − s2A 1 B 1 2Cdx 2 1 s3A 1 2B 2 Cdx 2 2A	

The polynomials in Equation 4 are identical, so their coefficients must be equal. The 
coefficient of x 2 on the right side, 2A 1 B 1 2C, must equal the coefficient of x 2 on 
the left side—namely, 1. Likewise, the coefficients of x are equal and the constant 
terms are equal. This gives the following system of equations for A, B, and C:

 2A 1  B 1  2C − 1

 3A 1  2B 2  C − 2

	  22A	 − 21

Solving, we get A − 1
2, B − 1

5, and C − 2 1
10, and so

 y 
x 2 1 2x 2 1

2x 3 1 3x 2 2 2x
 dx − y F 1

2
 
1

x
1

1

5
 

1

2x 2 1
2

1

10
 

1

x 1 2G dx

 − 1
2 ln | x | 1 1

10 ln | 2x 2 1 | 2 1
10 ln | x 1 2 | 1 K

In integrating the middle term we have made the mental substitution u − 2x 2 1, 
which gives du − 2 dx and dx − 1

2 du.	 ■

Note � We can use an alternative method to find the coefficients A, B, and C in Exam
ple 3. Equation 3 is an identity; it is true for every value of x. Let’s choose values of x 
that simplify the equation. If we put x − 0 in Equation 3, then the second and third terms 
on the right side vanish and the equation then becomes 22A − 21, or A − 1

2. Likewise,
� x − 1

2 gives 5By4 − 1
4 and x − 22 gives 10C − 21, so B − 1

5 and C − 2 1
10. (You may 

object that Equation 2 is not valid for x − 0, 12, or 22, so why should Equation 3 be valid 
for those values? In fact, Equation 4 is true for all values of x, even x − 0, 12, and 22. See 
Exercise 23 for the reason.)

Another method for finding A, B, and C 
is given in the note after this example.

We could check our work by taking the 
terms to a common denominator and 
adding them.

Figure 1 shows the graphs of the inte-
grand in Example 3 and its indefinite 
integral (with K − 0). Which is which?

_3

_2

2

3

Figure �1

	� 1–2 � Write the function as a sum of partial fractions. Do not 
determine the numerical values of the coefficients.

	 1.	�� (a)	
1

x 2 2 1
	 (b)	

2

x 2 1 x

	 2.	�� (a)	
x

x 2 1 x 2 2
	 (b)	

2 2 x

x 2 2 2x 2 8

	� 3–14 � Evaluate the integral.

	 3.	 y 
x

x 2 6
 dx	 4.	 y 

r 2

r 1 4
 dr

	 5.	 y 
x 2 9

sx 1 5dsx 2 2d
 dx	 6.	 y 

1

st 1 4dst 2 1d
 dt

	 7.	 y3

2
 

1

x 2 2 1
 dx	 8.	 y1

0
 

x 2 1

x 2 1 3x 1 2
 dx

EXERCISES 5.6

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



section 5.7  |  Integration Using Tables and Computer Algebra Systems    371

	 22.	��� Use the method of Exercise 21 to evaluate

y 
3x 2 2 2x 1 3

sx 2 1dsx 2 1 1d
 dx

	 23.	��� Suppose that F, G, and Q are polynomials and

Fsxd
Qsxd

−
Gsxd
Qsxd

		���  for all x except when Qsxd − 0. Prove that Fsxd − Gsxd for 
all x. [Hint: Use continuity.]

BB 	 24.	�S terile insect technique �� One method of slowing the 
growth of an insect population without using pesticides is 
to introduce into the population a number of sterile males 
that mate with fertile females but produce no offspring. 
(The photo shows a screw-worm fly, the first pest effec-
tively eliminated from a region by this method.) Let P 
represent the number of female insects in a population and 
S the number of sterile males introduced each generation. 
Let r be the per capita rate of production of females by 
females, provided their chosen mate is not sterile. Then the 
female population is related to time t by

t − y 
P 1 S

P fsr 2 1dP 2 Sg
 dP

		���  Suppose an insect population with 10,000 females grows at 
a rate of r − 1.1 and 900 sterile males are added. Evaluate 
the integral to give an equation relating the female popula-
tion to time. (Note that the resulting equation can’t be 
solved explicitly for P.)

US
DA

	 9.	 y 
ax

x 2 2 bx
 dx	 10.	 y 

1

sx 1 adsx 1 bd
 dx

	 11.	 y1

0
 

2

2x2 1 3x 1 1
 dx	 12.	 y1

0
 
x 3 2 4x 2 10

x 2 2 x 2 6
 dx

	 13.	 y2

1
 

4y 2 2 7y 2 12

ysy 1 2dsy 2 3d
 dy	 14.	 y 

x 2 1 2x 2 1

x 3 2 x
 dx

	� 15–18 � Make a substitution to express the integrand as a  
rational function and then evaluate the integral.

	 15.	 y16

9
 

sx 

x 2 4
 dx	 16.	 y 

dx

2sx 1 3 1 x
 

	 17.	 y 
e 2x

e 2x 1 3e x 1 2
 dx	 18.	 y 

cos x

sin2 x 1 sin x
 dx

	 19.	��� If a linear factor in the denominator of a rational function 
is repeated, there will be two corresponding partial 
fractions. For instance,

f sxd −
5x 2 1 3x 2 2

x 2sx 1 2d
−

A

x
1

B

x 2 1
C

x 1 2

		���  Determine the values of A, B, and C and use them to 
evaluate y f sxd dx.

	 20.	��� Use the method of Exercise 19 to evaluate

y 
x 2 2 5x 1 16

s2x 1 1dsx 2 2d2  dx

	 21.	��� If a factor of the denominator is an irreducible quadratic, 
such as x 2 1 1, the corresponding partial fraction has a 
linear numerator. For instance,

f sxd −
2x 2 1 x 1 1

xsx 2 1 1d
−

A

x
1

Bx 1 C

x 2 1 1

		���  Determine the values of A, B, and C and use them to 
evaluate y f sxd dx.

5.7 Integration Using Tables and Computer Algebra Systems

We have not given an exhaustive treatment of techniques of integration, so it’s important 
to know that there are resources available to scientists and others who encounter a dif-
ficult integral. Here we describe how to evaluate integrals using tables and computer 
algebra systems. For a definite integral that seems intractable, one can always approxi-
mate it by using the Midpoint Rule or the numerical integration capability of a scientific 
calculator.
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■ Tables of Integrals
Tables of indefinite integrals are very useful when we are confronted by an integral that 
is difficult to evaluate by hand and we don’t have access to a computer algebra system. A 
relatively brief table of 120 integrals, categorized by form, is provided on the Reference 
Pages at the front of the book. More extensive tables are available in the CRC Standard 
Mathematical Tables and Formulae, 32nd ed. by Daniel Zwillinger (Boca Raton, FL, 
2011) (709 entries) or in Gradshteyn and Ryzhik’s Table of Integrals, Series, and Prod-
ucts, 7e (San Diego, 2007), which contains hundreds of pages of integrals. It should be 
remembered, however, that integrals do not often occur in exactly the form listed in a 
table. Usually we need to use the Substitution Rule or algebraic manipulation to trans-
form a given integral into one of the forms in the table.

 Example 1   |  Use the Table of Integrals to evaluate y2

0
 
x 2 1 12

x 2 1 4
 dx.

Solution � The only formula in the table that resembles our given integral is  
entry 17:

y 
du

a 2 1 u 2 −
1

a
 tan21 

u

a
1 C

If we perform long division, we get

x 2 1 12

x 2 1 4
− 1 1

8

x 2 1 4

Now we can use Formula 17 with a − 2:

 y2

0
 
x 2 1 12

x 2 1 4
 dx − y2

0
 S1 1

8

x 2 1 4D dx − x 1 8 ? 1
2 tan21 

x

2G0

2

 − 2 1 4 tan21 1 − 2 1 � ■

 Example 2   |  Use the Table of Integrals to find y x 3 sin x dx.

SOLUTION � If we look in the section called Trigonometric Forms, we see that none of 
the entries explicitly includes a u 3 factor. However, we can use the reduction formula  
in entry 84 with n − 3:

y x 3 sin x dx − 2x 3 cos x 1 3 y x 2 cos x dx

We now need to evaluate y x 2 cos x dx. We can use the reduction formula in entry 85 
with n − 2, followed by entry 82:

 y x 2 cos x dx − x 2 sin x 2 2 y x sin x dx

 − x 2 sin x 2 2ssin x 2 x cos xd 1 K

Combining these calculations, we get

y x 3 sin x dx − 2x 3 cos x 1 3x 2 sin x 1 6x cos x 2 6 sin x 1 C

where C − 3K.	 ■

The Table of Integrals appears on 
Reference Pages 6–10 at the front of 
the book.

85.  y u n cos u du

            − u n sin u 2 n y u n21 sin u du
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 Example 3   |  Use the Table of Integrals to find y xsx 2 1 2x 1 4  dx.

SOLUTION � Since the table gives forms involving sa 2 1 x 2 , sa 2 2 x 2 , and 

sx 2 2 a 2 , but not sax 2 1 bx 1 c , we first complete the square:

x 2 1 2x 1 4 − sx 1 1d2 1 3

If we make the substitution u − x 1 1 (so x − u 2 1), the integrand will involve the 
pattern sa 2 1 u 2 :

 y xsx 2 1 2x 1 4  dx − y su 2 1d su 2 1 3  du

 − y usu 2 1 3  du 2 y su 2 1 3  du

The first integral is evaluated using the substitution t − u 2 1 3:

y usu 2 1 3  du − 1
2 y st  dt − 1

2 ? 2
3 t 3y2 − 1

3 su 2 1 3d3y2

For the second integral we use Formula 21 with a − s3 :

y su 2 1 3  du −
u

2
 su 2 1 3 1 3

2 lnsu 1 su 2 1 3 d

Thus

y xsx 2 1 2x 1 4  dx

− 1
3sx 2 1 2x 1 4d3y2 2

x 1 1

2
 sx 2 1 2x 1 4 2 3

2 lnsx 1 1 1 sx 2 1 2x 1 4 d 1 C

■

■ Computer Algebra Systems
We have seen that the use of tables involves matching the form of the given inte-
grand with the forms of the integrands in the tables. Computers are particularly good 
at matching patterns. And just as we used substitutions in conjunction with tables, a 
CAS can perform substitutions that transform a given integral into one that occurs in its 
stored formulas. So it isn’t surprising that computer algebra systems excel at integration. 
That doesn’t mean that integration by hand is an obsolete skill. We will see that a hand 
computation sometimes produces an indefinite integral in a form that is more convenient 
than a machine answer.

To begin, let’s see what happens when we ask a machine to integrate the relatively  
simple function y − 1ys3x 2 2d. Using the substitution u − 3x 2 2, an easy calcula-
tion by hand gives

y 
1

3x 2 2
 dx − 1

3 ln | 3x 2 2 | 1 C

whereas Derive, Mathematica, and Maple all return the answer

1
3 lns3x 2 2d

The first thing to notice is that computer algebra systems omit the constant of integra- 
tion. In other words, they produce a particular antiderivative, not the most general one. 
Therefore, when making use of a machine integration, we might have to add a constant.

21.  y sa 2 1 u 2  du −
u

2
 sa 2 1 u 2 

1
a 2

2
 lnsu 1 sa 2 1 u 2 d 1 C
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Second, the absolute value signs are omitted in the machine answer. That is fine if 
our problem is concerned only with values of x greater than 23. But if we are interested in 
other values of x, then we need to insert the absolute value symbol.

 Example 4   |  Use a CAS to evaluate y xsx 2 1 5d8 dx.

SOLUTION � Maple and Mathematica give the same answer:

1
18 x 18 1 5

2 x 16 1 50x 14 1 1750
3  x 12 1 4375x 10 1 21875x 8 1 218750

3  x 6 1 156250x 4 1 390625
2  x 2

It’s clear that both systems must have expanded sx 2 1 5d8 by the Binomial Theorem 
and then integrated each term.

If we integrate by hand instead, using the substitution u − x 2 1 5, we get

y xsx 2 1 5d8 dx − 1
18 sx 2 1 5d9 1 C

For most purposes, this is a more convenient form of the answer.	 ■

 Example 5   |  Use a CAS to find y sin5x cos2x dx.

SOLUTION � Derive and Maple report the answer

21
7 sin4x cos3x 2 4

35 sin2x cos3x 2 8
105 cos3x

whereas Mathematica produces

2 5
64 cos x 2 1

192 cos 3x 1 3
320 cos 5x 2 1

448 cos 7x

We suspect that there are trigonometric identities that we could use to show that these 
answers are equivalent. Indeed, if we ask Derive, Maple, and Mathematica to simplify 
their expressions using trigonometric identities, they ultimately produce the same form 
of the answer:

	 y sin5x cos2x dx − 21
3 cos3x 1 2

5 cos5x 2 1
7 cos7x	 ■

■ Can We Integrate All Continuous Functions?
The question arises: Will our basic integration formulas, together with the Substitution 
Rule, integration by parts, tables of integrals, and computer algebra systems, enable us to 
find the integral of every continuous function? In particular, can we use these techniques 
to evaluate y ex2

 dx? The answer is No, at least not in terms of the functions that we are 
familiar with.

Most of the functions that we have been dealing with in this book are called elemen-
tary functions. These are the polynomials, rational functions, power functions sxa d, 
exponential functions sax d, logarithmic functions, trigonometric and inverse trigono-
metric functions, and all functions that can be obtained from these by the five opera-
tions of addition, subtraction, multiplication, division, and composition. For instance, 
the function

f sxd − Î x 2 2 1

x 3 1 2x 2 1
1 lnscos xd 2 xe sin 2x

is an elementary function.

Derive and the TI-89 and TI-92 also 
give this answer.
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If f  is an elementary function, then f 9 is an elementary function but y f sxd dx need 
not be an elementary function. Consider f sxd − ex 2

. Since f  is continuous, its integral 
exists, and if we define the function F by

Fsxd − yx

0
 e t 2

 dt

then we know from Part 1 of the Fundamental Theorem of Calculus that

F9sxd − ex 2

Thus f sxd − ex 2
 has an antiderivative F, but it has been proved that F is not an elemen-

tary function. This means that no matter how hard we try, we will never succeed in 
evaluating y ex 2

 dx in terms of the functions we know. The same can be said of the fol-
lowing integrals:

 y 
ex

x
 dx   y sinsx 2 d dx y cossex d dx 

 y sx 3 1 1 dx y 
1

ln x
 dx  y 

sin x

x
 dx

In fact, the majority of elementary functions don’t have elementary antiderivatives.

	� 1–18 � Use the Table of Integrals on Reference Pages 6–10 to 
evaluate the integral.

	 1.	 y tan3 s�xd dx	 2.	 y e 2� sin 3� d�

	 3.	 y 
dx

x 2s4x 2 1 9 
	 4.	 y3

2
 

1

x 2s4x 2 2 7 
 dx

	 5.	 y e 2x arctanse xd dx	 6.	 y 
s2y 2 2 3 

y 2  dy

	 7.	 y�

0
 x 3 sin x dx	 8.	 y 

dx

2x 3 2 3x 2

	 9.	 y 
tan3s1yzd

z 2  dz	 10.	 y x sinsx 2d coss3x 2d dx

	 11.	 y sin2x cos x lnssin xd dx

	 12.	 y 
sin 2�

s5 2 sin �  
 d�

	 13.	 y 
e x

3 2 e2x  dx	 14.	 y1

0
 x 4e2x dx

	 15.	 y 
x 4 dx

sx 10 2 2 
	 16.	 y 

sec2� tan2�

s9 2 tan2�  
 d�

	 17.	 y 
s4 1 sln xd2

 

x
 dx	 18.	 y e t sins�t 2 3d dt

	 19.	��� Verify Formula 53 in the Table of Integrals (a) by differ-
entiation and (b) by using the substitution t − a 1 bu.

	 20.	��� Verify Formula 31 (a) by differentiation and (b) by substi- 
tuting u − a sin �.

	 CAS 	� 21–27 � Use a computer algebra system to evaluate the inte-
gral. Compare the answer with the result of using tables. If the 
answers are not the same, show that they are equivalent.

	 21.	 y sec4x dx	 22.	 y x 2s1 1 x 3d4 dx

	 23.	 y xs1 1 2x dx	 24.	 y 
dx

e xs3e x 1 2d

	 25.	 y tan5x dx	 26.	 y sin4x dx

	 27.	 y 
1

s1 1 s3 x  
 dx

	 CAS 	 28.	��� �Computer algebra systems sometimes need a helping hand 
from human beings. Try to evaluate

y s1 1 ln xd s1 1 sx ln xd2  dx

		��  �with a computer algebra system. If it doesn’t return an 
answer, make a substitution that changes the integral into 
one that the CAS can evaluate.

EXERCISES 5.7
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5.8 Improper Integrals

In defining a definite integral yb
a f sxd dx we dealt with a function f  defined on a finite 

interval fa, bg. In this section we extend the concept of a definite integral to the case 
where the interval is infinite. In this case the integral is called an improper integral. One 
of the most important applications of this idea, probability distributions, will be studied 
in Chapter 12.

Consider the infinite region S that lies under the curve y − 1yx 2, above the x-axis, and 
to the right of the line x − 1. You might think that, since S is infinite in extent, its area 
must be infinite, but let’s take a closer look. The area of the part of S that lies to the left 
of the line x − b (shaded in Figure 1) is

Asbd − yb

1
 

1

x 2  dx − 2
1

x G1

b

− 1 2
1

b

Notice that Asbd , 1 no matter how large b is chosen.
We also observe that

lim
b l `

 Asbd − lim
b l `

 S1 2
1

bD − 1

The area of the shaded region approaches 1 as b l ` (see Figure 2), so we say that the 
area of the infinite region S is equal to 1 and we write

y`

1
 
1

x 2  dx − lim
b l `

 yb

1
 

1

x 2  dx − 1

Using this example as a guide, we define the integral of f  (not necessarily a positive 
function) over an infinite interval as the limit of integrals over finite intervals.

(1) Definition of an Improper Integral � If yb
a f sxd dx exists for every number 

b > a, then

y`

a
 f sxd dx − lim

b l `
 yb

a
 f sxd dx

provided this limit exists (as a finite number). An improper integral is called con-
vergent if the corresponding limit exists and divergent if the limit does not exist.

The improper integral in Definition 1 can be interpreted as an area provided that f  
is a positive function. For instance, if f sxd > 0 and the integral y`

a  f sxd dx is convergent, 
then we define the area of the region S − hsx, yd | x > a, 0 < y < f sxdj in Figure 3 to be

AsSd − y`

a
 f sxd dx

0

y

x1 b

y=

x=1
area=1-=1 1

b

1
≈

Figure �1

Figure �2

0

y

x1 2

area= 1
2

0

y

x1 3

area= 2
3

0

y

x1

area=1

0

y

x1 5

4
5area=
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This is appropriate because y`

a  f sxd dx is the limit as b l ` of the area under the graph 
of  f  from a to b.

0

y

xa

S

y=ƒ

 Example 1   |  Determine whether the integral y`

1  s1yxd dx is convergent or divergent.

SOLUTION � According to Definition 1, we have

 y`

1
 
1

x
 dx − lim

b l `
 yb

1
 
1

x
 dx − lim

b l `
 ln | x |g 1

b

 − lim
b l `

 sln b 2 ln 1d − lim
b l `

 ln b − `

The limit does not exist as a finite number and so the improper integral y`

1  s1yxd dx is  
divergent.	 ■

Let’s compare the result of Example 1 with the example given at the beginning of this  
section:

y`

1
 

1

x 2  dx converges            y`

1
 
1

x
 dx diverges

Geometrically, this says that although the curves y − 1yx 2 and y − 1yx look very simi-
lar  for x . 0, the region under y − 1yx 2 to the right of x − 1 (the shaded region in 
Figure 4) has finite area whereas the corresponding region under y − 1yx (in Figure 5) 
has infinite area. Note that both 1yx 2 and 1yx approach 0 as x l ` but 1yx 2 approaches 
0 faster than 1yx. The values of 1yx don’t decrease fast enough for its integral to have a 
finite value.

1
x

infinite area

0

y

x1

y=

0

y

x1

finite area

y= 1
≈

j   (1/≈) dx converges.1
`

Figure �4

          j   (1/x) dx diverges.1
`

1
x

infinite area

0

y

x1

y=

0

y

x1

finite area

y= 1
≈

Figure �5

 Example 2   |  Salicylic acid pharmacokinetics  In Exercises 5.2.14 and 
5.5.33 we used the function Cstd − 11.4te2t to model the concentration of SA in the 

Figure �3
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bloodstream of volunteers, where t is measured in hours and C is measured in mgymL. 
Calculate y`

0  Cstd dt and interpret it.

Solution � The definition of an improper integral says that

 y`

0
 Cstd dt − lim

bl`
 yb

0
 Cstd dt − 11.4 lim

bl`
 yb

0
 te2t dt

We integrate by parts with u − t, dv − e2t dt, so du − dt and v − 2e2t:

 yb

0
 te2t dt − 2te2tg 0

b
2 yb

0
 s2e2td dt

 − 2be2b 2 0 2 e2tg 0

b
− 2be2b 2 e2b 1 1

We know that e2b l 0 as b l `, and by l’Hospital’s Rule we have

 lim
bl`

 be2b − lim
bl`

 
b

eb − lim
bl`

 
1

eb

 − lim
bl`

 e2b − 0

Therefore

	  y`

0
 Cstd dt − 11.4 lim

bl`
 s2be2b 2 e2b 1 1d

	  − 11.4s20 2 0 1 1d − 11.4 smgymLd ? h

We have previously interpreted y1
0 Cstd dt in terms of the “availability” of the drug 

during the first hour, with units of concentration times time. Similarly, y4
0 Cstd dt 

measures the availability over the first four hours. The improper integral y`
0  Cstd dt (the 

total area under the concentration curve in Figure 6) measures the availability for all 
time. In other words, it measures the long-term availability of SA.	 ■

We next define an improper integral over an interval that extends infinitely far in the 
negative direction.

(2) Definition � If yb
a  f sxd dx  exists for every number a < b, then

yb

2`
 f sxd dx − lim

a l2 `
 yb

a
 f sxd dx

provided this limit exists (as a finite number).

 Example 3   |  Evaluate y0
2`

ex dx, if it is convergent.

Solution � Using Definition 2, we have

 y0

2`
 ex dx − lim

a l2`
 y0

a
 ex dx − lim

a l2`
 fexg a

0

 − lim
a l2`

 s1 2 ead − 1

because lim a l 2` ea − 0.	 ■

 TEC   In Module 5.8 you can investi-
gate visually and numerically whether 
several improper integrals are conver-
gent or divergent.

0

C

t

3

5

C=11.4te_t

y`
0  Cstd dt − 11.4 smgymLd ? h

Figure �6
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Finally, we define an integral over the entire real line by splitting the real line into 
separate parts.

(3) Definition � If both y`

c  f sxd dx and yc

2`
 f sxd dx are convergent, then we define

y`

2`
 f sxd dx − yc

2`
 f sxd dx 1 y`

c
 f sxd dx

where c is any real number. (See Exercise 30).

 Example 4   |  Evaluate y`

2`
 

1

1 1 x 2  dx.

SOLUTION � It’s convenient to choose c − 0 in Definition 3:

y`

2`
 

1

1 1 x 2  dx − y0

2`
 

1

1 1 x 2  dx 1 y`

0
 

1

1 1 x 2  dx

We must now evaluate the integrals on the right side separately:

 y`

0
 

1

1 1 x 2  dx − lim
b l `

 yb

0
 

dx

1 1 x 2 − lim
b l `

 tan21xg0

b

 − lim
b l `

 stan21 b 2 tan21 0d − lim
 b l `

 tan21 b −
�

2

 y0

2`
 

1

1 1 x 2  dx − lim
a l2`

 y0

a
 

dx

1 1 x 2 − lim
a l2`

 tan21xga

0

 − lim
al 2`

 stan21 0 2 tan21 ad

 − 0 2 S2
�

2 D −
�

2

Since both of these integrals are convergent, the given integral is convergent and

y`

2`
 

1

1 1 x 2  dx −
�

2
1

�

2
− �

Since 1ys1 1 x 2 d . 0, the given improper integral can be interpreted as the area of  
the infinite region that lies under the curve y − 1ys1 1 x 2 d and above the x-axis (see 
Figure 7).	 ■

Improper integrals are used in various areas of biology, a few of which are illustrated 
in Example 2 and Exercises 25–28. In the study of continuous probability distributions  
many improper integrals arise. Probability density functions f  have the property that

y`

2`
 f sxd dx − 1

and a basic fact for normal distributions is that

y`

2`
 e2x2

 dx − s� 

(The proof of this fact requires methods that are beyond the scope of this book.)

0

y

x

y= area=π
1

1+≈

Figure �7

We will study continuous probability 
distributions in Chapter 12.
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EXERCISES 5.8

	 25.	� Drug pharmacokinetics �� The plasma drug concentration 
of a new drug was modeled by the function Cstd − 23te22 t, 
where t is measured in hours and C in mgymL.

		  (a)	� What is the maximum drug concentration and when did 
it occur?

		  (b)	� Calculate y`
0  Cstd dt and explain its significance.

BB 	 26.	� Spread of drug use �� In a study of the spread of illicit drug 
use from an enthusiastic user to a population of N users, the 
authors model the number of expected new users by the 
equation

� − y`

0
 
cNs1 2 e2ktd

k
 e2�t dt

		���  where c, k, and � are positive constants. Evaluate this 
integral to express � in terms of c, N, k, and �.

Source: Adapted from F. C. Hoppensteadt et al., “Threshold Analysis of a 

Drug Use Epidemic Model,” Mathematical Biosciences 53 (1981): 79–87.

	 27.	�P hotosynthesis �� Much of the earth’s photosynthesis 
occurs in the oceans. The rate of primary production 
depends on light intensity, measured as the flux of photons 
(that is, number of photons per unit area per unit time). For 
monochromatic light, intensity decreases with water depth 
according to Beer’s Law, which states that Isxd − e2kx, 
where x is water depth. A simple model for the relationship 
between rate of photosynthesis and light intensity is 
PsId − aI, where a is a constant and P is measured as a 
mass of carbon fixed per volume of water, per unit time. 
Calculate y`

0  PsIsxdd dx and interpret it.

Source: Adapted from A. Jassby et al., “Mathematical Formulation of the 

Relationship between Photosynthesis and Light for Phytoplankton,” Limnol-

ogy and Oceanography 21 (1976): 540–7.

	 28.	� Dialysis treatment ��removes urea and other waste products 
from a patient’s blood by diverting some of the bloodflow 
externally through a machine called a dialyzer. The rate at 
which urea is removed from the blood (in mgymin) is often 
well described by the equation

cstd −
K

V
 c0e2KtyV

		���  where K is the rate of flow of blood through the dialyzer (in 
mLymin), V is the volume of the patient’s blood (in mL), 
and c0 is the amount of urea in the blood (in mg) at time 
t − 0. Evaluate the integral y`

0  cstd dt and interpret it.

	 1.	�� �Find the area under the curve y − 1yx 3 from x − 1 to x − b 
and evaluate it for b − 10, 100, and 1000. Then find the 
total area under this curve for x > 1.

	 ;	 2.	�� (a)	� Graph the functions f sxd − 1yx 1.1 and tsxd − 1yx 0.9 in 
the viewing rectangles f0, 10g by f0, 1g and f0, 100g  
by f0, 1g.

		  (b)	� Find the areas under the graphs of f  and t from x − 1  
to x − b and evaluate for b − 10, 100, 104, 106, 1010,  
and 1020.

		  (c)	� Find the total area under each curve for x > 1, if it 
exists.

	� 3–22 � Determine whether each integral is convergent or diver-
gent. Evaluate those that are convergent.

	 3.	 y`

3
 

1

sx 2 2d3y2  dx	 4.	 y`

0
 

1

s4 1 1 x 
 dx

	 5.	 y21

2` 
 

1

s2 2 w 
 dw	 6.	 y`

0
 

x

sx 2 1 2d2  dx

	 7.	 y`

4
 e2yy2 dy	 8.	 y21

2`
 e22 t dt

	 9.	 y`

2�
 sin � d�	 10.	 y`

2`
 sy 3 2 3y 2d dy

	 11.	 y`

2`
 xe2x 2 dx	 12.	 y`

1
 
e2sx

sx 
 dx

	 13.	 y`

1
 

x 1 1

x 2 1 2x
 dx	 14.	 y`

2`
 cos � t dt

	 15.	 y`

0
 se25s ds	 16.	 y6

2`
 re ry3 dr

	 17.	 y`

1
 
ln x

x
 dx	 18.	 y`

2`
 x 3e2x4

 dx

	 19.	 y`

2`
 

x 2

9 1 x 6  dx	 20.	 y`

1
 
ln x

x 3  dx

	 21.	 y`

e

1

xsln xd3  dx	 22.	 y`

0
 

e x

e 2x 1 3
 dx

	� 23–24 � Sketch the region and find its area (if the area is finite).

	 23.	 S − hsx, yd | x < 1,  0 < y < e xj

	 24.	 S − hsx, yd | x > 22,  0 < y < e2xy2j

Improper integrals also occur with great frequency in the mathematics required for 
medical imaging. In particular, functions defined in terms of improper integrals have 
become the basic tools needed to develop the theory of the CT scan, which creates 
images from X-ray data.
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			   This shows that we can’t define

y`

2`
 f sxd dx − lim

t l `
 y t

2t
 f sxd dx

	 32.	�� �For what values of p is the integral

y`

1
 

1

x p  dx

		���  convergent? Evaluate the integral for those values of p.

	� 33–35 � Evaluate the integral, given that

y`

0
 e2x 2

 dx − 1
2 s� 

	 33.	 y`

0
 e2x 2y2 dx	 34.	 y`

0
 x 2e2x 2

 dx

	 35.	 y`

0
 sx e2x dx

	 29.	��� A manufacturer of lightbulbs wants to produce bulbs that 
last about 700 hours but, of course, some bulbs burn out 
faster than others. Let Fstd be the fraction of the company’s 
bulbs that burn out before t hours, so Fstd always lies 
between 0 and 1.

		  (a)	� Make a rough sketch of what you think the graph of F 
might look like.

		  (b)	 What is the meaning of the derivative rstd − F9std?
		  (c)	 What is the value of y`

0  rstd dt? Why?

	 30.	��� �If y`

2`
 f sxd dx is convergent and a and b are real numbers,  

show that

ya

2`
 f sxd dx 1 y`

a
 f sxd dx − yb

2`
 f sxd dx 1 y`

b
 f sxd dx

	 31.	�� (a)	 Show that y`

2`
 x dx is divergent.

		  (b)	 Show that

lim
t l `

 y t

2t
 x dx − 0

CONCEPT CHECK

	 1.	�� (a)	� Write an expression for a Riemann sum of a function f. 
Explain the meaning of the notation that you use.

		  (b)	� If f sxd > 0, what is the geometric interpretation of a  
Riemann sum? Illustrate with a diagram.

		  (c)	� If f sxd takes on both positive and negative values, what 
is the geometric interpretation of a Riemann sum? Illus-
trate with a diagram.

	 2.	�� (a)	� Write the definition of the definite integral of a continu-
ous function from a to b.

		  (b)	� What is the geometric interpretation of yb
a  f sxd dx if 

f sxd > 0?
		  (c)	� What is the geometric interpretation of yb

a  f sxd dx if f sxd 
takes on both positive and negative values? Illustrate 
with a diagram.

	 3.	�� State the Midpoint Rule.

	 4.	�� (a)	� State the Evaluation Theorem.
		  (b)	 State the Net Change Theorem.

	 5.	��� If rstd is the rate of growth of a population at time t, where t 
is measured in months, what does y10

6  rstd dt represent?

	 6.	�� (a)	 Explain the meaning of the indefinite integral y f sxd dx.
		  (b)	� What is the connection between the definite integral 

yb
a  f sxd dx and the indefinite integral y f sxd dx?

	 7.	��� State both parts of the Fundamental Theorem of Calculus.

	 8.	�� (a)	� State the Substitution Rule. In practice, how do you use 
it?

		  (b)	� State the rule for integration by parts. In practice, how 
do you use it?

	 9.	�� Define the following improper integrals.

		  (a)	 y`

a
 f sxd dx        (b)  yb

2`
 f sxd dx        (c)  y`

2`
 f sxd dx

	 10.	��� Explain exactly what is meant by the statement that 
“differentiation and integration are inverse processes.”

Answers to the Concept Check can be found on the back 
endpapers.

Chapter 5 Review

	� Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

	 1.	�� If f  and t are continuous on fa, bg, then

yb

a
 f f sxd 1 tsxdg dx − yb

a
 f sxd dx 1 yb

a
 tsxd dx

	 2.	�� If f  and t are continuous on fa, bg, then 

yb

a
 f f sxdtsxdg dx − Syb

a
 f sxd dxDSyb

a
 tsxd dxD

	 3.	�� If f  is continuous on fa, bg, then

yb

a
 5f sxd dx − 5 yb

a
 f sxd dx

TRUE-FALSE QUIZ

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



382    Chapter 5  |  Integrals

	 11.	��� y2
0 sx 2 x 3d dx represents the area under the curve 

y − x 2 x 3 from 0 to 2.

	 12.	��� All continuous functions have antiderivatives.

	 13.	��� All continuous functions have derivatives.

	 14.	��� If f  is continuous, then y`

2`
 f sxd dx − lim

t l `
 y t

2t
 f sxd dx.

	 15.	��� If f  is a continuous, decreasing function on f1, `d and 
lim
t l `

 f sxd − 0, then y`

1  f sxd dx is convergent.

	 16.	�� �If y`
a  f sxd dx and y`

a  tsxd dx are both convergent, then

		��  y`

a
 f f sxd 1 tsxdg dx is convergent.

	 17.	��� If y`

a  f sxd dx and y`

a  tsxd dx are both divergent, then

		��  y`

a  f f sxd 1 tsxdg dx is divergent.

	 18.	��� �If f  is continuous on fa, bg, then

d

dx Syb

a
 f sxd dxD − f sxd

	 4.	�� If f  is continuous on fa, bg, then

yb

a
 xf sxd dx − x yb

a
 f sxd dx

	 5.	�� If f  is continuous on fa, bg and f sxd > 0, then

yb

a
 sf sxd  dx − Îyb

a
 f sxd dx  

	 6.	�� If f 9 is continuous on f1, 3g, then y3

1
 f 9svd dv − f s3d 2 f s1d.

	 7.	�� �If f  and t are continuous and f sxd > tsxd for a < x < b, 
then

yb

a
 f sxd dx > yb

a
 tsxd dx

	 8.	�� �If f  and t are differentiable and f sxd > tsxd for a , x , b, 
then f 9sxd > t9sxd for a , x , b.

	 9.	 y1

21
Sx 5 2 6x 9 1

sin x

s1 1 x 4 d2D dx − 0

	 10.	 y5

25
 sax 2 1 bx 1 cd dx − 2 y5

0
 sax 2 1 cd dx

EXERCISES

	 1.	��� Use the given graph of f  to find the Riemann sum with six 
subintervals. Take the sample points to be (a) left endpoints 
and (b) midpoints. In each case draw a diagram and explain 
what the Riemann sum represents.

2 x

y

2

0 6

y=ƒ

	 2.	�� (a)	 Evaluate the Riemann sum for

f sxd − x 2 2 x        0 < x < 2

	 		�  with four subintervals, taking the sample points to be 
right endpoints. Explain, with the aid of a diagram, what 
the Riemann sum represents.

		  (b)	� Use the definition of a definite integral (with right end
points) to calculate the value of the integral

y2

0
 sx 2 2 xd dx

		  (c)	� Use the Evaluation Theorem to check your answer to 
part (b).

		  (d)	� Draw a diagram to explain the geometric meaning of the 
integral in part (b).

	 3.	�� Evaluate

y1

0
 sx 1 s1 2 x 2 d dx

		��  by interpreting it in terms of areas.

	 4.	�� Express

lim
n l `

 o
n

i−1
 sin xi Dx

	 	��� as a definite integral on the interval f0, �g and then evaluate  
the integral.

	 5.	�� If y6
0 f sxd dx − 10 and y4

0 f sxd dx − 7, find y6
4 f sxd dx.

	 6.	�� (a)	� Write y3
0 e2xy2 dx as a limit of Riemann sums, taking the 

sample points to be right endpoints.
		  (b)	� Use the Midpoint Rule with six subintervals to estimate 

the value of the integral in part (a). State your answer 
correct to three decimal places.

		  (c)	��� Use the Fundamental Theorem to evaluate y3
0 e2xy2 dx. 

Round your answer to three decimal places and compare 
with your estimate in part (b).
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	 ;	 33.	��� Use a graph to give a rough estimate of the area of the 
region that lies under the curve y − xsx  , 0 < x < 4. 
Then find the exact area.

	� 34–35 � Find the derivative of the function.

	 34.	 Fsxd − yx

0
 

t 2

1 1 t 3  dt

	 35.	 tsxd − ysin x

1
 
1 2 t 2

1 1 t 4  dt

	� 36–38 � Use the Table of Integrals on the Reference Pages to  
evaluate the integral.

	 36.	 y csc5t dt	 37.	 y e x s1 2 e 2x   dx

	 38.	 y 
cot x

s1 1 2 sin x 
 dx

	 39.	��� Use Property 8 of integrals (page 338) to estimate the value 
of

y3

1
 sx 2 1 3  dx

	 40.	��� Use the properties of integrals to verify that

0 < y1

0
 x 4 cos x dx < 0.2

	� 41–43 � Evaluate the integral or show that it is divergent.

	 41.	 y`

1
 

1

s2x 1 1d3  dx	 42.	 y`

0
 
ln x

x 4  dx

	 43.	 y0

2`
 e22x dx

	 44.	��� The speedometer reading v on a car was observed at  
one-minute intervals and recorded in the chart. Use the 
Midpoint Rule to estimate the distance traveled by the car.

t (min) v smiyhd t (min) v smiyhd
0 	 40 	 6 	 56
1 	 42 	 7 	 57
2 	 45 	 8 	 57
3 	 49 	 9 	 55
4 	 52 	 10 	 56
5 	 54

	 45.	��� Let rstd be the rate at which the world’s oil is consumed, 
where t is measured in years starting at t − 0 on January 1, 
2000, and rstd is measured in barrels per year. What does 
y15
0  rstd dt represent?

	 7.	��� The following figure shows the graphs of f, f 9, and 
yx

0 f std dt. Identify each graph, and explain your choices.

y

x

a

b

c

	 8.	�� Evaluate:

		  (a)	 y1

0
 

d

dx
 searctan xd dx	 (b)	

d

dx
 y1

0
 earctan x dx

		  (c)	
d

dx
 yx

0
 earctan t dt

	� 9–32 � Evaluate the integral.

	 9.	 y2

1
 s8x 3 1 3x 2 d dx	 10.	 yT

0
 sx 4 2 8x 1 7d dx

	 11.	 y1

0
 s1 2 x 9 d dx	 12.	 y1

0
 s1 2 xd9 dx

	 13.	 y S 1 2 x

x D2

dx	 14.	 y1

0
 ss4 u 1 1d2 du

	 15.	 y1

0
 

x

x 2 1 1
 dx	 16.	 y 

csc2 x

1 1 cot x
 dx

	 17.	 y1

0
 v2 cossv3d dv	 18.	 y1

0
 sins3�td dt

	 19.	 y1

0
 e � t dt	 20.	 y2

1
 

1

2 2 3x
 dx

	 21.	 y 
x 1 2

sx 2 1 4x 
 dx	 22.	 y2

1
 x 3 ln x dx

	 23.	 y5

0
 

x

x 1 10
 dx	 24.	 y5

0
 ye20.6y dy

	 25.	 y�y4

2�y4
 

t 4 tan t

2 1 cos t
 dt	 26.	 y4

1
 

dt

s2t 1 1d3  

	 27.	 y4

1
 x 3y2 ln x dx	 28.	 y sin x cosscos xd dx

	 29.	 y es3 x  dx	 30.	 y tan21 x dx

	 31.	 y 
sec � tan �

1 1 sec �
 d� 	 32.	 y1

0
 

e x

1 1 e 2x  dx
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	 51.	�E nvironmental pollutants �� In Section 10.3 a model for 
the transport of environmental pollutants between three 
lakes is analyzed. It is shown that, for certain parameter 
values, the concentration of pollutant in one of the lakes as 
a function of time is given by an equation of the form

xstd − k 2 ke2at cos bt

		���  The environmental impact of the pollutant is a function  
of both its concentration and the duration of time that it 
persists. The integral of the concentration over time is a 
summary measure of this impact. Calculate this measure of 
impact over the first unit of time.

	 52.	� Niche overlap �� The extent to which species compete for 
resources is often measured by the niche overlap. If the 
horizontal axis represents a continuum of different resource 
types (for example, seed sizes for certain bird species), 
then a plot of the degree of preference for these resources 
is called a species’ niche. The degree of overlap of two spe-
cies’ niches is then a measure of the extent to which they 
compete for resources. The niche overlap for a species is the 
fraction of the area under its preference curve that is also 
under the other species’ curve. Many species’ niches are 
best modeled by a function that has a peak at some inter-
mediate resource type and decreases to 0 asymptotically. 
The niches displayed in the figure are given by

n1sxd − e2| x28 |      n2sxd − e2| x212 |

		���  for species 1 and 2, respectively. Calculate the niche overlap 
for species 1.

0

y

x10

n¡ n™

	 53.	��� If f  is a continuous function such that

yx

0
 f std dt − xe 2x 1 yx

0
 e2t f std dt

		���  for all x, find an explicit formula for f sxd.

	 54.	��� Find a function f  and a value of the constant a such that

2 yx

a
 f std dt − 2 sin x 2 1

	 55.	��� If f 9 is continuous on fa, bg, show that

2 yb

a
 f sxd f 9sxd dx − f f sbdg2 2 f f sadg2

	 56.	��� �If f 9 is continuous on f0, `d and lim x l ` f sxd − 0, show 
that

y`

0
 f 9sxd dx − 2f s0d

	 46.	��� A population of honeybees increased at a rate of rstd bees 
per week, where the graph of r is as shown. Use the Mid-
point Rule with six subintervals to estimate the increase in 
the bee population during the first 24 weeks.

r

0 2420161284
(weeks)

t

4000

8000

12000

	 47.	��� An oil leak from a well is causing pollution at a rate of 
rstd − 90e20.12t gallons per month. If the leak is never fixed, 
what is the total amount of oil that will be spilled?

	 48.	�A ntibiotic pharmacokinetics �� An antibiotic tablet is 
taken and t hours later the concentration in the bloodstream 
is

Cstd − 3se20.8t 2 e21.2td

		���  where C is measured in mgymL.
		  (a)	� What is the maximum concentration of the antibiotic 

and when does it occur?
		  (b)	� Calculate y2

0 Cstd dt and interpret your result.

		  (c)	��� Calculate y`
0  Cstd dt and explain its meaning.

	 49.	�P opulation dynamics �� Suppose that the birth and death 
rates in a population change through time according to the 
functions bstd and dstd. The net rate of change is defined as 
rstd − bstd 2 dstd.

		  (a)	� Find an expression for the net change in population size 
between times t − a and t − b in terms of rstd.

		  (b)	� Use Property 4 of integrals (page 336) to show that your 
answer to part (a) can also be expressed in terms of the 
total number of births and the total number of deaths 
over this period.

	 50.	�A ngiotensin-converting enzyme inhibitors ��are medica-
tions that reduce blood pressure by dilating blood vessels. 
The rate of change of blood pressure with respect to dosage 
is given by the equation

P9sdd − 2
8�lvR9sdd

Rsdd3

		���  where v is blood velocity, � is blood viscosity, l is the length 
of the blood vessel, and Rsdd is the radius of the vessel as a 
function of the dose d. Use a substitution to integrate P9sdd 
and show that you obtain Poiseuille’s Law:

Psdd −
4�lv

Rsdd2
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case study 1c  Kill Curves and Antibiotic Effectiveness

Recall that in this case study we are exploring the relationship between 
the magnitude of antibiotic treatment and the effectiveness of the treat-
ment. One of the most important components of our analysis is the antibiotic 
concentration profile, which is a plot of the antibiotic concentration as a function of time.

In the simple model of Case Studies 1a and 1b we modeled a single dose of antibiotic 
using the equation

(1)	
dc

dt
− 2kc	

for some positive constant k. From this we saw that the concentration as a function of 
time is

(2)	 cstd − c0e2kt	

where c0 is the concentration at t − 0. (See Figure 1.)

0 t (hours)10

0.5

1.0

1.5

20 30

C
on

ce
nt

ra
tio

n

(�g/mL)

Time

Three of the most common measures of the magnitude of antibiotic treatment are  
(1) the peak antibiotic concentration divided by MIC, denoted by �; (2) the duration of 
time for which the antibiotic concentration remains above MIC, denoted by �; and (3) the 
area under the antibiotic concentration profile divided by MIC, denoted by �. These are 
shown in Figure 2. In Case Study 1a you derived expressions for the first two.

C
on

ce
nt

ra
tio

n cmax

Time (hours)

∏=cmax/MIC
å=area A/MIC

MIC
t

A

(�g/mL)

	 1.	�� �Find an expression for � in terms of k, c0, and MIC, using Equation 2. The area 
under the concentration profile should be calculated from t − 0 to `.

We saw in Case Study 1a that, for a given antibiotic and bacteria species (in other 
words, for a given value of k and MIC ), all three quantities �, �, and � increase with one 
another. In other words, it is not possible to have a high value of � without also having 
high values of � and �. Here you will show that we can break this dependency if we 

Figure �1
Antibiotic concentration profile  

modeled by the function cstd − c0e2kt 
with c0 − 1.2 mgymL and k − 0.175

Figure �2
Three measures of the magnitude  

of antibiotic treatment

case study 1c  |  Kill Curves and Antibiotic Effectiveness    385
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divide the total amount of antibiotic given c0 into multiple smaller doses. This is referred 
to as dose fractionation.

In the simplest case, suppose that instead of giving a total amount of c0 mgymL  
of antibiotic at t − 0, we instead give c0y2 at t − 0 and another dose of c0y2 at time 
t − t̂ . The time t̂  is called the interdose interval. Furthermore, suppose that at each 
dose the concentration instantly increases by c0y2, and otherwise it decays according to 
Equation 1.

	 2.	�� �Find an equation for the concentration as a function of time. Figure 3 plots this 
function for a specific choice of constants, along with the concentration profile 
when a single dose of c0 mgymL is given at t − 0.

0

c(t)

t
(hours)

(�g/mL)

C
on

ce
nt

ra
tio

n

1.2

0.8

0.4

10 20 30

Time

	 3.	�� �Use your answer to Problem 2 to find an expression for �, the peak concentration 
divided by MIC.

	 4.	�� �Use your answer to Problem 2 to show that � is the same under dose fraction-
ation as it is for the single dose case in Problem 1.

	 5.	�� �Using your answers from Problems 3 and 4, explain how it is possible to use 
dose fractionation to increase � without also increasing �.

One of the reasons different drug doses and interdose intervals are used for different 
infections is to achieve different values of �, �, and �.

Figure �3
Red curve is the concentration  

profile modeled by the function from 
Problem 2 with c0 − 1.2 mgymL, 

t̂ − 10, and k − 0.175. Blue curve is 
the concentration profile when all  

the antibiotic is given at t − 0.
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6Applications of Integrals

387

6.1  Areas Between Curves
Project: Disease Progression and Immunity
Project: The Gini Index

6.2  Average Values

6.3  �Further Applications to Biology

6.4  Volumes

CASE STUDY 1d: Kill Curves and Antibiotic Effectiveness
CASE STUDY 2b: Hosts, Parasites, and Time-Travel

Arteries of the human hand are 

shown in a colorized X ray. In 

Section 6.3 we use an integral to 

calculate the flux in an artery (the 

volume of blood that passes a 

cross-section of an artery  

per unit time).

GJLP / CNRI / SPL / Science Source
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We have already seen some of the applications of integrals in Chap-

ter 5: drug pharmacokinetics, measles pathogenesis, bacterial growth, basal 

metabolism, breathing cycles, dialysis treatment, tumor growth, photosynthe-

sis, medical imaging, bioavailability, the sterile insect technique, the rumen microbial 

ecosystem, and the spread of drug use.

In this chapter we explore some additional applications of integration: areas between 

curves, cerebral blood flow, disease progresssion, average values, survival and renewal, 

cardiac output, and volumes.

6.1 Areas Between Curves

In Chapter 5 we defined and calculated areas of regions that lie under the graphs of  
functions. Here we use integrals to find areas of regions that lie between the graphs of 
two functions and then we show how this idea occurs in cerebral blood flow. As well, in 
the project after this section we see how the study of measles pathogenesis involves areas 
between curves.

Consider the region S that lies between two curves y − f sxd and y − tsxd and be- 
tween the vertical lines x − a and x − b, where f  and t are continuous functions and 
f sxd > tsxd for all x in fa, bg. (See Figure 1.)

Just as we did for areas under curves in Section 5.1, we divide S into n strips of equal 
width and then we approximate the ith strip by a rectangle with base Dx and height 
f sxi*d 2 tsxi*d. (See Figure 2. If we like, we could take all of the sample points to be 
right endpoints, in which case xi* − xi.) The Riemann sum

o
n

i−1
 f f sxi*d 2 tsxi*dg Dx

is therefore an approximation to what we intuitively think of as the area of S.

(a) Typical rectangle

x

y

b0 a

f(x i*)
f(x i*)-g(x i*)

_g(x i*)
x i*

Îx

(b) Approximating rectangles

x

y

b0 a

This approximation appears to become better and better as n l `. Therefore we 
define the area A of the region S as the limiting value of the sum of the areas of these 
approximating rectangles.

(1)	 A − lim
n l `

 o
n

i−1
 f f sxi*d 2 tsxi*dg Dx	

0

y=©

y=ƒ

S

x

y

ba

Figure �1
S=s(x, y) | a¯x¯b, ©¯y¯ƒd

Figure �2
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We recognize the limit in (1) as the definite integral of f 2 t. Therefore we have the  
following formula for area.

(2) � The area A of the region bounded by the curves y − f sxd, y − tsxd, and the  
lines x − a, x − b, where f  and t are continuous and f sxd > tsxd for all x in 
fa, bg, is

A − yb

a
 f f sxd 2 tsxdg dx

Notice that in the special case where tsxd − 0, S is the region under the graph of f   
and our general definition of area (1) reduces to our previous definition (Definition 5.1.2).

In the case where both f  and t are positive, you can see from Figure 3 why (2) is true: 

 A − farea under y − f sxdg 2 farea under y − tsxdg

 − yb

a
 f sxd dx 2 yb

a
 tsxd dx − yb

a
 f f sxd 2 tsxdg dx

 Example 1   |  Find the area of the region bounded above by y − ex, bounded below 
by y − x, and bounded on the sides by x − 0 and x − 1.

SOLUTION � The region is shown in Figure 4. The upper boundary curve is y − ex 
and the lower boundary curve is y − x. So we use the area formula (2) with f sxd − ex, 
tsxd − x, a − 0, and b − 1:

 A − y1

0
 sex 2 xd dx − ex 2 1

2 x 2g1

0

	  − e 2 1
2 2 1 − e 2 1.5 	 ■

In Figure 4 we drew a typical approximating rectangle with width Dx as a reminder 
of the procedure by which the area is defined in (1). In general, when we set up an inte-
gral for an area, it’s helpful to sketch the region to identify the top curve yT, the bottom 
curve yB, and a typical approximating rectangle as in Figure 5. Then the area of a typical 
rectangle is syT 2 yBd Dx and the equation

A − lim
n l `

 o
n

i−1
 syT 2 yBd Dx − yb

a
 syT 2 yBd dx

summarizes the procedure of adding (in a limiting sense) the areas of all the typical  
rectangles.

Notice that in Figure 5 the left-hand boundary reduces to a point, whereas in Figure 3 
the right-hand boundary reduces to a point. In the next example both of the side bound-
aries reduce to a point, so the first step is to find a and b.

 Example 2   |  Find the area of the region enclosed by the parabolas y − x 2 and 
y − 2x 2 x 2.

SOLUTION � We first find the points of intersection of the parabolas by solving  
their equations simultaneously. This gives x 2 − 2x 2 x 2, or 2x 2 2 2x − 0. Thus 
2xsx 2 1d − 0, so x − 0 or 1. The points of intersection are s0, 0d and s1, 1d.

Figure �3
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We see from Figure 6 that the top and bottom boundaries are

yT − 2x 2 x 2        and        yB − x 2

The area of a typical rectangle is

syT 2 yBd Dx − s2x 2 x 2 2 x 2 d Dx − s2x 2 2x 2d Dx

and the region lies between x − 0 and x − 1. So the total area is

 A − y1

0
 s2x 2 2x 2 d dx − 2 y1

0
 sx 2 x 2 d dx

	  − 2F x 2

2
2

x 3

3 G0

1

− 2S 1

2
2

1

3D −
1

3
	 ■

 Example 3   |  Interpreting the area between velocity curves  Figure 7 
shows velocity curves for two cars, A and B, that start side by side and move along the 
same road. What does the area between the curves represent? Use the Midpoint Rule to 
estimate it.

SOLUTION � We know from Section 5.3 that the area under the velocity curve A rep-
resents the distance traveled by car A during the first 16 seconds. Similarly, the area 
under curve B is the distance traveled by car B during that time period. So the area 
between these curves, which is the difference of the areas under the curves, is the 
distance between the cars after 16 seconds. We read the velocities from the graph and 
convert them to feet per second s1 miyh − 5280

3600 ftysd.

t 0 2 4 6 8 10 12 14 16

vA 0 34 54 67 76 84 89 92 95

vB 0 21 34 44 51 56 60 63 65

vA 2 vB 0 13 20 23 25 28 29 29 30

We use the Midpoint Rule with n − 4 intervals, so that Dt − 4. The midpoints of 
the intervals are t1 − 2, t2 − 6, t3 − 10, and t4 − 14. We estimate the distance between 
the cars after 16 seconds as follows:

 y16

0
 svA 2 vBd dt < Dt f13 1 23 1 28 1 29g

	  − 4s93d − 372 ft 	 ■

■ Cerebral Blood Flow
In a paper1 published in 1948, Seymour Kety and Carl Schmidt described a method for 
measuring cerebral blood flow in which the patient inhales a mixture of gases including 
a tracer of 15% nitrous oxide. Let Astd be the arterial concentration of N2O measured as 
blood enters the brain and Vstd the venous concentration of N2O in blood flowing out of 
the brain in the jugular vein. Figure 8 shows typical graphs of Astd and Vstd, which are 
measured in units of mL of N2O per mL of blood. Although Astd . Vstd, you can see 
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Figure �7

1.� S. Kety et al., “The Nitrous Oxide Method for the Quantitative Determination of Cerebral Blood Flow in 
Man: Theory, Procedure and Normal Values,” Journal of Clinical Investigation 27 (1948): 476–83.
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that after about 10 minutes Astd and Vstd are almost the same because the brain is becom-
ing saturated with nitrous oxide.
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The area between the curves A and V, shaded in Figure 8, plays a key role in cal-
culating the cerebral blood flow F, which we measure in mLymin. We first consider 
y10

0  Astd dt. If we divide the interval f0, 10g into subintervals of equal length Dt, then 
the volume of N2O that flows past a point in the artery during such a subinterval from 
t − ti21 to t − ti is approximately

sconcentration of N2O in bloodd ? svolume of bloodd − AstidsFDtd

Assuming that F remains constant, we see that the total volume of N2O that enters the 
brain during the first 10 minutes is approximately

o
n

i−1
 Astid F Dt − F o

n

i−1
 Astid Dt

If we now let n l `, we get the total quantity of N2O brought to the brain during the 
first 10 minutes:

F y10

0
 Astd dt

A similar argument shows that the quantity of N2O that leaves the brain during this time 
period is

F y10

0
 Vstd dt

The difference of these quantities

F y10

0
 fAstd 2 Vstdg dt

is therefore the quantity of N2O that is taken up by the whole brain during the 10 minutes 
of inhalation. Let’s call this quantity QBs10d. Then

QBs10d − F y10

0
 fAstd 2 Vstdg dt

Figure �8
Arterial and venous  

concentrations of N2O
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and therefore

(3)	 F −
QBs10d

y10
0  fAstd 2 Vstdg dt

	

It turns out that QBs10d can be found by other methods, so if the area between the 
curves is known, Equation 3 can then be used to calculate the cerebral blood flow.

 Example 4   |  Cerebral blood flow 

(a)	 Use the Midpoint Rule with five subintervals to estimate the area between the 
curves A and V  in Figure 8.
(b)	 If it is known that the amount of N2O absorbed by the brain is QBs10d − 60 mL, 
determine the cerebral blood flow.

Solution

(a)	 We divide the interval f0, 10g into five subintervals, whose midpoints are t − 1, 3, 
5, 7, and 9. Then we use the graphs in Figure 8 to estimate the values of Astd and Vstd 
at these midpoints and calculate their differences:

t Astd Vstd Astd 2 Vstd

1 0.029 0.007 0.022

3 0.038 0.027 0.011

5 0.040 0.033 0.007

7 0.042 0.037 0.005

9 0.043 0.041 0.002

Using the Midpoint Rule with Dt − 2 min, we get the following estimate:

y10

0
 fAstd 2 Vstdg dt < 2f0.022 1 0.011 1 0.007 1 0.005 1 0.002g − 0.094

So the area between the curves A and V  is approximately 0.094 smLymLd ? min.

(b)	 With QBs10d − 60 mL and our result from part (a), we use Equation 3 to calculate 
the cerebral blood flow:

	 F −
QBs10d

y10
0  fAstd 2 Vstdg dt

<
60

0.094
< 640 mLymin	 ■

	� 1–2 � Find the area of the shaded region.

	 1.	

y=x

y=5x-≈

x

y

(4, 4) x=2

y=œ„„„„x+2

y= 1
x+1

x

y         	2.

y=x

y=5x-≈

x

y

(4, 4) x=2

y=œ„„„„x+2

y= 1
x+1

x

y

	� 3–6 � Sketch the region enclosed by the given curves. Draw a typi-
cal approximating rectangle and label its height and width. Then 
find the area of the region.

	 3.	 y − e x, y − x 2 2 1, x − 21, x − 1

	 4.	 y − ln x,  xy − 4,  x − 1,  x − 3

	 5.	 y − x 2,  y 2 − x

	 6.	 y − x 2 2 2x,   y − x 1 4

	

EXERCISES 6.1
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	 18.	��� A cicada wing is shown. Estimate its area using the 
Midpoint Rule with six subintervals.

0 x (cm)

y

21

0.5

(cm)

	 19.	��� A cross-section of an airplane wing is shown. Measure-
ments of the thickness of the wing, in centimeters, at 
20-centimeter intervals are 5.8, 20.3, 26.7, 29.0, 27.6, 27.3, 
23.8, 20.5, 15.1, 8.7, and 2.8. Use the Midpoint Rule to 
estimate the area of the wing’s cross-section.

200 cm

	 20.	��� The widths (in meters) of a kidney-shaped swimming pool 
were measured at 2-meter intervals as indicated in the 
figure. Use the Midpoint Rule to estimate the area of the 
pool.

6.2

5.0

7.2
6.8

5.6 4.8
4.8

	 21.	�C erebral blood flow �� The table shows measurements of 
Astd, the concentration of N2O flowing into a patient’s 
brain, and Vstd, the concentration of N2O flowing out of the 
brain, where t is measured in minutes and Astd and Vstd are 
measured in mL of N2O per mL of blood.

t Astd Vstd

1 0.031 0.008
3 0.041 0.029
5 0.042 0.035
7 0.044 0.042
9 0.045 0.044

		  (a)	��� Use the Midpoint Rule to estimate y10
0  fAstd 2 Vstdg dt.

		  (b)	��� If the volume of N2O absorbed by the brain in the first 
10 minutes is 64 mL, calculate the cerebral blood flow.

© Tropper2000 / Shutterstock.com

	� 7–10 � Sketch the region enclosed by the given curves and find 
its area.

	 7.	�� y − 12 2 x 2,    y − x 2 2 6

	 8.	�� y − x 2,    y − 4x 2 x 2

	 9.	 y − e x,  y − xe x,  x − 0

	 10.	 y − cos x,  y − 2 2 cos x,  0 < x < 2�

;	� 11–12 � Use a graph to find approximate x-coordinates of the 
points of intersection of the given curves. Then find (approxi
mately) the area of the region bounded by the curves.

	 11.	�� y − x sinsx 2d,    y − x 4

	 12.	 y − x cos x,  y − x 10

	 13.	��� Sketch the region that lies between the curves y − cos x 
and y − sin 2x and between x − 0 and x − �y2. Notice 
that the region consists of two separate parts. Find the area 
of this region.

	 14.	��� Sketch the curves y − cos x and y − 1 2 cos x, 
0 < x < �, and observe that the region between them 
consists of two separate parts. Find the area of this region.

	 15.	��� Sometimes it’s easier to find an area by regarding x as a 
function of y instead of y as a function of x. To illustrate 
this idea, let S be the region enclosed by the line y − x 2 1 
and the parabola y 2 − 2x 1 6.

		  (a)	� By sketching S, observe that if you want to integrate 
with respect to x you have to split S into two parts with 
different boundary curves.

		  (b)	� If you integrate with respect to y, observe that there is a 
left boundary curve and a right boundary curve.

		  (c)	� Find the area of S using the method of either part (a) or 
part (b).

	 16.	��� Find the area of the region enclosed by the curves y − x 
and 4x 1 y 2 − 12.

	 17.	��� A laurel leaf is shown. Estimate its area using the Mid-
point Rule with six subintervals.

0

y

x (cm)1 2 3 4 5 6
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3

2

(cm)
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		  (b)	 What is the meaning of the area of the shaded region?
		  (c)	 Which car is ahead after two minutes? Explain.
		  (d)	� Estimate the time at which the cars are again side by 

side.

0

A

B
21

√

t (min)

	 25.	�� Birth and death rates �� If the birth rate of a population  
is bstd − 2200e0.024 t people per year and the death rate is 
dstd − 1460e0.018 t people per year, find the area between 
these curves for 0 < t < 10. What does this area represent?

	 26.	��� �Find the number a such that the line x − a bisects the area 
under the curve y − 1yx 2, 1 < x < 4.

	 27.	��� Find the values of c such that the area of the region bounded 
by the parabolas y − x 2 2 c 2 and y − c 2 2 x 2 is 576.

	 28.	��� Find the area of the region bounded by the parabola y − x 2, 
the tangent line to this parabola at s1, 1d, and the x-axis.

	 22.	� Cerebral blood flow �� Models for the arterial and venous 
concentration functions in Figure 8 are given by

Astd −
0.05t 2

t 2 1 1
      Vstd −

0.05t 2

t 2 1 7

		  (a)	� Find the area between the graphs of A and V for 
0 < t < 10.

		  (b)	� If the volume of N2O absorbed by the brain in the first 10 
minutes is 60 mL, determine the cerebral blood flow.

	 23.	��� Racing cars driven by Chris and Kelly are side by side at the 
start of a race. The table shows the velocities of each car (in 
miles per hour) during the first 10 seconds of the race. Use 
the Midpoint Rule to estimate how much farther Kelly 
travels than Chris does during the first 10 seconds.

t vC vK t vC vK

0 	 0 	 0 	 6 69 	 80
1 20 22 	 7 75 	 86
2 32 37 	 8 81 	 93
3 46 52 	 9 86 	 98
4 54 61 10 90 102
5 62 71 	

	 24.	��� Two cars, A and B, start side by side and accelerate from 
rest. The figure shows the graphs of their velocity functions.

		  (a)	 Which car is ahead after one minute? Explain.

■ Project  Disease Progression and Immunity

In Section 5.1 we considered the progression of measles in a patient with no immunity 
and graphed the measles pathogenesis curve N − f std (page 325), which we modeled 
with the function

f std − 2tst 2 21dst 1 1d

We saw that the total amount of infection by time t (measured by the area under the 
pathogenesis curve up to time t) played an important role in determining whether indi-
viduals develop symptoms. In particular, symptoms appear only after the total amount of 
infection exceeds 7848 scellsymLd 3 days, which occurs at day 12 of the infection for 
individuals with no immunity, that is,

y12

0
 f std dt − 7848 scellsymLd 3 days

;	 1.	�� �Plot the curves cf std for c − 0.9, 0.85, 0.8, 0.6, and 0.4. These resemble curves 
for patients that have increasing levels of immunity against the virus at the time 
of the infection.

	 2.	�� �Some of the patients in Problem 1 will develop symptoms and some will not. 
Find the areas under the curve from t − 0 to t − 21 for each value of c and 

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



applied project  |  The Gini Index    395

compare them with the value 7848 that is needed to display symptoms. Which 
patients will become symptomatic at some point during their infection?

The term infectiousness refers to the extent to which the disease is transmitted between 
individuals. For patients without immunity, we saw in Section 5.1 that infectiousness 
begins around day t1 − 10 and ends around day t2 − 18. Infectiousness begins on day 
10 because the concentration of virus in the plasma after 10 days [that is, the value  
f s10d] is the threshold concentration required before any transmission can occur. Fur-
ther, infectiousness ends on day 18 because the immune system manages to prevent 
further transmission from this point onward.

	 3.	�� �Plot the points P1 − st1, f st1dd and P2 − st2, f st2dd on the graph of f. These points 
show the values of f  at the beginning and end of the infectious period. Draw a 
line between the points. What is the slope of this line? Find an equation of this 
line.

	 4.	�� �Given that L − f st1d is the threshold concentration of the virus required for trans-
mission to begin, plot the point P3 on the curve N − 0.9 f std where 0.9 f std − L. 
The value of t satisfying this equation is the time at which infectiousness begins 
for a patient with c − 0.9. It has been shown that the time at which infectious-
ness ends for such patients can again be determined by drawing a line through 
P3 with the same slope as that in Problem 3 and then determining the time t4 at 
which it intersects the curve N − 0.9 f std. Draw this line on the graph and deter-
mine t4.

	 5.	�� �Repeat Problem 4 for cf std with c − 0.85, 0.8, 0.6, and 0.4. Note that some 
patients may not have a point corresponding to P3.

	 6.	�� �Find the area between the graph of f  and the line in Problem 3. This area repre-
sents the total level of infectiousness of an infected person. (See Figure 1.)

	 7.	�� Find the areas enclosed by the curves N − cf std and their corresponding 
intersecting lines for c − 0.9, 0.85, 0.8, 0.6, and 0.4. (Note that this will not be 
feasible for patients that have no infectious period.) Compare these areas to the 
one found in Problem 6.)

	 8.	�� �Which patients are
		  (a)	� symptomatic and infectious?
		  (b)	� symptomatic and noninfectious?
		  (c)	� asymptomatic and noninfectious?

■ Project  The Gini Index

How is it possible to measure the distribution of income among the inhabitants of a given 
country? One such measure is the Gini index, named after the Italian economist Corrado 
Gini, who first devised the index in 1912.

We first rank all households in a country by income and then we compute the per-
centage of households whose income is at most a given percentage of the country’s total 
income. We define a Lorenz curve y − Lsxd on the interval f0, 1g by plotting the point 
say100, by100d on the curve if the bottom a% of households receive at most b% of the 
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t
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396    Chapter 6  |  Applications of Integrals

total income. For instance, in Figure 1 the point s0.4, 0.12d is on the Lorenz curve for the 
United States in 2010 because the poorest 40% of the population received just 12% of 
the total income. Likewise, the bottom 80% of the population received 50% of the total 
income, so the point s0.8, 0.5d lies on the Lorenz curve. (The Lorenz curve is named after 
the American economist Max Lorenz.)

Figure 2 shows some typical Lorenz curves. They all pass through the points s0, 0d 
and s1, 1d and are concave upward. In the extreme case Lsxd − x, society is perfectly 
egalitarian: The poorest a% of the population receives a% of the total income and so 
everybody receives the same income. The area between a Lorenz curve y − Lsxd and the 
line y − x measures how much the income distribution differs from absolute equality. 
The Gini index (sometimes called the Gini coefficient or the coefficient of inequality) 
is the area between the Lorenz curve and the line y − x (shaded in Figure 3) divided by 
the area under y − x.

0 1

y

x

(1, 1)

y=x
income
fraction

population fraction

1

        
0 1

y

x

y=x

y=L(x)

	 Figure �2	 Figure �3

	 1.	�� (a)	� Show that the Gini index G is twice the area between the Lorenz curve and 
the line y − x, that is,

G − 2 y1

0
 fx 2 Lsxdg dx

		  (b)	� What is the value of G for a perfectly egalitarian society (everybody has the 
same income)? What is the value of G for a perfectly totalitarian society (a 
single person receives all the income)?

	 2.	�� �The following table (derived from data supplied by the US Census Bureau) 
shows values of the Lorenz function for income distribution in the United States 
for the year 2010.

x 0.0 0.2 0.4 0.6 0.8 1.0

Lsxd 0.000 0.034 0.120 0.266 0.498 1.000

		  (a)	� What percentage of the total US income was received by the richest 20% of 
the population in 2010?

		  (b)	� Use a calculator or computer to fit a quadratic function to the data in the 
table. Graph the data points and the quadratic function. Is the quadratic 
model a reasonable fit?

		  (c)	� Use the quadratic model for the Lorenz function to estimate the Gini index 
for the United States in 2010.

0 10.80.60.40.2

y

x

(0.4, 0.12)

1

(0.8, 0.5)

Figure �1
Lorenz curve for the United States  
in 2010
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	 3.	�� �The following table gives values for the Lorenz function in the years 1970, 
1980, 1990, and 2000. Use the method of Problem 2 to estimate the Gini index 
for the United States for those years and compare with your answer to Problem 
2(c). Do you notice a trend?

x 0.0 0.2 0.4 0.6 0.8 1.0

1970 0.000 0.041 0.149 0.323 0.568 1.000

1980 0.000 0.042 0.144 0.312 0.559 1.000

1990 0.000 0.038 0.134 0.293 0.530 1.000

2000 0.000 0.036 0.125 0.273 0.503 1.000

CAS 	 4.	�� �A power model often provides a more accurate fit than a quadratic model for 
a Lorenz function. If you have a computer with Maple or Mathematica, fit a 
power function sy − axkd to the data in Problem 2 and use it to estimate the 
Gini index for the United States in 2010. Compare with your answer to parts (b) 
and (c) of Problem 2.

6.2 Average Values

It is easy to calculate the average value of finitely many numbers y1, y2, . . . , yn:

yave −
 y1 1 y2 1 ∙ ∙ ∙ 1 yn

n

But how do we compute the average temperature during a day if infinitely many tem-
perature readings are possible? Figure 1 shows the graph of a temperature function Tstd, 
where t is measured in hours and T  in °C, and a guess at the average temperature, Tave.

In general, let’s try to compute the average value of a function y − f sxd, a < x < b.  
We start by dividing the interval fa, bg into n equal subintervals, each with length 
Dx − sb 2 adyn. Then we choose points x1*, . . . , xn* in successive subintervals and cal-
culate the average of the numbers f sx1*d, . . . , f sxn*d:

 f sx1*d 1 ∙ ∙ ∙ 1 f sxn*d
n

(For example, if f  represents a temperature function and n − 24, this means that we take 
temperature readings every hour and then average them.) Since Dx − sb 2 adyn, we can 
write n − sb 2 adyDx and the average value becomes

 
 f sx1*d 1 ∙ ∙ ∙ 1 f sxn*d

b 2 a

Dx

−
1

b 2 a
 f f sx1*d Dx 1 ∙ ∙ ∙ 1 f sxn*d Dxg

 −
1

b 2 a
 o

n

i−1
 f sxi*d Dx

If we let n increase, we would be computing the average value of a large number of 
closely spaced values. (For example, we would be averaging temperature readings taken 
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every minute or even every second.) The limiting value is

lim
n l `

 
1

b 2 a
 o

n

i−1
 f sx i*d Dx −

1

b 2 a
 yb

a
 f sxd dx

by the definition of a definite integral.
Therefore we define the average value of f  on the interval fa, bg as

fave −
1

b 2 a
 yb

a
 f sxd dx

 Example 1   |  Find the average value of the function f sxd − 1 1 x 2 on the  
interval f21, 2g.

SOLUTION � With a − 21 and b − 2 we have

 fave −
1

b 2 a
 yb

a
 f sxd dx −

1

2 2 s21d
 y2

21
 s1 1 x 2 d dx

 −
1

3
 Fx 1

x 3

3 G
2

21

− 2 ■

 Example 2   |  World population  In Chapter 1 we modeled the size of the 
human population of the world with the exponential function

Pstd − s1.43653 3 109d ? s1.01395d t

where t is measured in years and t − 0 corresponds to the year 1900. What was the 
average population in the 20th century?

SOLUTION � The average population for 0 < t < 100 was

 Pave −
1

100
 y100

0
 s1.43653 3 109d ? s1.01395dt dt

 −
1

100
? s1.43653 3 10 9d ? F s1.01395d t

lns1.01395dGt−0

t−100

 − 1.43653 3 107 ?
s1.01395d100 2 1

lns1.01395d

 < 310 3 107 − 3.1 3 109

So the average world population in the 20th century was about 3.1 billion.	 ■

If Tstd is the temperature at time t, we might wonder if there is a specific time when 
the temperature is the same as the average temperature. For the temperature function 
graphed in Figure 1, we see that there are two such times—just before noon and just 
before midnight. In general, is there a number c at which the value of a function f  is 
exactly equal to the average value of the function, that is, f scd − fave? The following 
theorem says that this is true for continuous functions.

For a positive function, we can think of 
this definition as saying

area

width
− average height
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The Mean Value Theorem for Integrals � If f  is continuous on fa, bg, then 
there exists a number c in fa, bg such that

f scd − fave −
1

b 2 a
 yb

a
 f sxd dx

that is,	 yb

a
 f sxd dx − f scdsb 2 ad

The Mean Value Theorem for Integrals is a consequence of the Mean Value Theorem 
for derivatives and the Fundamental Theorem of Calculus. The proof is outlined in Exer- 
cise 23.

The geometric interpretation of the Mean Value Theorem for Integrals is that, for pos-
itive functions f, there is a number c such that the rectangle with base fa, bg and height 
f scd has the same area as the region under the graph of f  from a to b. (See Figure 2 and the  
more picturesque interpretation in the margin note.)

 Example 3   |  Since f sxd − 1 1 x 2 is continuous on the interval f21, 2g, the Mean 
Value Theorem for Integrals says there is a number c in f21, 2g such that

y2

21
 s1 1 x 2 d dx − f scdf2 2 s21dg

In this particular case we can find c explicitly. From Example 1 we know that fave − 2, 
so the value of c satisfies

f scd − fave − 2

Therefore	 1 1 c 2 − 2        so        c 2 − 1

So in this case there happen to be two numbers c − 61 in the interval f21, 2g that 
work in the Mean Value Theorem for Integrals.	 ■

Examples 1 and 3 are illustrated by Figure 3.

0 x

y

a c b

y=ƒ

f(c)=fave

Figure �2

You can always chop off the top of 
a (two-dimensional) mountain at a 
certain height and use it to fill in the 
valleys so that the mountain becomes 
completely flat.
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y
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	� 1–6 � Find the average value of the function on the given interval.

	 1.	 f sxd − 4x 2 x 2, f0, 4g

	 2.	 f sxd − sin 4x, f2�, �g

	 3.	 tsxd − s3 x  , f1, 8g

	 4.	 f s�d − sec2s�y2d,       f0, �y2g

	 5.	 hsxd − cos4x sin x, f0, �g

	 6.	 hsud − s3 2 2ud21,    f21, 1g

	� 7–10
	 (a)	 Find the average value of f  on the given interval.
	 (b)	 Find c such that fave − f scd.

	 (c)	� Sketch the graph of f  and a rectangle whose area is the 
same as the area under the graph of f.

	 7.	�� f sxd − sx 2 3d2,    f2, 5g	 8.	 f sxd − ln x,    f1, 3g

	 ;	 9.	�� f sxd − 2 sin x 2 sin 2x,    f0, �g

	 ;	 10.	�� f sxd − 2xys1 1 x 2d2,    f0, 2g

	 11.	�� Find the average value of f  on f0, 8g.

x

y

0 2 4 6

1

EXERCISES 6.2
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400    Chapter 6  |  Applications of Integrals

	 17.	� Measles pathogenesis �� In Section 5.1 we modeled the 
infection level of the measles virus in a patient by the 
function

f std − 2t st 2 21dst 1 1d

		���  where t is measured in days and f std is measured in the 
number of infected cells per mL of blood plasma. Over the 
course of the 21-day infection, what is the average level of 
infection?

	 18.	� Length of a fish �� For a fish that starts life with a length  
of 1 cm and has a maximum length of 30 cm, the von 
Bertalanffy growth model predicts that the growth rate is 
29e2a cmyyear. What is the average length of the fish over 
its first five years?

	 19.	� Breathing ��is cyclic and a full respiratory cycle from the 
beginning of inhalation to the end of exhalation takes about 
5 s. The maximum rate of air flow into the lungs is about 
0.5 Lys. This explains, in part, why the function

f std −
1

2
 sin 

2�t

5

		���  has often been used to model the rate of air flow into the 
lungs. If inhalation occurs during the interval 0 < t < 2.5, 
what is the average rate of air flow during inhalation?

	 20.	� Blood flow �� The velocity v of blood that flows in a blood 
vessel with radius R and length l at a distance r from the 
central axis is

vsrd −
P

4�l
 sR2 2 r 2 d

		��  �where P is the pressure difference between the ends of the 
vessel and � is the viscosity of the blood (see Example 
3.3.9). Find the average velocity (with respect to r) over the 
interval 0 < r < R. Compare the average velocity with the 
maximum velocity.

	 21.	��� �If f  is continuous and y3

1  f sxd dx − 8, show that f  takes on 
the value 4 at least once on the interval f1, 3g.

	 22.	��� �Find the numbers b such that the average value of 
f sxd − 2 1 6x 2 3x 2 on the interval f0, bg is equal to 3.

	 23.	��� Prove the Mean Value Theorem for Integrals by applying 
the Mean Value Theorem for derivatives (see Section 4.2) to 
the function Fsxd − yx

a f std dt.

	 12.	�� The velocity graph of an accelerating car is shown.
		  (a)	� Use the Midpoint rule to estimate the average velocity 

of the car during the first 12 seconds.
		  (b)	� At what time was the instantaneous velocity equal to the 

average velocity?

4 t (seconds)

20

0 8 12

40

60

√
(km/h)

	 13.	��� In a certain city the temperature (in °F) t hours after 9 am 
was modeled by the function

Tstd − 50 1 14 sin 
�t

12

		��  �Find the average temperature during the period from 9 am  
to 9 pm.

	 14.	��� If a cup of coffee has temperature 95°C in a room where the 
temperature is 20°C, then, according to Newton’s Law of 
Cooling, the temperature of the coffee after t minutes is 
T std − 20 1 75e2ty50. What is the average temperature of 
the coffee during the first half hour?

	 15.	��� The population of Indonesia from 1950 to 2000 has been 
modeled with the function

Pstd − 83e 0.18 t

		���  where P is measured in millions and t is measured in  
years with t − 0 in the year 1950. What was the average 
population of Indonesia in the second half of the 20th 
century?

	 16.	� Blood alcohol concentration �� In Section 3.1 we modeled 
the BAC of male adult subjects after rapid consumption of 
15 mL of ethanol (corresponding to one alcoholic drink) by 
the concentration function

Cstd − 0.0225te20.0467t

		���  �where t is measured in minutes after consumption and Cstd 
is measured in mgymL. What was the average BAC during 
the first hour?

6.3 Further Applications to Biology

In Chapter 5 and in Sections 6.1 and 6.2 we presented several applications of integration 
to biology. In this section we consider additional examples of how integrals are used in 
biological settings: survival and renewal of populations, blood flow in veins and arteries, 
and cardiac output. Other applications are explored in the exercises.
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■ Survival and Renewal
A population may be continually adding members while some of the existing members 
die. If we can model how these changes occur with suitable functions, we can predict the 
population size at any point in the future.

Suppose we start with an initial population P0 and new members are added at the rate 
Rstd, where t is the number of years from now. We call R a renewal function. In addi-
tion, the proportion of the population that survives at least t years from now is given by 
a survival function S. [So if Ss5d − 0.8, 80% of the current population remains after  
5 years.]

To predict the population in T  years, we first note that Sstd ? P0 members of the cur-
rent population survive. To account for the newly added members, we divide the time 
interval f0, Tg into n subintervals, each of length Dt − Tyn, and let ti be the right end-
point of the ith subinterval. During this time interval, approximately Rstid Dt members 
are added, and the proportion of them that survive until time T  is given by SsT 2 tid. 
Thus the remaining members of those added during this time interval is

sproportion survivingdsnumber of membersd − SsT 2 tid Rstid Dt

Then the total number of new members to the population who survive after T  years is 
approximately

o
n

i−1
 SsT 2 tid Rstid Dt

If we let n l `, this Riemann sum approaches the integral

yT

0
 SsT 2 td Rstd dt

By adding this integral to the number of initial members who survived, we get the total 
population after T  years.

A population begins with P0 members and members are added at a rate given by 
the renewal function Rstd, where t is measured in years. The proportion of the 
population that remains after t years is given by the survival function Sstd. Then 
the population T  years from now is given by

(1)	 PsT d − SsT d ? P0 1 yT

0
 SsT 2 tdRstd dt	

 Example 1   |  Predicting a future population  There are currently 5600 trout 
in a lake and the trout are reproducing at the rate Rstd − 720e 0.1t fishyyear. However, 
pollution is killing many of the trout; the proportion that survive after t years is given 
by Sstd − e20.2t. How many trout will there be in the lake in 10 years?

SOLUTION � We have P0 − 5600 and T − 10, so by Formula 1, the population in ten 
years is

 Ps10d − Ss10d ? 5600 1 y10

0
 Ss10 2 tdRstd dt

 − 5600e20.2s10d 1 y10

0
 e20.2s102td ? 720e0.1t dt

 − 5600e22 1 720 y10

0
 e 0.3t22 dt

Equation 1 is also valid if t represents 
any other unit of time, such as weeks 
or months.
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Writing e 0.3t22 as e 0.3te22 gives

 Ps10d − 5600e22 1 720e22 y10

0
 e 0.3t dt

 − 5600e22 1 720e22  
e 0.3t

0.3 G0

10

 − 5600e22 1
720

0.3
e22 se 3 2 e 0d

 − 5600e22 1 2400se 2 e22d < 6956.95

Thus we predict that there will be about 6960 trout in the lake ten years from now.	 ■

Although we presented Formula 1 in the context of populations, it applies to other 
settings as well, such as administering a drug over time as the body works to eliminate 
the drug. The exercises investigate additional applications.

■ Blood Flow
In Example 3.3.9 we discussed the law of laminar flow:

vsrd −
P

4�l
 sR2 2 r 2 d

which gives the velocity v of blood that flows along a blood vessel with radius R and 
length l at a distance r from the central axis, where P is the pressure difference between 
the ends of the vessel and � is the viscosity of the blood (see Figure 1).

R r

l

In order to compute the rate of blood flow, or flux (volume per unit time), we consider 
smaller, equally spaced radii r1, r2, . . . . The approximate area of the ring with inner 
radius ri21 and outer radius ri is

 2�ri Dr        where    Dr − ri 2 ri21

(See Figure 2.) If Dr is small, then the velocity is almost constant throughout this ring 
and can be approximated by vsrid. Thus the volume of blood per unit time that flows 
across the ring is approximately

 s2�ri Drd vsrid − 2�ri vsrid Dr

and the total volume of blood that flows across a cross-section per unit time is about

 o
n

i−1
2�ri vsrid Dr

This approximation is illustrated in Figure 3. Notice that the velocity (and hence the 
volume per unit time) increases toward the center of the blood vessel. The approxima-
tion gets better as n increases. When we take the limit as n l ` we get an integral that 
gives the exact value of the flux (or discharge), which is the volume of blood that passes 

Figure �1
Blood flow in an artery

Îr

ri

Figure �2

Figure �3
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a cross-section per unit time:

 F − yR

0
 2�rvsrd dr

 − yR

0
 2�r 

P

4�l
 sR2 2 r 2 d dr

 −
�P

2�l
 yR

0
 sR2r 2 r 3 d dr −

�P

2�l
 FR2 

r 2

2
2

r 4

4 Gr−0

r−R

 −
�P

2�l
 FR4

2
2

R4

4 G −
�PR4

8�l

The resulting equation

(2)	 F −
�PR4

8�l
	

is called Poiseuille’s Law; it shows that the flux is proportional to the fourth power of 
the radius of the blood vessel.

In Exercise 10 you are asked to investigate the effect on blood pressure if the radius 
of an artery is reduced to three-fourths of its normal value.

■ Cardiac Output
Figure 4 shows the human heart and associated blood vessels. Blood returns from the 
body through the veins, enters the right atrium of the heart, and is pumped to the lungs 
through the pulmonary arteries for oxygenation. It then flows back into the left atrium 
through the pulmonary veins and then out to the rest of the body through the aorta. The 
cardiac output of the heart is the volume of blood pumped by the heart per unit time, 
that is, the rate of flow into the aorta.

The dye dilution method is used to measure the cardiac output. Dye is injected into the 
right atrium and flows through the heart into the aorta. A probe inserted into the aorta 
measures the concentration of the dye leaving the heart at equally spaced times over a time  
interval f0, T g until the dye has cleared. Let cstd be the concentration of the dye at time t. 
If we divide f0, T g into subintervals of equal length Dt, then the amount of dye that flows 
past the measuring point during the subinterval from t − ti21 to t − ti is approximately

sconcentration of dye in blooddsvolume of bloodd − cstidsF Dtd

where F is the rate of flow that we are trying to determine. Thus the total amount of 
dye is approximately

cst1dFDt 1 cst2dFDt 1 ∙ ∙ ∙ 1 cstndFDt

and, letting n l `, we find that the amount of dye is

 A − yT

0
 cstdF dt − F yT

0
 cstd dt

Thus the cardiac output is given by

(3)	 F −
A

yT

0
 cstd dt

	

where the amount of dye A is known and the integral can be approximated from the 
concentration readings.

aorta
vein

right
atrium

pulmonary
arteries

left
atrium

pulmonary
veins

pulmonary
veins

vein

pulmonary
arteries

Figure �4
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EXERCISES 6.3

	 1.	�A nimal survival and renewal �� An animal population 
currently has 7400 members and is reproducing at the rate 
Rstd − 2240 1 60t membersyyear. The proportion of mem-
bers that survive after t years is given by Sstd − 1yst 1 1d.

		  (a)	� How many of the original members survive four years?
		  (b)	� How many new members are added during the next  

four years?
		  (c)	� Explain why the animal population four years from now 

is not the same as the sum of your answers from parts (a) 
and (b).

	 2.	� City population �� A city currently has 36,000 residents and 
is adding new residents steadily at the rate of 1600 per year. 
If the proportion of residents that remain after t years is 
given by Sstd − 1yst 1 1d, what is the population of the city  
seven years from now?

	 3.	�I nsect survival and renewal �� A population of insects 
currently numbers 22,500 and is increasing at a rate of 
Rstd − 1225e 0.14 t insectsyweek. If the survival function for 
the insects is Sstd − e20.2t, where t is measured in weeks, 
how many insects are there after 12 weeks?

	 4.	�A nimal survival and renewal �� There are currently 3800 
birds of a particular species in a national park and their 
number is increasing at a rate of Rstd − 525e 0.05t birdsyyear. 
If the proportion of birds that survive t years is given by 
Sstd − e20.1t, what do you predict the bird population will be 
10 years from now?

	 5.	� Drug concentration �� A drug is administered intravenously 
to a patient at the rate of 12 mgyh. The patient’s body elim-
inates the drug over time so that after t hours the proportion 
that remains is e20.25t. If the patient currently has 50 mg of 
the drug in her bloodstream, how much of the drug is present 
eight hours from now?

	 6.	� Drug concentration �� A patient receives a drug at a con-
stant rate of 30 mgyh. The drug is eliminated from the 

bloodstream over time so that the fraction e20.2t remains after 
t hours. The patient currently has 80 mg of the drug present 
in the bloodstream. How much will be present in 24 hours?

	 7.	� Water pollution �� A contaminant is leaking into a lake at a 
rate of 

Rstd − 1600e 0.06 t gallonsyh

		��  �Enzymes have been added to the lake that neutralize the 
contaminant over time so that after t hours the fraction of  
the contaminant that remains is Sstd − e20.32t. If there are 
currently 10,000 gallons of the contaminant in the lake, how 
many gallons are present in the lake 18 hours from now?

	 8.	�I nsect survival and renewal �� Sterile fruit flies are used  
in an experiment where the proportion that survive at least  
t days is given by e20.15 t. If the experiment begins with  
200 fruit flies, and flies are added at the rate of 5 per hour, 
how many flies are present 14 days after the start of the 
experiment?

	 9.	� Blood flow �� Use Poiseuille’s Law to calculate the rate  
of flow in a small human artery where we can take 
� − 0.027 dyn ? sycm 2, R − 0.008 cm, l − 2 cm, and 
P − 4000 dynycm2.

	 10.	� Blood flow �� High blood pressure results from constriction 
of the arteries. To maintain a normal flow rate (flux), the 
heart has to pump harder, thus increasing the blood pressure. 
Use Poiseuille’s Law to show that if R0 and P0 are normal 
values of the radius and pressure in an artery and the 
constricted values are R and P, then for the flux to remain 
constant, P and R are related by the equation

P

P0
− SR0

R D4

		��  �Deduce that if the radius of an artery is reduced to three-

 Example 2   |  Cardiac output  A 5-mg dose (called a bolus) of dye is injected 
into a right atrium. The concentration of the dye (in milligrams per liter) is measured 
in the aorta at one-second intervals as shown in the chart. Estimate the cardiac output.

SOLUTION � Here A − 5 and T − 10. We can use the Midpoint Rule with n − 5 
subdivisions to approximate the integral of the concentration. Then Dt − 2 and 

 y10

0
 cstd dt < fcs1d 1 cs3d 1 cs5d 1 cs7d 1 cs9dg Dt

 − f0.4 1 6.5 1 8.9 1 4.0 1 1.1g s2d

 − 41.8

Thus Formula 3 gives the cardiac output to be

	  F −
A

y10

0  cstd dt
<

5

41.8
< 0.12 Lys − 7.2 Lymin	 ■

t cstd t cstd

	 0 	 0 	 6 6.1
1 0.4 	 7 4.0
2 2.8 	 8 2.3
3 6.5 	 9 1.1
4 9.8 10 	 0
5 8.9
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	 13.	� Cardiac output �� The graph of the concentration function 
cstd is shown after a 7-mg injection of dye into a heart. Use 
the Midpoint Rule to estimate the cardiac output.

0

y
(mg/L)

t (seconds)

4

6

2

4 102 8 14126

	 14.	� Drug administration �� A patient is continually receiving a 
drug. If the drug is eliminated from the body over time so 
that the fraction that remains after t hours is e20.4 t, at what 
constant rate should the drug be administered to maintain a 
steady level of the drug in the bloodstream?

		���  fourths of its former value, then the pressure is more than 
tripled.

	 11.	� Cardiac output �� The dye dilution method is used to mea-
sure cardiac output with 6 mg of dye. The dye concentra-
tions, in mgyL, are modeled by cstd − 20te20.6 t, 0 < t < 10, 
where t is measured in seconds. Find the cardiac output. 
[Hint: Integration by parts is required.]

	 12.	� Cardiac output �� After an 8-mg injection of dye, the 
readings of dye concentration, in mgyL, at two-second 
intervals are as shown in the table. Use the Midpoint Rule to 
estimate the cardiac output.

t cstd t cstd

0 	 0 	 12 3.9
2 2.4 	 14 2.3
4 5.1 	 16 1.6
6 7.8 	 18 0.7
8 7.6 20 	 0

10 5.4

6.4 Volumes

In trying to find the volume of a solid we face the same type of problem as in finding 
areas. We have an intuitive idea of what volume means, but we must make this idea pre-
cise by using calculus to give an exact definition of volume.

We start with a simple type of solid called a cylinder (or, more precisely, a right cylin­
der). As illustrated in Figure 1(a), a cylinder is bounded by a plane region B1, called the 
base, and a congruent region B2 in a parallel plane. The cylinder consists of all points on  
line segments that are perpendicular to the base and join B1 to B2. If the area of the base is  
A and the height of the cylinder (the distance from B1 to B2) is h, then the volume V  of the  
cylinder is defined as

V − Ah

In particular, if the base is a circle with radius r, then the cylinder is a circular cylinder 
with volume V − �r 2h [see Figure 1(b)], and if the base is a rectangle with length l and 
width w, then the cylinder is a rectangular box (also called a rectangular parallelepiped) 
with volume V − lwh [see Figure 1(c)].

(a) Cylinder V=Ah

h

B∞

B

(b) Circular cylinder V=πr@h

h

r

(c) Rectangular box V=lwh

h

l

w

For a solid S that isn’t a cylinder we first “cut” S into pieces and approximate each 
piece by a cylinder. We estimate the volume of S by adding the volumes of the cylinders. 
We arrive at the exact volume of S through a limiting process in which the number of 
pieces becomes large.

Figure �1
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We start by intersecting S with a plane and obtaining a plane region that is called  
a cross-section of S. Let Asxd be the area of the cross-section of S in a plane Px perpen-
dicular to the x-axis and passing through the point x, where a < x < b. (See Fig- 
ure 2. Think of slicing S with a knife through x and computing the area of this slice.) The 
cross-sectional area Asxd will vary as x increases from a to b.

y

x0 a bx

S

A(a)
A(b)

A(x)

Px

Let’s divide S into n “slabs” of equal width Dx by using the planes Px1, Px2, . . . to slice 
the solid. (Think of slicing a loaf of bread.) If we choose sample points xi* in fxi21, xig, 
we can approximate the ith slab Si (the part of S that lies between the planes Pxi21 and Pxi) 
by a cylinder with base area Asxi*d and “height” Dx. (See Figure 3.)

xi-1 xi

y

0 xx*i

Îx

S

a b

y

00 xx¶=ba=x¸ ‹⁄ x¢ x∞ xßx™

The volume of this cylinder is Asxi*d Dx, so an approximation to our intuitive concep-
tion of the volume of the ith slab Si is

VsSid < Asxi*d Dx

Adding the volumes of these slabs, we get an approximation to the total volume (that is, 
what we think of intuitively as the volume): 

V < o
n

i−1
 Asxi*d Dx

This approximation appears to become better and better as n l `. (Think of the slices 
as becoming thinner and thinner.) Therefore we define the volume as the limit of these 

Figure �2

Figure �3
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sums as n l `. But we recognize the limit of Riemann sums as a definite integral and 
so we have the following definition.

Definition of Volume � Let S be a solid that lies between x − a and x − b. If 
the cross-sectional area of S in the plane Px, through x and perpendicular to the  
x-axis, is Asxd, where A is a continuous function, then the volume of S is

V − lim
n l `

 o
n

i−1
 Asxi*d Dx − yb

a
 Asxd dx

When we use the volume formula V − yb
a  Asxd dx, it is important to remember that  

Asxd is the area of a moving cross-section obtained by slicing through x perpendicular 
to the x-axis.

Notice that, for a cylinder, the cross-sectional area is constant: Asxd − A for all x. So 
our definition of volume gives V − yb

a  A dx − Asb 2 ad; this agrees with the formula 
V − Ah.

 Example 1   |  Volume of a liver  A CAT scan produces equally spaced cross-
sectional views of a human organ that provide information about the organ otherwise 
obtained only by surgery. For example, such measurements of liver volume can be 
related to diseases such as cirrhosis.1 Suppose that a CAT scan of a human liver shows 
cross-sections spaced 2 cm apart. The liver is 20 cm long and the cross-sectional areas, 
in square centimeters, are 0, 39, 63, 128, 117, 106, 94, 79, 58, 18, and 0. Use the Mid-
point Rule to estimate the volume of the liver.

SOLUTION � In using the Midpoint Rule we will use n − 5 subintervals; their mid-
points are 2, 6, 10, 14, and 18. If Asxd is the area of the cross-section of the liver at a 
distance of x centimeters from one end, then the volume is

 V − y20

0
 Asxd dx

 −
20 2 0

5
 fAs2d 1 As6d 1 As10d 1 As14d 1 As18dg

 − 4 f39 1 128 1 106 1 79 1 18g

 − 4 ? 370 − 1480

The volume of the liver is approximately 1480 cm3.	 ■

 Example 2   |  Show that the volume of a sphere of radius r is V − 4
3 �r 3.

SOLUTION � If we place the sphere so that its center is at the origin (see Figure 4), 
then the plane Px intersects the sphere in a circle whose radius (from the Pythagorean 
Theorem) is y − sr 2 2 x 2 . So the cross-sectional area is

Asxd − �y 2 − �sr 2 2 x 2 d

It can be proved that this definition is 
independent of how S is situated with 
respect to the x-axis. In other words, 
no matter how we slice S with parallel 
planes, we always get the same answer 
for V.
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Figure �4
1.� J.-Y. Zhu et al., “Measurement of Liver Volume and Its Clinical Significance in Cirrhotic Portal Hyperten-
sive Patients,” World Journal of Gastroenterology 5 (1999): 525–26.
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Using the definition of volume with a − 2r and b − r, we have

	  V − yr

2r
 Asxd dx − yr

2r
 �sr 2 2 x 2 d dx

	  − 2� yr

0
 sr 2 2 x 2 d dx 	 (The integrand is even.)

	  − 2�Fr 2x 2
x 3

3 G0

r

− 2�Sr 3 2
r 3

3
D

	  − 4
3 �r 3 	 ■

Figure 5 illustrates the definition of volume when the solid is a sphere with radius  
r − 1. From the result of Example 2, we know that the volume of the sphere is 43�, which 
is approximately 4.18879. Here the slabs are circular cylinders, or disks, and the three 
parts of Figure 5 show the geometric interpretations of the Riemann sums

o
n

i−1
 Asxid Dx − o

n

i−1
 �s12 2 xi

2d Dx

when n − 5, 10, and 20 if we choose the sample points xi* to be the midpoints xi. Notice  
that as we increase the number of approximating cylinders, the corresponding Riemann 
sums become closer to the true volume.

 (a) Using 5 disks, VÅ4.2726  (b) Using 10 disks, VÅ4.2097  (c) Using 20 disks, VÅ4.1940

Figure �5  Approximating the volume of a sphere with radius 1

You have probably seen the formula V − 4
3�r 3 for the volume of a sphere before. But 

calculus is required to prove it, so this may be the first time you have have seen it proved.
This formula is useful in biology because the shape of a tumor is often modeled by a 

sphere. (See, for instance, Example 3.5.14.) And the shape of a bacterium can often be 
modeled as a circular cylinder capped by two hemispheres as shown in the margin.

 Example 3   |  Find the volume of the solid obtained by rotating about the x-axis the 
region under the curve y − sx   from 0 to 1. Illustrate the definition of volume by 
sketching a typical approximating cylinder.

SOLUTION � The region is shown in Figure 6(a). If we rotate about the x-axis, we get 
the solid shown in Figure 6(b). When we slice through the point x, we get a disk with 
radius sx . The area of this cross-section is

Asxd − � ssx d2 − �x

 TEC   Visual 6.4A shows an animation 
of Figure 5.
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and the volume of the approximating cylinder (a disk with thickness Dx) is

Asxd Dx − �x Dx

The solid lies between x − 0 and x − 1, so its volume is

	 V − y1

0
 Asxd dx − y1

0
 �x dx − � 

x 2

2 G0

1

−
�

2
	 ■

	 (a)

x0 x

y
y=œ„x

1

œ„x

(b)

Îx

0 x

y

1

 Example 4   |  The region enclosed by the curves y − x and y − x 2 is rotated about 
the x-axis. Find the volume of the resulting solid.

SOLUTION � The curves y − x and y − x 2 intersect at the points s0, 0d and s1, 1d. The 
region between them, the solid of rotation, and a cross-section perpendicular to the  
x-axis are shown in Figure 7. A cross-section in the plane Px has the shape of a washer  
(an annular ring) with inner radius x 2 and outer radius x, so we find the cross-sectional 
area by subtracting the area of the inner circle from the area of the outer circle:

Asxd − �x 2 2 �sx 2 d2 − �sx 2 2 x 4 d
Therefore we have

 V − y1

0
 Asxd dx − y1

0
 �sx 2 2 x 4 d dx  − �F x 3

3
2

x 5

5 G0

1

−
2�

15

	

(1, 1)

y=≈
y=x

(b)(a) (c)

x

≈

A(x)

x

y

(0, 0) x

y

0

	 ■

Did we get a reasonable answer in  
Example 3? As a check on our work, 
let’s replace the given region by a 
square with base f0, 1g and height 1. If 
we rotate this square, we get a cylinder 
with radius 1, height 1, and volume 
� ? 12 ? 1 − �. We computed that the 
given solid has half this volume. That 
seems about right.

Figure �6

 TEC   Visual 6.4B shows how solids of 
revolution are formed.

Figure �7
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The solids in Examples 2–4 are all called solids of revolution because they are 
obtained by revolving a region about a line. In general, we calculate the volume of a 
solid of revolution by using the basic defining formula

V − yb

a
 Asxd dx

and we find the cross-sectional area Asxd in one of the following ways:

■ � If the cross-section is a disk (as in Examples 2 and 3), we find the radius of the 
disk (in terms of x) and use

A − �sradiusd2

■ � If the cross-section is a washer (as in Example 4), we find the inner radius r in and 
outer radius rout from a sketch (as in Figures 7 and 8) and compute the area of the 
washer by subtracting the area of the inner disk from the area of the outer disk:

A − � souter radiusd2 2 � sinner radiusd2

rin
rout

We now find the volume of a solid that is not a solid of revolution.

 Example 5   |  Figure 9 shows a solid with a circular base of radius 1. Parallel 
cross-sections perpendicular to the base are equilateral triangles. Find the volume of 
the solid.

SOLUTION � Let’s take the circle to be x 2 1 y 2 − 1. The solid, its base, and a typical 
cross-section at a distance x from the origin are shown in Figure 10.

y

x

y y
60° 60° BA

C

œ„œœ3y

(c) A cross-section

A

B(x, y)y=œ„„„„„„≈

(b) Its base

x

y

0

y

x

(a) The solid

0

A

B

1_1 x

y

C

Since B lies on the circle, we have y − s1 2 x 2  and so the base of the triangle 
ABC is | AB | − 2s1 2 x 2 . Since the triangle is equilateral, we see from Figure 10(c) 

Figure �8

Figure �9	 Figure �10
Computer-generated picture  
of the solid in Example 5

 TEC   Visual 6.4C shows how the solid 
in Figure 9 is generated.
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that its height is s3 y − s3s1 2 x 2 
. The cross-sectional area is therefore

Asxd − 1
2 ? 2s1 2 x 2 ? s3 s1 2 x 2 − s3  s1 2 x 2 d

and the volume of the solid is

 V − y1

21
 Asxd dx − y1

21
 s3  s1 2 x 2 d dx

	  − 2 y1

0
 s3  s1 2 x 2 d dx − 2s3 Fx 2

x 3

3
G

0

1

−
4s3 

3 	 ■

	� 1–6 � Find the volume of the solid obtained by rotating the 
region bounded by the given curves about the x-axis. Sketch 
the region, the solid, and a typical disk or washer.

	 1.	�� y − 2 2 1
2 x,  y − 0,  x − 1,  x − 2

	 2.	�� y − 1 2 x 2,  y − 0

	 3.	�� y − sx 2 1 ,  y − 0,  x − 5

	 4.	�� y − s25 2 x 2 ,  y − 0,  x − 2,  x − 4

	 5.	�� y − x 3,  y − x,  x > 0

	 6.	�� y − 1
4 x 2,  y − 5 2 x 2

	� 7–8 � Here we rotate about the y-axis instead of the x-axis. Find 
the volume of the solid obtained by rotating the region bounded 
by the given curves about the y-axis. Sketch the region, the 
solid, and a typical disk.

	 7.	�� x − 2sy ,  x − 0,  y − 9

	 8.	�� y − ln x,  y − 1,  y − 2,  x − 0

	 9.	� Volume of a pancreas �� A CAT scan of a human pancreas 
shows cross-sections spaced 1 cm apart. The pancreas is  
12 cm long and the cross-sectional areas, in square centi-
meters, are 0, 7.7, 15.2, 18.0, 10.3, 10.8, 9.7, 8.7, 7.7, 5.5, 
4.0, 2.7, and 0. Use the Midpoint Rule to estimate the 
volume of the pancreas.

	 10.	��� A log 10 m long is cut at 1-meter intervals and its cross-
sectional areas A (at a distance x from the end of the log) 
are listed in the table. Use the Midpoint Rule with n − 5 to 
estimate the volume of the log.

x smd A sm2d x smd A sm2d

0 	 0.68 	 6 	 0.53
1 	 0.65 	 7 	 0.55
2 	 0.64 	 8 	 0.52
3 	 0.61 	 9 	 0.50
4 	 0.58 	 10 	 0.48
5 	 0.59 	

 11.	�� (a)	� If the region shown in the figure is rotated about the  
x-axis to form a solid, use the Midpoint Rule with 
n − 4 to estimate the volume of the solid.

0 4

4

102 86

2

y

x

		  (b)	�� Estimate the volume if the region is rotated about the  
y-axis. Again use the Midpoint Rule with n − 4.

	 12.	� Volume of a bird’s egg 
CAS 		  (a)	� A model for the shape of a bird’s egg is obtained by  

rotating about the x-axis the region under the graph of 

f sxd − sax 3 1 bx 2 1 cx 1 dds1 2 x 2 

			   Use a CAS to find the volume of such an egg.
		  (b)	� For a red-throated loon, a − 20.06, b − 0.04,  

c − 0.1, and d − 0.54. Graph f  and find the volume of 
an egg of this species.

EXERCISES 6.4
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	 17.	��� Find the volume common to two spheres, each with radius  
r, if the center of each sphere lies on the surface of the other 
sphere.

	 18.	��� �Find the volume common to two circular cylinders, each 
with radius r, if the axes of the cylinders intersect at right 
angles.

	� 13–15 � Find the volume of the described solid S.

	 13.	��� S is a right circular cone with height h and base radius r

	 14.	��� The base of S is a circular disk with radius r. Parallel cross- 
sections perpendicular to the base are squares.

	 15.	��� The base of S is an elliptical region with boundary curve 
9x 2 1 4y 2 − 36. Cross-sections perpendicular to the x-axis  
are isosceles right triangles with hypotenuse in the base.

	 16.	��� The base of S is a circular disk with radius r. Parallel cross- 
sections perpendicular to the base are isosceles triangles 
with height h and unequal side in the base.

		  (a)	 Set up an integral for the volume of S.
		  (b)	� By interpreting the integral as an area, find the volume  

of S.

CONCEPT CHECK

	 1.	��� Draw two typical curves y − f sxd and y − tsxd, where 
f sxd > tsxd for a < x < b. Show how to approximate the 
area between these curves by a Riemann sum and sketch the 
corresponding approximating rectangles. Then write an 
expression for the exact area.

	 2.	��� Suppose that Sue runs faster than Kathy throughout a  
1500-meter race. What is the physical meaning of the area 
between their velocity curves for the first minute of the race?

	 3.	�� (a)	��� What is the average value of a function f  on an  
interval fa, bg?

		  (b)	� What does the Mean Value Theorem for Integrals say? 
What is its geometric interpretation?

	 4.	��� If we have survival and renewal functions for a population, 
how do we predict the size of the population T years from 
now?

	 5.	�� (a)	 What is the cardiac output of the heart?
		  (b)	� Explain how the cardiac output can be measured by the 

dye dilution method.

	 6.	�� (a)	� Suppose S is a solid with known cross-sectional areas. 
Explain how to approximate the volume of S by a 
Riemann sum. Then write an expression for the exact 
volume.

		  (b)	� If S is a solid of revolution, how do you find the cross- 
sectional areas?

Answers to the Concept Check can be found on the back 
endpapers.

Chapter 6 Review

EXERCISES

	� 1–4 � Find the area of the region bounded by the given curves.

	 1.	 y − x 2, y − 4x 2 x 2

	 2.	 y − 1yx,    y − x 2,    y − 0,    x − e

	 3.	 y − 1 2 2x 2,    y − | x |
	 4.	�� x 1 y − 0,    x − y 2 1 3y
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that remain after t months is Sstd − e20.09 t, how many fish 
will be in the lake in three years?

	 13.	�� Cardiac output�  After a 6-mg injection of dye into a heart, 
the readings of dye concentration, in mgyL, at two-second 
intervals are as shown in the table. Use the Midpoint Rule to 
estimate the cardiac output.

t Cstd t Cstd

	 0 	 0 14 4.7
	 2 1.9 16 3.3
	 4 3.3 18 2.1
	 6 5.1 20 1.1
	 8 7.6 22 0.5

10 7.1 24 0
12 5.8

	 14.	��� Find the volume of the solid obtained by rotating about  
the x-axis the region bounded by the curves y − e22x, 
y − 1 1 x, and x − 1.

	 15.	��� Let 5 be the region bounded by the curves y − tansx 2 d,  
x − 1, and y − 0. Use the Midpoint Rule with n − 4 to 
estimate the following quantities.

		  (a)	 The area of 5
		  (b)	 The volume obtained by rotating 5 about the x-axis

	 16.	��� Let 5 be the region in the first quadrant bounded by the 
curves y − x 3 and y − 2x 2 x 2. Calculate the following 
quantities.

		  (a)	 The area of 5
		  (b)	� The volume obtained by rotating 5 about the x-axis

	 17.	��� Find the volumes of the solids obtained by rotating the 
region bounded by the curves y − x and y − x 2 about the 
following lines.

		  (a)	 The x-axis            (b)  The y-axis

	 ;	 18.	��� Let 5 be the region bounded by the curves y − 1 2 x 2 and 
y − x 6 2 x 1 1. Estimate the following quantities.

		  (a)	� The x-coordinates of the points of intersection of the 
curves

		  (b)	 The area of 5
		  (c)	� The volume generated when 5 is rotated about the  

x-axis

	 19.	��� The base of a solid is a circular disk with radius 3. Find the 
volume of the solid if parallel cross-sections perpendicular 
to the base are isosceles right triangles with hypotenuse 
lying along the base.

	 20.	��� The height of a monument is 20 m. A horizontal cross-
section at a distance x meters from the top is an equilateral 
triangle with side 14 x meters. Find the volume of the 
monument.

	 5.	� MRI brain scan �� Shown is a cross-section of a human 
brain obtained with an MRI. Use the Midpoint Rule to 
estimate the area of the cross-section.

0

y   (cm)

x (cm)

5

5 10 15

10

15

	 6.	� Birth and death rates �� The birth rate of a population is 
bstd − 1240e 0.0197t people per year and the death rate is 
dstd − 682e 0.008t people per year. Find the area between 
these curves for 0 < t < 20. What does this area represent?

	 7.	��� Find the average value of the function f std − t sinst2d on 
the interval f0, 10g.

	 8.	��� Find the average value of the function f sxd − x 2s1 1 x 3  
on the interval f0, 2g.

	 9.	�A ntibiotic pharmacokinetics �� When an antibiotic tablet 
is taken, the concentration of the antibiotic in the blood-
stream is modeled by the function

Cstd − 8se20.4 t 2 e20.6 td

		���  where the time t is measured in hours and C is measured in 
mgymL. What is the average concentration of the antibiotic 
during the first two hours?

	 10.	� Salicylic acid pharmacokinetics �� In a study of the effects 
of aspirin, salicylic acid was formed and its concentration 
was modeled by the function

Cstd − 11.4te2t

		����  where the time t is measured in hours and C is measured in 
mgymL. What is the average concentration of the salicylic 
acid during the first four hours?

	 11.	� Survival and renewal �� Suppose a city’s population is 
currently 75,000 and the renewal function is

Rstd − 3200e 0.05 t

		���  If the survival function is Sstd − e20.1 t, predict the popula-
tion in 10 years.

	 12.	�A nimal survival and renewal �� The fish population in  
a lake is currently 3400 and is increasing at a rate of 
Rstd − 650e 0.04 t fish per month. If the proportion of fish 
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case study 1d  Kill Curves and Antibiotic Effectiveness

In this case study we have explored the relationship between the magni-
tude of antibiotic treatment and the effectiveness of the treatment. To do so, 
in Case Study 1b we showed that a suitable model for the size of the bacteria  
population Pstd (in CFUymL) as a function of time t (in hours) is given by the piecewise 
defined function

(1a)	 Pstd − H6e ty3 if t , 2.08

12 if t > 2.08

if c0 , MIC, where MIC − 0.013 mgymL. On the other hand, if c0 . MIC

(1b)	 Pstd −  
6e2ty20 if t , a

6Aety3 if a < t , b

12 if t > b

�where the constants a, b, and A are defined by a − 5.7 lns77c0d, b − 6.6 lns77c0d 1 2.08,  
and A − s77c0d22.2.

In Case Study 1a we used these so-called kill curves to plot the relationship between 
� (a measure of the magnitude of antibiotic treatment) and two different measures of 
the killing effectiveness, denoted by D and T. The quantity D is the drop in population 
size before the population rebound occurs, and T  is the time taken to reduce the bacteria 
population size to 90% of its initial size. (Refer to Figure 1.)
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Now that we have a model that works reasonably well, we can use it to make predic-
tions about other patterns, and then compare these with available data. As an example, 
another measure of the killing effectiveness of an antibiotic is the area I between the 
population size curve in the absence of antibiotic, and the kill curve in the presence of the 
antibiotic as shown in Figure 1. In many cases this measure might be preferable because 
it incorporates both the drop in bacteria population size, and the length of time for which 
this reduced population size is maintained. Let’s see what our model predicts about the 
relationship between I and the magnitude of antibiotic treatment �.

	 1.	�� �Suppose that a . 2.08 [that is, 5.7 lns77c0d . 2.08]. Find an expression for I in 
the modeled populations in terms of c0. You should assume that c0 . MIC.

Figure �1
Three measures of killing effectiveness. 

The blue curve is bacteria population 
size in the absence of antibiotic. The 

red curve is bacteria population size in 
the presence of antibiotic.

Recall that MIC is a constant referred 
to as the minimum inhibitory concen-
tration of the antibiotic and c0 is the 
concentration at time t − 0.
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	 2.	�� �The result from Problem 1 should give you a function of the form I − tsc0d for 
some function t. Substitute the values k − 0.175 and MIC − 0.013 into the 
expression for � obtained in Case Study 1c. This will give � − hsc0d for some 
function h.

	 3.	�� �Using the concept of a function’s inverse, explain how to obtain an expression 
giving I as a function of � in terms of t and h21. Find an explicit expression for 
this function.

	 4.	�� �Plot the function obtained in Problem 3.

The experimental kill curves shown in Figure 2 have also been used to quantify the 
relationship between I and �.1 In other words, the values of I and � have been calculated 
for each experimental kill curve in Figure 2. If we overlay these data points on the plot 
from Problem 4, we obtain Figure 3. You can see that, again, our model predicts the 
observed data reasonably well.
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Figure �2
The kill curves of ciprofloxacin for  
E. coli when measured in a growth 

chamber. The concentration of  
ciprofloxacin at t − 0 is indicated 

above each curve (in mgymL).

Figure �3
Predicted relationship between  

I and �, along with experimental  
observations obtained using the kill 

curve data in Figure 2.

1.� Adapted from A. Firsov et al., “Parameters of Bacterial Killing and Regrowth Kinetics and Antimicrobial 
Effect in Terms of Area Under the Concentration-Time Curve Relationships: Action of Ciprofloxacin against 
Escherichia coli in an In Vitro Dynamic Model.” Antimicrobial Agents and Chemotherapy 41 (1997): 1281.
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case study 2b  Hosts, Parasites, and Time-Travel

In Case Study 2c you will derive a model for the dynamics of the geno-
types of Daphnia and its parasite. Recall that we are modeling a situation 
involving two possible host genotypes (A and a) and two possible parasite 
genotypes (B and b). Parasites of type B can infect only hosts of type A, while parasites 
of type b can infect only hosts of type a. You will then derive an explicit solution of a 
simplified version of the model in Case Study 2d. This will give the frequency of host 
genotype A and parasite genotype B as functions of time. These functions are

(1)
	  qstd − 1

2 1 Mq cossct 2 �qd	

  pstd − 1
2 1 Mp cossct 2 �pd	

where qstd is the predicted frequency of host genotype A at time t and pstd is the pre-
dicted frequency of the parasite genotype B at time t. In these equations �q, �p, and c are 
positive constants, and Mq and Mp are positive constants that are strictly less than 12 (the 
biological significance of these constants is explored in Case Study 2a).

In this part of the case study you will use Equations 1 to make predictions from the 
model that can be compared with data from the experiments.

Recall that, in the experiment, a host from a fixed layer of the sediment core was chal-
lenged with infection by a parasite from either the same layer, a layer above the fixed 
layer (that is, from its future), or a layer below it (that is, from its past). We can view dif-
ferent depths in the sediment core as representing different points of time in the history 
of the Daphnia-parasite interaction (see Figure 1). In this way Equations 1 can equally 
be viewed as specifying the frequency of the host and parasite genotypes as functions of 
location in the sediment core. Increasing values of t correspond to shallower points in the 
core as shown in Figure 2.
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In the experiment introduced in Case Study 2 on page xlvii, researchers chose a fixed 
depth � and extracted a layer of sediment of width W  centered around this depth. This 
layer is shown in Figure 3.

Shallow

p(t)

q(t)

Young

Deep

1.0

0

Old
Time

Depth

W

�

W

� + D

D

After the contents of this layer were completely mixed, hosts and parasites were 
extracted at random from the mixture. Researchers also took deeper and shallower layers 
(that represent the past and the future for hosts located in the layer at �) and completely 
mixed each. The center of these layers was a distance D from the center of the focal layer 
(see Figure 3). They then challenged hosts from the layer at � with parasites from their 
past (that is, from the layer with D , 0), present (the layer at �), and future (the layer 
with D . 0). For each challenge experiment the fraction of hosts becoming infected was 
measured.

We can use our model to predict the fraction of hosts infected. To do so, we first need 
to know the predicted frequency of hosts of type A in the layer at � as well as the fre-
quency of the parasites of type B in the layer at � 1 D.

	 1.	�� �Consider a focal layer at location � with width W  as shown in Figure 4.

Shallow

Young

Deep

Old
Time

Depth

q(t)

W

�
� – � +W––

2
W––
2

		��  �The frequency of host type A will vary across the depth of this layer as speci-
fied by the function qstd. Show that, when this layer is completely mixed, the 
frequency of A in the mixture is given by

qaves�d −
1

2
1 �q cossc� 2 �qd 

2 sin(1
2cW)

cW

		��  �Hint: You might want to use the trigonometric identity

sinsx 1 yd 2 sinsx 2 yd − 2 cos x sin y

Figure �3

Figure �4
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	 2.	�� �Consider another layer at a location a distance D from �, again with thickness W, 
as shown in Figure 5. The frequency of parasite type B will vary across depth in 
this layer, as specified by the function pstd. Show that, when this layer is com-
pletely mixed, the frequency of B in the mixture is given by

paves� 1 Dd −
1

2
1 Mp cosscs� 1 Dd 2 �pd 

2 sin(1
2cW)

cW

Shallow

Young

Deep

Old
Time

Depth

p(t)

W

� � + D
� +D- � +D+W––

2
W––
2

	 3.	�� �Suppose that hosts from the layer at � are challenged with parasites from the 
layer at � 1 D. Use the facts that only B parasites can infect A hosts and only b 
parasites can infect a hosts to explain why the fraction of hosts infected in this 
challenge experiment is predicted to be

I s�d − paves� 1 Ddqaves�d 1 f1 2 paves� 1 Ddgf1 2 qaves�dg

The final step is to recognize that the experiment was actually conducted with several 
different, randomly chosen depths �. Therefore we need to average I s�d in Problem 3 
over the possible depths. Because I s�d is periodic, we need only average over one period 
of its cycle. Its average is therefore

F −
1

T
 yT

0
 Is�d d�

where T − 2�yc is the period of I s�d.

	 4.	�� �Show that

(2)	 FsDd − 1
2 1 Mp Mq cosscD 2 �*d 

4 sin2 (1
2cW)

c 2W 2 	

		��  �where �* − �p 2 �q.
		��  Hint: You might want to use the trigonometric identity

cos x cos y − 1
2 scossx 1 yd 1 cossx 2 ydd

Equation 2 was used in Case Study 2a to predict the experimental outcome expected 
under different conditions.

Figure �5

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7Differential Equations

419

7.1  Modeling with Differential Equations
Project: Chaotic Blowflies and the Dynamics of Populations

7.2  Phase Plots, Equilibria, and Stability
Project: Catastrophic Population Collapse: An Introduction to Bifurcation Theory

7.3  �Direction Fields and Euler’s Method

7.4  Separable Equations
Project: Why Does Urea Concentration Rebound After Dialysis?

7.5  �Systems of Differential Equations
Project: The Flight Path of Hunting Raptors

7.6  �Phase Plane Analysis
Project: Determining the Critical Vaccination Coverage

CASE STUDY 2c: Hosts, Parasites, and Time-Travel

Shown are otoliths from  

Atlantic redfish—they were used 

to estimate fish age when fitting 

the von Bertalanffy differential 

equation in Example 7.4.2.

Dr. Cristoph Stransky / Thuenen Institute of Sea Fisheries
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one of the most important applications of calculus is to differential equa- 

tions. A wide variety of biological processes can be modeled using differential 

equations, and such equations have provided enormous insight into our under-

standing of the dynamics of living organisms—how individuals and populations change 

over time.

420    Chapter 7  |  Differential Equations

7.1 Modeling with Differential Equations

Many biological processes occur continuously through time. Examples include the 
change in concentration of a drug in the bloodstream of a patient, or the growth in mass 
of individual organisms. Even the population dynamics of many species, from size of 
bacteria colonies to the size of the human population, are sometimes best modeled by 
assuming the quantity of interest (population size, in this case) changes continuously 
through time. (For example, see page 146.) As we will see in this chapter, differential 
equations provide a convenient and natural way to construct such models.

■ Models of Population Growth
A differential equation is an equation that contains an unknown function and one or 
more of its derivatives. Such equations arise in a variety of situations but one of the most 
common is in models of population growth.

Consider the growth of a population of yeast. Yeast are single-celled organisms used 
for a variety of purposes, including alcohol production and baking. Researchers col-
lected the data in Table 1 from a yeast population grown in liquid culture, measuring the 
population size (in number of individuals per mL of culture) at different points in time 
(in hours).1 Figure 1 is a scatter plot of these data.
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Time 
(h)

Pop. size 
( 3106ymL)

0 	 0.200 19 209
1 	 0.330 20 190
2 	 0.500 21 210
3 	 1.10 22 200
4 	 1.40 23 215
5 	 3.10 24 220
6 	 3.50 25 200
7 	 9.00 26 180
8 	 10.0 27 213
9 	 25.4 28 210

10 	 27.0 29 210
11 	 55.0 30 220
12 	 76.0 31 213
13 	 115 32 200
14 	 160 33 211
15 	 162 34 200
16 	 190 35 208
17 	 193 36 230
18 	 190

Table 1

1.� B. K. Mable et al., “Masking and Purging Mutations following EMS Treatment in Haploid, Diploid, and 
Tetraploid Yeast (Saccharomyces cerevisiae),” Genetical Research 77 (2001): 9–26.

Figure �1  A scatter plot of the data in Table 1
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Although the population size in Table 1 was measured at one-hour intervals, the yeast 
themselves are replicating in a way that is nearly continuous in time. In other words, no 
matter how small we make the interval of time between successive measurements, some 
reproduction and death will likely have occurred.

How can we model such processes? Let’s start simply and assume that each indi-
vidual yeast cell produces offspring at a constant rate �. Thus the total rate of offspring 
production (that is, the total birth rate) at time t is �Nstd, where Nstd is the number of 
yeast cells present at time t. Likewise, suppose the total loss rate of yeast cells through 
death at time t is �Nstd, where � is a constant death rate per individual cell.

With the preceding assumptions, we see that the rate of change of the number of yeast 
cells at time t is the total birth rate minus the total death rate, �Nstd 2 �Nstd. And since 
the rate of change of Nstd, the number of yeast cells, can also be written as dNstdydt, 
we can write

(1)	
dNstd

dt
− �Nstd 2 �Nstd	

(See Figure 2.) Now if we define the constant r as

(2)	 r − � 2 �	

then Equation 1 can be written more simply as

(3)	
dNstd

dt
− rNstd	

The quantity r in Equation 2 is called the per capita growth rate. It is the rate of 
growth of the population per individual in the population. Since dNydt is the rate of 
growth of the population, the rate of growth per individual is dNydt divided by Nstd. 
From Equation 3, we get

dNstd
dt

 
1

Nstd
− r

showing that r is indeed the per capita growth rate.
Equation 3 involves the unknown function Nstd along with its first derivative and 

is therefore a differential equation. The population size N is the dependent variable 
and time t is the independent variable. This differential equation tells us that the rate 
of change of the population size of yeast at any time is proportional to the size of the 
population at that time. Put another way, the rate of reproduction of each individual in 
the population (that is, the per capita rate of reproduction) is constant and equal to r.

The model given by Equation 3 is one of the simplest models for population growth. 
Let’s see how well it predicts the data in Table 1. First notice that if r . 0, then from 
Equation 3

dNstd
dt

− rNstd . 0

Biologically, if the per capita growth rate is positive (meaning that the birth rate � is 
larger than the death rate �), then the yeast population will increase. On the other hand, 
if r , 0 (the birth rate � is smaller than the death rate �), then from Equation 3

dNstd
dt

− rNstd , 0

and the yeast population will decrease.

  BB  �

∫N(t) mN(t)N(t)

dN(t)
dt =∫N(t)-mN(t)

Births Population
size

Deaths

Figure �2

Equation 3 can be derived directly by 
simply assuming that the yeast pop-
ulation grows at a rate proportional 
to its size. The rate of growth of the 
population is the derivative dNydt, and 
therefore we obtain Equation 3, where 
r is a constant of proportionality. See 
Equation 3.6.1, where it was called the 
law of natural growth.
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422    Chapter 7  |  Differential Equations

To make more progress, we would like to obtain an explicit function Nstd that tells 
us exactly what the population size will be at any time. Such a function Nstd is called a 
solution of the differential equation. It is a function that, when substituted into both sides 
of the differential equation, produces an equality.

Equation 3 tells us that Nstd is a function whose derivative is equal to the function 
itself, multiplied by a constant, r. As we have seen in Chapter 3, exponential functions 
have exactly this property. In fact we can see that the function Nstd − Cert satisfies the 
differential equation. In particular, substituting this choice of Nstd into Equation 3, we 
obtain

N9std − Csrertd − rsCertd − rNstd

demonstrating that Nstd − Cert does, in fact, satisfy the differential equation. (We 
will see in Section 7.4 that there is no other solution.) Here C is an arbitrary constant. 
We can obtain a biological interpretation of this constant by setting t − 0: This gives 
Ns0d − Cers0d − C, revealing that C is the population size at t − 0. Figure 3 shows 
examples of the solution curves for different values of C when r . 0.   

N

0 t

We can already see from Figure 3 that Equation 3 does not capture all of the features 
of the data in Figure 1. For example, it appears to predict continued population growth. 
To obtain a more satisfying comparison, however, we should choose appropriate values 
for the constants C and r.

From the data in Table 1 we see that Ns0d − 0.200 and therefore C − 0.200. One way  
to obtain a suitable value for r is to consider the factor by which the population of yeast 
grew over some fixed period of time. For example, in the first hour the yeast population  
grew by a factor of

0.330

0.200
− 1.65

On the other hand, according to the model, the factor by which this population is pre-
dicted to have grown is

Ns1d
Ns0d

−
Cer ?1

Cer ?0 − er

Therefore a reasonable choice for r would be the value for which er − 1.65. Solving this 
equation for r gives r − ln 1.65 < 0.5. Thus, our final model is

Nstd − 0.2e 0.5 t

Figures 4(a) and 4(b) both plot this equation along with the data from Table 1, but 
on two different intervals of time. The model provides remarkably accurate predictions 

Figure �3
The family of solutions Nstd − Cert 

with r . 0, t > 0, and  
different values of C
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See Exercise 11.3.25.
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over the first 13 or so hours, as shown in Figure 4(a), but its predictions are extremely 
inaccurate for later time points in the data [see Figure 4(b)].
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(b)

In retrospect, one obvious biological reason for this discrepancy is that the model 
assumes the per capita growth rate remains constant at r, regardless of the population 
size. In reality, as the population gets large, we might expect that crowding and resource 
depletion will cause the per capita growth rate to decline.

In fact, using the data in Table 1, it is possible to show that the per capita growth rate 
for the yeast population varies as a function of population size according to the equation

per capita growth rate < 0.55 2 0.0026N

In other words,

dNstd
dt

 
1

Nstd
< 0.55 2 0.0026Nstd

Figure �4

  BB  
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424    Chapter 7  |  Differential Equations

Thus a better differential equation for modeling the yeast population is

dN

dt
− s0.55 2 0.0026NdN

We will learn how to analyze differential equations of this form in later sections. For 
now we simply note that these techniques can be used to show that the solution is

Nstd −
42e 0.55 t

209.8 1 0.2e0.55 t

(See Exercise 18.) This function is plotted in Figure 5 along with the data from Table 1. 
We see that this model provides quite accurate predictions over the entire time period 
of the experiment.
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Our revised yeast model is a specific example of a more general model for popula-
tion growth called the logistic differential equation. Suppose that the per capita growth 
rate of a population decreases linearly as the population size increases, from a value of 
r when N − 0 to a value of 0 when N − K. The positive constant K is referred to as the 
carrying capacity; it is the population size at which crowding and resource depletion 
cause the per capita growth rate to be zero. In Exercise 16 you are asked to show that this 
results in the differential equation

(4)	
dN

dt
− rS1 2

N

KD N	

Equation 4 is called the logistic differential equation, or more simply the logistic 
equation. In Exercise 17 you are asked to show that, for the yeast model, r − 0.55 and 
K < 210.

We can obtain some qualitative features of the solutions of Equation 4 by inspec-
tion. We first observe that the constant functions Nstd − 0 and Nstd − K are solutions 
because, in either case, the left side of Equation 4 is then zero (the derivative of a constant 
is zero), and the right side is zero as well. Such constant solutions are called equilibrium 
solutions. (A formal definition of an equilibrium solution will be given in Section 7.2.)

Figure �5

The logistic growth equation was first 
proposed by Dutch mathematical biolo-
gist Pierre-François Verhulst in the 
1840s as a model for world population 
growth.
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If the initial population Ns0d lies between 0 and K, then the right side of Equa-
tion 4 is positive, so N9std . 0 and the population increases (assuming r . 0). But if 
the population exceeds the carrying capacity sN . Kd, then 1 2 NyK is negative, so 
N9std , 0 and the population decreases. In either case, if the population approaches 
the carrying capacity sN l Kd, then N9std l 0, which means the population levels off.

■ Classifying Differential Equations
Differential equations involve an unknown function and its derivatives. The order of 
the differential equation is the order of the highest derivative appearing in the equa-
tion. For example, y9std 1 2ystd − 3 is a first-order differential equation, whereas 
5y0std 2 y9std − ystd is a second-order differential equation. The solution of a differen-
tial equation is a function that, when substituted into the equation, produces an equality. 
For example, we can verify that the function ystd − e t 2 2 is a solution of the differen-
tial equation dyydt − 2 1 ystd as follows: Substituting the function into the left side of 
this differential equation gives

dy

dt
−

d

dt
se t 2 2d − e t

and substituting it into the right side gives

2 1 se t 2 2d − e t

The right and left sides evaluate to the same expression, demonstrating that the function 
ystd − e t 2 2 is indeed a solution.

Typically, there are several solutions to a differential equation. In many problems 
we need to find the particular solution that satisfies an additional condition of the form 
yst0d − y0. This is called an initial condition. The problem of finding a solution of the 
differential equation that also satisfies an initial condition is called an initial-value prob-
lem. Graphically, when we impose an initial condition, we look at the family of solution 
curves and pick the one that passes through the point st0, y0d. For an example involving 
the logistic equation, see Figure 6. This corresponds to measuring the state of a system at 
time t0 and using the solution of the initial-value problem to predict the future behavior 
of the system.

Verifying a solution is relatively easy, but obtaining a solution in the first place  
may not be. The difficulty of this task—and indeed whether or not it is even possible— 
is determined by the type of the differential equation. We consider three types of first-
order differential equations: pure time, autonomous, and nonautonomous differential 
equations.

Pure-Time Differential Equations
Pure-time differential equations involve the derivative of the function but not the func-
tion itself. For example, if the rate of change of population size y depends on time only, 
this results in a differential equation of the form

dy

dt
− f std

We have already studied this type of equation in the context of antidifferentiation (in 
Section 4.6) and integration (in Chapter 5). We can obtain the solution ystd by calcu-
lating the antiderivative of f std. Although we refer to such equations as pure-time dif-
ferential equations, the independent variable need not be time.

N

t

N0

0

Figure �6
The family of solutions of the logistic 
equation. The solution curve satisfy-
ing the initial condition Ns0d − N0 is 
shown in red.

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



426    Chapter 7  |  Differential Equations

 Example 1   |  Spatial species distributions  As we move up a stream from 
its mouth toward its source, suppose that the population size n of a species of insect at 
a fixed point in time changes over space according to

dn

dx
− 1 2 2e2x

where 0 < x < 10 is the spatial location (in km) between the mouth (x − 0 km) and a 
dam (x − 10 km). (This situation is described in Figure 7.) Suppose the population size 
at the dam is ns10d − 20. Obtain an expression for the population size as a function of 
distance from the mouth.

Dam

x

10 km0 km

Mouth

Solution � We first seek a function nsxd that satisfies the given differential equation. 
This function can be obtained by integrating both sides of the differential equation 
with respect to x:

 
dn

dx
− 1 2 2e2x

 y 
dn

dx
 dx − y s1 2 2e2xd dx

 nsxd − x 1 2e2x 1 C

The function nsxd − x 1 2e2x 1 C is a family of solutions. We now need to choose 
the specific function from this family that satisfies the condition ns10d − 20. Substi-
tuting x − 10 into nsxd gives

ns10d − 10 1 2e210 1 C − 20

This tells us that we must choose C − 10 2 2e210. Therefore the population size as a 
function of x is nsxd − x 1 2e2x 1 10 2 2e210. See Figure 8.	 ■

Autonomous Differential Equations
Autonomous differential equations arise when the equation involves both the deriva-
tive of the function and the function itself, but when there is no explicit dependence on 
the independent variable. Such equations have the general form

dy

dt
− tsyd

where y is the unknown function of the independent variable t. Equations 3 and 4 are 
examples of autonomous differential equations.

 Example 2   |  BB   Modeling intravenous drug delivery  Often the rate at 
which the body metabolizes a drug is proportional to the current concentration of the 
drug. In other words, if ystd is the concentration of a drug in the bloodstream at time t 

Figure �7
Population density along a stream

n(x)

20

10

2 4 6 8 10 x0

(10, 20)

Figure �8
The family of solutions giving popula-
tion size along the stream. The solution 
curve satisfying the initial condition 
ns10d − 20 is shown in red.
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Section 7.1  |  Modeling with Differential Equations    427

(measured in mgymL), then

outflow of drug through metabolism − ky

where k is a positive constant of proportionality (with units 1yhour).
For drugs administered through a constant intravenous supply, the concentration in 

the bloodstream will also be replenished at a rate that is determined by the drug con- 
centration in the supply:

inflow of drug through IV supply − A

where A is a positive constant with units mgysmL hourd. The total rate of change of 
concentration resulting from both processes (that is, dyydt) is therefore

dy

dt
− inflow 2 outflow

or

(5)	
dy

dt
− A 2 ky	

Equation 5 is an autonomous differential equation because it involves the dependent 
variable y but not the independent variable t. Figure 9 shows a family of solutions to 
differential equation (5), and suggests that the drug concentration is predicted to 
approach a limiting value of Ayk at time passes, regardless of the initial concentration.
	 ■

Nonautonomous Differential Equations
Nonautonomous differential equations are a combination of pure-time and autono-
mous differential equations. They arise when the equation involves the function and its 
derivative, and the independent variable appears explicitly as well.

 Example 3   |  Administering drugs  A drug is administered to a patient intra-
venously at a time-varying rate of Astd − 1 1 sin t mgysmL hourd, and is metabo-
lized at a rate of ystd mgysmL hourd, where ystd is the concentration at time t (in units 
of mgymL). Thus y obeys the differential equation

(6)	
dy

dt
− 1 1 sin t 2 y	

Verify that the family of functions ystd − Ce2t 1 1
2s2 2 cos t 1 sin td satisfies the 

differential equation.

Solution � Substituting ystd into the left side of the differential equation (6) gives 
2Ce2t 1 1

2ssin t 1 cos td. Substituting it into the right side gives

 1 1 sin t 2 y − 1 1 sin t 2 Ce2t 2 1
2s2 2 cos t 1 sin td

 − 2Ce2t 1 1
2ssin t 1 cos td

Since both quantities are the same, this family of functions y satisfies the differential 
equation.	 ■
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Figure �9
The family of solutions of Equation 5
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EXERCISES 7.1

	 1.	�� �Show that y − 2
3e x 1 e22x is a solution of the differential 

equation y9 1 2y − 2e x. Is this differential equation 
pure-time, autonomous, or nonautonomous?

	 2.	��� Verify that y − 2t cos t 2 t is a solution of the initial-value 
problem

t 
dy

dt
− y 1 t 2 sin t    ys�d − 0

		��  �Is this differential equation pure-time, autonomous, or 
nonautonomous?

	 3.	��� Show that y − e2at cos t is a solution of the differential 
equation y9 − 2e2atsa cos t 1 sin td. Is this differential 
equation pure-time, autonomous, or nonautonomous?

	 4.	��� (a)	� Show that every member of the family of functions 
y − sln x 1 Cdyx is a solution of the differential 
equation x 2y9 1 xy − 1.

	 ;		  (b)	� Illustrate part (a) by graphing several members of the 
family of solutions on a common screen.

		  (c)	� Find a solution of the differential equation that satisfies 
the initial condition ys1d − 2.

		  (d)	� Find a solution of the differential equation that satisfies 
the initial condition ys2d − 1.

	 5.	�� (a)	� What can you say about a solution of the equation 
y9 − 2y 2 just by looking at the differential equation?

		  (b)	� Verify that all members of the family y − 1ysx 1 C d 
are solutions of the equation in part (a).

		  (c)	� Can you think of a solution of the differential equation 
y9 − 2y 2 that is not a member of the family in part (b)?

		  (d)	 Find a solution of the initial-value problem

y9 − 2y 2    ys0d − 0.5

	 6.	�� (a)	� What can you say about the graph of a solution of the 
equation y9 − xy 3 when x is close to 0? What if x is 
large?

		  (b)	� Verify that all members of the family y − sc 2 x 2 d21y2 
are solutions of the differential equation y9 − xy 3.

	 ;		  (c)	� Graph several members of the family of solutions on a 
common screen. Do the graphs confirm what you pre-
dicted in part (a)?

		  (d)	 Find a solution of the initial-value problem

y9 − xy 3    ys0d − 2

	 7.	� Logistic growth �� A population is modeled by the differ- 
ential equation

dN

dt
− 1.2NS1 2

N

4200D
		���  where Nstd is the number of individuals at time t (measured 

in days).
		  (a)	 For what values of N is the population increasing?
		  (b)	 For what values of N is the population decreasing?
		  (c)	 What are the equilibrium solutions?

	 8.	�T he Fitzhugh-Nagumo model ��for the electrical impulse in 
a neuron states that, in the absence of relaxation effects, the 
electrical potential in a neuron vstd obeys the differential 

 Example 4   |  Administering drugs (continued)  What is the drug concen-
tration as a function of time for the model in Example 3 if the initial drug concentra-
tion at t − 0 is zero?

Solution � We seek the specific member from the family of functions, 
ystd − Ce2t 1 1

2s2 2 cos t 1 sin td, that also satisfies ys0d − 0. Evaluating, we obtain

ys0d − Ce20 1 1
2s2 2 cos 0 1 sin 0d − C 1 1

2 − 0

and therefore C − 21
2. Thus the solution to the initial-value problem is 

ystd − 1
2s2 2 e2t 2 cos t 1 sin td, as shown in Figure 10.

	

1.0

2.0

3.0

2 4 6 8 t

y

0
	 ■

Figure �10
The family of solutions giving drug 

concentration ystd. The solution curve 
satisfying the initial condition  

ys0d − 0 is shown in red.
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	 12.	� Von Bertalanffy’s equation ��states that the rate of growth  
in length of an individual fish is proportional to the differ-
ence between the current length L and the asymptotic length 
L ` (in cm).

		  (a)	� Write a differential equation that expresses this idea.
		  (b)	� Make a rough sketch of the graph of a solution to a typi-

cal initial-value problem for this differential equation.

	� 13–15 � Drug dissolution  Differential equations have been 
used extensively in the study of drug dissolution for patients 
given oral medications. The three simplest equations used are the 
zero-order kinetic equation, the Noyes-Whitney equation, and 
the Weibull equation. All assume that the initial concentration is 
zero but make different assumptions about how the concentration 
increases over time during the dissolution of the medication.

	 13.	��� The zero-order kinetic equation states that the rate of 
change in the concentration of drug c (in mgymL) during 
dissolution is governed by the differential equation

dc

dt
− k

		���  where k is a positive constant. Is this differential equation 
pure-time, autonomous, or nonautonomous? State in words 
what this differential equation says about how drug dissolu-
tion occurs. What is the solution of this differential equation 
with the initial condition cs0d − 0?

	 14.	��� The Noyes-Whitney equation for the dynamics of the drug 
concentration is

dc

dt
− kscs 2 cd

		���  where k and cs are positive constants. Is this differential 
equation pure-time, autonomous, or nonautonomous? State 
in words what this differential equation says about how drug 
dissolution occurs. Verify that c − css1 2 e2ktd is the solu-
tion to this equation for the initial condition cs0d − 0.

	 15.	��� The Weibull equation for the dynamics of the drug concen- 
tration is

dc

dt
−

k

t b  scs 2 cd

		���  where k, cs, and b are positive constants and b , 1. Notice 
that this differential equation is undefined when t − 0. Is this 
differential equation pure-time, autonomous, or nonautono-
mous? State in words what this differential equation says 
about how drug dissolution occurs. Verify that

c − cs(1 2 e2�t 12b)

		���  is a solution for t ± 0, where � − kys1 2 bd. 

	 16.	�T he logistic differential equation �� Suppose that the per 
capita growth rate of a population of size N declines linearly 
from a value of r when N − 0 to a value of 0 when N − K. 

		���  equation
dv

dt
− 2vfv 2 2 s1 1 adv 1 ag

		���  where a is a constant and 0 , a , 1.
		  (a)	� For what values of v is v unchanging (that is, dvydt − 0)?
		  (b)	� For what values of v is v increasing?
		  (c)	� For what values of v is v decreasing?

	 9.	��� Explain why the functions with the given graphs can’t be 
solutions of the differential equation 

dy

dt
− e tsy 2 1d2

y

t1

1

y

t1

1

(a) (b)

	 10.	�� �The function with the given graph is a solution of one of the 
following differential equations. Decide which is the correct 
equation and justify your answer.

0 x

y

		  A.	 y9 − 1 1 xy	 B.	 y9 − 22xy	 C.	 y9 − 1 2 2xy

	 11.	��� Match the differential equations with the solution graphs 
labeled I–IV. Give reasons for your choices.

		  (a)	 y9 − 1 1 x 2 1 y 2	 (b)	 y9 − xe2x22y2

		  (c)	 y9 −
1

1 1 e x21y2 	 (d)	 y9 − sinsxyd cossxyd

	

y

x

x

y

x

y

x

y

I II

III IV

0

0

0 0

y

x

x

y

x

y

x

y

I II

III IV

0

0

0 0
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■ Project  Chaotic Blowflies and the Dynamics of Populations	 BB

In Section 1.6 we explored the dynamics of the logistic difference equation. After some 
simplification, the population size in successive times steps was given by the recursion

(1)	 xt11 − Rmax xts1 2 xtd	

where Rmax is a positive constant. See Equation 1.6.7. For large enough values of Rmax the 
recursion exhibits very complicated behavior, as shown in Figure 1. In fact, Equation 1 is 
famous for being one of the simplest recursions that exhibits chaotic dynamics.1

The plots for the logistic differential equation that we have seen in Section 7.1 do not 
exhibit this type of complicated behavior. Here we explore why. To do so, we will derive 
the logistic differential equation from the logistic difference equation.

	 1.	�� �In Section 1.6 we obtained Equation 1 by starting with the equation

Nt11 − f1 1 rs1 2 NtyKdg Nt

		��  (See Equation 1.6.5.) If the time interval is of length h instead, where h , 1, then 
this equation becomes

Nt1h − f1 1 rhs1 2 NtyKdg Nt

		��  �Use this result to derive a differential equation for N by writing an expression for 

		�  �
Nt1h 2 Nt

h
 and then letting h l 0.

	 2.	�� �Show that with the change of variables y − NyK the differential equation from 
Problem 1 can be written as dyydt − rys1 2 yd.

	 3.	�� �In Section 7.4 we will learn how to solve differential equations like the one in 
Problem 2. If ys0d − y0, the solution is ystd − y0yfe2rt 1 y0s1 2 e2rtdg. Sketch 
this solution for different choices of y0 and r. This solution can never exhibit the 
sort of behavior of Equation 1 that is displayed in Figure 1. Explain why from a 
biological standpoint.

The reason for the complicated dynamics in Figure 1 is the existence of a time-lag 
between the current population size xt and its effects on population regulation. This 
allows the population to overshoot its carrying capacity. Once an overshoot occurs, a dra-
matic population decline will ensue. The resulting low population size then sets the stage 
for a large population rebound and another overshoot of the carrying capacity. Some 

10 20

0.5

1.0

40 5030

xt

t0

Figure �1
x is plotted against time with x0 − 0.1 
and Rmax − 3.89.
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	 18.	� Modeling yeast populations (cont.) �� Verify that

Nstd −
42e 0.55 t

209.8 1 0.2e0.55 t

		���  is an approximate solution of the differential equation

dN

dt
− s0.55 2 0.0026NdN

		���  Show that the differential equation for N is

dN

dt
− rS1 2

N

KD N

	 17.	� Modeling yeast populations �� Use the fact that the per 
capita growth rate of the yeast population in Table 1 is 
0.55 2 0.0026N to show that, in terms of the logistic 
equation (4), r − 0.55 and K < 210.

1.� R. May, “Simple Mathematical Models with Very Complicated Dynamics,” Nature 261 (1976): 459–67.
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insect species, like blowflies, are believed to be subject to such dynamics, as shown in 
Figure 2. The exploration of chaos in nature is a fascinating area of research.2

5,000

0

10,000

10050 150 200 250 300 t (days)

Adults Eggs laid per day

Figure �2
Irregular fluctuations in a lab  

population of blowflies
Source: Adapted from W. Gurney et al.,  

“Nicholson’s Blowflies Revisited,”  

Nature 287 (1980): 17–21.

2. �A. Hastings et al., “Chaos in Ecology: Is Mother Nature a Strange Attractor?” Annual Review of Ecology, 
Evolution, and Systematics 24 (1993): 1–33.

7.2 Phase Plots, Equilibria, and Stability

We now examine some techniques for analyzing the behavior of differential equations. 
Here we focus on a graphical technique known as a phase plot.

■ Phase Plots
Phase plots provide a way to visualize the dynamics of autonomous differential equa-
tions, to locate their equilibria, and to determine the stability properties of these equilib-
ria. Consider the autonomous differential equation

dy

dt
− tsyd

To construct a phase plot we graph the right side of the differential equation, tsyd, as 
a function of the dependent variable y. Where this plot lies above the horizontal axis, 
y9std . 0 and so y is increasing. Where it lies below the horizontal axis, y9std , 0 and so 
y is decreasing. Points where the plot crosses the axis correspond to values of the vari-
able at which y9std − 0. We can use these considerations to place arrows on the horizon-
tal axis indicating the direction of change in y, as shown in Figure 1.

y decreasing

y increasing

y decreasing

y increasing

g(y)

y

Figure �1
A typical phase plot
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 Example 1   |  The logistic equation  Construct a phase plot for the logistic 
growth model dNydt − rs1 2 NyKdN assuming that r . 0.

Solution � We need to plot tsNd − rs1 2 NyKdN as a function of N. This is a 
parabola opening downward, crossing the horizontal axis at N − 0 and N − K. In 
Figure 2 we can see that N increases when taking on values between 0 and K and 
decreases when taking on values greater than K.	 ■

 Example 2   |  Modeling intravenous drug delivery  In Example 7.1.2 we 
developed a model for the dynamics of the concentration of a drug in the bloodstream. 
If A is a positive constant representing the rate of drug delivery through an intravenous 
supply and k is a positive constant related to the rate of metabolism of the drug, we 
obtained

dy

dt
− A 2 ky

where ystd is the concentration of drug in the bloodstream at time t (in mgymL). 
Construct a phase plot for this model.

Solution � We plot tsyd − A 2 ky as a function of y. This is a straight line with 
slope 2k, intersecting the horizontal axis at y − Ayk. We see that y increases when it 
is less than Ayk and decreases when greater than Ayk. (See Figure 3.) This agrees with 
the plot of y as a function of time in Figure 7.1.9.	 ■

 Example 3   |  BB   The Allee effect  Some populations decline to extinction 
once their size is less than a critical value. For example, if the population size is too 
small, then individuals might have difficulty finding mates for reproduction. This is 
referred to as an Allee effect after the American ecologist Warder Clyde Allee (1885–
1955). A simple extension of the logistic model that incorporates this effect is given by

dN

dt
− rsN 2 adS1 2

N

KDN

where 0 , a , K. Construct a phase plot assuming that r . 0.

Solution � We plot tsNd − rsN 2 ads1 2 NyKdN as a function of N. This is a cubic 
polynomial whose graph crosses the horizontal axis at N − 0, N − a, and N − K. The 
graph lies below the horizontal axis for values of N between 0 and a and for values of 
N . K. [See Figure 4(a).] Therefore N will approach 0 if it starts between 0 and a, 
whereas it will approach K if it starts anywhere greater than a. Figure 4(b) displays 
data for the phase plot of an experimental microbial population.

NKa0

(a) Phase plot for an Allee effect (b) Data for the phase plot of a microbial population 
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Phase plot for logistic model
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Figure �3
Phase plot for Example 2

Figure �4
Source: Part (b) adapted from L. Dai et al., 

“Generic Indicators for Loss of Resilience before 

a Tipping Point Leading to Population Collapse,” 

Science 336 (2012): 1175–77.
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■ Equilibria and Stability
Phase plots provide information about how the dependent variable changes, as well 
as values of the variable at which no change occurs. Such values are referred to as  
equilibria.

Definition � Consider the autonomous differential equation

(1)	
dy

dt
− tsyd

An equilibrium solution is a constant value of y (denoted ŷ) such that dyydt − 0 
when y − ŷ.

Equilibria are found by determining values of ŷ that satisfy tsŷd − 0. They corre-
spond to places where the phase plot crosses the horizontal axis.

 Example 4   |  The logistic equation (continued)  Show that N̂ − 0 and

N̂ − K are equilibria of the logistic growth model from Example 1.

Solution � Substituting N̂ − 0 and N̂ − K into the equation tsNd − rs1 2 NyKdN
gives tsN̂d − 0 in both cases. In the yeast data of Section 7.1, N̂ − K corresponds to 
the steady number of yeast cells reached as the experiment progressed. (N̂ − 0 corre-
sponds to the absence of yeast.)	 ■

 Example 5   |  Modeling intravenous drug delivery (continued)  Find all 
equilibria of the model in Example 2.

Solution � We seek values of ŷ that make tsŷd − 0; that is, values of ŷ that satisfy 
the equation A 2 kŷ − 0. The only solution is ŷ − Ayk. Again this agrees with the 
plot of y as a function of time t in Figure 7.1.9.	 ■

In addition to providing a way to visualize equilibria, phase plots provide information 
about their stability properties.

Definition � An equilibrium ŷ of differential equation (1) is locally stable if y 
approaches the value ŷ as t l ` for all initial values of y sufficiently close to ŷ.

An equilibrium that is not stable is referred to as unstable. In Example 1, the arrows 
on the horizontal axis of Figure 2 reveal that N̂ − 0 is an unstable equilibrium whereas 
N̂ − K is a locally stable equilibrium. In Example 2, the arrows in Figure 3 reveal that 
ŷ − Ayk is a locally stable equilibrium.

 Example 6   |  BB   The Allee effect (continued)  Find all equilibria for the 
model of an Allee effect in Example 3 and determine their stability properties from the 
phase plot in Figure 4(a).

Solution � We need to find the values of N̂ that satisfy the equation

rsN̂ 2 ads1 2 N̂yKdN̂ − 0
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We can see that these are N̂ − 0, N̂ − a, and N̂ − K. These are the points at which the 
phase plot in Figure 4(a) crosses the horizontal axis. From the arrows on the figure we 
can also see that both N̂ − 0 and N̂ − K are locally stable whereas N̂ − a is unstable—
no matter how close we start N to the value a, it always moves farther away from a as 
time passes.	 ■

We have used phase plots to determine stability graphically, but these plots also pro-
vide a guide for using calculus to do so. Let's examine the phase plot in Figure 5. What 
property of the plot guarantees that the equilibrium A is locally stable? This equilibrium 
is locally stable because the plot lies above the horizontal axis for values of y less than 
A and it lies below the horizontal axis for values of y greater than A but close to A. Spe-
cifically, the plot crosses the horizontal axis from above to below as it passes through A. 
This will be true if the slope of the plot at A is negative. Similarly, convince yourself that 
B is unstable because the slope of the plot is positive at this equilibrium.

Local Stability Criterion  Suppose that ŷ is an equilibrium of the differential 
equation

dy

dt
− tsyd

Then ŷ is locally stable if t9sŷd , 0 , and ŷ is unstable if t9sŷd . 0. If t9sŷd − 0, 
then the analysis is inconclusive.

 Example 7   |  Population genetics  Two bacterial strains sometimes feed on 
chemicals excreted by one another: strain A feeds on chemicals produced by strain B, 
and vice versa. This phenomenon is referred to as cross-feeding. Suppose that two 
strains of bacteria are engaged in cross-feeding (strain 1 and strain 2). Exercise 17 asks 
you to show that, for a relatively simple model of cross-feeding, the frequency pstd of 
the strain 1 bacteria is governed by the differential equation

dp

dt
− ps1 2 pdf�s1 2 pd 2 �pg

where � and � are positive constants. Suppose that � − 1 and � − 2. Then the differ- 
ential equation simplifies to

dp

dt
− ps1 2 pdfs1 2 pd 2 2pg − ps1 2 pds1 2 3pd

(a)	 Find all equilibria.
(b)	 Determine the stability properties of each equilibrium found in part (a).

Solution

(a)	 Equilibria are values of p̂ satisfying the equation

p̂s1 2 p̂ds1 2 3p̂d − 0

This gives p̂ − 0, p̂ − 1, and p̂ − 1
3.

(b)	 We first need to calculate the derivative of tspd − ps1 2 pds1 2 3pd with respect 
to p. After some simplification we obtain

t9spd − 1 2 8p 1 9p 2

y

A B

g(y)

Figure �5
A phase plot

Figure �6
Cross-feeding bacteria
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We then need to evaluate this at each of the equilibria.

■ � p̂ − 0:	 t9s0d − 1 2 8s0d 1 9s0d 2 − 1

which is positive, meaning that p̂ − 0 is unstable.

■ � p̂ − 1:	 t9s1d − 1 2 8s1d 1 9s1d 2 − 2

which is positive, meaning that p̂ − 1 is unstable.

■ � p̂ − 1
3:	 t9(1

3) − 1 2 8(1
3) 1 9(1

3) 2
− 22

3

which is negative, meaning that p̂ − 1
3 is locally stable.

These results suggest that, over time, we expect the frequency of strain 1 bacteria in 
the population to approach p̂ − 1

3 as indicated by the arrows in Figure 7.	 ■

■ A Mathematical Derivation of the Local Stability Criterion
We obtained the local stability criterion from graphical considerations, but we can also 
derive it more rigorously. Consider the autonomous differential equation

dy

dt
− tsyd

Suppose that ŷ is an equilibrium [that is, tsŷd − 0]. To determine if this equilibrium is 
locally stable, we need to determine whether y will approach the value ŷ provided that 
we start the variable sufficiently close to this value.

Let’s consider starting the value of y a small distance « from ŷ. In other words, 
«std − ystd 2 ŷ. If ŷ is locally stable, then the magnitude of «std must decrease as time 
passes.

We can derive a differential equation that governs the dynamics of «std by differenti-
ating «std with respect to t and using the differential equation for y:

d«

dt
−

d

dt
fystd 2 ŷg −

dy

dt
− tsyd − ts« 1 ŷd

where we have obtained the final equality by using the fact that «std − ystd 2 ŷ. Now, 
provided that we start the value of y near ŷ, « will be small and we can therefore approxi-
mate the function ts« 1 ŷd using a linear approximation near the value « − 0 (see Sec-
tion 3.8). In other words, we can write

ts« 1 ŷd < tsŷd 1 t9sŷd ? «

provided that « is small. Furthermore, because ŷ is an equilibrium we know that  
tsŷd − 0, and therefore the differential equation for « simplifies to

d«

dt
< t9sŷd ? «

At this point we note that the quantity t9sŷd is a constant (that is, it is not time-varying). 
As a result, « approximately obeys a differential equation of the form d«ydt − k«, where 
k − t9s ŷd is a constant. This suggests that «std grows over time (meaning equilibrium 
ŷ is unstable) if t9sŷd . 0. And «std decays over time (meaning equilibrium ŷ is locally 
stable) if t9sŷd , 0.

Figure �7
Phase plot for cross-feeding model
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EXERCISES 7.2

	� 1–3 � Consider the differential equation dyydt − tsyd.

	 1.	��� For each graph, determine whether the equilibria (i) and (ii) 
are locally stable.

		  (a)	

(i) (ii)

y

g(y) 	 (b)	

(i) (ii)
y

g(y)

	 2.	��� For each graph, determine whether the equilibria (i) and (ii) 
are unstable.

		  (a)	

(i) (ii)
y

g(y) 	 (b)	

(i) (ii)
y

g(y)

	 3.	��� Complete the phase plot for each graph by locating the 
equilibria and indicating the direction in which y changes on 
the horizontal axis.

		  (a)		  (b)	
	

y

g(y) 	

y

g(y)

		  (c)		  (d)	
	

y

g(y) 	

y

g(y)

	� 4–6 � Find all equilibria of the autonomous differential equation 
and construct the phase plot.

	 4.	�� (a)	 y9 − y 2 2 2

		  (b)	 y9 −
y 2 3

y 1 9
,  y > 0

		  (c)	 y9 − ys3 2 yds25 2 y 2d

	 5.	�� (a)	 y9 − y 1 2 ln y,  y . 0

		  (b)	 y9 − y 3 2 a,  a > 0

		  (c)	 y9 −
5

2 1 y
,  y > 0

	 6.	�� (a)	 y9 −
y 2 2 a

y 1 1
,  0 < a , 1, y . 21

		  (b)	 y9 − ysa 2 yd 2sb 2 yd,  b . a > 0

		  (c)	 y9 −
a

b 1 y
2 1,  a . b . 0, y > 0

	� 7–8 � Find all equilibria and use the local stability criterion to 
determine if each is locally stable or unstable. Then construct the 
phase plot.

	 7.	�� (a)	 y9 − 5 2 3y	 (b)	 y9 − 2y 2 3y 2

	 8.	�� (a)	 y9 − 5ys2e2y 2 1d
		  (b)	 y9 − y 5y3 2 2y  (assume y > 0d

	 9.	��� Find the equilibria for the differential equation and deter-
mine the values of a for which each equilibrium is locally 
stable. Assume a ± 0.

		  (a)	 y9 − 1 1 ay
		  (b)	 y9 − 1 2 e2ay

		  (c)	 y9 − ae y cos y,  0 , y , �
		  (d)	 y9 − ysa 2 yd

	 10.	�T he Allee effect �� For the model of population dynamics 
from Example 3, use the local stability criterion to verify that 
N̂ − 0 and N̂ − K are locally stable whereas N̂ − a is 
unstable.

	 11.	��� Suppose that the population dynamics of a species obeys a 
modified version of the logistic differential equation having 
the following form:

dN

dt
− rS1 2

N

KD
2

N

		���  where r ± 0 and K . 0.
		  (a)	� Show that N̂ − 0 and N̂ − K are equilibria.
		  (b)	��� For which values of r is the equilibrium N̂ − 0 unstable?
		  (c)	��� Apply the local stability criterion to the equilibrium 

N̂ − K. What do you think your answer means about the 
stability of this equilibrium? (Note: This is an example 
in which the local stability criterion is inconclusive.)

		  (d)	��� Construct two phase plots, one for the case where r . 0 
and the other for r , 0, and determine the stability of 
N̂ − K in each case. Does the answer match your rea-
soning in part (c)?

	 12.	�I nfectious disease dynamics �� The spread of an infectious 
disease, such as influenza, is often modeled using the fol- 
lowing autonomous differential equation:

dI

dt
− �IsN 2 I d 2 �I

		���  where I is the number of infected people, N is the total size 
of the population being modeled, � is a constant determin-
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obeys the differential equation

dp

dt
− cps1 2 pd 2 mp

		���  where c and m are positive constants reflecting the coloniza-
tion and extinction rates, respectively. (See also Review 
Exercise 15 on page 482.) Assume c ± m.

		  (a)	� What are the equilibria of this model in terms of the 
constants?

		  (b)	� What is the condition on the constants for the nonzero 
equilibrium in part (a) to lie between zero and one? 
Interpret this condition.

		  (c)	� What are the conditions on the constants for the nonzero 
equilibrium in part (a) to be locally stable? Assume 
m ± c.

	 16.	� Bacteria population genetics �� Suppose there are two 
bacterial strains 1 and 2, each undergoing growth according 
to the differential equations 

dN1

dt
− r1N1    and  

dN2

dt
− r2 N2

		��  �respectively, where r1 ± r2. Define

pstd −
N1std

N1std 1 N2std

		��  to be the frequency of strain 1 at time t.
		  (a)	� Differentiate p using its definition to show that p obeys 

the differential equation

dp

dt
− sps1 2 pd

			   where s − r1 2 r2.
		  (b)	� What are the equilibria of the differential equation of 

part (a)? For what values of s is each locally stable?

	 17.	� Bacterial cross-feeding �� The differential equation from 
Exercise 16 can be extended to model the effects of bacterial 
cross-feeding. Suppose that the growth rate of strain 1 (r1)  
is zero when the frequency of strain 2 is zero and that it 
increases linearly to a maximum value of � when the fre- 
quency of strain 2 is 1. Likewise, suppose that the growth 
rate of strain 2 (r2) is zero when the frequency of strain 1  
is zero and that it increases linearly to a maximum value  
of � when the frequency of strain 1 is one. Show that these 
assumptions, combined with the differential equation  
from Exercise 16 (a), result in the cross-feeding model of 
Example 7.

	 18.	� Bacterial cross-feeding (cont.) �� The differential equation 
derived in Exercise 17 (and from Example 7) is

dp

dt
− ps1 2 pdf�s1 2 pd 2 �pg

		���  where � and � are both positive constants.
		  (a)	� Find all equilibria.
		  (b)	� Determine the values of � and � for which each equilib-

rium in part (a) is locally stable.

		���  ing the rate of transmission, and � is the rate at which people 
recover from infection.

		  (a)	� Suppose � − 0.01, N − 1000, and � − 2. Find all  
equilibria.

		  (b)	� For the equilibria in part (a), determine whether each is 
stable or unstable.

		  (c)	� Leaving the constants unspecified, what are the equilib-
ria of the model in terms of these constants?

		  (d)	� The epidemiological quantity R0 that was introduced in 
Example 1.5.5 is calculated by rearranging the condition 
for Î − 0 to be unstable, giving an inequality of the form 
R0 . 1. Show that R0 can be written as R0 − �Ny�.

	 13.	�H arvesting of renewable resources �� Suppose a popula-
tion grows according to the logistic equation but is subject to 
a constant per capita harvest rate of h. If Nstd is the popu- 
lation size at time t, the population dynamics are

dN

dt
− rS1 2

N

KDN 2 hN

		���  Different values of h result in different equilibrium popula-
tion sizes; if h is large enough, we might expect extinction.

		  (a)	� Suppose r − 2 and K − 1000. Find all equilibria.  
[Hint: One will be a function of h.]

		  (b)	� For the nonzero equilibrium in part (a), what is the criti-
cal value of h greater than which the population will go 
extinct?

		  (c)	� Determine the values of h that make the nonzero equilib-
rium in part (a) locally stable. Assume h ± 2.

	 14.	�H arvesting of renewable resources �� Suppose a popula-
tion grows according to the logistic equation but is subject to 
a constant total harvest rate of H. If Nstd is the population 
size at time t, the population dynamics are

dN

dt
− rS1 2

N

KDN 2 H

		���  Different values of H result in different equilibrium pop- 
ulation sizes; if H is large enough, we might expect  
extinction.

		  (a)	� Suppose r − 2, K − 1000, and H − 100. Find all  
equilibria.

		  (b)	� Determine whether each of the equilibria in part (a) is 
locally stable or unstable. Is the population predicted to 
go extinct?

	 15.	� Levins’ metapopulation model �� Many species are made 
up of several small subpopulations that occasionally go 
extinct but that are subsequently recolonized. The entire 
collection of subpopulations is referred to as a metapopula-
tion. One way to model this phenomenon is to keep track of 
only the fraction of subpopulations that are currently not 
extinct. Suppose pstd is the fraction of subpopulations that 
are not extinct at time t. The Levins model states that pstd 
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■ Project  Catastrophic Population Collapse: An Introduction to Bifurcation Theory	 BB

Biological populations exhibit a wide range of dynamics, from stable population sizes, to 
oscillatory dynamics, to extinction. As conditions change —for example, through global 
warming, pollution, or increased harvesting pressure —populations can switch from one 
of these dynamical regimes to another. When this occurs, a bifurcation is said to have 
happened. Bifurcation theory provides a set of tools from the study of differential equa-
tions that we can use to study such phenomena.

Consider the following model for the dynamics of a population of size N (measured 
as number of individuals 3104) over time (in months) that is subject to harvesting:

(1)	
dN

dt
− S1 2

N

2 DN 2 hN	

The population grows according to a logistic equation in the absence of harvesting and h 
is a constant per capita harvest rate (see also Exercise 7.2.13).

	 1.	�� �Find all equilibria and determine the values of h for which each is stable or 
unstable.

A bifurcation plot is a plot of all equilibria of a differential equation as a function of 
a constant of interest (called the bifurcation parameter). Solid curves are used to repre-
sent locally stable equilibria and dashed curves represent unstable equilibria.

	 2.	�� �Plot the equilibria from Problem 1 as a function of h for 0 < h < 2, using solid 
and dashed curves as described. In other words, construct the bifurcation plot. 
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a pristine habitat and corresponds to the green curve. 
As K decreases, the curve changes continuously, from 
green to blue to purple to red. Purple corresponds to 
K − 1. Sketch a curve of the long-term population 
size as a function of K, depicting the main qualitative 
features. You can assume that the curve is linear except 
at points of discontinuity.

0 N

dN
dt

0.5

1.0

1.5 2.0

	 19.	� Mutation-selection balance �� The population-genetic 
differential equation in Exercise 16 assumes there is no 
mutation. Suppose that strain 1 bacteria mutate to strain 2 
at a per capita rate of �, but otherwise their dynamics are 
exactly as given in Exercise 16.

		  (a)	� What is the resulting differential equation for p?
		  (b)	� Determine the equilibria of the differential equation 

from part (a).
		  (c)	� Determine the constant values under which each equi-

librium in part (b) is locally stable. Assume s ± �.

	 20.	� Catastrophic population collapse �� The graph depicting 
the rate of change of a population as a function of popu-  
lation size is given by the green curve in the figure, with N 
measured in thousands of individuals. Suppose the pop- 
ulation size starts between 1000 and 2000 individuals.

		  (a)	 What is the predicted population size in the long term?
		  (b)	� Now suppose that habitat degradation begins and that 

K is a constant quantifying habitat quality (sometimes 
referred to as the carrying capacity). K − 2 represents 

Overexploitation of fish stocks by com-
mercial fisheries can cause catastrophic 
population collapse.
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You should obtain the plot in Figure 1.
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	 3.	�� �Describe in words what happens to the predicted population size as h increases 
continuously from h − 0 to h − 2. (You can assume that the initial population 
size is positive.) Equation 1 exhibits what is called a transcritical bifurcation. As 
the bifurcation parameter is increased, two equilibria move continuously, eventu-
ally merging and exchanging stability properties before once again diverging.

Now consider the following alternative model:

(2)	
dN

dt
− S1 2

N

2 DN 2 h 
N

1 1 N
	

The only difference between (1) and (2) is in the form of the loss rate through harvesting.

	 4.	�� �Describe, in words, the form of the loss rate through harvesting as a function 
of population size in Equation 2. Provide an explanation for why this form is a 
reasonable way to model harvesting.

	 5.	�� �Verify that the bifurcation plot for Equation 2 is as given in Figure 2.
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	 6.	�� �Describe in words what happens to the predicted population size as h increases 
continuously from h − 0 to h − 2. (You can assume that the initial population 
size is positive.)

Equation 2 exhibits a saddle-node bifurcation: As the bifurcation parameter is 
increased, two equilibria move continuously, eventually merging and annihilating one 
another. This can result in an abrupt or discontinuous change in model predictions as the 
bifurcation parameter changes.

Figure 3 zooms in on the bifurcation plot from Figure 2. You can see that, for values 
of h between h − 1 and h − 1.125, there are two locally stable equilibria separated by 

Figure �1
Bifurcation plot for Equation 1

Figure �2
Bifurcation plot for Equation 2
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Figure �3
Bifurcation plot for Equation 2
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an unstable equilibrium. This type of bifurcation has been observed in real populations 
by experimentally manipulating the loss rate (see Figure 4).1

0 500 1000 1500 2000

Harvesting rate
Po

pu
la

tio
n 

de
ns

ity
 (

ce
ll/

�
L

)

10#

10$

10%

10^

Stable fixed point

Unstable fixed point

Extinction

N

h

Figure �4
An experimentally measured  

bifurcation plot for a  
microbial population

1.� Adapted from L. Dai et al., “Generic Indicators for Loss of Resilience before a Tipping Point Leading to 
Population Collapse,” Science 336 (2012): 1175–77.
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7.3 Direction Fields and Euler’s Method

In this section we develop another graphical technique known as a direction field. This 
will allow us to gain more information about the shapes of solution curves. It will also 
lead us to Euler’s method for solving differential equations numerically.

■ Direction Fields
Suppose we are asked to sketch the graph of the solution of the initial-value problem

y9 − t 1 y    ys0d − 1

We don’t know a formula for the solution, so how can we possibly sketch its graph? Let’s 
think about what the differential equation means. The equation y9 − t 1 y tells us that 
the slope at any point st, yd on the graph is equal to the sum of the t- and y-coordinates 
of the point (see Figure 1). In particular, because the curve passes through the point 
s0, 1d, its slope there must be 0 1 1 − 1. So a small portion of the solution curve  
near the point s0, 1d looks like a short line segment through s0, 1d with slope 1. (See 
Figure 2.)

Slope at
(t™, fi) is
t™+fi.

Slope at
(t¡, ›) is
  t¡+›.

0 t

y

      
0 t

y

(0, 1) Slope at (0, 1)
is 0+1=1. 

Figure �1
A solution of y9 − t 1 y

Figure �2
Beginning of the solution curve through s0, 1d
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As a guide to sketching the rest of the curve, let’s draw short line segments at a 
number of points st, yd with slope t 1 y. The result, called a direction field, is shown 
in Figure 3. For instance, the line segment at the point s1, 2d has slope 1 1 2 − 3. The 
direction field allows us to visualize the general shape of the solution curves by indi-
cating the direction in which the curves proceed at each point.

0 t21

y

      

0 t21

y

(0, 1)

Figure �3
Direction field for y9 − t 1 y

Figure �4
The solution curve through s0, 1d

Now we can sketch the solution curve through the point s0, 1d by following the direc-
tion field, as shown in Figure 4. We can visualize ystd as being a curve that snakes its 
way through the direction field, always being parallel to nearby line segements. Such a 
curve is referred to as a solution curve.

In general, suppose we have the first-order differential equation

y9 − Fst, yd

where Fst, yd is some function in t and y. The differential equation says that the slope 
of a solution curve at a point st, yd on the curve is Fst, yd. If we draw short line segments 
with slope Fst, yd at several points st, yd, the result is called a direction field (or slope 
field). These line segments indicate the direction in which a solution curve is heading.

 Example 1 

(a)	 Sketch the direction field for the differential equation 
dy

dx
− x 2 1 y 2 2 1.

(b)	 Use part (a) to sketch the solution curve that passes through the origin.

Solution

(a)	 We start by computing the slope at several points, as given in the following table:

y9 − x 2 1 y 2 2 1

y

x_3 _2
_2

_1

0
1

2

_1 0 1 2 3

...

...

......

...

...
...

...
...

...
...

...

...

...

...

...

...

...

...

...

4

3

4

1

0

1

0

_1

0

1

0

1

4

3

4
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	 Now we draw short line segments with these slopes at the indicated points. In 
Figure 5 we have used a computer to draw line segments at these and several other 
points.

0 x

y

1_1_2

1

2

-1

_2

2

          

0 x

y

1 2_1_2

1

2

-1

_2

Figure �5	 Figure �6

(b)	 We start at the origin and move to the right in the direction of the line segment 
(which has slope 21). We continue to draw the solution curve so that it moves parallel 
to the nearby line segments. The resulting solution curve is shown in Figure 6. Return-
ing to the origin, we draw the solution curve to the left as well.	 ■

The more line segments we draw in a direction field, the clearer the solution curves 
appear. It's tedious to compute slopes and draw line segments for a large number of 
points by hand, but computers are well suited for this task. Figure 7 shows an even more 
detailed computer-drawn direction field for the differential equation in Example 1. It 
enables us to draw, with reasonable accuracy, the solution curves shown in Figure 8 with 
y-intercepts 22, 21, 0, 1, and 2.

3

_3

_3 3

      

3

_3

_3 3

Figure �7	 Figure �8

 Example 2   |  Population genetics (continued)  The  model presented in 
Example 7.2.7 reduces to

dp

dt
− ps1 2 pds2 2 5pd

when � − 2 and � − 3.
(a)	 Draw the direction field for 0 < t < 8 and 0 < p < 1.
(b)	 Identify all equilibria on the plot.
(c)	 Sketch the solution curve that starts at 0.8 when t − 0; that is, ps0d − 0.8.
(d)	 What happens to the solution curve plotted in part (c) as t l `?

 TEC   Module 7.3A shows direction 
fields and solution curves for a variety 
of differential equations.
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Solution
(a)	 We start by computing the slope at several points in the following table:

p9 − ps1 2 pds2 2 5pd

p

t0
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

_0.32 _0.32 _0.32 _0.32

_0.24 _0.24 _0.24 _0.24

0 0 0 0

0 0 0 0

0.16 0.16 0.16 0.16

0 0 0 0

_0.32 _0.32 _0.32 _0.32

_0.24 _0.24 _0.24 _0.24

0 0 0 0

0 0 0 0

0.16 0.16 0.16 0.16

0 0 0 0

_0.32

_0.24

0

0

0.16

0

Notice that all the columns are identical. This is because the independent variable t 
does not occur on the right side of the equation for p9 (it is autonomous). As a result, 
the slopes corresponding to two different points with the same p-coordinate must be 
equal. Thus, if we know one solution to an autonomous differential equation, then we 
can obtain infinitely many others just by shifting the graph of the known solution to the 
right or left, as shown in Figure 9.

p

0.4

0

0.8

1

0.8

1

t

0.4

p

0t

Figure �9	 Figure �10

(b)	 The equilibria are values of the variable at which the direction field is horizontal. 
From Figure 10 we can see that equilibria occur at p̂ − 0, p̂ − 0.4, and p̂ − 1.

(c)	 The solution curve corresponding to ps0d − 0.8 is obtained by starting at this 
point and drawing a curve that moves in the direction of the line segment at this point 
and then makes its way through the direction field, always remaining parallel to nearby 
line segments (see Figure 10).

(d)	 From the solution curve plotted in part (c) it appears that pstd l 0.4 as t l `.	 ■

■ Euler’s Method
The basic idea behind direction fields can be used to find numerical approximations to  
solutions of differential equations. We illustrate the method on the initial-value problem 
that we used to introduce direction fields:

y9 − t 1 y    ys0d − 1

The differential equation tells us that y9s0d − 0 1 1 − 1, so the solution curve has slope 
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1 at the point s0, 1d. As a first approximation to the solution we could use the linear 
approximation Lstd − t 1 1. In other words, we could use the tangent line at s0, 1d as a 
rough approximation to the solution curve (see Figure 11).

Euler’s idea was to improve on this approximation by proceeding only a short distance 
along this tangent line and then making a midcourse correction by changing direction as 
indicated by the direction field. Figure 12 shows what happens if we start out along the  
tangent line but stop when t − 0.5. (This horizontal distance traveled is called the step 
size.) Since Ls0.5d − 1.5, we have ys0.5d < 1.5 and we take s0.5, 1.5d as the starting point 
for a new line segment. The differential equation tells us that y9s0.5d − 0.5 1 1.5 − 2, 
so we use the linear function

y − 1.5 1 2st 2 0.5d − 2t 1 0.5

as an approximation to the solution for t . 0.5 (the green segment in Figure 12). If we 
decrease the step size from 0.5 to 0.25, we get the better Euler approximation shown in  
Figure 13.

y

t0 1

1

0.5

1.5

      

y

t0 1

1

0.25

Figure �12
Euler approximation with step size 0.5

Figure �13
Euler approximation with step size 0.25

In general, Euler’s method says to start at the point given by the initial value and pro- 
ceed in the direction indicated by the direction field. Stop after a short time, look at the 
slope at the new location, and proceed in that direction. Keep stopping and changing 
direction according to the direction field. Euler’s method does not produce the exact 
solution to an initial-value problem—it gives approximations. But by decreasing the step 
size (and therefore increasing the number of midcourse corrections), we obtain succes-
sively better approximations to the exact solution. (Compare Figures 11, 12, and 13.)

For the general first-order initial-value problem y9 − Fst, yd, yst0d − y0, our aim is  
to find approximate values for the solution at equally spaced numbers t0, t1 − t0 1 h, 
t2 − t1 1 h, . . . , where h is the step size. The differential equation tells us that the slope 
at st0, y0 d is y9 − Fst0, y0 d, so Figure 14 shows that the approximate value of the solution 
when t − t1 is

 y1 − y0 1 hFst0, y0 d

Similarly,	  y2 − y1 1 hFst1, y1d

In general,	  yn11 − yn 1 hFstn, ynd

Euler’s Method � Approximate values for the solution of the initial-value prob-
lem y9 − Fst, yd, yst0d − y0, with step size h, at tn11 − tn 1 h, are

yn11 − yn 1 hFstn, ynd    n − 1, 2, 3, . . .

y

t0 1

1
y=L(t)

solution curve

Figure �11
First Euler approximation

y

tt¡t¸0

y¸

h

h F(t¸, y¸)
(t¡, ›)

slope=F(t¸, y¸)

Figure �14

Euler
Leonhard Euler (1707–1783) was the 
leading mathematician of the mid-18th 
century and the most prolific mathe-
matician of all time. He was born in 
Switzerland but spent most of his career 
at the academies of science supported 
by Catherine the Great in St. Petersburg 
and Frederick the Great in Berlin. The 
collected works of Euler (pronounced 
Oiler ) fill about 100 large volumes. As 
the French physicist Arago said, “Euler 
calculated without apparent effort, as 
men breathe or as eagles sustain them-
selves in the air.” Euler’s calculations 
and writings were not diminished by  
raising 13 children or being totally blind 
for the last 17 years of his life. In fact, 
when blind, he dictated his discoveries to 
his helpers from his prodigious memory 
and imagination. His treatises on cal- 
culus and most other mathematical 
subjects became the standard for math-
ematics instruction, and the equation 
e i� 1 1 − 0 that he discovered brings 
together the five most famous numbers 
in all of mathematics.
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Euler’s method amounts to approximating the differential equation with a difference 
equation (see Section 1.6); the smaller the time step, the better the approximation.

 Example 3   |  Use Euler’s method with step size 0.1 to construct a table of approxi-
mate values for the solution of the initial-value problem

dy

dx
− x 1 y    ys0d − 1

SOLUTION � We are given that h − 0.1, x0 − 0, y0 − 1, and Fsx, yd − x 1 y. So we 
have

 y1 − y0 1 hFsx0, y0 d − 1 1 0.1s0 1 1d − 1.1

 y2 − y1 1 hFsx1, y1d − 1.1 1 0.1s0.1 1 1.1d − 1.22

 y3 − y2 1 hFsx2, y2 d − 1.22 1 0.1s0.2 1 1.22d − 1.362

This means that if ysxd is the exact solution, then ys0.3d < 1.362.
Proceeding with similar calculations, we get the values in the table:

n xn yn n xn yn

1 0.1 1.100000 	 6 0.6 1.943122
2 0.2 1.220000 	 7 0.7 2.197434
3 0.3 1.362000 	 8 0.8 2.487178
4 0.4 1.528200 	 9 0.9 2.815895
5 0.5 1.721020 10 1.0 3.187485

	 ■

For a more accurate table of values in Example 3 we could decrease the step size. But 
for a large number of small steps the amount of computation is considerable and so we 
need to program a calculator or computer to carry out these calculations. The following 
table shows the results of applying Euler’s method with decreasing step size to the initial-
value problem of Example 3.

Step size Euler estimate of ys0.5d Euler estimate of ys1d

0.500 1.500000 2.500000
0.250 1.625000 2.882813
0.100 1.721020 3.187485
0.050 1.757789 3.306595
0.020 1.781212 3.383176
0.010 1.789264 3.409628
0.005 1.793337 3.423034
0.001 1.796619 3.433848

Notice that the Euler estimates in the table seem to be approaching limits, namely, 
the true values of ys0.5d and ys1d. Figure 15 shows graphs of the Euler approximations 

 TEC   Module 7.3B shows how Euler’s 
method works numerically and visually 
for a variety of differential equations 
and step sizes.

Computer software packages that 
produce numerical approximations to 
solutions of differential equations use 
methods that are refinements of Euler’s 
method. Although Euler’s method is 
simple and not as accurate, it is the 
basic idea on which the more accurate 
methods are based.
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with step sizes 0.5, 0.25, 0.1, 0.05, 0.02, 0.01, and 0.005. They are approaching the exact 
solution curve as the step size h approaches 0.

0 x

y

0.5 1

1

decreasing
h

 Example 4   |  Administering drugs  Estimate the drug concentration 
sin mgymLd in the bloodstream after 12 hour, assuming the concentration changes 
according to the differential equation

dy

dt
− 1 1 sin t 2 y    ys0d − 2.5

where t is measured in hours.

Solution � We use Euler’s method with Fst, yd − 1 1 sin t 2 y, t0 − 0, y0 − 2.5, 
and a step size h − 0.1 (which corresponds to six minutes):

 y1 − 2.5 1 0.1s1 1 sin 0 2 2.5d − 2.35

 y2 − 2.35 1 0.1s1 1 sin 0.1 2 2.35d < 2.22

 y3 − 2.22 1 0.1s1 1 sin 0.2 2 2.22d < 2.12

 y4 − 2.12 1 0.1s1 1 sin 0.3 2 2.12d < 2.04

 y5 − 2.04 1 0.1s1 1 sin 0.4 2 2.04d < 1.97

So the concentration after 12 hour is

	 ys0.5d < 1.97 mgymL	 ■

Figure �15
Euler approximations approaching  

the exact solution
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EXERCISES 7.3

	 1.	��� A direction field for the differential equation y9 − x cos �y 
is shown.

x

y

0.5

1.0

1.5

2.0

_1_2 210

		  (a)	� Sketch the graphs of the solutions that satisfy the given  
initial conditions.

			   (i)	 ys0d − 0	 (ii)	 ys0d − 0.5

			   (iii)	 ys0d − 1	 (iv)	 ys0d − 1.6

		  (b)	 Find all the equilibrium solutions.

	 2.	��� A direction field for the differential equation y9 − tans1
2�yd 

is shown.

x

y

1

2

3

4

_1_2 210

		  (a)	� Sketch the graphs of the solutions that satisfy the given  
initial conditions.

			   (i)	 ys0d − 1	 (ii)	 ys0d − 0.2

			   (iii)	 ys0d − 2	 (iv)	 ys1d − 3

		  (b)	� Find all the equilibrium solutions.

	� 3–6 � Match the differential equation with its direction field 
(labeled I–IV). Give reasons for your answer.

	 3.	 y9 − 2 2 y	 4.	 y9 − xs2 2 yd

	 5.	 y9 − x 1 y 2 1	 6.	 y9 − sin x sin y

y

0 x

4

2_2

2

y

0 x2_2

2

_2

y

0 x

4

2_2

2

y

0 x2_2

2

_2

I II

III IV

	 7.	��� Use the direction field labeled II (above) to sketch the 
graphs of the solutions that satisfy the given initial 
conditions.

		  (a)	 ys0d − 1	 (b)	 ys0d − 2	 (c)	 ys0d − 21

	 8.	��� Use the direction field labeled IV (above) to sketch the 
graphs of the solutions that satisfy the given initial 
conditions.

		  (a)	 ys0d − 21	 (b)	 ys0d − 0	 (c)	 ys0d − 1

	� 9–10 � Sketch a direction field for the differential equation. Then 
use it to sketch three solution curves.

	 9.	 y9 − 1
2 y	 10.	 y9 − x 2 y 1 1

	� 11–14 � Sketch the direction field of the differential equation. 
Then use it to sketch a solution curve that passes through the 
given point.

	 11.	�� y9 − y 2 2x,    s1, 0d	 12.	 y9 − xy 2 x 2,    s0, 1d

	 13.	�� y9 − y 1 xy,    s0, 1d	 14.	 y9 − x 1 y 2,    s0, 0d

	 CAS 	� 15–16 � Use a computer algebra system to draw a direction field 
for the given differential equation. Get a printout and sketch 
on it the solution curve that passes through s0, 1d. Then use 
the CAS to draw the solution curve and compare it with your 
sketch.

	 15.	 y9 − x 2 sin y	 16.	 y9 − xsy 2 2 4d
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		���  origin. Use step sizes h − 1 and h − 0.5. Will the Euler 
estimates be underestimates or overestimates? Explain.

y
2

1

1 2 x0

	 23.	��� Use Euler’s method with step size 0.5 to compute the 
approximate y-values y1, y2, y3, and y4 of the solution of the 
initial-value problem y9 − y 2 2x, ys1d − 0.

	 24.	��� Use Euler’s method with step size 0.2 to estimate ys1d, 
where ysxd is the solution of the initial-value problem 
y9 − xy 2 x 2, ys0d − 1.

	 25.	�� �Use Euler’s method with step size 0.1 to estimate ys0.5d, 
where ysxd is the solution of the initial-value problem 
y9 − y 1 xy, ys0d − 1.

	 26.	�� (a)	� Use Euler’s method with step size 0.2 to estimate 
ys0.4d, where ysxd is the solution of the initial-value 
problem y9 − x 1 y 2, ys0d − 0.

		  (b)	 Repeat part (a) with step size 0.1.

	 ;	 27.	��� (a)	� Program a calculator or computer to use Euler’s 
method to compute ys1d, where ysxd is the solution of 
the initial-value problem

dy

dx
1 3x 2 y − 6x 2    ys0d − 3

			   for each of the given step sizes.
			   (i)	 h − 1	 (ii)	 h − 0.1

			   (iii)	 h − 0.01	 (iv)	 h − 0.001

		  (b)	� Verify that y − 2 1 e2x3

 is the exact solution of the dif-
ferential equation.

		  (c)	� Find the errors in using Euler’s method to compute 
ys1d with the step sizes in part (a). What happens to the 
error when the step size is divided by 10?

	 CAS 	 28.	��� (a)	� Program your computer algebra system, using Euler’s 
method with step size 0.01, to calculate ys2d, where y  
is the solution of the initial-value problem

y9 − x 3 2 y 3    ys0d − 1

		  (b)	� Check your work by using the CAS to draw the solu-
tion curve.

	 CAS 	 17.	��� Use a computer algebra system to draw a direction field for 
the differential equation y9 − y 3 2 4y. Get a printout and 
sketch on it solutions that satisfy the initial condition 
ys0d − c for various values of c. For what values of c does 
lim t l ` ystd exist? What are the possible values for this 
limit?

	 18.	��� Make a rough sketch of a direction field for the autono-
mous differential equation y9 − tsyd, where the graph of t 
is as shown. How does the limiting behavior of solutions 
depend on the value of ys0d?

0 y21_1_2

g(y)

	 19.	�� (a)	� Use Euler’s method with each of the following step 
sizes to estimate the value of ys0.4d, where y is the 
solution of the initial-value problem y9 − y, ys0d − 1.

			   (i)	 h − 0.4	 (ii)	 h − 0.2	 (iii)	 h − 0.1
		  (b)	� We know that the exact solution of the initial-value  

problem in part (a) is y − e x. Draw, as accurately as 
you can, the graph of y − e x, 0 < x < 0.4, together 
with the Euler approximations using the step sizes in 
part (a). (Your sketches should resemble Figures 12, 
13, and 15.) Use your sketches to decide whether  
your estimates in part (a) are underestimates or  
overestimates.

		  (c)	� The error in Euler’s method is the difference between  
the exact value and the approximate value. Find the 
errors made in part (a) in using Euler’s method to 
estimate the true value of ys0.4d, namely, e 0.4. What 
happens to the error each time the step size is halved?

	� 20–21 � Modeling yeast populations  In Section 7.1 we 
introduced the following differential equation to describe the 
dynamics of an experimental yeast population:

dN

dt
− s0.55 2 0.0026N dN

	� �where Nstd is the population size (in millions of individuals  
per mL) at time t (in hours).

	 20.	��� Sketch the direction field of the differential equation for 
values of N between 0 and 250.

	 21.	��� Suppose Ns0d − 0.2. Use Euler’s method with a step size 
of h − 0.5 to estimate the population size after four hours. 
Compare your result to the data in Table 7.1.1.

	 22.	��� A direction field for a differential equation is shown in the 
figure. Draw, with a ruler, the graphs of the Euler approxi-
mations to the solution curve that passes through the 
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7.4 Separable Equations

We have looked at first-order differential equations from a geometric point of view 
(phase plots and direction fields) and from a numerical point of view (Euler’s method). 
What about the symbolic point of view? It would be helpful to have an explicit formula 
for a solution of a differential equation. Although this is not always possible, in this sec-
tion we examine a commonly encountered type of differential equation that can be 
solved explicitly.

A separable equation is a first-order differential equation in which the expression 
for dyydt can be factored as a function of t times a function of y. In other words, it can 
be written in the form

dy

dt
− f std tsyd

The name separable comes from the fact that the expression on the right side can be  
separated into a function of t and a function of y. Equivalently, if tsyd ± 0, we could 
write

(1)	
dy

dt
−

f std
hsyd

	

where hsyd − 1ytsyd. To solve this equation we rewrite it in the differential form

hsyd dy − f std dt

so that all y’s are on one side of the equation and all t’s are on the other side. Then we 
integrate both sides of the equation:

(2)	 y hsyd dy − y f std dt	

Equation 2 defines y implicitly as a function of t. In some cases we may be able to solve 
for y in terms of t.

We can verify that Equation 2 is indeed a solution using the Chain Rule: If h and f  
satisfy (2), then

 
d

dt
 Sy hsyd dyD −

d

dt
 Sy f std dtD

so	  
d

dy
 Sy hsyd dyD dy

dt
 − f std 	

and	  hsyd 
dy

dt
− f std 	

Thus Equation 1 is satisfied.
One of the simplest applications of the technique of separation of variables is to the 

differential equation for exponential growth introduced in Sections 3.6 and 7.1. In par-
ticular, if ystd is the value of some quantity at time t and if the rate of change of y with 
respect to t is proportional to its size ystd, then

dy

dt
− ky

The technique for solving separable 
differential equations was first used by 
James Bernoulli (in 1690) in solving a 
problem about pendulums and by Leibniz 
(in a letter to Huygens in 1691). John 
Bernoulli explained the general method 
in a paper published in 1694.
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where k is a constant. If y ± 0 we can write this equation in terms of differentials and 
integrate both sides as follows:

 y 
dy

y
− y k dt

 ln | y | − kt 1 C

 | y | − ekt1C − eCekt

 y − Aekt

where A s− 6eC d is an arbitrary constant. This is the solution presented in Sections 
3.6 and 7.1. If y − 0 we cannot divide the differential equation by y. However, we can 
readily verify that, in this case, y − 0 is also a solution. Therefore the constant A in the 
solution y − Aekt can also be 0. This corresponds to an equilibrium solution.

 Example 1 

(a)	 Solve the differential equation 
dy

dx
−

x 2

y 2 .

(b)  Find the solution of this equation that satisfies the initial condition ys0d − 2.

SOLUTION

(a)  We write the equation in terms of differentials and integrate both sides:

y 2 dy − x 2 dx

 y y 2 dy − y x 2 dx

1
3 y 3 − 1

3 x 3 1 C

�where C is an arbitrary constant. (We could have used a constant C1 on the left side 
and another constant C2 on the right side. But then we could combine these constants 
by writing C − C2 2 C1.)

Solving for y, we get

y − s3 x 3 1 3C  

We could leave the solution like this or we could write it in the form

y − s3 x 3 1 K  

where K − 3C. (Since C is an arbitrary constant, so is K.) Figure 1 plots this family of 
solutions.

(b)	 If we put x − 0 in the general solution in part (a), we get ys0d − s3 K  . To satisfy 
the initial condition ys0d − 2, we must have s3 K  − 2 and so K − 8. Thus the solution 
of the initial-value problem is

	 y − s3 x 3 1 8 	 ■

 Example 2   |  The von Bertalanffy growth equation  A commonly used 
differential equation for the growth, in length, of an individual fish is

dL

da
− ksL` 2 Ld

3

_3

_3 3

Figure �1
Graphs of several members of the 
family of solutions of the differential 
equation in Example 1. The solution of 
the initial-value problem in part (b) is 
shown in red.

The absolute value can be cleared by 
noting that we can write

 y − eCe kt  if y . 0

 y − 2eCe kt  if y , 0

Therefore y − Ae kt, where A − 6eC.
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where Lsad is length (in cm) at age a (in years), L` is the asymptotic length, and k is a 
positive constant whose units are 1yyear.
(a)	 Find a family of solutions for length as a function of age.
(b)	 Find the solution that has an initial length of Ls0d − 2.

Solution

(a)	 Assuming L ± L`, we can write the equation in differential form as

dL

L` 2 L
− k da

Now integrate to obtain

y 
dL

L` 2 L
− y k da

or

2ln | L` 2 L | − ka 1 C1

Now we can solve for L:

| L` 2 L | − e2kae2C1

or

L − L` 2 Ce2ka

where C − 6e2C1 is an arbitrary constant. An example of this solution with particular 
constant values is shown in Figure 2.

If L − L`, we cannot divide the differential equation by L 2 L`, but we can verify 
that L − L` is itself another solution. Thus the constant C in the preceding solution can 
be 0 as well, and this again corresponds to an equilibrium solution.

(b)	 Setting a − 0 in the family of solutions from part (a) gives Ls0d − L` 2 C. To 
satisfy the initial condition Ls0d − 2, we therefore require that L` 2 C − 2, or 
C − L` 2 2. The desired solution is thus L − L` 2 sL` 2 2de2ka or

L − L`s1 2 e2kad 1 2e2ka

From this we can see why L` is called the asymptotic length. As a l `, L l L`.	 ■

 Example 3   |  Allometric growth  During growth, the claw of fiddler crabs 
increases in length at a per unit rate that is 1.57 times larger than that of its overall 
body width. In other words, if L and B denote claw length and body width, respectively 
(in mm), then

dL

dt
 
1

L
− 1.57 

dB

dt
 
1

B

(See Figure 3.) Find an equation that specifies claw length as a function of body width 
at any point during growth.

Solution � Multiplying both sides by dt gives

dL

L
− 1.57 

dB

B

Von Bertalanffy
Ludwig von Bertalanffy (1901–1972) 
was an Austrian-born biologist who first 
published this differential equation for 
individual growth in 1934. It captures 
the idea that the rate of growth in length 
is proportional to the difference between 
current length and asymptotic length.
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Figure �2
Age-length relationship for Atlantic 
redfish along with the solution to the 
von Bertalanffy equation with constants 
specific to redfish.
Source: Adapted from C. Stransky et al., “Age 

Determination and Growth of Atlantic Redfish 

(Sebastes marinus and S. mentella): Bias and 

Precision of Age Readers and Otolith Preparation 

Methods,” ICES Journal of Marine Science 62 

(2005): 655–70.

L

B

Figure �3
Three crabs of different sizes, along 
with their claw lengths
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Now integrate both sides to get

ln L − 1.57 ln B 1 C

On a log-log plot this is a straight line. Figure 4 plots data displaying this relationship. 
We can also rearrange our solution to the differential equation to obtain a power 
function for allometric scaling like those in Sections 1.2 and 1.5. Defining k − eC, we 
obtain

L − kB 1.57

	

ln B

ln L

log(body size) (mm)

lo
g(

cl
aw

 s
iz

e)
 (

m
m

)
321

0

1

2

3

run

rise runslope=rise =1.57

	 ■

 Example 4   |  Population dynamics  Suppose the per capita growth rate of a 
population decreases as the population size n increases, in a way that is described by 
the expression 1ys1 1 nd. The differential equation for n is therefore

1

n
 
dn

dt
−

1

1 1 n

Solve this differential equation.

Solution � Writing the equation in differential form gives

y 
1 1 n

n
 dn − y dt

(3)	 ln n 1 n − t 1 C	

where C is an arbitrary constant. Equation 3 gives the family of solutions implicitly. In 
this case it’s impossible to solve the equation to express n explicitly as a function of t.
	 ■

 Example 5   |  Gompertz model of tumor growth  The Gompertz differen-
tial equation models the growth of a tumor in volume V  (in mm 3) and is given by

dV

dt
− asln b 2 ln VdV

where a and b are positive constants.
(a)	 Find a family of solutions for tumor volume as a function of time.
(b)	 Find the solution that has an initial tumor volume of Vs0d − 1 mm 3.

Solution � First note that ln b 2 ln V − lnsbyVd. Therefore, assuming V ± 0 and 
V ± b, we can write the equation in differential form and integrate as

y 
dV

V flnsbyVdg
− y a dt

Figure �4
Data for the relationship between claw 

length and body width on a log-log plot

The Gompertz differential equation 
assumes that the per volume growth 
rate of the tumor declines as the tumor 
volume gets larger according to the 
expression asln b 2 ln V d. Notice that 
the tumor growth rate is zero when 
V − b, where b represents the asymp-
totic tumor volume.
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We can then integrate the left side using the substitution u − lnsbyVd . We get

2ln | lnsbyVd | − at 1 C1

Now we can solve for V  by exponentiating both sides twice:

 lnsbyVd − Ce2at

and then	  byV − eCe2at
	

or	  V − be2Ce2at
	

where C − 6e2C1 is an arbitrary constant.
On the other hand, we can verify that V − b is also an (equilibrium) solution.

(b)	 Setting t − 0 in the family of solutions from part (a) gives Vs0d − be2C. To satisfy 
the initial condition Vs0d − 1, we therefore require that 1 − be2C or 0 − ln b 2 C. 
Therefore the desired solution is V − be2sln bde2at

 or

V − bse2ln bde2at

 ? V − bS 1

bDe2at

Figure 5 shows model predictions and data for three different sets of constant values 
with initial condition Vs0d − 35.	 ■

 Example 6   |  The logistic equation  Find the solution to the following 
initial-value problem involving the logistic equation:

dN

dt
− rS1 2

N

KDN    Ns0d − N0

Solution � Assuming N ± 0 and N ± K, we can write the equation in differential 
form and integrate as

(4)	 y 
dN

s1 2 NyKdN
− y r dt	

To evaluate the integral on the left side, we write

1

s1 2 NyKdN
−

K

NsK 2 Nd

Using partial fractions (see Section 5.6), we get

K

NsK 2 Nd
−

1

N
1

1

K 2 N

0 t

V

8 12 164

50
30
20

100
70
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300

500
700

Figure �5
The solution of the Gompertz model 
fitted to tumor data.
Source: Adapted from D. Miklavčič et al., “Math-

ematical Modelling of Tumor Growth in Mice Fol-

lowing Electrotherapy and Bleomycin Treatment,” 

Mathematics and Computers in Simulation 39 

(1995): 597–602.
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This enables us to rewrite Equation 4:

 y S 1

N
1

1

K 2 NDdN − yr dt

 ln | N | 2 ln | K 2 N | − rt 1 C

 ln Z K 2 N

N Z − 2rt 2 C

 Z K 2 N

N Z − e2rt2C − e2Ce2rt

(5)	  
K 2 N

N
− Ae2rt 	

where A − 6e2C. Solving Equation 5 for N, we get

K

N
2 1 − Ae2rt    ?  

N

K
−

1

1 1 Ae2rt

so	 N −
K

1 1 Ae2rt

We find the value of A by putting t − 0 in Equation 5. If t − 0, then N − N0 (the initial 
population), so

K 2 N0

N0
− Ae 0 − A

Thus the solution to the logistic equation is

Nstd −
K

1 1 Ae2rt     where  A −
K 2 N0

N0

On the other hand, if N − 0, then we can verify that this is also an (equilibrium) 
solution. Likewise, N − K is an equilibrium solution.

We can now return to the model of yeast growth from page 424. As mentioned in 
Section 7.1, the model output in Figure 7.1.5 comes from the logistic growth equation 
with constant values N0 − 0.2, K − 210, and r − 0.55. Substituting these values into 
the solution that we just obtained gives (after some rearrangement)

Nstd −
42e 0.55t

209.8 1 0.2e 0.55t

This is exactly the solution presented on page 424.	 ■
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EXERCISES 7.4

	� 1–10 � Solve the differential equation.

	 1.	
dy

dx
− xy 2	 2.	

dy

dx
− xe2y

	 3.	 sx 2 1 1dy9 − xy	 4.	 sy 2 1 xy 2dy9 − 1

	 5.	 sy 1 sin ydy9 − x 1 x 3	 6.	
du

dr
−

1 1 sr 

1 1 su 

	 7.	
dy

dt
−

te t

ys1 1 y 2 
	 8.	

dy

d�
−

e y sin2 �

y sec �

	 9.	
du

dt
− 2 1 2u 1 t 1 tu	 10.	

dz

dt
1 e t1z − 0

	� 11–18 � Find the solution of the differential equation that satis-
fies the given initial condition.

	 11.	��
dy

dx
−

x

y
,    ys0d − 23

	 12.	��
dy

dx
−

ln x

xy
,    ys1d − 2

	 13.	��
du

dt
−

2t 1 sec2t

2u
,    us0d − 25

	 14.	�� y9 −
xy sin x

y 1 1
,    ys0d − 1

	 15.	�� x ln x − ys1 1 s3 1 y 2 dy9,    ys1d − 1

	 16.	��
dP

dt
− sPt ,    Ps1d − 2

	 17.	�� y9 tan x − a 1 y,  ys�y3d − a,  0 , x , �y2

	 18.	��
dL

dt
− kL2 ln t,  Ls1d − 21

	 19.	��� Find an equation of the curve that passes through the point 
s0, 1d and whose slope at sx, yd is xy.

	 20.	��� Find the function f   such that f 9sxd − f sxdf1 2 f sxdg and 
f s0d − 1

2.

	 21.	��� Solve the differential equation y9 − x 1 y by making the 
change of variable u − x 1 y.

	 22.	��� Solve the differential equation xy9 − y 1 xe yyx by making  
the change of variable v − yyx.

	 23.	�� (a)	� Solve the differential equation y9 − 2xs1 2 y 2 
 

.

	 ;	 	 (b)	� Solve the initial-value problem y9 − 2xs1 2 y 2 
 

,  
ys0d − 0, and graph the solution.

		  (c)	� Does the initial-value problem y9 − 2xs1 2 y 2 
 

, 
ys0d − 2, have a solution? Explain.

	 ;	 24.	��� Solve the equation e2yy9 1 cos x − 0 and graph several 
members of the family of solutions. How does the solution 
curve change as the constant C varies?

	 CAS 	 25.	��� Solve the initial-value problem y9 − ssin xdysin y, 
ys0d − �y2, and graph the solution (if your CAS does 
implicit plots).

	 CAS 	 26.	��� Solve the equation y9 − xsx 2 1 1ysye y d and graph several 
members of the family of solutions (if your CAS does 
implicit plots). How does the solution curve change as the 
constant C varies?

	 CAS 	� 27–28 �
	� (a)	� Use a computer algebra system to draw a direction field  

for the differential equation. Get a printout and use it to 
sketch some solution curves without solving the differen-
tial equation.

	 (b)	 Solve the differential equation.
		  (c)	� Use the CAS to draw several members of the family of 

solutions obtained in part (b). Compare with the curves 
from part (a).

	 27.	 y9 − y 2	 28.	 y9 − xy

	� 29–31 � An integral equation is an equation that contains an 
unknown function ysxd and an integral that involves ysxd. Solve 
the given integral equation. [Hint: Use an initial condition 
obtained from the integral equation.]

	 29.	 ysxd − 2 1 yx

2
 ft 2 t ystdg dt

	 30.	�� ysxd − 2 1 yx

1
 

dt

ty std
,    x . 0

	 31.	 ysxd − 4 1 yx

0
 2tsy std dt

	� 32–34 � Seasonality and habitat destruction �� The per capita 
growth rate of many species varies temporally for a variety of 
reasons, including seasonality and habitat destruction. Sup-
pose nstd represents the population size at time t, where n is 
measured in individuals and t is measured in years. Solve the 
differential equation for habitat destruction and describe the 
predicted population dynamics.

	 32.	���  	 n9 − e2tn    ns0d − n0

		���  Here the per capita growth rate declines over time, but 
always remains positive. It is modeled by the function e2t.

	 33.	��� 	 n9 − se2t 2 1dn    ns0d − n0

		���  Here the per capita growth rate declines over time, starting 
at zero and becoming negative. It is modeled by the 
function e2t 2 1.

	 34.	��� 	 n9 − sr 2 atdn    ns0d − n0

		���  Here the per capita growth rate declines over time, going 
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fBg − b molesyL and we write x − fCg, then we have

dx

dt
− ksa 2 xdsb 2 xd

	 CAS 		  (a)	� Assuming that a ± b, find x as a function of t. Use the 
fact that the initial concentration of C is 0.

		  (b)	� Find x std assuming that a − b. How does this expres- 
sion for x std simplify if it is known that fCg − 1

2 a after  
20 seconds?

	 41.	�P opulation genetics �� Exercise 7.2.16 derives the fol- 
lowing equation from population genetics that specifies the 
evolutionary dynamics of the frequency of a bacterial strain 
of interest:

dp

dt
− sps1 2 pd    ps0d − p0

		���  where s is a constant. Find the solution, pstd.

	 42.	� Mutation-selection balance �� The equation of Exer- 
cise 41 can be extended to account for a deleterious 
mutation that destroys the bacterial strain of interest. The 
differential equation becomes

dp

dt
− sps1 2 pd 2 �p    ps0d − p0

		���  where � is the mutation rate and � . 0 (see Exercise 
7.2.19). Solve this initial-value problem for s ± �.

	 43.	� Glucose administration �� A glucose solution is adminis-
tered intravenously to the bloodstream at a constant rate r. 
As the glucose is added, it is converted into other substances 
and removed from the bloodstream at a rate that is propor-
tional to the concentration at that time. Thus a model for the 
concentration Cstd (in mgymL) of the glucose solution in 
the bloodstream is

dC

dt
− r 2 kC

		��  where k is a positive constant.
		  (a)	� Suppose that the concentration at time t − 0 is C0. 

Determine the concentration at any time t by solving the 
initial-value problem.

		  (b)	� Assuming that C0 , ryk, find lim t l ` Cstd and interpret 
your answer.

	 44.	� mRNA transcription �� The intermediate molecule mRNA 
arises in the decoding of DNA: it is produced by a process 
called transcription and it eventually decays. Suppose that 
the rate of transcription is changing exponentially accord-
ing to the expression e bt, where b is a positive constant and 
mRNA has a constant per capita decay rate of k. The num-
ber of mRNA transcript molecules T thus changes as

dT

dt
− e bt 2 kT

		���  Although the form of this equation is similar to that from 
Exercise 43, the first term on the right side is now time-
varying. As a result, the differential equation is no longer 
separable; however, the equation can be solved using the 

from positive to negative. It is modeled by the function 
r 2 at, where r and a are positive constants.

	 35.	� Noyes-Whitney drug dissolution �� Solve the initial-value 
problem in Exercise 7.1.14 for the Noyes-Whitney drug 
dissolution equation.

	 36.	� Weibull drug dissolution �� Solve the Weibull drug dissolu-
tion equation given in Exercise 7.1.15.

	� 37–38 � Bacteria colony growth �� In Exercises 1.6.35–36, 
we obtained difference equations for the growth of circular 
and spherical colonies of bacteria. These equations are based 
on the idea that nutrients for growth are available only at the 
colony–environment interface. Continous-time versions of these 
equations are presented here, where k is a positive constant and 
n is the number of bacteria (in thousands). Solve each differen-
tial equation to find the size of the colony as a function of time. 
Assume ns0d − 1.

	 37.	�
dn

dt
− kn1y2 �� (circular colony)

	 38.	
dn

dt
− kn 2y3 �� (spherical colony)

	 39.	�T umor growth �� The Gompertz equation in Example 5 is 
not the only possibility for modeling tumor growth. Sup- 
pose that a tumor can be modeled as a spherical collection 
of cells and it acquires resources for growth only through its 
surface area (like the spherical bacterial colony in Exer- 
cise 38). All cells in a tumor are also subject to a constant 
per capita death rate. The dynamics of tumor mass M (in 
grams) might therefore be modeled as

dM

dt
− kM 2y3 2 �M

		���  where � and k are positive constants. The first term rep-
resents tumor growth via nutrients entering through the 
surface. The second term represents a constant per capita 
death rate.

		  (a)	� Assuming that k − 1 and Ms0d − 1, find M as a func-
tion of t.

		  (b)	� What happens to the tumor mass as t l `?
		  (c)	� Assuming tumor mass is proportional to its volume, 

the diameter of the tumor is related to its mass as 
D − aM 1y3, where a . 0. Derive a differential equation 
for D and show that it has the form of the von Berta-
lanffy equation in Example 2.

	 40.	�� �In an elementary chemical reaction, single molecules of  
two reactants A and B form a molecule of the product C: 
A 1 B l C. The law of mass action states that the rate  
of reaction is proportional to the product of the concentra-
tions of A and B: 

d fCg
dt

− k fAg fBg

		���  Thus, if the initial concentrations are fAg − a molesyL  and 
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	 49.	��� When a raindrop falls, it increases in size and so its mass at 
time t is a function of t, namely, mstd. The rate of growth of 
the mass is kmstd for some positive constant k. When we 
apply Newton’s Law of Motion to the raindrop, we get 
smvd9 − tm, where v is the velocity of the raindrop 
(directed downward) and t is the acceleration due to gravity. 
The terminal velocity of the raindrop is lim t l ` vstd. Find an 
expression for the terminal velocity in terms of t and k.

	 50.	�H omeostasis ��refers to a state in which the nutrient content 
of a consumer is independent of the nutrient content of its 
food. In the absence of homeostasis, a model proposed by 
Sterner and Elser is given by

dy

dx
−

1

�
 
y

x

		��  �where x and y represent the nutrient content of the food and 
the consumer, respectively, and � is a constant with � > 1.

		  (a)	� Solve the differential equation.
		  (b)	� What happens when � − 1? What happens when  

� l `?

Source: Adapted from R. Sterner et al., Ecological Stoichiometry: The Biol-

ogy of Elements from Molecules to the Biosphere (Princeton, NJ: Princeton 

University Press, 2002).

	 51.	��T issue culture � �Let Astd be the area of a tissue culture at 
time t and let M be the final area of the tissue when growth 
is complete. Most cell divisions occur on the periphery of 
the tissue and the number of cells on the periphery is pro-
portional to sAstd. So a reasonable model for the growth of 
tissue is obtained by assuming that the rate of growth of the 
area is jointly proportional to sAstd and M 2 Astd.

		  (a)	� Formulate a differential equation and use it to show that  
the tissue grows fastest when Astd − 1

3 M.
	 CAS 		  (b)	� Solve the differential equation to find an expression  

for Astd. Use a computer algebra system to perform the 
integration.

	 52.	��� According to Newton’s Law of Universal Gravitation, the  
gravitational force on an object of mass m that has been pro-
jected vertically upward from the earth’s surface is 

F −
mtR 2

sx 1 Rd2

		��  �where x − xstd is the object’s distance above the surface at 
time t, R is the earth’s radius, and t is the acceleration due 
to gravity. Also, by Newton’s Second Law, 
F − ma − m sdvydtd and so

m 
dv

dt
− 2

mtR 2

sx 1 Rd2

		  (a)	� Suppose a rocket is fired vertically upward with an 
initial velocity v0. Let h be the maximum height above 
the surface reached by the object. Show that

v0 − Î 2tRh

R 1 h
 

			   [Hint: By the Chain Rule, m sdvydtd − mv sdvydxd.]

change of variables ystd − e kt T std. Solve the differential 
equation using this technique.

	� 45–48 � Mixing problems �� Mixing problems arise in many 
areas of science. They typically involve a tank of fixed capac-
ity filled with a well-mixed solution of some substance (such as 
salt). Solution of a given concentration enters the tank at a fixed 
rate and the mixture, thoroughly stirred, leaves at a fixed rate. 
We will focus on examples where the inflow and outflow rates 
are the same, so that the volume of solution in the tank remains 
constant. If ystd denotes the amount of substance in the tank at 
time t, then y9 − srate ind 2 srate outd.

yª=rb _  ry
V

y(t)
V

(amount/L)(L/min)

r 

Volume=V

(L/min) (amount/L)
r b.

.

	 45.	��� A tank contains 1000 L of brine with 15 kg of dissolved 
salt. Pure water enters the tank at a rate of 10 Lymin. The 
solution is kept thoroughly mixed and drains from the tank 
at the same rate. How much salt is in the tank (a) after  
t minutes? (b) After 20 minutes?

	 46.	� Dialysis treatment ��removes urea and other waste products 
from a patient’s blood by diverting some of the blood flow 
externally through a machine called a dialyzer. Suppose that 
a patient’s blood volume is V mL and blood is diverted 
through the dialyzer at a rate of K mLymin. At the start of 
treatment the patient’s blood contains cs0d − c0 mgymL of 
urea.

		  (a)	� Formulate the process of dialysis as an initial-value 
problem.

		  (b)	� What is the concentration of urea in the patient’s blood 
after t minutes of dialysis? Compare your answer to 
Exercise 1.5.53.

	 47.	��� A vat with 500 gallons of beer contains 4% alcohol (by  
volume). Beer with 6% alcohol is pumped into the vat at a 
rate of 5 galymin and the mixture is pumped out at the same 
rate. What is the percentage of alcohol after an hour?

	 48.	� Lung ventilation �� A patient is placed on a ventilator to 
remove CO2 from the lungs. Suppose that the rate of ven- 
tilation is 100 mLys, with the percentage of CO2 (by 
volume) in the inflow being zero. Suppose also that air is 
absorbed by the lungs at a rate of 10 mLys and gas con- 
sisting of 100% CO2 is excreted back into the lungs at the 
same rate. The volume of a typical pair of lungs is around 
4000 mL. If the patient starts ventilation with 20% of lung 
volume being CO2, what volume of CO2 will remain in the 
lungs after 30 minutes?
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Suppose that this relationship is such that the rate of 
increase with island area is always proportional to the 
density of species (that is, number of species per unit area) 
with a proportionality constant between 0 and 1. Find the 
function that describes the species-area relationship. 
Compare your answer to Example 1.5.14.

		  (b)	� Calculate ve − lim h l ` v0. This limit is called the 
escape velocity for the earth.

		  (c)	� Use R − 3960 mi and t − 32 ftys2 to calculate ve in  
feet per second and in miles per second.

	 53.	� Species–area relationship �� The number of species found 
on an island typically increases with the area of the island. 

■ Project  Why Does Urea Concentration Rebound after Dialysis?	

A patient undergoes dialysis treatment to remove urea from the bloodstream when the  
kidneys are not functioning properly. Blood is diverted from the patient through a 
machine that filters out the urea. In many patients, once a dialysis session ends there 
is a relatively rapid rebound in the concentration of urea in the blood—too rapid to be 
accounted for by the production of new urea (see Figure 1).
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One explanation for this rebound is that urea also exists in other parts of the body, 
and there is continual movement of urea from these other areas into the bloodstream. 
Modeling this movement results in a so-called “two-compartment” model, as shown in 
Figure 2.

In Exercise 7.4.46 we saw that a common, one-compartment model for dialysis is

dc

dt
− 2

K

V
 c

where K and V  are positive constants and c is the concentration of urea in the blood (in 
mgymL). To construct a two-compartment model we need to describe the dynamics 
using two variables, c for the concentration in the blood and p for the concentration in 
the inaccessible pool (both measured in mgymL). A model for this process is

(1)	
dc

dt
− 2

K

V
 c 1 ap  

dp

dt
− 2ap	

where K, V , and a are positive constants.

	 1.	� ��Explain the terms in Equations 1 and the assumptions that underlie them.

	 2.	�� �The dynamics of c depend on both the concentration in the blood c and in the 
inaccessible pool p. However, the dynamics of p depend only on p and so we can 
solve the differential equation for p independently of the differential equation for 
c. What is this solution, assuming that the initial concentration of urea in the pool 
is c0?

Figure �1
Urea rebound after dialysis

dialysisc

blood

p

Figure �2
A schematic diagram of the  
two-compartment model
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	 3.	�� �Use the solution you obtained in Problem 2, along with the equation for the 
dynamics of c in Equations 1, to write a single nonautomonous differential  
equation for the dynamics of c.

	 4.	�� �Suppose that the initial concentration of urea in the blood is also c0. Solve the 
initial-value problem for the concentration of urea in the blood as a function of 
time during dialysis using the change of variables described in the margin. Plot 
the concentration over time, assuming that c0 − 80, a − 0.015, and KyV − 0.03.

	 5.	�� �Suppose dialysis treatment ends after 110 minutes. If we use c*std and p*std to 
denote the concentration of urea in the blood and in the inaccesible pool, t units 
of time after treatment has stopped, what is the initial-value problem for c*std 
and p*std?

	 6.	�� �Solve the initial-value problem in Problem 5. Plot the solution along with that 
from Problem 4 on the same graph, using the constant values from Problem 4. 
What is the limiting value of the urea concentration in the blood after it has fully 
rebounded? Explain biologically why this limiting value occurs.

If there were flow of urea from the bloodstream back into the inaccessible pool, how do 
you think this would complicate the analysis of the model?

Nonautonomous differential equations 
of the form y9std − f std 2 bystd can 
be solved using the change of variables 
xstd − e btystd. This is closely related 
to a technique for solving differential 
equations called “integrating factors.”

7.5 Systems of Differential Equations

The differential equations we have explored so far involve the dynamics of a single  
variable: population size, gene frequency, body size, and so on. Nevertheless, many bio-
logical phenomena—from the dynamics of interacting species to the dynamics of elec-
trical impulses in a neuron—are described by multiple variables. This leads to models 
involving coupled systems of differential equations, meaning that the dynamics  
of each variable depend on the values of all variables in the system. This coupling  
means that we can’t solve one equation and then the other; we have to solve all equations 
simultaneously.

We begin our exploration of such models in this section and the next. A more com-
plete treatment of coupled systems requires some background in multivariable calculus 
and is presented in Chapter 10. A brief introduction is included in this chapter, however, 
because it offers the flavor of the ideas and applications without requiring any further 
preparation. Here we focus on graphical techniques for systems of two autonomous dif-
ferential equations. These techniques involve generalizing the ideas from Section 7.2 
from plotting the dynamics along a phase line to plotting the dynamics in a phase plane. 
In order to do so, we first briefly consider the idea of parametric curves.

■ Parametric Curves
Imagine that a particle moves along the curve C shown in Figure 1. It is impossible to 
describe C by an equation of the form y − f sxd because C fails the Vertical Line Test. 
But the x- and y-coordinates of the particle are functions of time and so we can write 
x − f std and y − tstd. Such a pair of equations is often a convenient way of describing a 
curve and gives rise to the following definition.

Suppose that x and y are both given as functions of a third variable t (called a param-
eter) by the equations

x − f std        y − tstd

C

0

(x, y)={f(t), g(t)}

y

x

Figure �1
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(called parametric equations). Each value of t determines a point sx, yd that we can 
plot in a coordinate plane. As t varies, the point sx, yd − s f std, tstdd varies and traces 
out a curve C, which we call a parametric curve. The parameter t does not necessarily 
represent time and, in fact, we could use a letter other than t for the parameter. But in the 
applications of parametric curves to systems of differential equations the parameter will 
be time and therefore we can interpret sx, yd − s f std, tstdd as the position of a particle 
at time t.

 Example 1   |  Sketch and identify the curve defined by the parametric equations

x − t 2 2 2t        y − t 1 1

SOLUTION � Each value of t gives a point on the curve, as shown in the table. For 
instance, if t − 0, then x − 0, y − 1 and so the corresponding point is s0, 1d. In Fig- 
ure 2 we plot the points sx, yd determined by several values of the parameter t and we 
join them to produce a curve.

0
t=0

t=1

t=2
t=3

t=4

t=_1
t=_2

(0, 1)

y

x
8

Figure �2

A particle whose position is given by the parametric equations moves along the 
curve in the direction of the arrows as t increases. Notice that the consecutive points 
marked on the curve appear at equal time intervals but not at equal distances. That is 
because the particle slows down and then speeds up as t increases.

It appears from Figure 2 that the curve traced out by the particle may be a parabola. 
This can be confirmed by eliminating the parameter t as follows. We obtain t − y 2 1 
from the second equation and substitute into the first equation. This gives

x − t 2 2 2t − sy 2 1d2 2 2sy 2 1d − y 2 2 4y 1 3

and so the curve represented by the given parametric equations is the parabola 
x − y 2 2 4y 1 3.	 ■

The notion of a parametric curve is very useful in the study of systems of differential 
equations.

■ Systems of Two Autonomous Differential Equations
Consider a situation in which one species, called the prey, has an ample food supply and 
the second species, called the predator, feeds on the prey. Examples of prey and preda-
tors include rabbits and wolves in an isolated forest, small fish and sharks, aphids and 
ladybugs, and bacteria and amoebas. Our model will have two dependent variables, and 
both are functions of time. We let Rstd be the number of prey (using R for rabbits) and 
Wstd be the number of predators (with W  for wolves) at time t.

This equation in x and y describes 
where the particle has been, but it 
doesn’t tell us when the particle was 
at a particular point. The parametric 
equations have an advantage––they 
tell us when the particle was at a point. 
They also indicate the direction of the 
motion.

t x y

22 	 8 21
21 	 3 	 0

	 0 	 0 	 1
	 1 21 	 2
	 2 	 0 	 3
	 3 	 3 	 4
	 4 	 8 	 5
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In the absence of predators, the ample food supply would support exponential growth  
of the prey, that is,

dR

dt
− rR        where r is a positive constant

In the absence of prey, we assume that the predator population would decline through 
mortality at a rate proportional to itself, that is,

dW

dt
− 2kW         where k is a positive constant

With both species present, however, we assume that the principal cause of death among 
the prey is being eaten by a predator, and the birth rate of the predators depends on their 
available food supply, namely, the prey. We also assume that the two species encounter 
each other at a rate that is proportional to both populations and is therefore propor-
tional to the product RW. This is referred to as the principle of mass action: the rate 
of encounter of two entities is proportional to the densities of each. A system of two 
coupled differential equations that incorporates these assumptions is as follows:

(1)	  
dR

dt
− rR 2 aRW      

dW

dt
− 2kW 1 bRW 	

where k, r, a, and b are positive constants. Notice that the term 2aRW  decreases the 
growth rate of the prey and the term bRW  increases the growth rate of the predators.

The equations in (1) are known as the predator-prey equations, or the Lotka- 
Volterra equations. A solution of this system of equations is a pair of functions Rstd 
and Wstd that describe the populations of prey and predator as functions of time. There-
fore a solution can be represented as a parametric curve sx, yd − sRstd, Wstdd in the 
plane. The graphical techniques developed here and in the next section are formulated in 
terms of such parametric curves.

 Example 2   |  Lotka-Volterra equations  Suppose that populations of rabbits 
and wolves are described by the Lotka-Volterra equations (1) with r − 0.08, a − 0.001, 
k − 0.02, and b − 0.00002. The time t is measured in months.
(a)	 Use the system of differential equations to find an expression for dWydR.
(b)	 Draw a direction field for the resulting differential equation in the RW-plane. Then 
use that direction field to sketch some parametric curves representing solutions of 
Equations 1.
(c)	 Suppose that, at some point in time, there are 1000 rabbits and 40 wolves. Draw 
the corresponding parametric curve representing the solution for these initial condi-
tions. Use it to describe the changes in both population levels.
(d)	 Use part (c) to make sketches of R and W  as functions of t.

SOLUTION

(a)	 We use the Chain Rule to eliminate t:

dW

dt
−

dW

dR
 
dR

dt

so	
dW

dR
−

dW

dt

dR

dt

−
20.02W 1 0.00002RW

0.08R 2 0.001RW
	

The Lotka-Volterra equations were 
proposed as a model to explain the 
variations in the shark and food-fish 
populations in the Adriatic Sea by the 
Italian mathematician Vito Volterra 
(1860–1940).

	 W represents the predator.
	 R represents the prey.
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(b)	 If we think of W  as a function of R, we have the differential equation

dW

dR
−

20.02W 1 0.00002RW

0.08R 2 0.001RW

We draw the direction field for this differential equation in Figure 3. This direction 
field is always tangent to the parametric curves representing solutions to Equations 1, 
as shown in Figure 4. If we move along a curve, we observe how the relationship 
between R and W  changes as time passes. Although it is not obvious from the direction 
field, it can be shown that the curves are closed in the sense that if we travel along a 
curve, we always return to our starting point.

0 R

W

1000

150

100

50

2000 3000 0 R

W

1000

150

100

50

2000 3000

Figure �3  Direction field for the predator-prey system Figure �4  Phase portrait of the system

	 When we represent solutions of a system of differential equations as parametric 
curves in Figure 4, we refer to the RW-plane as the phase plane. This plane is the 
two-dimensional counterpart of the phase plots considered in Section 7.2. There, when 
we had a single variable, we plotted arrows on a line corresponding to the variable. 
Movement could be in either direction along the line and the arrows indicated the 
direction of this movement. Now, with two variables, we plot arrows in the plane corre- 
sponding to the two variables. Movement can now be in any direction in the plane and 
again the arrows indicate the direction of this movement. The parametric curves in the 
phase plane are called phase trajectories, and so a phase trajectory is a path traced out 
by solutions sR, Wd as time goes by. A phase portrait consists of typical phase 
trajectories, as shown in Figure 4.

(c)	 Starting with 1000 rabbits and 40 wolves corresponds to drawing the parametric 
curve through the point P0s1000, 40d. Figure 5 shows this phase trajectory with the 
direction field removed. Starting at the point P0 at time t − 0 and letting t increase,  
do we move clockwise or counterclockwise around the phase trajectory? If we put 
R − 1000 and W − 40 in the first differential equation, we get

dR

dt
− 0.08s1000d 2 0.001s1000ds40d − 80 2 40 − 40
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Since dRydt . 0, we conclude that R is increasing at P0 and so we move counter- 
clockwise around the phase trajectory.
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	 We see that at P0 there aren’t enough wolves to maintain a balance between the 
populations, so the rabbit population increases. That results in more wolves and 
eventually there are so many wolves that the rabbits have a hard time avoiding them. 
So the number of rabbits begins to decline (at P1, where we estimate that R reaches its 
maximum population of about 2800). This means that at some later time the wolf 
population starts to fall (at P2, where R − 1000 and W < 140). But this benefits the 
rabbits, so their population later starts to increase (at P3, where W − 80 and R < 210). 
As a consequence, the wolf population eventually starts to increase as well. This 
happens when the populations return to their initial values of R − 1000 and W − 40, 
and the entire cycle begins again.

(d)	 From the description in part (c) of how the rabbit and wolf populations rise and 
fall, we can sketch the graphs of Rstd and Wstd. Suppose the points P1, P2, and P3 in 
Figure 5 are reached at times t1, t2, and t3. Then we can sketch graphs of R and W  as in 
Figure 6.
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Figure �6  Graphs of the rabbit and wolf populations as functions of time

Figure �5
Phase trajectory through s1000, 40d 
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	 To make the graphs easier to compare, we draw the graphs on the same axes but 
with different scales for R and W , as in Figure 7. Notice that the rabbits reach their 
maximum population size about a quarter of a cycle before the wolves.
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■

An important part of the modeling process is to interpret our mathematical conclu-
sions as real-world predictions and to test the predictions against real data. The Hud-
son’s Bay Company, which started trading in animal furs in Canada in 1670, has kept 
records that date back to the 1840s. Figure 8 shows graphs of  the number of pelts of 
the snowshoe hare and its predator, the Canada lynx, traded by the company over a 
90-year period. You can see that the coupled oscillations in the hare and lynx pop-
ulations predicted by the Lotka-Volterra model do actually occur and the period of  
these cycles is roughly 10 years.
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Although the relatively simple Lotka-Volterra model has had some success in explain
ing and predicting coupled populations, more sophisticated models have also been pro
posed. One way to modify the Lotka-Volterra equations is to assume that, in the absence  
of predators, the prey grow according to a logistic model with carrying capacity M. Then 
the Lotka-Volterra equations (1) are replaced by the system of differential equations

 
dR

dt
− rRS1 2

R

MD 2 aRW              
dW

dt
− 2kW 1 bRW

This model is investigated in Exercises 23 and 24.
Models have also been proposed to describe and predict population levels of two or 

more species that compete for the same resources or cooperate for mutual benefit. Such 
models are explored in Exercises 14 and 15.

 TEC   In Module 7.5 you can change 
the coefficients in the Lotka-Volterra 
equations and observe the resulting 
changes in the phase trajectory and 
graphs of the rabbit and wolf  
populations.
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Figure �8
Relative abundance of hare and lynx 

from Hudson’s Bay Company records
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EXERCISES 7.5

	� 1–4 � Sketch the curve by using the parametric equations to plot 
points. Indicate with an arrow the direction in which the curve is 
traced as t increases.

	 1.	�� x − t 2 1 t,    y − t 2 2 t,    22 < t < 2

	 2.	�� x − t 2,    y − t 3 2 4t,    23 < t < 3

	 3.	�� x − cos2t,    y − 1 2 sin t,    0 < t < �y2

	 4.	�� x − e2t 1 t,    y − e t 2 t,    22 < t < 2

	� 5–8 
	 (a)	� Sketch the curve by using the parametric equations to plot 

points. Indicate with an arrow the direction in which the 
curve is traced as t increases.

	 (b)	� Eliminate the parameter to find a Cartesian equation of the 
curve.

	 5.	 x − 3t 2 5,  y − 2t 1 1

	 6.	 x − 1 1 3t,  y − 2 2 t 2

	 7.	�� x − st ,  y − 1 2 t

	 8.	 x − t 2,  y − t 3

	� 9–12 � Describe the motion of a particle with position sx, yd as  
t varies in the given interval.

	 9.	�� x − 3 1 2 cos t,    y − 1 1 2 sin t,    �y2 < t < 3�y2

	 10.	�� x − 2 sin t,    y − 4 1 cos t,    0 < t < 3�y2

	 11.	�� x − 5 sin t,    y − 2 cos t,    2� < t < 5�

	 12.	�� x − sin t,    y − cos2t,    22� < t < 2�

	 13.	�P redator-prey equations �� For each predator-prey system, 
determine which of the variables, x or y, represents the prey 
population and which represents the predator population. Is 
the growth of the prey restricted just by the predators or by 
other factors as well? Do the predators feed only on the prey 
or do they have additional food sources? Explain.

		  (a)	  
dx

dt
− 20.05x 1 0.0001xy

			    
dy

dt
− 0.1y 2 0.005xy

		  (b)	  
dx

dt
− 0.2x 2 0.0002x 2 2 0.006xy

				    
dy

dt
− 20.015y 1 0.00008xy

	 14.	� Competition and cooperation �� Each system of differen-
tial equations is a model for two species that either compete 
for the same resources or cooperate for mutual benefit 
(flowering plants and insect pollinators, for instance). 
Decide whether each system describes competition or 

cooperation and explain why it is a reasonable model. (Ask 
yourself what effect an increase in one species has on the 
growth rate of the other.)

		  (a)	  
dx

dt
− 0.12x 2 0.0006x 2 1 0.00001xy

			    
dy

dt
− 0.08x 1 0.00004xy

		  (b)	  
dx

dt
− 0.15x 2 0.0002x 2 2 0.0006xy

				    
dy

dt
− 0.2y 2 0.00008y 2 2 0.0002xy

	 15.	� Cooperation, competition, or predation? �� The system 
of differential equations

 
dx

dt
− 0.5x 2 0.004x 2 2 0.001xy

 
dy

dt
− 0.4y 2 0.001y 2 2 0.002xy

		���  is a model for the populations of two species. Does the 
model describe cooperation, or competition, or a predator-
prey relationship?

	 16.	�A  food web �� Lynx eat snowshoe hares, and snowshoe 
hares eat woody plants, such as willows. Suppose that, in 
the absence of hares, the willow population will grow 
exponentially and the lynx population will decay exponen-
tially. In the absence of lynx and willow, the hare popula-
tion will decay exponentially. If Lstd, Hstd, and Wstd 
represent the populations of these three species at time t, 
write a system of differential equations as a model for their 
dynamics. If the constants in your equation are all positive, 
explain why you have used plus or minus signs.

	� 17–18  �Rabbits and foxes  A phase trajectory is shown for 
populations of rabbits sRd and foxes sFd.

	 (a)	 Describe how each population changes as time goes by.
	 (b)	� Use your description to make a rough sketch of the graphs 

of R and F as functions of time.

	 17.	
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		���  By solving this separable differential equation, show that

R0.02W 0.08

e 0.00002Re 0.001W − C

		��  where C is a constant.
		��  �    It is impossible to solve this equation for W as an explicit 

function of R (or vice versa). If you have a computer alge- 
bra system that graphs implicitly defined curves, use this 
equation and your CAS to draw the solution curve that 
passes through the point s1000, 40d and compare with 
Figure 5.

	 22.	�A phid-ladybug dynamics �� Populations of aphids and 
ladybugs are modeled by the equations

 
dA

dt
− 2A 2 0.01AL

 
dL

dt
− 20.5L 1 0.0001AL

		  (a)	 Find an expression for dLydA.
		  (b)	� The direction field for the differential equation in part 

(b) is shown. Use it to sketch a phase portrait. What do 
the phase trajectories have in common?
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		  (c)	� Suppose that at time t − 0 there are 1000 aphids and 
200 ladybugs. Draw the corresponding phase trajectory 
and use it to describe how both populations change.

		  (d)	� Use part (c) to make rough sketches of the aphid and 
ladybug populations as functions of t. How are these 
two graphs related?

	 23.	� Modified predator-prey dynamics �� In Example 1 we 
used Lotka-Volterra equations to model populations of 
rabbits and wolves. Let’s modify those equations as follows:

 
dR

dt
− 0.08Rs1 2 0.0002Rd 2 0.001RW

 
dW

dt
− 20.02W 1 0.00002RW

		  (a)	� According to these equations, what happens to the rab-
bit population in the absence of wolves?

	 18.	
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F
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	� 19–20 � Graphs of populations of two species are shown. Use 
them to sketch the corresponding phase trajectory.

	 19.	
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	 21.	� Lotka-Volterra equations �� In Example 1(a) we showed 
that parametric curves describing the rabbit and wolf 
populations in the phase plane satisfy the differential 
equation

dW

dR
−

20.02W 1 0.00002RW

0.08R 2 0.001RW
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	 24.	� Modified aphid-ladybug dynamics �� In Exercise 22 we 
modeled populations of aphids and ladybugs with a Lotka- 
Volterra system. Suppose we modify those equations as 
follows:

 
dA

dt
− 2As1 2 0.0001Ad 2 0.01AL

 
dL

dt
− 20.5L 1 0.0001AL

		  (a)	� In the absence of ladybugs, what does the model predict 
about the aphids?

		  (b)	 Find an expression for dLydA.
	 CAS 		  (c)	� Use a computer algebra system to draw a direction field 

for the differential equation in part (b). Then use the 
direction field to sketch a phase portrait. What do the 
phase trajectories have in common?

		  (d)	� Suppose that at time t − 0 there are 1000 aphids and 
200 ladybugs. Draw the corresponding phase trajectory 
and use it to describe how both populations change.

		  (e)	� Use part (d) to make rough sketches of the aphid and  
ladybug populations as functions of t. How are these 
two graphs related?

		  (b)	� The figure shows the phase trajectory that starts at the 
point s1000, 40d. Describe what eventually happens to 
the rabbit and wolf populations.

1600 R140012001000800

40

50
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W

		  (c)	� Sketch graphs of the rabbit and wolf populations as 
functions of time.

■ Project  The Flight Path of Hunting Raptors

Many raptors, such as falcons and hawks, circle in on their prey while hunting rather than 
flying directly toward them (see Figure 1). One reason for this behavior is that they must 
aim one eye directly at the prey for maximum visual acuity and, because of the position 
of their eyes, this requires that they keep their direction of flight at a constant angle to the 
prey. Can we predict the flight path that a raptor will take toward its prey by describing 
this behavior mathematically?

prey

To simplify matters, let’s consider the flight path in the horizontal plane only, under 
the assumption that the bird maintains its flight path at a constant angle � to the prey, 
where 0 , � , �y2 (see Figure 2). We need to describe the position of the bird in the 
plane at any time t. We could use the Cartesian coordinate system to do this, but the spiral 
structure of the flight path suggests a simpler approach: specify the distance r between 
the bird and its prey, along with the angle of rotation � that identifies the location of the 
bird. Such coordinates are called polar coordinates.

The bird will circle the prey repeatedly as it closes in, meaning that the distance to 
the prey will decrease as the angle of rotation � increases. To describe this process we 
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will therefore derive a differential equation for the distance to the prey r as a function of 
the angle of rotation �.

	 1.	� �In a small interval of rotation D� we can approximate the movement of the bird 
as a straight line (the red line in Figure 3). The initial distance to the prey is 
rs�d and after the small change in � it is rs� 1 D�d. The known angles are also 
labeled in Figure 3. Our goal is to express rs� 1 D�d as a function of rs�d. To 
do this we first calculate some intermediate quantities. Show that the following 
relationships hold:

rs� 1 D�d −
rs�d 2 B

cos D�
    B −

sin D�

tan �
 rs� 1 D�d

	 2.	�� Use the relationships given in Problem 1 to obtain a formula for rs� 1 D�d in 
terms of rs�d, cos D�, sin D�, and tan �.

	 3.	�� From your answer to Problem 2, show that the differential equation for r as a 
function of � is given by

dr

d�
− 2r cot �

		��  Hint: First obtain an expression for 
rs� 1 D�d 2 rs�d

D�
 and then take the limit  

as D� l 0.

	 4.	�� Suppose that we choose the initial angle of rotation to be zero when the prey is 
first spotted and the prey is a distance rs0d − r0 from the bird. Solve the initial-
value problem corresponding to the differential equation from Problem 3 with 
this initial condition. What is the distance to the prey as a function of the angle of 
rotation?

	 5.	�� By what factor does the distance to the prey get reduced every time the bird 
circles the prey? Explain your answer.

	 6.	�� Express the curve found in Problem 4 in Cartesian coordinates by specifying it as 
a parametric curve in x and y.

The curve describing the flight path of a hunting raptor found in Problem 4 is known 
as a logarithmic spiral. Its defining feature is that the tangent to the spiral at any point 
is always at a constant angle from a radial line joining the center of the spiral to this 
point. This means that the local geometry of the curve remains fixed and therefore it 
retains its shape no matter how big the spiral becomes. Perhaps because of this feature of 
maintaining a constant shape, logarithmic spirals are quite common in living organisms. 
One of the most famous examples is the spiral shell of a nautilus shown in Figure 4.
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7.6 Phase Plane Analysis

The preceding section illustrated how the the phase plots from Section 7.2 can be 
extended to systems of two differential equations. These plots provide important infor-
mation about the dynamics of the system but they can be tedious to construct in the 
absence of a computer. In this section we develop some tools to obtain a very general 
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qualitative understanding of the dynamics of systems of two autonomous differential 
equations. The technique—referred to as phase plane analysis—involves identifying 
equilibria of the equations and then determining the qualitative nature of the dynamics 
around these equilibria.

■ Equilibria
Recall the predator-prey equations from Section 7.5 for the population sizes of rabbits 
and wolves: 

(1)	
dR

dt
− rR 2 aRW   

dW

dt
− 2kW 1 bRW 	

The corresponding phase plane is shown in Figure 1. An equilibrium of this system of 
differential equations is a constant population size of rabbits R̂ and of wolves Ŵ  at which 
no further change in either occurs. This requires that both dRydt − 0 and dWydt − 0.  
Using Equations 1, this gives two equations in two unknowns: rR 2 aRW − 0 and 
2kW 1 bRW − 0.

0 R

W
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2000 3000

Definition � Consider the autonomous system of differential equations

(2)	
dx

dt
− f sx, yd  

dy

dt
− tsx, yd	

An equilibrium is a pair of values sx̂, ŷd such that both dxydt − 0 and dyydt − 0 
when x − x̂ and y − ŷ. This gives a pair of equations f sx̂, ŷd − 0 and tsx̂, ŷd − 0 
that define the values of x̂ and ŷ.

We can connect the pair of equations defining the equilibria of the predator-prey 
model to the phase plane in Figure 1. The equation rR 2 aRW − 0 must hold if the pop-
ulation size of rabbits is to remain constant; it can be factored to give Rsr 2 aWd − 0. 
Therefore the population size of rabbits will remain constant if either R − 0 or  
W − rya. The first of these equations corresponds to absence of rabbits altogether. The 
second corresponds to the population size of wolves at which the birth rate of rabbits is 

Figure �1
The predator-prey phase plot  

when r − 0.08, a − 0.001,  
k − 0.02, and b − 0.00002 
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exactly balanced by their death rate through predation. The lines defined by these equa-
tions are called the R-nullclines and are plotted on the phase plane shown in Figure 2(a).
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The second equation, 2kW 1 bRW − 0, must hold if the population size of wolves 
is to remain constant; it can be factored and solved to give W − 0 and R − kyb. The 
first of these equations corresponds to absence of wolves. The second corresponds to the 
population size of rabbits at which the birth rate of wolves (through consumption of rab-
bits) is exactly balanced by their death rate. The lines defined by these equations are the 
W-nullclines and are plotted on the phase plane shown in Figure 2(b). Figure 2(c) shows 
the R- and W-nullclines plotted together.

Definition � The x-nullclines of differential equations (2) are the curves in the 
xy-plane that satisfy the equation f sx, yd − 0. Along these curves, dxydt − 0. 
The y-nullclines of differential equations (2) are the curves in the xy-plane that 
satisfy the equation tsx, yd − 0. Along these curves, dyydt − 0.

Whenever a trajectory in the phase plane crosses a nullcline, it must do so either hori-
zontally or vertically, depending on the nullcline in question. This is because movement 
in either the vertical or horizontal direction is zero on a nullcline since either dyydt − 0 
or dxydt − 0.

Nullclines of the differential equations provide a graphical way to visualize the 
equilibria of differential equations. For example, in the predator-prey model, an equi-
librium requires that both the predator and the prey population sizes remain constant 
through time. Geometrically, an equilibrium will therefore occur at any point where an 
R-nullcline intersects a W-nullcline. It will be precisely at such intersection points that 
both variables remain constant through time [see Figure 2(c)].

Finding Equilibria Graphically � For differential equations (2) any point at 
which an x-nullcline intersects a y-nullcline is an equilibrium.

In addition to this visualization of equilibrium points and nullclines, we can some-
times derive expressions for the equilibria algebraically. The predator-prey model has 
two equilibria: (i) R̂ − 0, Ŵ − 0 and (ii) R̂ − kyb, Ŵ − rya.

 Example 1   |  Lotka-Volterra competition equations  The differential 
equation for logistic population growth (Equation 7.1.4) can be extended to model 
competitive interactions between two species. Let’s use N1std and N2std to denote the 
population size of species 1 and 2 at time t. Suppose that the per capita growth rate of 

Figure �2
R-nullclines are blue, W-nullclines are 
red, and equilibria are black dots.
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each species decreases linearly with the population size of each species. Specifically, 
the per capita growth rate of species 1 is

rS1 2
N1 1 �N2

K1
D

where �, r, and K1 are positive constants. Likewise, the per capita growth rate of  
species 2 is

rS1 2
N2 1 �N1

K2
D

where � and K2 are positive constants. (Compare these per capita growth rates to the 
per capita growth rate in Equation 7.1.4.) This gives the system

(3)	
dN1

dt
− rS1 2

N1 1 �N2

K1
DN1  

dN2

dt
− rS1 2

N2 1 �N1

K2
DN2	

(a)	 Suppose r − 1, K1 − 1000, K2 − 600, � − 2, and � − 1. Find the N1- and  
N2-nullclines and plot them on the phase plane. Indicate all equilibria.
(b)	 Calculate the equilibria algebraically.
(c)	 Suppose instead that � − 0, but all other constants have the same values as in  
part (a). Calculate the equilibria algebraically.

Solution �

(a)	 The N1-nullclines satisfy dN1ydt − 0 or

S1 2
N1 1 2N2

1000 DN1 − 0

Therefore the N1-nullclines are N1 − 0 and N1 1 2N2 − 1000. The second equation 
can be rewritten as N2 − 500 2 1

2 N1. It is plotted in Figure 3(a). The N2-nullclines 
satisfy dN2 ydt − 0 or

S1 2
N2 1 N1

600 DN2 − 0

The N2-nullclines are therefore N2 − 0 and N1 1 N2 − 600. The second equation can 
be rewritten as N2 − 600 2 N1 and is plotted in Figure 3(b). The nullclines are plotted 
together, along with the equilibria, in Figure 3(c).
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Figure �3 �� N1-nullclines are blue, N2-nullclines are red, and equilibria are black dots.
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(b)	 Equilibria are pairs of values sN̂1, N̂2d that simultaneously satisfy the pair of 
equations

S1 2
N̂1 1 2N̂2

1000 D N̂1 − 0    and    S1 2
N̂2 1 N̂1

600 D N̂2 − 0

We can calculate the equilibria by solving the first equation for N̂1, substituting the 
result into the second equation, and then solving it for N̂2. There are two solutions to 
the first equation: N̂1 − 0 and N̂1 − 1000 2 2N̂2. We consider each of these in turn.
	 Substituting N̂1 − 0 into the second equation gives

S1 2
N̂2

600D N̂2 − 0

Solving for N̂2 gives N̂2 − 0 and N̂2 − 600. Therefore two equilibria are (i) N̂1 − 0, 
N̂2 − 0 and (ii) N̂1 − 0, N̂2 − 600 [see Figure 3(c)].
	 Substituting N̂1 − 1000 2 2N̂2 into the second equation gives

S1 2
N̂2 1 s1000 2 2N̂2d

600 D N̂2 − 0

Solving for N̂2 gives N̂2 − 0 and N̂2 − 400. In the first case we then have an N̂1 value 
of N̂1 − 1000 2 2 ? 0 − 1000, and in the second case we have an N̂1 value of 
N̂1 − 1000 2 2 ? 400 − 200. Therefore a third equilibrium is (iii) N̂1 − 1000, N̂2 − 0 
and a fourth is (iv) N̂1 − 200, N̂2 − 400 as shown in Figure 3(c).

(c)	 With � − 0, the equilibria are now pairs of values, sN̂1, N̂2d that simultaneously 
satisfy the equations

S1 2
N̂1 1 2N̂2

1000 D N̂1 − 0    and    S1 2
N̂2

600D N̂2 − 0

The second equation no longer involves N̂1 and therefore we can solve it immediately 
for N̂2. We obtain N̂2 − 0 and N̂2 − 600.
	 Substituting N̂2 − 0 into the first equation gives f1 2 N̂1y1000g N̂1 − 0. Solving 
this for N̂1 gives N̂1 − 0 and N̂1 − 1000. Therefore two equilibria are (i) N̂1 − 0, 
N̂2 − 0 and (ii) N̂1 − 1000, N̂2 − 0.
	 If instead we substitute N̂2 − 600 into the first equation, we get

S1 2
N̂1 1 1200

1000 D N̂1 − 0

Solving this for N̂1 gives N̂1 − 0 and N̂1 − 2200. Therefore two additional equilibria 
are (iii) N̂1 − 0, N̂2 − 600 and (iv) N̂1 − 2200, N̂2 − 600.

Notice that equilibrium (iv) involves a negative value of N̂1. From a mathematical 
standpoint this is a perfectly fine equilibrium, but from a biological standpoint it is not 
of interest because it would correspond to a negative population size. Equilibria that 
are biologically relevant [(i), (ii), and (iii) in this example] are referred to as biologi-
cally feasible.	 ■

■ Qualitative Dynamics in the Phase Plane
Let’s return to Figure 2 from the predator-prey model of Equations 1. In Figure 2(a) 
we plotted the R-nullclines. These are curves in the plane along which dRydt − 0. 
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Therefore these curves separate the plane into regions within which either dRydt . 0 
or dRydt , 0. We can determine which of these two situations applies in each region. 
Consider the region above the line W − rya in Figure 2(a). This corresponds to large 
values of W, in which case Equations 1 give

dR

dt
− rR 2 aRW < 2aRW , 0

for large enough values of W. Therefore dRydt , 0 in this region. Conversely, if W  is 
close to zero, we have

dR

dt
− rR 2 aRW < rR . 0

We can therefore indicate whether R is increasing or decreasing in each of these regions 
of the phase plane with a single arrow as in Figure 4(a).

0

W

0

W

0

W

(a) (b) (c)

r
a
r
a

r
a
r
a

k
b

k
b

R R R

r
a
r
aW=

k
bR=

We can follow the same procedure for the W-nullclines in Figure 2(b). To the right of 
the line R − kyb the value of R will be very large. From Equations 1 we have

dWydt − 2kW 1 bRW < bRW . 0

Conversely, if R is close to zero then

dWydt − 2kW 1 bRW < 2kW , 0

This gives the direction arrows for W  in Figure 4(b). Putting these two plots together 
then gives the overall direction of movement by the purple arrows in the phase plane 
shown in Figure 4(c). This provides a very general, qualitative picture of the dynamics 
without having to plot a large number of direction arrows. In this case we see that spiral-
ing trajectories in the phase plane are expected.

 Example 2   |  Lotka-Volterra competition equations (continued) 
(a)	 Determine the qualitative dynamics in the phase plane for the Lotka-Volterra 
competition equations of Example 1.
(b)	 Plot the variables as a function of time.

solution

(a)	 We begin by first considering the N1-nullclines shown in Figure 3(a). Above the 
nullcline the value of N2 will be very large. From Equations 3 we have

dN1

dt
− S1 2

N1 1 2N2

1000 DN1 < 2
2N2

1000
 N1 , 0

Figure �4
Purple arrows indicate direction of  
motion in part (c).
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for large enough N2. But as we move closer to the origin, N1 and N2 will be very small. 
From Equations 3 we have

dN1

dt
− S1 2

N1 1 2N2

1000 DN1 < N1 . 0

[See Figure 5(a).]
For the N2-nullclines, a similar argument shows that to the right of the N2-nullcline, 

dN2 ydt , 0. Likewise, as we move close to the origin, dN2 ydt . 0 [see Figure 5(b)]. 
Putting together these two plots gives the qualitative dynamics shown in Figure 5(c). 
This reveals that equilibria (ii) and (iii) are both locally stable (if we start near either of 
these equilibria, we will move toward the equilibrium). And we can see that equilibria 
(i) and (iv) are unstable (if we start near either of these, we will move away). Thus, the 
two species do not coexist. One will competitively exclude the other, and the initial 
conditions determine which species “wins.” Exercise 27 explores this model for other 
parameter values.

(c)

0 N¡

N™

1000600
(i) (iii)

(ii)

(iv)

600

(b)
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600

(a)

0 N¡

N™
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600

N¡=0
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2 N¡

N™=0

N™=600-N¡

(b)	 In Figure 6 we have used a CAS to plot the variables against time for two sets of 
initial conditions. In part (a) N2 initially increases but then decays to zero while N1 
continually increases. In part (b) the opposite occurs. These correspond to the variables 
moving toward equilibria (iii) and (ii) in Figure 5(c), respectively.
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 Example 3   |  Fitzhugh-Nagumo equations for a neuron  Neurons carry 
electrical impulses throughout the body and display what is called an all-or-nothing 
response. Low levels of electrical stimulation have little effect on the neuron. If the 
electrical stimulus rises above a certain threshold intensity, however, a large electrical 
impulse called an action potential is generated and travels along the length of the 
neuron (see Figure 7). Increasing the level of electrical stimulation further does not 
seem to alter the impulse.

The electrical potential of a neuron has a resting value (which we take to be  
zero) and a threshold value a above which an impulse is triggered. When an impulse  

Figure �5
Purple arrows indicate direction of  
motion in part (c).

Figure �6

Potential

t 
(seconds)

mV

Figure �7
Action potential
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is triggered it grows in potential to a maximum possible value that we take to be 1.  
Using vstd for the neuron’s potential (in mV) at time t (in seconds), its initial dynam-
ics are therefore similar to those of population dynamics with an Allee effect (recall 
Example 7.2.3); namely, dvydt − sv 2 ads1 2 vdv, where a is a constant satisfying 
0 , a , 1. The potential eventually returns to its resting state, however, as the perme-
ability of the neuron’s cell wall changes and allows exchange of charged molecules 
(ions of potassium and sodium). This behavior can be modeled by simply appending 
a loss term to the equation for the dynamics of v. Assuming the rate of loss is propor-
tional to the magnitude of ion exchange, and using w to denote this magnitude of ion 
exchange, the system is therefore

(4)	
dv

dt
− sv 2 ads1 2 vdv 2 w  

dw
dt

− bv 2 cw	

Both v and w can be positive or negative. Notice that the dampening effect of ion 
exchange w increases in proportion to the potential at rate b, and it is also subject to a 
constant per unit decay rate of c.
(a)	 Suppose a − 0.2, b − 0.01, and c − 0.04. Identify the equilibria in the phase 
plane and determine the qualitative dynamics.
(b)	 Plot the potential vstd as a function of time.

solution

(a)	 The v-nullclines satisfy dvydt − 0, that is, w − sv 2 0.2ds1 2 vdv, a cubic 
equation whose graph crosses the horizontal axis at v − 0, v − 0.2, and v − 1 [see 
Figure 8(a)]. Rather than substituting extreme values of the variables as we did in 
Examples 1 and 2, here we use an alternative method to determine the direction of 
movement in the phase plane.

From Equations 4 we can see that dvydt . 0 whenever w , sv 2 0.2ds1 2 vdv. 
Since sv 2 0.2ds1 2 vdv defines the cubic polynomial in Figure 8(a), v will therefore be 
increasing below the curve and decreasing above it.

(b)

√

(a)

w

0.2 √

(c)

w

0.2√

w

0.2 1 1

1 √(0)=0.55

w=(√-0.2)(1-√)√
w=√

4

√(0)=0.18

	 The w-nullcline satisfies 0.01v 2 0.04w − 0, or w − vy4 as in Figure 8(b). From 
Equations 4 we can see that dwydt . 0 whenever 0.01v . 0.04w. We can rewrite this 
inequality as w , vy4, and since w − vy4 defines the line plotted in Figure 8(b), w will 
be increasing below the line and decreasing above it.
	 The nullclines are plotted together, along with the single equilibrium at the origin, 
in Figure 8(c): this shows that the system exhibits an oscillatory behavior around the 
equilibrium. But the qualitative nature of these oscillatory dynamics depends on the 
initial conditions. Using a CAS, we have plotted two solution curves, both with ws0d − 0. 
If the initial potential vs0d is below the threshold of 0.2, the neuron potential immedi-
ately decays towards zero. If the initial potential is above 0.2, then the potential initially 
grows in magnitude before eventually decaying back to the equilibrium state.

In the 1950s Alan Lloyd Hodgkin and 
Andrew Fielding Huxley developed a 
model for neuron activity based on a 
system of four differential equations. 
This work, coupled with their study of 
squid neurons, earned them the 1963 
Nobel Prize in Medicine and Physiology. 
The Fitzhugh-Nagumo equations are a 
simplified, two-dimensional version of 
their model.

Figure �8
Purple arrows indicate direction of  
motion. Green curves are solution 
curves.
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(b)	 The potential for each set of initial conditions in Figure 8(c) is plotted against time 
in Figure 9 using a CAS. Figure 9(b) resembles an actual action potential when the 
initial stimulus of the neuron is above the threshold value.

(a) √(0)=0.18, w(0)=0

t
(seconds)

√

0.18

    (b) √(0)=0.55, w(0)=0

t
(seconds)

√

0.55

	■

As a final remark, we note that a phase plane analysis can sometimes give us informa-
tion about the stability of equilibria. In Example 2 the analysis gave us conclusive infor-
mation about the stability properties of all the equilibria. In Example 3, however, the 
phase plane analysis itself is insufficient to allow us to reach any conclusion (although 
the equilibrium is, in fact, locally stable). We can determine the qualitative tendency to 
oscillate around the equilibrium point, but we cannot determine whether these oscilla-
tions converge towards the equilibrium or move away from it. The same is true for the 
predator-prey model in Figure 4. In Section 10.4 we will derive mathematical criteria 
that distinguish between these possibilities.

Figure �9

	� 1–6 � In each phase plane the x-nullclines are blue and the  
y-nullclines are red. Use the information given to indicate the 
direction of movement in the phase plane and label all equi-
libria. For each equilibrium, determine if it is locally stable or 
unstable, or if the information is inconclusive.

	 1.	��� The variable x is increasing in the region below the curved 
nullcline and decreasing elsewhere. The variable y is 
decreasing between x − 0 and x − a and increasing 
elsewhere.

y

a x0

	 2.	��� The variable x is increasing between zero and its nullcline 
and decreasing elsewhere. The variable y is increasing 
below its nullcline and decreasing above it.

y

x0

	 3.	��� The variable x is increasing above its nullcline and 
decreasing below it. The variable y is decreasing above its 
nullcline and increasing below it.

y

x0

	 4.	��� The variable x is increasing below its nullcline and 
decreasing above it. The variable y is decreasing above its 
nullcline and increasing below it.

EXERCISES 7.6
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	� �(b)	  �Obtain an expression for each equilibrium (it may be a 
function of the constant a).

	 16.	 x9 − asx 2 3d,  y9 − 5 2 y,  a ± 0

	 17.	 x9 − y 2 ax,  y9 − x 2 y,  a . 0, a ± 1

	 18.	 x9 − asx 2 ad,  y9 − 4 2 y 2 x,  a ± 0

	 19.	 x9 − ay 2 2 x 1 1,  y9 − 2s1 2 yd

	 20.	 x9 − 2sy 2 1d 2 asx 2 1d, 

		  y9 − 2sy 2 1d 2
1

a
sx 2 1d, 	 a ± 21, 0, 1,  x, y . 0

	 21.	��� Hooke’s Law states that the force F exerted by a spring on a 
mass is proportional to the displacement from its resting 
position.

p0

M

		���  From the figure we have F − 2kp for some positive con- 
stant k, where p is position. Also, Newton’s Second Law 
tells us that F − ma, where m is the mass of the object and 
a is its acceleration. Further, since we know that accelera-
tion is the second derivative of position with respect to time, 
we obtain the differential equation

m 
d 2p

dt 2 − 2kp

		���  This is a second-order differential equation because it 
involves the second derivative of the unknown function, p.

		  (a)	� Define a new variable q − dpydt. Show that the  
second-order differential equation can then be written 
as the following system of two first-order differential 
equations

dp

dt
− q  

dq

dt
− 2

kp

m

		  (b)	� Construct the phase plane for the equations in part (a), 
including nullclines, the equilibrium, and the direction 
of movement.

		  (c)	� What does the phase plane analysis from part (b) tell 
you about the position of the mass over time?

		  (d)	� What does the phase plane analysis from part (b) tell 
you about the velocity of the mass over time?

	 22.	��� The van der Pol equation is a second-order differential 
equation describing oscillatory dynamics in a variable x:

dx 2

dt 2 2 �s1 2 x 2d 
dx

dt
1 x − 0

		���  where � is a positive constant. This equation was first 
obtained by an electrical engineer named Balthasar  
van der Pol, but has since been used as a model for a 

y

x0

	 5.	��� The variable x is increasing to the left of its nullcline and 
decreasing to the right of it. The variable y is decreasing 
above its nullcline and increasing below it.

y

x0

	 6.	��� The variable x is increasing in quadrants I and III and 
decreasing in quadrants II and IV. The variable y is 
increasing everywhere.

y

x0

I

IV

II

III

	� 7–15 � A system of differential equations is given.
	� ��(a)	� Construct the phase plane, plotting all nullclines, labeling 

all equilibria, and indicating the direction of motion.
	� (b)	 Obtain an expression for each equilibrium.

	 7.	��� x9 − xs3 2 x 2 yd,  y9 − ys2 2 x 2 yd,  x, y > 0

	 8.	 p9 − ps1 2 p 2 qd,  q9 − qs2 2 3p 2 qd,  p, q > 0

	 9.	 n9 − ns1 2 2md,  m9 − ms2 2 2n 2 md,  n, m > 0

	 10.	 x9 − xs2 2 xd,  y9 − ys3 2 yd

	 11.	 p9 − 2p2 1 q 2 1,  q9 − qs2 2 p 2 qd

	 12.	 p9 − 2q 2 1,  q9 − q 2 2 q 2 p

	 13.	 x9 − 5 2 2x 2 xy,  y9 − xy 2 y,  x, y > 0

	 14.	 z9 − z 3 2 4z 2 1 3z 2 2w,  w9 − z 2 w 2 1

	 15.	 x9 − 2sx 2 2d lnsxyd,  y9 − e xsx 2 yd,  x, y . 0

	� 16–20 � A system of differential equations is given.
	� ��(a)	� Use a phase plane analysis to determine the values of the 

constant a for which the sole equilibrium of the differential 
equations is locally stable.
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		���  This can be expressed by the differential equations

 
dx

dt
− 2kf xyM 1 krs1 2 ydM

 
dy

dt
− 2kf xyM 1 krs1 2 ydM 1 kcats1 2 ydM

 
dz

dt
− kcats1 2 ydM

		���  where M is the total number of enzymes (both free and 
bound), x and z are the numbers of substrate and product 
molecules, y is the fraction of the enzyme pool that is free, 
and the ki’s are positive constants.

		  (a)	� Explain all the terms in this system of differential  
equations.

		  (b)	� Although this is a system of three differential equations, 
its dynamics can be understood by constructing a phase 
plane for the variables x and y alone. Explain why.

		  (c)	� Construct the phase plane mentioned in part (b), includ-
ing all nullclines and equilibria, and indicate the direc-
tion of movement in the plane.

	 26.	� Metastasis of malignant tumors �� Metastasis is the 
process by which cancer cells spread throughout the body 
and initiate tumors in various organs. This sometimes 
happens via the bloodstream, where cancer cells become 
lodged in capillaries of organs and then move across the 
capillary wall into the organ. Using C to denote the number 
of cells lodged in a capillary and I for the number that have 
invaded the organ, we can model this as

C9 − 2�C 2 �C    I9 − �C 2 �I 1 �I

		���  where all constants are positive, � is the rate of movement 
across the capillary wall, � is the rate of dislodgment from 
the capillary, � is the rate at which cancer cells in the organ 
die, and � is their growth rate.

		  (a)	� Suppose � , �. Construct the phase plane, including all 
nullclines, equilibria, and arrows indicating the direc-
tion of movement in the plane.

		  (b)	� Suppose � . �. Construct the phase plane, including all 
nullclines, equilibria, and arrows indicating the direc-
tion of movement in the plane.

		  (c)	� What is the difference in the predicted dynamics 
between part (a) and part (b)?

Source: Adapted from D. Kaplan et al., Understanding Nonlinear Dynamics 

(New York: Springer-Verlag, 1995).

	 27.	 �Lotka-Volterra competition equations �� For each case, 
derive the equations for all nullclines of the Lotka-Volterra 
model in Example 1 and use them to construct the phase 
plane, including all nullclines, equilibria, and arrows indi- 
cating the direction of movement. (Assume that all con- 
stants are positive.)

		  (a)	 K1 . �K2 and K2 , �K1

		  (b)	 K1 , �K2 and K2 . �K1

		  (c)	 K1 , �K2 and K2 , �K1

		  (d)	 K1 . �K2 and K2 . �K1

variety of phenomena, including sustained oscillatory 
dynamics of neural impulses.

		  (a)	� Convert the Van der Pol equation into a system of two 
first-order differential equations by defining the new 
variable y as

y − x 2
x 3

3
2

dxydt

�

		  (b)	� Construct the phase plane for the equations obtained in 
part (a), including nullclines, the equilibrium, and the 
direction of movement.

		  (c)	� What does the phase plane analysis from part (b) tell 
you about the dynamics of x?

	 23.	��� The Kermack-McKendrick equations are first-order 
differential equations describing an infectious disease 
outbreak. Using S and I to denote the number of susceptible 
and infected people in a population, the equations are

S9 − 2�SI    I9 − �SI 2 �I

		���  where � and � are positive constants representing the 
transmission rate and rate of recovery, respectively.

		  (a)	� Provide a biological explanation for each term of the 
equations.

		  (b)	� Suppose � − 1 and � − 5. Construct the phase plane 
including all nullclines, equilibria, and arrows indi-
cating the direction of movement in the plane.

		  (c)	� Construct the phase plane for arbitrary values of � and 
�, including all nullclines, equilibria, and arrows indi-
cating direction of movement in the plane.

	 24.	��� The Kermack-McKendrick equations from Exercise 23 
can be extended to model persistent diseases rather than 
single outbreaks by including an inflow of susceptible 
individuals and their natural death. This gives the differen-
tial equations 

S9 − � 2 �S 2 �SI    I9 − �SI 2 �I

		���  where � and � are positive constants representing inflow 
and mortality of susceptible individuals, respectively.

		  (a)	� Suppose � − 1, � − 1, � − 1, and � − 10. Construct 
the phase plane including all nullclines, equilibria, and 
arrows indicating the direction of movement in the 
plane.

		  (b)	� Suppose � − 1
15, � − 1, � − 1, and � − 10. Construct 

the phase plane including all nullclines, equilibria, and 
arrows indicating the direction of movement in the 
plane.

		  (c)	� What is the difference in the predicted dynamics 
between part (a) and part (b)?

	 25.	��� The Michaelis-Menten equations describe a biochemical 
reaction in which an enzyme E and substrate S bind to form 
a complex C. This complex can then either dissociate back 
into its original components or undergo a reaction in which 
a product P is produced along with the free enzyme:

E 1 SK C l E 1 P
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equations describing this is

dc

dt
− 2

K

V
c 1 ap 2 bc  

dp

dt
− 2ap 1 bc

		���  where c and p are the urea concentrations in the blood (in 
mgymL) and in the inaccessible pool, respectively, and all 
constants are positive.

		  (a)	� Explain each term of the system of differential  
equations.

		  (b)	� Construct the phase plane, including all nullclines, equi-
libria, and arrows indicating the direction of movement 
in the plane. What happens to the urea concentration as 
t l `?

	 32.	� Fitzhugh-Nagumo equations �� Consider the following 
alternative form of the Fitzhugh-Nagumo equations from 
Example 3:

dv

dt
− sv 2 ads1 2 vdv 2 w  

dw
dt

− «sv 2 wd

		���  where « . 0 and 0 , a , 1. Construct the phase plane, 
including all nullclines, equilibria, and arrows indicating the 
direction of movement in the plane.

	 33.	 �The Rosenzweig-MacArthur model ��is a consumer-
resource model similar to that from Exercise 30, but with a 
different consumption function. A simplified version is

R9 − RsK 2 Rd 2
R

a 1 R
C    C9 −

R

a 1 R
C 2 bC

		���  Suppose that all constants are positive and that 
K . abys1 2 bd . 0. Construct the phase plane, including 
all nullclines, equilibria, and arrows indicating the direction 
of movement in the plane.

	� 28–30 � Consumer-resource models often have the following 
general form

R9 − f sRd 2 tsR, Cd    C9 − «tsR, Cd 2 hsCd

	� �where f sRd is a function describing the rate of replenishment of 
the resource, tsR, Cd describes the rate of consumption of the 
resource, and hsCd is the rate of loss of the consumer. The con- 
stant « is the conversion efficiency of resources into consum-
ers and lies between zero and one. Construct the phase plane, 
including all nullclines, equilibria, and arrows indicating the 
direction of movement in the plane. Describe how consumer and 
resource abundance are predicted to change over time.

	 28.	� A chemostat ��is an experimental consumer-resource system. 
If the resource is not self-reproducing, then it can be 
modeled by choosing f sRd − �, tsR, Cd − bRC, and 
hsCd − �C, where all constants are positive.

	 29.	��� A model for self-reproducing resources is obtained by 
choosing f sRd − rR, tsR, Cd − bRC, and hsCd − �C, 
where all constants are positive.

	 30.	��� A model for self-reproducing resources with limited  
growth is obtained by choosing f sRd − rRs1 2 RyKd, 
tsR, Cd − bRC, and hsCd − �C. Assume all constants are 
positive and K . �ys«bd.

	 31.	�H emodialysis ��is a process by which a machine is used to 
filter urea and other waste products from a patient’s blood if 
their kidneys fail. The concentration of a patient’s urea 
during dialysis is sometimes modeled by supposing there 
are two compartments within the patient—the blood, which 
is directly filtered by the dialysis machine, and another 
compartment that cannot be directly filtered but that is 
connected to the blood. A system of two differential 

■ Project  Determining the Critical Vaccination Coverage

Vaccines are preventative medications that are administered before an individual becomes 
infected by a pathogen. Either vaccinated people do not become infected or they are able 
to clear the infection more quickly. Let’s suppose a vaccine shortens the duration of the 
infection by causing the vaccinated individual’s immune system to clear the infection 
more quickly. We will model the dynamics of infected people only, using the following 
pair of autonomous differential equations:

 
dN

dt
− N�Ss1 2 pd 1 V�Ss1 2 pd 2 sm 1 cdN

 
dV

dt
− N�Sp 1 V�Sp 2 sm 1 c�dV

where N and V  are the numbers of nonvaccinated and vaccinated individuals, respec-
tively, S is the number of susceptible individuals, and p is the fraction of these that are 
vaccinated (with 1 2 p remaining unvaccinated). For simplicity, these equations assume 
that the total number of susceptible people remains approximately constant at S over 
the time frame of interest, and that all infected individuals suffer a constant per capita 
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mortality rate of m regardless of vaccination status. The constant � quantifies the trans-
missibility of the disease and is positive. Infected individuals are removed through their 
clearing of the infection via an immune response, with per capita rate c for unvaccinated 
individuals and c� for vaccinated individuals (with � . 1, which reflects the heightened 
clearance rate caused by the vaccine).

Our task is to determine the value of p needed to ensure that the epidemic will die out, 
written as a function of the vaccine effectiveness �.

	 1.	�� �Explain all the terms in the differential equations.

	 2.	�� �Let’s assume that �S . m 1 c. What does this imply about the disease dynamics 
if nobody is vaccinated (that is, if p − 0)? Let’s also assume that �S , m 1 c�. 
What does this imply about the disease dynamics if everybody is vaccinated (that 
is, if p − 1)?

	 3.	�� �Assuming �S . m 1 c and �S , m 1 c�, construct the phase plane and null-
clines for the case where the vaccination coverage is very low (that is, p is very 
small). Indicate the sole equilibrium.

	 4.	�� �Determine whether the equilibrium found in Problem 3 is stable or not using the 
phase plane.

	 5.	�� �As you increase the vaccination coverage p from near zero to near one, the 
nullclines move. Determine the direction in which each nullcline moves as p 
increases.

	 6.	�� �From the phase plane in Problem 3 and your answer to Problem 5 you should be 
able to determine that there is a critical value of p greater than which the number 
of infected individuals always decreases to zero. Illustrate a phase plane diagram 
for the case where p is just less than this critical value, and another for the case 
where p is just greater than this critical value.

	 7.	�� �Use your result from Problem 6 to obtain a mathematical inequality that must  
be satisfied by p for the vaccination coverage to be adequate to prevent the epi-
demic. Your inequality should involve the vaccine effectiveness �.

480    Chapter 7  |  Differential Equations

CONCEPT CHECK

	 1.	�� (a)	 What is a differential equation?
		  (b)	 What is the order of a differential equation?
		  (c)	 What is an initial condition?
		  (d)	� What are the differences between pure-time, autonomous, 

and nonautonomous differential equations?

	 2.	��� What can you say about the solutions of the equation 
y9 − x 2 1 y 2 just by looking at the differential equation?

	 3.	��� What is a phase plot for the differential equation y9 − tsyd?

	 4.	��� What is a direction field for the differential equation  
y9 − Fsx, yd?

	 5.	�� Explain how Euler’s method works.

	 6.	��� What is a separable differential equation? How do you solve it?

	 7.	��� (a)	 Write the logistic equation.
		  (b)	� Under what circumstances is this an appropriate model 

for population growth?

	 8.	�� (a)	� Write Lotka-Volterra equations to model populations of 
sharks S and their food F.

		  (b)	� What do these equations say about each population in 
the absence of the other?

	 9.	��� What is a nullcline?

	 10.	�� (a)	� Write Lotka-Volterra competition equations for two 
competing fish species, x and y.

		  (b)	� What would the nullclines have to look like for species 
x to always outcompete species y?

Answers to the Concept Check can be found on the back 
endpapers.

Chapter 7 Review
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	� Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

	 1.	��� All solutions of the differential equation y9 − 21 2 y 4 are 
decreasing functions.

	 2.	�� �The function f sxd − sln xdyx is a solution of the differential 
equation x 2 y9 1 xy − 1.

	 3.	��� Consider the differential equation y9 − tsyd where tsyd is a 
differentiable function of y. It is not possible for y to exhibit 
oscillatory behavior.

	 4.	��� The equation y9 − x 1 y is separable.

	 5.	��� The equation y9 − 3y 2 2x 1 6xy 2 1 is separable.

	 6.	��� If y is the solution of the initial-value problem

dy

dt
− 2yS1 2

y

5D    ys0d − 1

		��  then lim
t l ` 

y − 5.

TRUE-FALSE QUIZ

EXERCISES

	� 1–4 � A differential equation is given.
	� (a)	 Determine all equilibria as a function of the constant a.
	�� (b)	� Construct a phase plot and use it to determine the stability 

of the equilibria found in part (a) for three different values 
of the constant: (i) a , 0, (ii) a − 0, and (iii) a . 0.

	� (c)	� Use the local stability criterion to verify your answers to 
part (b).

	 1.	 x9 − ax 2 x 2	 2.	 x9 − a 2 x 2

	 3.	 x9 − ax 2 x 3	 4.	 x9 − ax 1 x 3

	 5.	�� (a)	� A direction field for the differential equation 
y9 − ysy 2 2dsy 2 4d is shown. Sketch the graphs of 
the solutions that satisfy the given initial conditions.

			   (i)	 ys0d − 20.3	 (ii)	 ys0d − 1
			   (iii)	 ys0d − 3	 (iv)	 ys0d − 4.3
		  (b)	� If the initial condition is ys0d − c, for what values of  

c is lim t l ` ystd finite? What are the equilibrium  
solutions?

0 x

y

1 2

2

4

6

	 6.	�� (a)	� Sketch a direction field for the differential equation 
y9 − xyy. Then use it to sketch the four solutions that  
satisfy the initial conditions ys0d − 1, ys0d − 21,  
ys2d − 1, and ys22d − 1.

		  (b)	� Check your work in part (a) by solving the differential 
equation explicitly. What type of curve is each solution 
curve?

	 7.	�� (a)	� A direction field for the differential equation 
y9 − x 2 2 y 2 is shown. Sketch the solution of the 
initial-value problem

y9 − x 2 2 y 2    ys0d − 1

			��   Use your graph to estimate the value of ys0.3d.

0 x

y

1 2_1_2

1

2

_1

_2

3_3

3

_3

		  (b)	� Use Euler’s method with step size 0.1 to estimate ys0.3d, 
where ysxd is the solution of the initial-value problem in 
part (a). Compare with your estimate from part (a).

		  (c)	� On what lines are the centers of the horizontal line 
segments of the direction field in part (a) located? What 
happens when a solution curve crosses these lines?

	 8.	�� (a)	� Use Euler’s method with step size 0.2 to estimate ys0.4d, 
where ysxd is the solution of the initial-value problem

y9 − 2xy 2    ys0d − 1

		  (b)	 Repeat part (a) with step size 0.1.
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		���  sents the reaction to an amount S of stimulus, then the 
relative rates of increase are proportional:

1

R
 
dR

dt
−

k

S
 
dS

dt

		���  where k is a positive constant. Find R as a function of S.

	 17.	� Lung preoxygenation �� Some medical procedures require 
a patient’s airway to be temporarily blocked, preventing the 
inspiration of oxygen. The duration of time over which such 
procedures can be performed safely may be increased by 
replacing a large fraction of the air in the patient’s lungs 
with oxygen prior to the procedure. Suppose the lung vol- 
ume is 3 L and well-mixed air in the lungs is replaced with 
pure oxygen at a rate of 10 mLys.

		  (a)	� What is the amount of oxygen in the lungs as a function 
of time if they initially contain 20% oxygen?

		  (b)	� Use your answer from part (a) to determine how long 
the process of oxygenation should be run to result in an 
80% oxygen content in the lungs.

	 18.	��� A tank contains 100 L of pure water. Brine that contains  
0.1 kg of salt per liter enters the tank at a rate of 10 Lymin.  
The solution is kept thoroughly mixed and drains from the  
tank at the same rate. How much salt is in the tank after  
six minutes?

	 19.	�H ormone transport �� In lung physiology, the transport of 
a substance across a capillary wall has been modeled by the 
differential equation

dh

dt
− 2

R

V
 S h

k 1 hD
		��  �where h is the hormone concentration in the bloodstream (in 

mgymL), t is time (in seconds), R is the maximum transport 
rate, V is the volume of the capillary, and k is a positive 
constant that measures the affinity between the hormones 
and the enzymes that assist the process. Solve this differen-
tial equation to find a relationship between h and t.

	 20.	�P redator-prey dynamics �� Populations of birds and insects 
are modeled by the equations

dx

dt
− 0.4x 2 0.002xy

dy

dt
− 20.2y 1 0.000008xy

		  (a)	� Which of the variables, x or y, represents the bird 
population, and which represents the insect population? 
Explain.

		  (b)	� Find the equilibrium solutions and explain their  
significance.

		  (c)	 Find an expression for dyydx.
		  (d)	� The direction field for the differential equation in part 

(c) is shown. Use it to sketch the phase trajectory corre-

		  (c)	� Find the exact solution of the differential equation and 
compare the value at 0.4 with the approximations in 
parts (a) and (b).

	� 9–10 � Solve the differential equation.

	 9.	 2ye y2
y9 − 2x 1 3sx  	 10.	

dx

dt
− 1 2 t 1 x 2 tx

	� 11–12 � Solve the initial-value problem.

	 11.	��
dr

dt
1 2tr − r,    rs0d − 5

	 12.	�� s1 1 cos xdy9 − s1 1 e2ydsin x,    ys0d − 0

	 13.	� Seasonality and population dynamics �� The per capita 
growth rate of a population varies seasonally. The popula-
tion dynamics are modeled as

n9 − cosS 2�t

365Dn    ns0d − n0

		���  where nstd is the population size at time t (measured in 
days). Determine the population size at time t.

	 14.	� Seasonality and population dynamics �� The per capita 
growth rate of a population varies seasonally and habitat 
destuction is also occurring. This is modeled as

n9 − rScosF 2�t

365G 2 atDn    ns0d − n0

		���  where nstd is the population size at time t (measured in 
days) and r and a are positive constants. Determine the 
population size at time t.

	 15.	� Levins’ metapopulation model ��from Exercise 7.2.15 
describes a population consisting of patches that can be 
either occupied or vacant. Occupied patches create more 
occupied patches by sending individuals to unoccupied 
patches. If the frequency of occupied patches is p, we 
would therefore expect that the rate at which new patches 
become occupied is proportional to both p and 1 2 p. 
Patches also become unoccupied through mortality at a 
constant rate. The differential equation for p is

dp

dt
− cps1 2 pd 2 mp    ps0d − p0

		���  where c and m are constants.
		  (a)	 Find the solution to this initial-value problem.
		  (b)	� Under what conditions on the constants will the fre-

quency of occupied patches go to zero as t l `?

	 16.	�T he Brentano-Stevens Law ��in psychology models the way 
that a subject reacts to a stimulus. It states that if R repre- 
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precancerous stages. Suppose there are n 2 1 precancerous 
stages before cancer develops at stage n. A simple system 
of differential equations modeling this is

 x90 − 2u0 x0

 x9i − ui21 xi21 2 ui xi

 x9n − un21 xn21

		���  where xi is the fraction of the population in state i, the ui’s 
are constants, and i − 1, . . . , n 2 1.

		  (a)	� Suppose n − 2. What is the system of three differential 
equations?

		  (b)	� Suppose u0 − 1 and u1 − 1. Construct the phase 
plane for the variables x0 and x1 alone, including all 
nullclines, equilibria, and arrows indicating the direc-
tion of movement in the plane.

		  (c)	� From your answer to part (a), obtain a differential 
equation for dx1ydx0 for the parametric curves 
describing the trajectories in the x0-x1 plane. Use this 
equation to plot the vector field. Then sketch several 
solutions curves for x1 as a function of x0, assuming 
that x0s0d − a and x1s0d − 1 2 a, where 0 , a , 1.

		  (d)	� Your answer to part (c) will produce a family of func-
tions in the constant a. Provide a biological interpreta-
tion for these parametric curves.

	 23.	� Competition-colonization models �� The metapopulation 
model from Exercise 15 can be extended to include two 
species, where one is a superior competitor. The equations 
are

 
dp1

dt
− c1 p1s1 2 p1d 2 m1 p1

 
dp2

dt
− c2 p2s1 2 p1 2 p2d 2 m2 p2 2 c1 p1 p2

		���  where p1 and p2 are the fractions of patches occupied by 
species 1 and 2, respectively. These equations model a 
process in which any patch has at most one species, and 
where species 2 patches can be “taken over” by species 1, 
but not vice versa.

		  (a)	� Explain how the terms in the equations reflect the 
assumption that species 1 is the superior competitor.

		  (b)	� Suppose that m1 − m2 − 3, c1 − 5, and c2 − 30. 
Construct the phase plane, including all nullclines, 
equilibria, and arrows indicating the direction of 
movement in the plane. Show that, despite species 1 
being a better competitor, the two species are predicted 
to coexist.

	 24.	�H abitat destruction �� The model of Exercise 23 can be 
extended to include the effects of habitat destruction. 
Suppose that only a fraction h of the patches are habitable 

			�   sponding to initial populations of 100 birds and 40,000 
insects. Then use the phase trajectory to describe how 
both populations change.
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		  (e)	� Use part (d) to make rough sketches of the bird and 
insect populations as functions of time. How are these 
two graphs related?

	 21.	��� Suppose the model of Exercise 20 is replaced by the 
equations

 
dx

dt
− 0.4x s1 2 0.000005xd 2 0.002xy

 
dy

dt
− 20.2y 1 0.000008xy

		  (a)	� According to these equations, what happens to the 
insect population in the absence of birds?

		  (b)	� Find the equilibrium solutions and explain their  
significance.

		  (c)	� The figure shows the phase trajectory that starts with 
100 birds and 40,000 insects. Describe what eventually 
happens to the bird and insect populations.
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		  (d)	� Sketch graphs of the bird and insect populations as 
functions of time.

	 22.	� Cancer progression �� The development of many cancers, 
such as colorectal cancer, proceeds through a series of 
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division phase is triggered by high concentrations of a 
molecule called MPF (maturation promoting factor). The 
production of this factor is stimulated by another molecule 
called cyclin, and MPF eventually inhibits its own produc-
tion. Using M and C to denote the concentrations of these 
two biomolecules (in mgymL), a simple model for their 
interaction is

 
dM

dt
− �C 1 �CM 2 2

�M

1 1 M

 
dC

dt
− � 2 M

		  (a)	� Suppose that � − 2, � − 1, � − 10, and � − 1. Con-
struct the phase plane, including all nullclines, equilib-
ria, and arrows indicating the direction of movement in 
the plane.

		  (b)	� From your answer to part (a), what is the qualitative 
nature of the dynamics of M predicted by this model? 
What does this predict about the dynamics of cell  
division?

		  (c)	� For any equilibrium found in part (a), specify whether 
it is locally stable, unstable, or if the information is 
inconclusive.

Source: Adapted from R. Norel et al., “A Model for the Adjustment of the 

Mitotic Clock by Cyclin and MPF Levels,” Science 251 (1991): 1076 –78.

		���  (0 , h , 1). The equations become

 
dp1

dt
− c1 p1sh 2 p1d 2 m1 p1

 
dp2

dt
− c2 p2sh 2 p1 2 p2d 2 m2 p2 2 c1 p1 p2

		��  Suppose that m1 − m2 − 3, c1 − 5, and c2 − 30.
		  (a)	� Construct the phase plane, including all nullclines, equi-

libria, and arrows indicating the direction of movement 
in the plane when 35 , h , 1.

		  (b)	� Construct the phase plane, including all nullclines, equi-
libria, and arrows indicating the direction of movement 
in the plane when 1

10 , h , 3
5.

		  (c)	� Construct the phase plane, including all nullclines, equi-
libria, and arrows indicating the direction of movement 
in the plane when 0 , h , 1

10.
		  (d)	� From your results to parts (a), (b), and (c), determine 

how habitat destruction is expected to affect the coexis-
tence of the two species.

Source: Adapted from S. Nee et al., “Dynamics of Metapopulations: Habitat 

Destruction and Competitive Coexistence,” Journal of Animal Ecology 61 

(1992): 37–40.

	 25.	� Cell cycle dynamics �� The process of cell division is 
periodic, with repeated growth and division phases as the 
cell population multiplies. It has been suggested that the 

case study 2c  Hosts, Parasites, and Time-Travel

In this part of the case study you will formulate a mathematical model for 
the antagonistic interactions between Daphnia and its parasite using differ-
ential equations. Let’s suppose that there are two possible host genotypes (A 
and a) and two possible parasite genotypes (B and b). Parasites of type B can infect only 
hosts of type A, while parasites of type b can infect only hosts of type a (see Table 1). 
We will derive a set of two coupled differential equations that model the dynamics of the 
frequency of A in the host population and B in the parasite population.

Table 1   
��The outcome of challenges between  

different host and parasite genotypes.

Parasite B

Parasite b

Host A Host a

Infection
occurs

Infection
does not

occur

Infection
does not

occur

Infection
occurs
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A common differential equation used in biology to model the frequency dynamics of 
a particular genotype is

(1)	
df

dt
− f s1 2 f dsr1 2 r2d	

where f  is the frequency of type 1, and r1 and r2 are the per capita reproduction rates of 
the two types. For example, see Exercise 7.2.16. We will use an equation of this form for 
both the host and the parasite populations.

Suppose the per capita reproduction rate of uninfected hosts is rq and that for infected 
hosts is rq 2 sq. The constant sq is assumed to satisfy the inequality 0 , sq , rq and 
represents the reduction in reproductive output of a host due to infection. Similarly, the 
per capita reproduction rate of a parasite that is able to infect a host is rp and that for one 
unable to infect a host is rp 2 sp (the parasite can reproduce in the absence of the host, 
but it does so less well). The constant sp is assumed to satisfy the inequality 0 , sp , rp 
and represents the reduction in reproductive output of a parasite if it is unable to infect 
a host.

Let’s use q to denote the frequency of type A individuals in the host population and 
p to denote the frequency of type B individuals in the parasite population. Suppose that 
host–parasite encounters occur at random with respect to genotype.

	 1.	�� �With random encounters, the average per capita reproduction rate for hosts of a 
given type is rB p 1 rbs1 2 pd, where rB and rb are the reproduction rates of the 
host when encountering a type B or type b parasite, respectively. Show that the 
average per capita reproduction rates of hosts of type A and a are therefore

	 type A:	 rq 2 psq	

	 type a:	 rq 2 s1 2 pdsq	

	 2.	�� �With random encounters, the average per capita reproduction rate for parasites of 
a given type is rAq 1 ras1 2 qd, where rA and ra are the reproduction rates of the 
parasite when encountering a type A or type a host, respectively. Show that the 
average per capita reproduction rates of parasites of type B and b are therefore

	 type B:	 rp 2 s1 2 qdsp	

	 type b:	 rp 2 qsp	

	 3.	�� �Suppose both q and p satisfy differential equations of the form given in Equa-
tion 1. Show that q and p therefore satisfy

 
dq

dt
− sqqs1 2 qds1 2 2pd

 
dp

dt
− sp ps1 2 pds2q 2 1d

	 4.	�� �Construct the phase plane including all nullclines, equilibria, and arrows indica-
tion the direction of movement in the plane.

	 5.	�� �Explain, qualitatively, how the frequencies of the two parasite genotypes are 
predicted to change over time. Similarly, explain how the frequencies of the two 
host genotypes are predicted to change over time.

BB

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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8.1  Coordinate Systems

8.2  Vectors

8.3  �The Dot Product
Project: Microarray Analysis of Genome Expression
Project: Vaccine Escape

8.4  Matrix Algebra

8.5  �Matrices and the Dynamics of Vectors

8.6  �The Inverse and Determinant of a Matrix
Project: Cubic Splines

8.7  Eigenvectors and Eigenvalues

8.8  Iterated Matrix Models
Project: The Emergence of Geometric Order in Proliferating Cells

Shown is an antigenic map of 

isolates of human enterovirus. 

Similar maps are constructed in 

Examples 8.1.3, 8.1.6, and 8.1.8.

Source: S.-W. Huang et al., “Reemergence of Enterovirus 
71 in 2008 in Taiwan: Dynamics of Genetic and Antigenic 

Evolution from 1998 to 2008,” Journal of Clinical  
Microbiology 47 (2009): 3653–62.
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8.1 Coordinate Systems

To locate a point in a plane, two numbers are necessary. We know that any point in the 
plane can be represented as an ordered pair sa, bd of real numbers, where a is the x-coor-
dinate and b is the y-coordinate. For this reason, a plane is called two-dimensional. 

■ Three-Dimensional Space
To locate a point in space, three numbers are required. We represent any point in space 
by an ordered triple sa, b, cd of real numbers. In order to do so we first choose a fixed 
point O (the origin) and three directed lines through O that are perpendicular to each 
other, called the coordinate axes and labeled the x-axis, y-axis, and z-axis. Usually we 
think of the x- and y-axes as being horizontal and the z-axis as being vertical, and we 
draw the orientation of the axes as in Figure 1. The direction of the z-axis is determined 
by the right-hand rule as illustrated in Figure 2: If you curl the fingers of your right 
hand around the z-axis in the direction of a 908 counterclockwise rotation from the posi-
tive x-axis to the positive y-axis, then your thumb points in the positive direction of the 
z-axis.

The three coordinate axes determine the three coordinate planes illustrated in Fig- 
ure 3(a). The xy-plane is the plane that contains the x- and y-axes; the yz-plane contains  
the y- and z-axes; the xz-plane contains the x- and z-axes. These three coordinate planes 
divide space into eight parts, called octants. The first octant, in the foreground, is 
determined by the positive axes.

(a) Coordinate planes

y

z

x

O

yz-plane

xy-plane

xz-plane

(b)

z

O

right wall

left w
all

y
x floor

Because many people have some difficulty visualizing diagrams of three-dimensional 
figures, you may find it helpful to do the following [see Figure 3(b)]. Look at any bottom 
corner of a room and call the corner the origin. The wall on your left is in the xz-plane, the 
wall on your right is in the yz-plane, and the floor is in the xy-plane. The x-axis runs along 
the intersection of the floor and the left wall. The y-axis runs along the intersection of the 
floor and the right wall. The z-axis runs up from the floor toward the ceiling along the 
intersection of the two walls. You are situated in the first octant, and you can now imagine 

O

z

y

x

Figure �1
Coordinate axes

x

z

y

Figure �2
Right-hand rule

Figure �3

In This chapter we introduce coordinate systems and vectors for three-dimen-

sional space and higher. This will lead us into important ideas in linear algebra and the 

powerful techniques of matrix models. It also sets the stage for a more complete analy-

sis of systems of differential equations and the study of functions of multiple variables.
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seven other rooms situated in the other seven octants (three on the same floor and four on 
the floor below), all connected by the common corner point O.

Now if P is any point in space, let a be the (directed) distance from the yz-plane to P,  
let b be the distance from the xz-plane to P, and let c be the distance from the xy-plane to  
P. We represent the point P by the ordered triple sa, b, cd of real numbers and we call  
a, b, and c the coordinates of P; a is the x-coordinate, b is the y-coordinate, and c is the  
z-coordinate. Thus, to locate the point sa, b, cd, we can start at the origin O and move  
a units along the x-axis, then b units parallel to the y-axis, and then c units parallel to the  
z-axis as in Figure 4.

The point Psa, b, cd determines a rectangular box as in Figure 5. If we drop a perpen- 
dicular from P to the xy-plane, we get a point Q with coordinates sa, b, 0d called the pro
jection of P onto the xy-plane. Similarly, Rs0, b, cd and Ssa, 0, cd are the projections of 
P onto the yz-plane and xz-plane, respectively.

As numerical illustrations, the points s24, 3, 25d and s3, 22, 26d are plotted in Fig-
ure 6.
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 Example 1   |  Human biomechanics  The position of the center of a human 
walking on a treadmill at any point in time is described by its x, y, and z coordinates 
(see Figure 7). Over time the point moves and traces out a curve in space. Which 
directions of movement are revealed by the projection of this point onto the horizontal 
coordinate plane? Explain why the curve projected onto this plane has the shape shown 
in Figure 7.

Solution � The projection onto the horizontal coordinate plane shows motion from 
side to side as well as from front to back. It does not reveal any motion in the vertical 
direction. The projected curve shown in the figure resembles a “figure eight” that is 
elongated in the direction of side-to-side movement (the x-direction). People sway from 
side to side with each step while walking, causing the movement in the x-direction. At 
the same time, each step that the person takes moves him forward slightly, and the 
turning of the treadmill then moves him backward again. Together these movements 
trace out a figure eight in the horizontal plane. In this example, the magnitude of the 
side-to-side movement is larger than the magnitude of the movement front to back, 
which causes the projected curve to appear elongated in the x-direction.	 ■

The Cartesian product R 3 R 3 R − hsx, y, zd | x, y, z [ Rj is the set of all 
ordered triples of real numbers and is denoted by R 3. We have given a one-to-one 
correspondence between points P in space and ordered triples sa, b, cd in R 3. It is 
called a three-dimensional rectangular coordinate system. Notice that, in terms of 
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Figure �7
The blue dot indicates the position 
at a fixed time. The gray curve is a 
projection of the black curve onto the 
horizontal plane. (Image of person is 
not to scale.)
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coordinates, the first octant can be described as the set of points whose coordinates are 
all positive.

 Example 2   |  BB   Genome expression profiles  Due to advances in 
biotechnology, researchers can now quantify gene expression across the entire genome 
of organisms in response to various experimental perturbations. The set of the levels of 
expression of a collection of genes is called a genome expression profile (see Fig-
ure 8). Most perturbations result in some genes being upregulated (positive expression) 
and others being suppressed (negative expression). Consider three hypothetical genes, 
A, B, and C, and suppose two different experiments are conducted that result in the 
following dimensionless expression profiles: Experiment 1 sA, B, Cd − s1, 1, 21.5d 
and Experiment 2 sA, B, Cd − s1.5, 21, 0.2d. Plot these data points in R3. Interpret 
their projections on each of the three coordinate planes.

Solution � Using the x-, y-, and z-coordinates for the expression levels of genes A, 
B, and C, respectively, we obtain Figure 9(a) for Experiment 1 and Figure 9(b) for 
Experiment 2. The projections of each data point on the three different coordinate 
planes reveal the various possible two-gene expression profiles.

_1.5

(1, 1, _1.5)

z

y

x

1
1

(a)     

1.5
(1.5, _1, 0.2)

z

y

x

0.2

_1

(b) 	 ■

 Example 3   |  BB   Antigenic cartography  The extent to which viruses react 
with the immune system is sometimes measured by testing their ability to bind with a 
large panel of different immune molecules called antisera. Suppose the binding ability 
of four influenza strains with three different kinds of antiserum molecules are given by 
the dimensionless numbers in the following table.

Antiserum 1 Antiserum 2 Antiserum 3

Strain 1 2.06 1.92 2.96
Strain 2 1.79 1.91 2.44
Strain 3 2.68 3.53 3.31
Strain 4 2.39 4.05 4.46

Plot the data for the four strains in three-dimensional space. This space is referred to as 
antigenic space and construction of such an antigenicity plot is referred to as antigenic 
cartography.

Solution � Using the x-, y-, and z-coordinates for the binding ability to antisera 1, 2, 
and 3, we obtain Figure 10. The binding ability to any pair of antisera is given by the 
projection of these four red points onto the various coordinate planes.

Th
e 

Sa
ng

er
 In

st
itu

te
, W

el
lc

om
e 

Im
ag

es

Figure �8
Expression level of each gene is 
measured as color intensity of a dot 
on a microarray, as shown here. The 
entire microarray displays the genome 
expression profile. See also the Project 
on page 513.

Figure �9
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In two-dimensional analytic geometry, the graph of an equation involving x and y is 
a curve in R 2. In three-dimensional analytic geometry, an equation in x, y, and z repre-
sents a surface in R 3.

 Example 4   |  What surfaces in R 3 are represented by the following equations?
(a)	 z − 3	 (b)	 y − 5

SOLUTION

(a)	 The equation z − 3 represents the set hsx, y, zd | z − 3j, which is the set of all 
points in R 3 whose z-coordinate is 3. This is the horizontal plane that is parallel to the 
xy-plane and three units above it as in Figure 11(a).

(c) y=5, a line in R@

0

y

5

x

(b) y=5, a plane in R#(a) z=3, a plane in R#

y

0

z

x 50

z

yx

3

(b)	 The equation y − 5 represents the set of all points in R 3 whose y-coordinate is 5. 
This is the vertical plane that is parallel to the xz-plane and five units to the right of it 
as in Figure 11(b).

Note that when an equation is given, we must understand from the context whether 
it represents a curve in R 2 or a surface in R 3. For example, y − 5 represents a plane 
in R 3, but of course y − 5 can also represent a line in R 2 if we are dealing with two-
dimensional analytic geometry. See Figure 11(b) and (c).	 ■

The familiar formula for the distance between two points in a plane is easily extended 
to the following three-dimensional formula.

Distance Formula in Three Dimensions � The distance | P1P2 | between the 
points P1sx1, y1, z1d and P2sx2, y2, z2 d is

| P1P2 | − ssx2 2 x1d2 1 sy2 2 y1d2 1 sz2 2 z1d2 

Figure �10
Four strains plotted in three-dimen-

sional antigenic space (red dots),  
as well as the projection onto the  
two-dimensional antigenic space  
of antisera 1 and 2 (black dots).

Figure �11
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To see why this formula is true, we construct a rectangular box as in Figure 12, where 
P1 and P2 are opposite vertices and the faces of the box are parallel to the coordinate  
planes. If Asx2, y1, z1d and Bsx2, y2, z1d are the vertices of the box indicated in the figure, 
then

| P1A | − | x2 2 x1 |            | AB | − | y2 2 y1 |            | BP2 | − | z2 2 z1 |
Because triangles P1BP2 and P1AB are both right-angled, two applications of the 

Pythagorean Theorem give

| P1P2 |2 − | P1B |2 1 | BP2 |2

and	 | P1B |2 − | P1A |2 1 | AB |2

Combining these equations, we get

 | P1P2 |2 − | P1A |2 1 | AB |2 1 | BP2 |2

 − | x2 2 x1 |2 1 | y2 2 y1 |2 1 | z2 2 z1 |2

 − sx2 2 x1d2 1 sy2 2 y1d2 1 sz2 2 z1d2

Therefore	  | P1P2 | − ssx2 2 x1d2 1 sy2 2 y1d2 1 sz2 2 z1d2 

 Example 5   |  The distance from the point Ps2, 21, 7d to the point Qs1, 23, 5d is

	  | PQ | − ss1 2 2d2 1 s23 1 1d2 1 s5 2 7d2 − s1 1 4 1 4 − 3	 ■

 Example 6   |  BB   Antigenic cartography (continued)  What is the anti-
genic distance between influenza strain 2 and strain 4 in Example 3?

Solution � The distance between strain 2 and strain 4 is the distance between point 
Ps1.79, 1.91, 2.44d and point Qs2.39, 4.05, 4.46d. This is

	  | PQ | − ss2.39 2 1.79d2 1 s4.05 2 1.91d2 1 s4.46 2 2.44d2 < 3	 ■

 Example 7   |  Find an equation of a sphere with radius r and center Csh, k, ld.

SOLUTION � By definition, a sphere is the set of all points Psx, y, zd whose distance 
from C is r. (See Figure 13.) Thus P is on the sphere if and only if | PC | − r. Squaring 
both sides, we have | PC |2 − r 2 or

	 sx 2 hd2 1 sy 2 kd2 1 sz 2 ld2 − r 2 	 ■

The result of Example 7 is worth remembering.

Equation of a Sphere � An equation of a sphere with center Csh, k, ld and 
radius r is

sx 2 hd2 1 sy 2 kd2 1 sz 2 ld2 − r 2

In particular, if the center is the origin O, then an equation of the sphere is

x 2 1 y 2 1 z2 − r 2

0
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■ Higher-Dimensional Space
Just as we extended two-dimensional space to three-dimensional space, we can go  
further and generalize to n-dimensional space. Although we cannot visualize such  
spaces, we can still work with them mathematically. This is extremely important in  
the life sciences because the systems and objects that we seek to describe mathe- 
matically are often characterized by several variables. The Cartesian product 
R 3 R 3 ? ? ? 3 R, where the product involves n copies of R, is denoted R n and is 
defined as R n − hsx1, x2, c, xnd | x1, x2, c, xn [ Rj. This is the set of all ordered  
n-tuples of real numbers.

Distance Formula in n Dimensions � The distance | P1P2 | between the 
points P1sa1,c, and and P2sb1,c, bnd is

| P1P2 | − ssb1 2 a1d2 1 ? ? ? 1 sbn 2 and2 

 Example 8   |  BB   Antigenic cartography (continued)  Antigenic car-
tography has been carried out for 273 human influenza viruses collected over time 
from 1968 through to 2002.1 Each virus was tested for its binding ability to 79 different 
antisera, producing a 79-dimensional antigenic space. The result is a plot of 273 points 
in R79. We cannot visualize such a high-dimensional space but, just as in three-dimen-
sional space, we can project the points onto lower-dimensional surfaces. Although the 
way in which this is done can be complicated, Figure 14 gives an example of these data 
projected onto a two-dimensional plane. Despite the virus data existing in 79-dimen-
sional antigenic space, we get a remarkably good visualization of the viruses, and how 
they have changed antigenically over a 34-year period, by projecting the points onto a 
plane representing a two-dimensional antigenic space.	 ■Figure �14

	 1.	��� Suppose you start at the origin, move along the x-axis a 
distance of 4 units in the positive direction, and then move 
downward a distance of 3 units. What are the coordinates of 
your position?

	 2.	�� �Sketch the points s0, 5, 2d, s4, 0, 21d, s2, 4, 6d, and 
s1, 21, 2d on a single set of coordinate axes.

	 3.	��� Which of the points Ps6, 2, 3d, Qs25, 21, 4d, and Rs0, 3, 8d 
is closest to the xz-plane? Which point lies in the yz-plane?

	 4.	��� What are the projections of the point (2, 3, 5) on the xy-, yz-, 
and xz-planes? Draw a rectangular box with the origin and 
s2, 3, 5d as opposite vertices and with its faces parallel to the 
coordinate planes. Label all vertices of the box. Find the 
length of the diagonal of the box.

	 5.	�� �Describe and sketch the surface in R3 represented by the 
equation x 1 y − 2.

	 6.	�� (a)	� What does the equation x − 4 represent in R2? What 
does it represent in R3? Illustrate with sketches.

		  (b)	� What does the equation y − 3 represent in R3? What 
does z − 5 represent? What does the pair of equations 
y − 3, z − 5 represent? In other words, describe the set 
of points sx, y, zd such that y − 3 and z − 5. Illustrate 
with a sketch.

	 7.	��� Find the lengths of the sides of the triangle PQR. Is it a right 
triangle? Is it an isosceles triangle?

		  (a)	 Ps3, 22, 23d,    Qs7, 0, 1d,    Rs1, 2, 1d
		  (b)	 Ps2, 21, 0d,    Qs4, 1, 1d,    Rs4, 25, 4d

	 8.	�� �Find the distance from s3, 7, 25d to each of the following.
		  (a)	 The xy-plane	 (b)	 The yz-plane
		  (c)	 The xz-plane	 (d)	 The x-axis
		  (e)	 The y-axis	 (f)	 The z-axis

EXERCISES 8.1

1.� D. Smith et al., “Mapping the Antigenic and Genetic Evolution of Influenza Virus,” Science 305 (2004): 
371–76.
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	 33.	�� �The region consisting of all points between (but not on) the 
spheres of radius r and R centered at the origin, where r , R

	 34.	�� �The solid upper hemisphere of the sphere of radius 2 cen-
tered at the origin

	 35.	��� The figure shows a line L1 in space and a second line L2,  
which is the projection of L1 onto the xy-plane. (In other 
words, the points on L2 are directly beneath, or above, the 
points on L1.)

		  (a)	 Find the coordinates of the point P on the line L1.
		  (b)	� Locate on the diagram the points A, B, and C, where  

the line L1 intersects the xy-plane, the yz-plane, and the  
xz-plane, respectively.

x

0

z

y

1

1 1

L¡

L™

P

	 36.	� Darwin’s finches ��have been used to study how differences in 
bird morphology are related to differences in diet. Morpho-
logical measurements (in mm) of three species are given in 
the table for three traits.

Species Wing length Tarsus length Beak length

G. difficilis 64 18.1 9.6
G. fuliginosa 62.1 17.9 8.6
G. scandens 73.1 21.1 14.5

		���  The proportion of time spent feeding on different types of 
food for these three species is given in the following table.

Species Seeds Pollen Other

G. difficilis 0.67 0.23 0.1
G. fuliginosa 0.7 0.28 0.02
G. scandens 0.14 0 0.86

		  (a)	� Thinking of the morphology of each species as a point in 
R 3, calculate the morphological distance between each 
pair of species.

		  (b)	� Thinking of the diet of each species as a point in R 3, 
calculate the diet distance between each pair of species.

	 9.	��� Determine whether the points lie on a straight line.
		  (a)	 As2, 4, 2d,    Bs3, 7, 22d,    Cs1, 3, 3d
		  (b)	 Ds0, 25, 5d,    Es1, 22, 4d,    Fs3, 4, 2d

	 10.	��� Find an equation of the sphere with center s2, 26, 4d and 
radius 5. Describe its intersection with each of the coordinate 
planes.

	 11.	�� �Find an equation of the sphere that passes through the point  
s4, 3, 21d and has center s3, 8, 1d.

	 12.	�� �Find an equation of the sphere that passes through the origin 
and whose center is s1, 2, 3d.

	� 13–16 � Show that the equation represents a sphere, and find its  
center and radius.

	 13.	 x 2 1 y 2 1 z 2 2 6x 1 4y 2 2z − 11

	 14.	 x 2 1 y 2 1 z 2 1 8x 2 6y 1 2z 1 17 − 0

	 15.	 2x 2 1 2y 2 1 2z 2 − 8x 2 24z 1 1

	 16.	 3x 2 1 3y 2 1 3z 2 − 10 1 6y 1 12z

	 17.	�� (a)	� Prove that the midpoint of the line segment from 
P1sx1, y1, z1d to P2sx2, y2, z2 d is

S x1 1 x2

2
, 

 y1 1 y2

2
, 

z1 1 z2

2 D
		  (b)	� A median of a triangle is a line segment joining a vertex 

to the midpoint of the opposite side. Find the lengths 
of the medians of the triangle with vertices As1, 2, 3d, 
Bs22, 0, 5d, and Cs4, 1, 5d.

	 18.	��� Find an equation of a sphere if one of its diameters has 
endpoints s2, 1, 4d and s4, 3, 10d.

	 19.	�� �Find equations of the spheres with center s2, 23, 6d that 
touch (a) the xy-plane, (b) the yz-plane, (c) the xz-plane.

	 20.	��� Find an equation of the largest sphere with center (5, 4, 9) 
that is contained in the first octant.

	� 21–30 � Describe in words the region of R 3 represented by the 
equations or inequalities.

	 21.	 x − 5	 22.	 y − 22

	 23.	 y , 8	 24.	 x > 23

	 25.	 0 < z < 6	 26.	 z 2 − 1

	 27.	�� x 2 1 y 2 − 4,    z − 21	 28.	 y 2 1 z 2 − 16

	 29.	 x 2 1 y 2 1 z 2 < 3	 30.	 x − z

	� 31–34 � Write inequalities to describe the region.

	 31.	��� The region between the yz-plane and the vertical plane x − 5

	 32.	��� The solid cylinder that lies on or below the plane z − 8 
and on or above the disk in the xy-plane with center the 
origin and radius 2
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year. Similarly, if the antigenic data are in three dimen-
sions, spheres can be drawn around the data for each year, 
as shown in the figure. If the circles (or spheres) from years 
x and x 1 1 overlap, then the amount of antigenic change 
between these years is relatively small. In such cases we 
might expect a single vaccine to work for both years. If the 
circles or spheres do not overlap, then we might need differ-
ent vaccines for each year.

z

y

x 2010

2011

2012

2013

		  (a)	� Suppose the antigenic data are two-dimensional, 
and the circles for two successive years are given 
by the equations sx 2 2d2 1 sy 2 3d2 − 1 and 
sx 2 3d2 1 sy 2 2d2 − 1

4. Would a single vaccine  
work for both years?

		  (b)	� Suppose the antigenic data are three-dimensional, and 
the spheres for two successive years are given by the 
equations

sx 2 2d2 1 sy 2 3d2 1 sz 2 1d2 − 1

			   and	 sx 2 3d2 1 sy 2 2d2 1 z 2 − 1
4

			   Would a single vaccine work for both years?
		  (c)	� Notice that the x- and y-coordinates of the centers of the 

circles in part (a) are the same as the x- and y-coordi-
nates of the centers of the spheres in part (b), and the 
radii are the same as well. What is the relationship 
between the plot of the circles in part (a) and the plot of 
the spheres in part (b)?

	 40.	��� Describe and sketch a solid with the following properties: 
When illuminated by rays parallel to the z-axis, its shadow 
is a circular disk. If the rays are parallel to the y-axis, its 
shadow is a square. If the rays are parallel to the x-axis, its 
shadow is an isosceles triangle.

		  (c)	� Do species that are morphologically most similar also 
tend to have the most similar diets?

Source: Adapted from D. Schluter et al., “Ecological Correlates of Morpho-

logical Evolution in a Darwin’s Finch, Geospiza difficilis,” Evolution 38 

(1984): 856–69.

	 37.	� Human biomechanics �� The trajectory of the center of a 
human walking on a treadmill is shown in the figure. Here x 
denotes the lateral position, y the position forward or back- 
ward, and z the vertical position. The coordinates at time 
t − 0 are s1.2, 0, 1.5d and at t − 2 are s1, 2, 0.5d, where 
distances are measured in cm.

		  (a)	� What is magnitude of the the net lateral distance trav-
eled over the first two seconds?

		  (b)	� What is the magnitude of the net distance traveled in the 
vertical direction over the first two seconds?

		  (c)	� What is the net distance traveled through three-dimen-
sional space over the first two seconds?

z

y
x t=2

t=0

Source: Adapted from L. Tesio et al., “The 3D Trajectory of the Body Centre 

of Mass during Adult Human Walking: Evidence for a Speed-Curvature 

Power Law,” Journal of Biomechanics 44 (2011): 732–40.

	 38.	� Vaccine design �� Most vaccines protect only against patho-
gens that fall within a certain region of antigenic space. 
Suppose that a vaccine protects against any strain falling 
within a sphere of radius 2 centered at the point s2, 1, 0d in 
antigenic space. For each strain, determine whether this vac-
cine will be effective.

		  (a)	 A strain located at s0, 0, 0d in antigenic space
		  (b)	� A strain located at s1, 0, 3d in antigenic space
		  (c)	� A strain located at s1, 0, 1d in antigenic space
		  (d)	� A strain located at s1y4, 2, 1d in antigenic space

	 39.	� Antigenic evolution and vaccination �� Antigenic data 
like those in Figure 14 can be summarized by taking the 
points from each year and drawing the smallest possible 
circle that encompasses these data. This results in a tem-
poral sequence of circles in antigenic space, one for each 

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



496    Chapter 8  |  Vectors and Matrix Models

8.2 Vectors

The term vector is used by scientists to indicate a quantity (such as displacement or 
velocity or force) that has both magnitude and direction. A vector is often represented by 
an arrow or a directed line segment. The length of the arrow represents the magnitude 
of the vector and the arrow points in the direction of the vector. We denote a vector by 
printing a letter in lowercase boldface svd or by putting an arrow above the letter svld.

For instance, suppose a particle moves along a line segment from point A to point  
B. The corresponding displacement vector v, shown in Figure 1, has initial point A (the 
tail) and terminal point B (the tip) and we indicate this by writing v − AB

l
. Notice  

that the vector  u − CD
l

 has the same length and the same direction as v even though it 
is in a different position. We say that u and v are equivalent (or equal) and we write 
u − v. The zero vector, denoted by 0, has length 0. It is the only vector with no specific 
direction.

■ Combining Vectors
Suppose a particle moves from A to B, so its displacement vector is AB

l
. Then the particle

changes direction and moves from B to C, with displacement vector BC
l

 as in Figure 2. 
The combined effect of these displacements is that the particle has moved from A to C. 
The resulting displacement vector AC

l
 is called the sum of AB

l
 and BC

l
 and we write

AC
l

− AB
l

1 BC
l

In general, if we start with vectors u and v, we first move v so that its tail coincides 
with the tip of u and define the sum of u and v as follows.

Definition of Vector Addition � If u and v are vectors positioned so the initial 
point of v is at the terminal point of u, then the sum u 1 v is the vector from the 
initial point of u to the terminal point of v.

The definition of vector addition is illustrated in Figure 3. You can see why this defi
nition is sometimes called the Triangle Law.

vu+v

u

v
v+

u

u

u

v

u+
v

Figure �3 
The Triangle Law

Figure �4 
The Parallelogram Law

In Figure 4 we start with the same vectors u and v as in Figure 3 and draw another  
copy of v with the same initial point as u. Completing the parallelogram, we see that 
u 1 v − v 1 u. This also gives another way to construct the sum: If we place u and v 
so they start at the same point, then u 1 v lies along the diagonal of the parallelogram 
with u and v as sides. (This is called the Parallelogram Law.)

A

B

v

C

D

u

Figure �1
Equivalent vectors

C

B

A

Figure �2
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 Example 1   |  BB   Antigenic cartography  The evolution of influenza in 
antigenic space across years can be viewed as a vector, since it is characterized by both 
its magnitude and direction of change (see also Example 8.1.8). Figure 5 shows clusters 
of influenza virus in two-dimensional antigenic space from several years. Illustrate 
how the vector of antigenic change between the centers of the viral clusters in 1989 and 
1995 is the sum of the corresponding vectors from 1989–1992 and 1992–1995. Use 
both the Triangle and the Parallelogram Law.

Solution � The vector corresponding to the antigenic change from 1989 to 1995 is 
labeled as c in Figure 6. For the Triangle Law, first we draw a vector from the 1989 
cluster to the 1992 cluster (labeled a). Then we draw a vector from the 1992 cluster to 
the 1995 cluster (labeled b). We see that a 1 b − c. Figure 6(a) illustrates the Triangle 
Law. 

For the Parallelogram Law, we again draw a vector from the 1989 cluster to the 1992 
cluster. Then we draw a vector from the 1992 cluster to the 1995 cluster and translate it 
so that it starts where a starts. The vector c then lies on the diagonal of the corresponding 
parallelogram, as shown in Figure 6(b).

c

a

b

(a) The Triangle Law     

c

ab

(b) The Parallelogram Law 	■

It is possible to multiply a vector by a real number c. (In this context we call the real num-
ber c a scalar to distinguish it from a vector.) For instance, we want 2v to be the same  
vector as v 1 v, which has the same direction as v but is twice as long. In general, we 
multiply a vector by a scalar as follows.

Definition of Scalar Multiplication � If c is a scalar and v is a vector, then 
the scalar multiple cv is the vector whose length is | c | times the length of v and 
whose direction is the same as v if c . 0 and is opposite to v if c , 0. If c − 0 or 
v − 0, then cv − 0.

Figure �5

Figure �6
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This definition is illustrated in Figure 7. We see that real numbers work like scaling 
factors here; that’s why we call them scalars. Notice that two nonzero vectors are paral-
lel if they are scalar multiples of one another. In particular, the vector 2v − s21dv has 
the same length as v but points in the opposite direction. We call it the negative of v.

By the difference u 2 v of two vectors we mean

u 2 v − u 1 s2vd

So we can construct u 2 v by first drawing the negative of v, 2v, and then adding it to u  
by the Parallelogram Law as in Figure 8(a). Alternatively, since v 1 su 2 vd − u, 
the vector u 2 v, when added to v, gives u. So we could construct u 2 v as in Figure 
8(b) by means of the Triangle Law.

(a)

uv

u-v

_v

(b)

v

u-v

u

 Example 2   |  BB   Antigenic cartography (continued)  Using the vectors a 
and b in Figure 9, illustrate the vector of antigenic change b 2 a with both the Triangle 
and the Parallelogram Laws.

Solution � For the Triangle Law we seek the vector that, when added to a gives b. 
This is obtained as the vector from the terminal point of a to the terminal point of b, as 
shown in Figure 10(a). 

For the Parallelogram Law we first construct the vector 2a. Then we add it to b using 
the Parallelogram Law as in Figure 10(b). Although the vectors constructed in Figures 
10(a) and 10(b) are in different positions, they are equivalent vectors because they repre-
sent the same direction and magnitude of antigenic change.

	

b

a

b-
a

_a

b

a

b-a

(a) The Triangle Law (b) The Parallelogram Law 	 ■

■ Components
For some purposes it’s best to introduce a coordinate system and treat vectors algebra-
ically. If we place the initial point of a vector a at the origin of a rectangular coordinate 

_1.5v

v 2v

_v

v1
2

Figure �7
Scalar multiples of v

Figure �8
Drawing u 2 v 

b

a

Figure �9

Figure �10
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system, then the terminal point of a has coordinates of the form sa1, a2d or sa1, a2, a3d, 
depending on whether our coordinate system is two- or three-dimensional (see Figure 11).

a=[a¡, a™] a=[a¡, a™, a£]

(a¡, a™)

O

y

x

a

z

x y

a
O

(a¡, a™, a£)

These coordinates are called the components of a and we write

a − fa1, a2g             or            a − fa1, a2, a3g

We use the notation fa1, a2g for the ordered pair that refers to a vector so as not to confuse 
it with the ordered pair sa1, a2d that refers to a point in the plane.

For instance, the vectors shown in Figure 12 are all equivalent to the vector
OP
l

− f 3, 2g whose terminal point is Ps3, 2d. What they have in common is that the 
terminal point is reached from the initial point by a displacement of three units to the 
right and two upward. We can think of all these geometric vectors as representations of
the algebraic vector a − f3,  2g. The particular representation OP

l
 from the origin to the 

point Ps3, 2d is called the position vector of the point P.

(1, 3)

(4, 5)

x

y

0

P(3, 2)

Figure �12
Representations of the vector a − f3, 2g      

O

z

y
x

position
vector of P

P(a¡, a™, a£)

A(⁄, y¡, z¡) B(⁄+a¡, y¡+a™, z¡+a£)

Figure �13
Representations of a − fa1, a2, a3g

In three dimensions, the vector a − OP
l

− fa1, a2, a3g is the position vector of the  
point Psa1, a2, a3d. (See Figure 13.) Let’s consider any other representation AB

l
 of a, where 

the initial point is Asx1, y1, z1d and the terminal point is Bsx2, y2, z2 d. Then we must have 
x2 − x1 1 a1, y2 − y1 1 a2, and z2 − z1 1 a3 and so a1 − x2 2 x1, a2 − y2 2 y1, and 
a3 − z2 2 z1. Thus we have the following result.

(1) � Given the points Asx1, y1, z1d and Bsx2, y2, z2 d, the vector a with represen-
tation AB

l
 is

a − fx2 2 x1, y2 2 y1, z2 2 z1g

Figure �11

The component form of a vector is 
sometimes written using angled brack-
ets rather than square brackets. So, for 
instance, vector a − fa1, a2, a3g can be 
equivalently written as a − ka1, a2, a3l.
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 Example 3   |  BB   Antigenic cartography (continued)  Given the coordi-
nate system overlaid on the two-dimensional antigenic space in Figure 14, find the 
components of the vector represented by the directed line segment from the cluster A 
in 1987 to cluster B in 1989.

0

1010

6

4 7

A

B

x

y

Solution � By result (1), the vector corresponding to AB
l

 is

	 a − f4 2 7, 6 2 10g − f23, 24g	 ■

The magnitude or length of a vector a is the length of any of its representations and 
is denoted by the symbol | a | or i a i. By using the distance formula to compute its length, 
we obtain the following formulas.

The length of the two-dimensional vector a − fa1, a2 g is

|a | − sa2
1 1 a2

2
 

The length of the three-dimensional vector a − fa1, a2, a3g is

| a | − sa2
1  1 a2

2  1 a2
3

 

How do we add vectors algebraically? Figure 15 shows that if a − fa1, a2g and 
b − fb1, b2g, then the sum is a 1 b − fa1 1 b1, a2 1 b2g, at least for the case where the 
components are positive. In other words, to add algebraic vectors we add their compo-
nents. Similarly, to subtract vectors we subtract components. From the similar triangles 
in Figure 16 we see that the components of ca are ca1 and ca2. So to multiply a vector by 
a scalar we multiply each component by that scalar.

If a − fa1,  a2 g  and b − fb1,  b2g, then

 a 1 b − fa1 1 b1, a2 1 b2g       a 2 b − fa1 2 b1, a2 2 b2g

ca − fca1, ca2 g

Similarly, for three-dimensional vectors,

 f a1, a2, a3 g 1 f b1, b2, b3 g − f a1 1 b1, a2 1 b2, a3 1 b3 g

 f a1, a2, a3 g 2 f b1, b2, b3 g − f a1 2 b1, a2 2 b2, a3 2 b3 g

 cf a1, a2, a3 g − f ca1, ca2, ca3 g

Figure �14

0

y

xb¡a¡

b¡

b™b
a+b

a

(a¡+b¡, a™+b™)

a™ a™

Figure �15 

ca™

ca¡

ca
a™

a¡

a

Figure �16
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A unit vector is a vector whose length is 1. In general, if a ± 0, then the unit vector 
that has the same direction as a is

(2)	 u −
1

| a |  a −
a

| a |  	

 Example 4   |  Find the unit vector in the direction of the vector a − f2, 21, 22g.

Solution � The given vector has length

| a | − s22 1 s21d2 1 s22d2 − s9 − 3

so, by Equation 2, the unit vector with the same direction is

	 1
3 f2, 21, 22g − f2

3, 21
3, 22

3g	 ■

 Example 5   |  If a − f4, 0, 3g and b − f22, 1, 5g, find | a | and the vectors a 1 b, 
a 2 b, 3b, and 2a 1 5b.

SOLUTION	  | a | − s42 1 02 1 32 − s25 − 5

	  a 1 b − f4, 0, 3g 1 f22, 1, 5g

	  − f4 1 s22d, 0 1 1, 3 1 5g − f2, 1, 8g

	  a 2 b − f4, 0, 3g 2 f22, 1, 5g

	  − f4 2 s22d, 0 2 1, 3 2 5g − f6, 21, 22g

	  3b − 3f22, 1, 5g − f3s22d, 3s1d, 3s5dg − f26, 3, 15g

	  2a 1 5b − 2f4, 0, 3g 1 5f22, 1, 5g

	  − f8, 0, 6g 1 f210, 5, 25g − f22, 5, 31g 	 ■

 Example 6   |  Biomechanics  A force is represented by a vector because it has 
a magnitude (in newtons) and a direction. If more than one force is acting on an object, 
the resultant force is the vector sum of these forces. Consider the horizontal and vertical 
forces exerted by an athlete at the start of the 100-meter sprint as shown in Figure 17.
(a)	 What is the resultant force vector exerted by the athlete?
(b)	 What is the total magnitude of the force exerted by the athlete?

Solution

(a)	 The force vector in the horizontal direction is f180, 0g and in the vertical direction, 
f0, 490g. The resultant force vector is therefore f180, 0g 1 f0, 490g − f180, 490g.
(b)	 The total magnitude of the force is the length of the resultant force vector. This is 
s1802 1 4902 < 522 newtons.	 ■

A common alternative notation for 
vectors in three dimensions makes use 
of unit vectors in the x-, y-, and z-direc-
tions. By convention these three special 
vectors are denoted by i, j, and k, 
respectively. Exercises 8.2.30–32 show 
how any three-dimensional vector can 
be written in terms of i, j, and k.

490 N
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Figure �17
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We denote by V2 the set of all two-dimensional vectors and by V3 the set of all three-
dimensional vectors. More generally, Vn is the set of all n-dimensional vectors where an  
n-dimensional vector is an ordered n-tuple:

a − fa1, a2, . . . , ang

and a1, a2, . . . , an are real numbers called the components of a. Addition and scalar 
multiplication are defined in terms of components just as for the cases n − 2 and n − 3. 
Likewise, the length of a vector from Vn is calculated by using the distance formula on 
page 493.

Properties of Vectors � If a, b, and c are vectors in Vn and c and d are scalars, 
then

1.	 a 1 b − b 1 a	 2.	 a 1 sb 1 cd − sa 1 bd 1 c
3.	 a 1 0 − a	 4.	 a 1 s2ad − 0
5.	 csa 1 bd − ca 1 cb	 6.	 sc 1 dda − ca 1 da
7.	 scdda − csdad	 8.	 1a − a

These eight properties of vectors can be readily verified either geometrically or alge-
braically. For instance, Property 1 can be seen from Figure 4 (it’s equivalent to the Paral
lelogram Law) or as follows for the case n − 2:

 a 1 b − fa1, a2 g 1 fb1, b2 g − fa1 1 b1, a2 1 b2 g

 − fb1 1 a1, b2 1 a2 g − fb1, b2 g 1 fa1, a2 g

 − b 1 a

We can see why Property 2 (the associative law) is true by looking at Figure 18 and
applying the Triangle Law several times: The vector PQ

l
 is obtained either by first con-

structing a 1 b and then adding c or by adding a to the vector b 1 c.

Vectors in n dimensions are used to list 
various quantities in an organized way. 
For instance, the components of a six-
dimensional vector

p − f p1, p2, p3, p4, p5, p6g

might represent the expression levels of 
six different genes.

b

c

a

(a+b)+c

P

Q

=a+(b+c)
a+b

b+c

Figure �18

	 1.	��� Are the following quantities vectors or scalars? Explain.
		  (a)	 The cost of a theater ticket
		  (b)	 The current in a river
		  (c)	 The initial flight path from Houston to Dallas
		  (d)	 The population of the world

	 2.	��� What is the relationship between the point s4, 7d and the  
vector f4, 7g? Illustrate with a sketch.

	 3.	�� �Name all the equal vectors in the parallelogram shown.

B

E

A

D C

	 4.	��� Write each combination of vectors as a single vector.

		  (a)	 PQ
l

1 QR
l

	 (b)	 RP
l

1 PS
l

		  (c)	 QS
l

2 PS
l

	 (d)	 RS
l

1 SP
l

1 PQ
l

Q

R
S

P

	 5.	��� Copy the vectors in the figure and use them to draw the 
following vectors.

		  (a)	 u 1 v	 (b)	 u 2 v
		  (c)	 v 1 w	 (d)	 w 1 v 1 u

wvu

EXERCISES 8.2
Note: Vector notations using square brackets f1, 1g and angle brackets k1, 1l are equivalent. You may see either notation in your online homework.
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	� 26–27 � Find the magnitude of the resultant force and the angle it 
makes with the positive x-axis.

	 26.	
20 lb

16 lb

45°
0

y

x30°

	 27.	

300 N

200 N

60°
0

y

x

	 28.	��� The magnitude of a velocity vector is called speed. Suppose 
that a wind is blowing from the direction N45°W at a speed 
of 50 kmyh. (This means that the direction from which the 
wind blows is 45° west of the northerly direction.) A pilot is 
steering a plane in the direction N60°E at an airspeed (speed 
in still air) of 250 kmyh. The true course, or track, of the 
plane is the direction of the resultant of the velocity vectors 
of the plane and the wind. The ground speed of the plane is 
the magnitude of the resultant. Find the true course and the 
ground speed of the plane.

	 29.	�� �A woman walks due west on the deck of a ship at 3 miyh. 
The ship is moving north at a speed of 22 miyh. Find the 
speed and direction of the woman relative to the surface of 
the water.

	� 30–32 � The unit vectors in V3 that coincide with the coordinate 
axes are called the standard basis vectors and are denoted by 
i − f1, 0, 0g, j − f0, 1, 0g, and k − f0, 0, 1g. (See the figure.)

z

x
y

j

i

k

	� �If a − fa1, a2, a3g, we can write

 a − fa1, 0, 0g 1 f0, a2, 0g 1 f0, 0, a3g

 − a1 f1, 0, 0g 1 a2 f0, 1, 0g 1 a3 f0, 0, 1g

	�� �Therefore any vector a in V3 can be expressed in terms of the 
standard basis vectors as a − a1 i 1 a2 j 1 a3 k.

	 30.	��� Express the following vectors in terms of the standard basis 
vectors.

		  (a)	 f21, 4g	 (b)	 f5, 7g
		  (c)	 f22, 1, 2g	 (d)	 f21, 0, 2g

	 6.	��� Copy the vectors in the figure and use them to draw the  
following vectors.

		  (a)	 a 1 b	 (b)	 a 2 b
		  (c)	 1

2 a	 (d)	 23b
		  (e)	 a 1 2b	 (f)	 2b 2 a

b a

	� 7–10 � Find a vector a with representation given by the directed 
	� line segment AB

l
. Draw AB

l
 and the equivalent representation 

	 starting at the origin.

	 7.	�� As21, 3d,    Bs2, 2d	 8.	 As2, 1d,    Bs0, 6d

	 9.	�� As0, 3, 1d,    Bs2, 3, 21d	 10.	 As4, 0, 22d,    Bs4, 2, 1d

	� 11–14 � Find the sum of the given vectors and illustrate  
geometrically.

	 11.	 f21, 4g,     f6, 22g	 12.	 f22, 21g,    f5, 7g

	 13.	 f0, 1, 2g,    f0, 0, 23g	 14.	 f21, 0, 2g,    f0, 4, 0g

	� 15–18 � Find a 1 b, 2a 1 3b, | a |, and | a 2 b |.
	 15.	�� a − f5, 212g,    b − f23, 26g

	 16.	�� a − f4, 1g,    b − f1, 22g

	 17.	�� a − f1, 2, 23g,    b − f22, 21, 5g

	 18.	�� a − f2, 24, 4g,    b − f0, 2, 21g

	� 19–21 � Find a unit vector that has the same direction as the 
given vector.

	 19.	 f23, 7g	 20.	 f24, 2, 4g

	 21.	 f8, 21, 4g

	 22.	��� Find a vector that has the same direction as f22, 4, 2g but 
has length 6.

	 23.	��� If v lies in the first quadrant and makes an angle �y3 with 
the positive x-axis and | v | − 4, find v in component form.

	 24.	�� �If a child pulls a sled through the snow on a level path with 
a force of 50 N exerted at an angle of 38° above the hori-
zontal, find the horizontal and vertical components of the 
force.

	 25.	��� A quarterback throws a football with angle of elevation 40° 
and speed 60 ftys. Find the horizontal and vertical compo-
nents of the velocity vector.
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patient’s
right

patient’s
left

voltage
vector

		���    We can think of the voltage vector as being the resultant 
vector of a vertical and a horizontal component of voltage 
(see the figure). Conductive abnormalities in different parts 
of the heart can reduce the voltage in either of these 
directions, thereby altering the direction and magnitude of 
the resultant voltage vector.

		  (a)	� A left anterior hemiblock reverses the direction of the 
vertical component of voltage and reduces the magni-
tude of the horizontal component. Describe how such 
a condition could be diagnosed based on the resultant 
voltage vector.

		  (b)	�  A left posterior hemiblock reverses the direction of the 
horizontal component of voltage. Describe how such 
a condition could be diagnosed based on the resultant 
voltage vector.

	 40.	��� Suppose a vector a makes angles �, �, and � with the 
positive x-, y-, and z-axes, respectively. Find the compo-
nents of a and show that cos2 � 1 cos2 � 1 cos2 � − 1. 
(The numbers cos �, cos �, and cos � are called the 
direction cosines of a.)

	 41.	��� If r − fx, y, zg and r0 − fx0, y0, z0g, describe the set of all 
points sx, y, zd such that | r 2 r0 | − 1.

	 42.	��� If r − fx, yg, r1 − fx1, y1g, and r2 − fx2, y2g, describe the 
set of all points sx, yd such that | r 2 r1 | 1 | r 2 r2 | − k, 
where k . | r1 2 r2 |.

	 43.	��� Figure 18 gives a geometric demonstration of Property 2 of 
vectors. Use components to give an algebraic proof of this 
fact for the case n − 2.

	 44.	��� Prove Property 5 of vectors algebraically for the case n − 3. 
Then use similar triangles to give a geometric proof.

	 45.	��� Use vectors to prove that the line joining the midpoints of 
two sides of a triangle is parallel to the third side and half 
its length.

	 46.	�A ntigenic cartography �� The Triangle Inequality for 
vectors (see Exercise 8.3.48) is�

| a 1 b | < | a | 1 | b |
		���  Suppose that a denotes the vector of antigenic change in 

influenza from year 2012 to 2013, and b denotes the vector 
of antigenic change from 2013 to 2014. Explain what the 
Triangle Inequality means in terms of this antigenic change.

	 31.	��� If a − i 1 2 j 2 3 k and b − 4 i 1 7 k, evaluate the 
following in terms of the standard basis vectors.

		  (a)	 a 1 b	 (b)	 a 2 b
		  (c)	 2 a 1 3 b	 (d)	 5 a 2 7 b

	 32.	��� Find the unit vector that points in the same direction as the 
given vector and express it in terms of the standard basis 
vectors.

		  (a)	 i 1 j	 (b)	 i 1 j 1 k
		  (c)	 2 i 2 k	 (d)	 4 i 1 6 j 2 k

	 33.	�� �Find the unit vectors that are parallel to the tangent line to 
the parabola y − x 2 at the point s2, 4d.

	 34.	�� (a)	� Find the unit vectors that are parallel to the tangent line 
to the curve y − 2 sin x at the point s�y6, 1d.

		  (b)	� Find the unit vectors that are perpendicular to the tangent 
line.

		  (c)	� Sketch the curve y − 2 sin x and the vectors in parts (a) 
and (b), all starting at s�y6, 1d.

	 35.	�� (a)	� Draw the vectors a − f3, 2g, b − f2, 21g, and  
c − f7, 1g.

		  (b)	� Show, by means of a sketch, that there are scalars s and t 
such that c − sa 1 tb.

		  (c)	 Use the sketch to estimate the values of s and t.
		  (d)	 Find the exact values of s and t.

	 36.	��� Suppose that a and b are nonzero vectors that are not paral-
lel and c is any vector in the plane determined by a and b. 
Give a geometric argument to show that c can be written as 
c − sa 1 tb for suitable scalars s and t. Then give an argu-
ment using components.

	 37.	��� Suppose a is a three-dimensional unit vector in the first 
octant that starts at the origin and makes angles of 60° and 
72° with the positive x- and y-axes, respectively. Express a in 
terms of its components.

	 38.	� Biomechanics �� Two sprinters of equal mass leave the 
starting blocks with the following horizontal and vertical 
force vectors:

Runner Horizontal Vertical

Runner 1 150 N 300 N
Runner 2 200 N 250 N

		���  Newton’s Second Law states that force is equal to mass 
times acceleration (F − ma). Which runner has the greater 
acceleration out of the blocks?

	 39.	� Vectorcardiography �� As the heart beats it generates dif- 
ferences in electrical potential (that is, voltage) across the 
body. Cardiologists view the voltage at any point in time dur-
ing a heartbeat as a vector. During ventricular contraction in 
healthy individuals this vector points downward and to the 
left of the patient (see the figure). Abnormalities in either the 
magnitude or direction can be used to diagnose cardiac 
problems.
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8.3 The Dot Product

So far we have added two vectors and multiplied a vector by a scalar. The question 
arises: Is it possible to multiply two vectors so that their product is a useful quantity? One 
such product is the dot product.

(1) Definition � If a − fa1, a2, a3g and b − fb1, b2, b3g, then the dot product of a 
and b is the number a ? b given by

a ? b − a1b1 1 a2b2 1 a3b3

Thus, to find the dot product of a and b, we multiply corresponding components and 
add. The result is not a vector. It is a real number, that is, a scalar. For this reason, the 
dot product is sometimes called the scalar product. Although Definition 1 is given for 
three-dimensional vectors, the dot product of two-dimensional vectors is defined in a 
similar fashion:

fa1, a2g ? fb1, b2g − a1b1 1 a2b2

Likewise, for n-dimensional vectors we have:

fa1, c, ang ? fb1,c, bng − a1b1 1 ∙ ∙ ∙ 1 an bn

 Example 1 

 f2, 4g ? f3, 21g − 2s3d 1 4s21d − 2

 f21, 7, 4g ? f6, 2, 21
2g − s21ds6d 1 7s2d 1 4(21

2 ) − 6

	  f1, 2, 23g ? f0, 2, 21g − 1s0d 1 2s2d 1 s23ds21d − 7	 ■

The dot product obeys many of the laws that hold for ordinary products of real numbers.

(2) Properties of the Dot Product � If a, b, and c are vectors in V3 and c is a  
scalar, then

1.	 a ? a − | a |2	 2.	 a ? b − b ? a

3.	 a ? sb 1 cd − a ? b 1 a ? c	 4.	 scad ? b − csa ? bd − a ? scbd
5.	 0 ? a − 0

These properties are easily proved using Definition 1. For instance, here are the 
proofs of Properties 1 and 3:

1.	 a ? a − a2
1 1 a2

2 1 a2
3 − | a |2

3.	  a ? sb 1 cd − fa1, a2, a3g ? fb1 1 c1, b2 1 c2, b3 1 c3g
	  − a1sb1 1 c1d 1 a2sb2 1 c2d 1 a3sb3 1 c3d
	  − a1b1 1 a1c1 1 a2b2 1 a2c2 1 a3b3 1 a3c3

	  − sa1b1 1 a2b2 1 a3b3d 1 sa1c1 1 a2c2 1 a3c3 d
	  − a ? b 1 a ? c

The proofs of the remaining properties are left as exercises.	 ■
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The dot product a ? b can be given a geometric interpretation in terms of the angle  
� between a and b. This angle is defined to be the angle between the representations of a 
and b that start at the origin, where 0 < � < � (see Figure 1). From the Law of Cosines 
for the two vectors we have:

(3)	 |a 2 b |2 − | a |2 1 | b |2 2 2 | a | | b | cos �	

Using Properties 1, 2, and 3 of the dot product, we can rewrite the left side of this equa-
tion as follows:

 | a 2 b |2 − sa 2 bd ? sa 2 bd

 − a ? a 2 a ? b 2 b ? a 1 b ? b

 − | a |2 2 2a ? b 1 | b |2

Therefore Equation 3 gives

 | a |2 2 2a ? b 1 | b |2 − | a |2 1 | b |2 2 2 | a | | b | cos �

 22a ? b − 22 | a | | b | cos �

or

(4) An Alternative Formula for the Dot Product

a ? b − | a | | b | cos �

where � is the angle between a and b (0 < � < �). (� is the smaller angle 
between the two vectors when drawn from the same initial point.)

Notice that, if the dot product of two nonzero vectors is zero, then cos � − 0. Thus 
� − �y2 and the two vectors are perpendicular (sometimes called orthogonal; see Fig-
ure 2). Also, because cos � . 0 if 0 < � , �y2 and cos � , 0 if �y2 , � < �, we see 
that a ? b is positive for � , �y2 and negative for � . �y2. We can therefore think of 
a ? b as measuring the extent to which a and b point in the same direction. The dot prod-
uct a ? b is positive if a and b point in the same general direction, 0 if they are perpen-
dicular, and negative if they point in generally opposite directions (see Figure 2). In the 
extreme case where a and b point in exactly the same direction we have � − 0, so 
cos � − 1 and

a ? b − | a | | b |
If a and b point in exactly opposite directions, then � − � and so cos � − 21 and 
a ? b − 2| a | | b |.

 Example 2   |  Show that f2, 2, 21g is perpendicular to f5, 24, 2g.

SOLUTION � Since

f2, 2, 21g ? f5, 24, 2g − 2s5d 1 2s24d 1 s21ds2d − 0

these vectors are perpendicular.	 ■

a-b

b

a¨

Figure �1

a
b

a · b>0

a b
a · b=0

a
b

a · b<0

¨ acute

¨ obtuse

¨=π/2

Figure �2

 TEC   Visual 8.3A shows an animation 
of Figure 2.
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 Example 3   |  Find the angle between the vectors a − f2, 2, 21g and 
b − f5, 23, 2g.

SOLUTION � Let � be the required angle. Since

| a | − s22 1 22 1 s21d2 − 3        and        | b | − s52 1 s23d2 1 22 − s38 

and since

a ? b − 2s5d 1 2s23d 1 s21ds2d − 2

we obtain

cos � −
a ? b

| a | | b | −
2

3s38 

So the angle between a and b is

	 � − cos21S 2

3s38 D < 1.46    (or 84°)	 ■

We now have techniques for comparing vectors both in terms of their magnitudes (in 
Section 8.2) and in terms of their directions (the dot product). Both can provide impor-
tant information in a variety of biological contexts.

 Example 4   |  BB   Using the dot product for biological discovery1   
Recall from Example 8.1.2 that a genome expression profile gives the level of expres-
sion of each of a collection of genes. Thus, it can be represented as an n-dimensional 
vector, where n is the number of genes assayed. For some cells a large number of such 
expression profiles have been characterized in response to different, known biochemi-
cal compounds. These can then be used to discover the mode of action of new bio-
chemical compounds by quantifying the genome expression profile induced by the new 
compound and determining which known profile it most closely resembles. The new 
compound likely affects cell function through a mechanism similar to that of the 
best-matching, known biochemical compound.

Consider expression profiles a and b that are induced by two known biochemical 
compounds. Suppose that four genes are assayed and the expression profiles are given 
by the vectors a − f2, 5, 0, 1g and b − f1, 2, 4, 3g, where the expression levels are 
dimensionless numbers. Suppose further that a new biochemical compound induces an 
expression profile given by the vector n − f1, 0, 5, 2g.
(a)	 Which known expression profile vector points in a direction most similar to that  
of n: profile a or profile b?
(b)	 What is the angle between profile n and the profile identified in part (a)?

Solution � The magnitudes of the profiles are given by

 | a | − s22 1 52 1 02 1 12 − s30 

 | b | − s12 1 22 1 42 1 32 − s30 

 | n | − s12 1 02 1 52 1 22 − s30 

1.� F. Kuruvilla et al., “Vector Algebra in the Analysis of Genome-Wide Expression Data,” Genome Biology 3 
(2002): research0011.1–11.
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Because all vectors have the same magnitude, s30 , the dot product of n with either a 
or b will have a maximum value of 30 if they point in the same direction and a mini-
mum value of 230 if they point in opposite directions.

(a)	 Calculating the dot products gives

 n ? a − f1, 0, 5, 2g ? f2, 5, 0, 1g − 4

 n ? b − f1, 0, 5, 2g ? f1, 2, 4, 3g − 27

Therefore n points in a direction most similar to b. We conclude that the new com-
pound likely affects the cell through a mechanism similar to that of the known bio-
chemical compound whose profile is b.

(b)	 The angle between n and b is given by cos21s27y30d < 0.45 (or 25.8°).	 ■

The dot product also enables us to write equations of planes. A plane is determined by 
a point P0sx0, y0, z0d in the plane and a vector n − fa, b, cg that is orthogonal to the plane. 
This orthogonal vector n is called a normal vector. If Psx, y, zd is any point in the plane, 
then the vector fx 2 x0, y 2 y0, z 2 z0g is perpendicular to n and so

fa, b, cg ? fx 2 x0, y 2 y0, z 2 z0g − 0

This gives us the following equation for the plane.

(5) � An equation of the plane that passes through the point P0sx0, y0, z0d and is 
perpendicular to the vector fa, b, cg is

asx 2 x0d 1 bsy 2 y0d 1 csz 2 z0d − 0

 Example 5   |  Find an equation of the plane through the point s2, 4, 21d with 
normal vector n − f2, 3, 4g.

Solution � Putting a − 2, b − 3, c − 4, x0 − 2, y0 − 4, and z0 − 21 in Equation 5, 
we see that an equation of the plane is

 2sx 2 2d 1 3sy 2 4d 1 4sz 1 1d − 0

or	  2x 1 3y 1 4z − 12	 ■

■ Projections
In addition to providing a means of comparing the direction of vectors, the dot product is 
useful for other analyses. Consider the force exerted by the foot of a runner as he pushes 
off the ground. The force propels him both forward and upward as shown in Figure 3. 
This force is a vector because it has both magnitude and direction. But what component 
of this force acts in the forward direction? Put another way, can we construct a horizontal 
vector that corresponds to the same forward force? From Figure 3 we can see that such a 
vector will have an x-component equal to the x-component of the original force vector.

More generally, Figure 4 shows representations PQ
l

 and PR
l

 of two arbitrary vectors a
and b with the same initial point P. If S is the base of the perpendicular from R to the line 
containing PQ

l
, then the vector with representation PS

l
 is called the vector projection of

b onto a and is denoted by proja b. (You can think of it as a shadow of b).
The scalar projection of b onto a (also called the component of b along a) is defined 

to be the signed magnitude of the vector projection, which is the number | b | cos �, where 
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Q

R

P
S

b
a

proja b

R

S
P

Q
a

proja b

b

� is the angle between a and b. (See Figure 5.) This is denoted by compa b. Observe that 
it is negative if �y2 , � < �.

The equation

a ? b − | a || b | cos � − | a |(| b | cos �)

shows that the dot product of a and b can be interpreted as the length of a times the 
scalar projection of b onto a. Since

| b | cos � −
a ? b

| a | −
a

| a | ? b

the component of b along a can be computed by taking the dot product of b with the unit 
vector in the direction of a. We summarize these ideas as follows.

Scalar projection of b onto a:	 compa b −
a ? b

| a |

Vector projection of b onto a:	 proja b − S a ? b

| a | D 
a

| a | −
a ? b

| a |2  a

 Example 6   |  Find the scalar projection and vector projection of b − f1, 1, 2g  
onto a − f22, 3, 1g.

SOLUTION � Since | a | − ss22d2 1 32 1 12 − s14 , the scalar projection of b onto 
a is

compa b −
a ? b

| a | −
s22ds1d 1 3s1d 1 1s2d

s14 
−

3

s14 

The vector projection is this scalar projection times the unit vector in the direction of a:

	 proja b −
3

s14 
 

a

| a | −
3

14
 a − F2

3

7
, 

9

14
, 

3

14G	 ■

 Example 7   |  BB   Vectorcardiography and Einthoven’s triangle  As the 
heart beats, it generates differences in electrical potential (that is, voltage) across the 
body. Cardiologists view the electrical potential generated by the heart at any point in 
time during a heartbeat as a vector. This vector points in the direction of the greatest 
potential, and its magnitude represents the voltage in this direction. Abnormalities in 
either the magnitude or direction can be used to diagnose cardiac problems.

In Chapter 1 we saw an example of measurements of the voltage between two points 
on a patient’s body. Most electrocardiographs actually take readings from among at 

�b � cos  ¨ =

b

a

R

S Q¨

P compa b

Figure �5
Scalar projection

Figure �4
Vector projections
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least three points on the body—the right arm (RA), the left arm (LA), and the left leg 
(LL). These points make up a triangle known as Einthoven’s triangle, as shown in 
Figure 6. The voltage between all pairs of vertices of this triangle is measured continu-
ously, with each side of the triangle being referred to as a lead. For example, the 
measured voltage between RA and LA at any point in time gives the voltage in the 
direction of a vector corresponding to the top edge of the triangle at that time (labeled 
lead 1 in Figure 6).

To capture this idea mathematically, Einthoven’s triangle is typically viewed as an 
equilateral triangle with unit sides, and with vertices having the coordinates s0, 0d, 
s1, 0d, and s1y2, 2s3 y2d as displayed in Figure 7. At any point in time, each of the 
three leads measures the voltage in the direction of the vector corresponding to that 
side of the triangle.

Now consider a heart voltage vector at some point during a heartbeat. We can’t 
measure this vector directly, but we can use the measurements from the three leads to 
infer its magnitude and direction. In particular, the measurement from lead 1 represents 
the scalar projection of the heart voltage vector onto the edge of the triangle between 
RA and LA (see Figure 7). Likewise, the measurement from lead 2 represents the 
scalar projection of the heart voltage vector onto the edge of the triangle between RA 
and LL, and so on. Thus the voltages measured in the three leads at any time gives us 
information about the magnitude and direction of the heart voltage vector at that time.

Suppose that heart voltage vector at some time during the heartbeat points from 
location s0.4, 20.2d to location s0.7, 20.4d in the coordinate system containing 
Einthoven’s triangle shown in Figure 7. Assume voltage is measured in mV.
(a)	 What is the voltage of the heart vector (that is, its magnitude) at this time?
(b)	 What will be the electrocardiograph reading for each of the three leads at this 
time?

solution

(a)	 From result 8.2.1, a representation of the heart voltage vector h is calculated as

h − f0.7 2 0.4, 20.4 2 s20.2dg − f0.3, 20.2g

The magnitude of the heart vector is therefore

| h | − s0.32 1 s20.2d2 < 0.36 mV

(b)	 The three leads correspond to the three sides of Einthoven’s triangle in Figure 7. 
From result 8.2.1, a vector representation of each side is

 l1 − f1 2 0, 0 2 0g − f1, 0g for RA to LA

 l 2 − F 1

2
2 0, 2

s3 

2
2 0G − F 1

2
, 2

s3 

2 G for RA to LL

 l 3 − F 1

2
2 1, 2

s3 

2
2 0G − F2

1

2
, 2

s3 

2 G for LA to LL

Notice that Einthoven’s triangle is defined to have sides of unit length. We verify this 
as follows:

 | l1 | − s12 1 02 − 1       | l 2 | − s(1
2)2 1 (2s3 y2)2 − 1

 | l 3 | − s(21
2)2 1 (2s3 y2)2 − 1

The electrocardiograph reading from each lead is the scalar projection of the heart 

Figure �7
Red arrow is the heart voltage vector.
Green arrows are the vector projec-
tions of the heart voltage vector onto 
the sides of Einthoven’s triangle. The 
signed magnitude of each vector pro-
jection (that is, it’s scalar projection) is 
measured by the corresponding lead.
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voltage vector on that lead. Therefore the reading in lead 1 will be l1 ? hy| l1 | − 0.3. 
The reading in lead 2 will be l 2 ? hy| l 2 | < 0.32. Finally, the reading in lead 3 will be 
l 3 ? hy| l 3 | < 0.02. As expected from Figure 7, real readings from leads 1 and 2 are 
normally relatively large, while the reading from lead 3 is normally nearly zero because 
the heart voltage vector is usually almost orthogonal to this lead.	 ■

	 1.	��� Which of the following expressions are meaningful? Which 
are meaningless? Explain.

		  (a)	 sa ? bd ? c	 (b)	 sa ? bdc
		  (c)	 | a | sb ? cd	 (d)	 a ? sb 1 cd
		  (e)	 a ? b 1 c	 (f)	 | a | ? sb 1 cd

	� 2–10 � Find a ? b. For Exercises 9–10, refer to the notation intro-
duced in Exercises 8.2.30–32.

	 2.	�� | a | − 3,    | b | − s6 ,    the angle between a and b is 45°

	 3.	�� | a | − 6,    | b | − 5,    the angle between a and b is 2�y3

	 4.	�� a − f22,  3g,    b − f0.7, 1.2g

	 5.	�� a − f22, 13g,    b − f25, 12 g

	 6.	�� a − f6, 22, 3g,    b − f2, 5, 21g

	 7.	�� a − f4, 1, 1
4g,    b − f6, 23, 28g

	 8.	�� a − f p, 2p, 2pg,    b − f2q, q, 2q g

	 9.	�� a − 2 i 1 j,    b − i 2 j 1 k

	 10.	�� a − 3 i 1 2 j 2 k,    b − 4 i 1 5k

	� 11–12 � If u is a unit vector, find u ? v and u ? w.

	 11.	

w

u v

	 12.	

w

u

v

	 13.	�� �Exercises 8.2.30–32 introduced the standard basis vectors 
i − f1, 0, 0g, j − f0, 1, 0g, and k − f0, 0, 1g.

		  (a)	 Show that i ? j − j ? k − k ? i − 0.
		  (b)	 Show that i ? i − j ? j − k ? k − 1.

	 14.	�P opulation dynamics �� Suppose a population of fish con-
tains a females that are 1 year old, b females between 2 and 
4 years old, and c females more than 4 years old. During the 
summer each one-year-old female produces 15 offspring, 
each female between 2 and 4 years old produces 35 off-
spring, and each female more than 4 years old produces 20 
offspring. If a − fa, b, cg and p − f15, 35, 20g, what is the 
meaning of the dot product a ? p ?

	� 15–18 � Find the angle between the vectors. (First find an exact 
expression and then approximate to the nearest degree.)

	 15.	 a − f28, 6g,  b − fs7 , 3g
	 16.	 a − fs3 , 1g,  b − f0, 5g

	 17.	 a − f0, 1, 1g,  b − f1, 2, 23g

	 18.	�� a − f1, 2, 22g,  b − f4, 0, 23g

	� 19–20 � Find, correct to the nearest degree, the three angles of 
the triangle with the given vertices.

	 19.	�� As1, 0d,  Bs3, 6d,  Cs21, 4d

	 20.	 Ds0, 1, 1d,  Es22, 4, 3d,  Fs1, 2, 21d

	� 21–22 � Determine whether the given vectors are orthogonal,  
parallel, or neither.

	 21.	�� (a)	 a − f 25, 3, 7 g,    b − f6, 28, 2g
		  (b)	 a − f4, 6g,     b − f23, 2g
		  (c)	 a − f21, 2, 5g,    b − f3, 4, 21g
		  (d)	 a − f2, 6, 24g,    b − f23, 29, 6g

	 22.	�� (a)	 u − f23, 9, 6g,    v − f4, 212, 28g
		  (b)	 u − f1, 21, 2g,    v − f2, 21, 1g
		  (c)	 u − fa, b, cg,    v − f2b, a, 0g

�	 23.	��� Use vectors to decide whether the triangle with vertices 
Ps1, 23, 22d, Qs2, 0, 24d, and Rs6, 22, 25d is right-
angled.

	 24.	��� For what values of b are the vectors f26, b, 2g and fb, b 2, bg 
orthogonal?

	 25.	��� Find a unit vector that is orthogonal to both f1, 1, 0g and 
f1, 0, 1g.

	 26.	��� Find two unit vectors that make an angle of 60° with  
v − f3, 4g.

	 27.	��� Find an equation of the plane that passes through the origin 
and is perpendicular to the vector f1, 22, 5g.

	 28.	��� Find an equation of the plane through the point (21, 12, 3) 
with normal vector f1, 4, 1g.

EXERCISES 8.3
Note: Vector notations using square brackets f1, 1g and angle brackets k1, 1l are equivalent. You may see either notation in your online homework.
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	 40.	�� Vectorcardiography � �In each of the following questions 
the heart voltage vector of a patient with different patholo-
gies is given. Determine the electrocardiograph reading that 
would result in each of the three leads of Einthoven’s tri- 
angle, and draw a sketch like that in Figure 7. Recall from 
Example 7 that vector representations of the sides of 
Einthoven’s triangle are

l1 − f1, 0g    l 2 − f1y2, 2s3 y2g

l 3 − f21y2, 2s3 y2g

		  (a)	� Left anterior hemiblock: h − f0.3, 0.2g
		  (b)	� Left posterior hemiblock: h − f20.3, 20.2g
		  (c)	� Apical ischemia: h − f20.3, 0.2g
		  (d)	� Chronic obstructive pulmonary disease: 

h − f0.1, 20.0667g

	 41.	��� Find the angle between a diagonal of a cube and one of its 
edges.

	 42.	��� Find the angle between a diagonal of a cube and a diagonal 
of one of its faces.

	 43.	��� If r − fx, y, zg, a − fa1,  a2,  a3g, and b − fb1, b2, b3g, show 
that the vector equation sr 2 ad ? sr 2 bd − 0 represents a 
sphere, and find its center and radius.

	 44.	��� If c − | a | b 1 | b | a, where a, b, and c are all nonzero 
vectors, show that c bisects the angle between a and b.

	 45.	��� Prove Property 4 of the dot product. Use either the definition 
of a dot product (considering the cases c . 0, c − 0, and 
c , 0 separately) or the component form.

	 46.	��� Suppose that all sides of a quadrilateral are equal in length 
and opposite sides are parallel. Use vector methods to show 
that the diagonals are perpendicular.

	 47.	��� Prove the Cauchy-Schwarz Inequality:

| a ? b | < | a | | b |
	 48.	��� The Triangle Inequality for vectors is

| a 1 b | < | a | 1 | b |
		���  Use the Cauchy-Schwarz Inequality from Exercise 47 to 

prove the Triangle Inequality. [Hint: Use the fact that 

| a 1 b |2 − sa 1 bd ∙ sa 1 bd and use Property 3 of the dot 
product.]

	 49.	��� The Parallelogram Law states that 

| a 1 b |2 1 | a 2 b |2 − 2 | a |2 1 2 | b |2

		  (a)	� Give a geometric interpretation of the Parallelogram 
Law.

		  (b)	� Prove the Parallelogram Law. (See the hint in  
Exercise 48.)

	 50.	��� Show that if u 1 v and u 2 v are orthogonal, then the 
vectors u and v must have the same length.

	� 29–32 � Find the scalar and vector projections of b onto a.

	 29.	 a − f3, 24g,  b − f5, 0g

	 30.	 a − f1, 2g,  b − f24, 1g

	 31.	 a − f2, 21, 4g,  b − f0, 1, 12g
	 32.	 a − f1, 1, 1g,  b − f1, 21, 1g

	 33.	��� Show that the vector orthab − b 2 projab is orthogonal  
to a. (It is called an orthogonal projection of b.)

	 34.	��� For the vectors in Exercise 30, find orthab and illustrate by 
drawing the vectors a, b, projab, and orthab.

	 35.	��� If a − f3, 0, 21g, find a vector b such that compab − 2.

	 36.	��� Suppose that a and b are nonzero vectors.
		  (a)	 Under what circumstances is compab − compb a?
		  (b)	 Under what circumstances is projab − projba?

	 37.	�A ntigenic evolution �� Influenza viruses from North 
America and Asia are sampled in two successive years and 
plotted in two-dimensional antigenic space. The coordinates 
of each are (i) North American viruses: s2, 1d for 2013 and 
s4, 3d for 2014, and (ii) Asian viruses: s4, 18d for 2013 and 
s5, 17d for 2014.

		  (a)	� How does the magnitude of antigenic change compare 
between the two regions?

		  (b)	� How does the direction of antigenic change compare 
between the two regions?

	 38.	� Community ecology �� Community ecologists study the 
factors that determine the abundance of different species. 
The abundance of three algae species (in mgymL) is quan- 
tified in two different lakes before and after an unusually  
hot summer. The coordinates of these four samples in R 3 are 
(i) Lake A: s97, 84, 43d and s100, 80, 50d before and after 
summer, respectively, and (ii) Lake B: s23, 59, 22d and 
s20, 63, 15d before and after summer, respectively.

		  (a)	� How does the magnitude of the change in algal commu-
nity compare between the two lakes?

		  (b)	� How does the direction of the change in algal commu-
nity compare between the two lakes?

	 39.	� Genome expression profiles and drug design   
��Researchers are trying to design a drug that alters the 
expression level of three genes in a specific way. The desired 
change in expression, written as a vector in V3, is f3, 9, 25g,  
where all measurements are dimensionless. Suppose two 
potential drugs are being studied, and the expression profiles 
that they induce are (A) f2, 4, 1g and (B) f22, 3, 25g.

		  (a)	� What is the magnitude of the desired change in  
expression?

		  (b)	� Using scalar projections, determine the fraction of this 
desired change that is induced by each drug.

		  (c)	� Which drug is closest to having the desired effect?
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■ Project  Microarray Analysis of Genome Expression	 BB

Microarrays provide a technique for quantifying how the expression of different genes 
in the genome changes in response to changes in conditions. Suppose we are interested 
in how a drug affects genome expression. Cells are maintained under a reference, or nor-
mal, condition as well as in the presence of the drug. All gene products generated under 
the reference condition are labeled with a green dye, and all gene products generated in 
the presence of the drug are labeled with a red dye. The next step is to take all known 
genes individually and adhere copies of each to different locations on a glass plate. The 
dyed extracts from cells are then washed over the plate, and each of the dyed gene prod-
ucts binds with its corresponding gene.

The result is a glass plate containing thousands of colored dots, one for each gene. 
The dots vary in color from green to yellow to red. A dot is green if the corresponding 
gene tends to be expressed less in the presence of the drug than in the reference condi-
tion because most of the extract binding to this gene on the plate will have come from 
reference cells. A dot is yellow if the corresponding gene is expressed equally in both 
cell types, and it is red if the gene tends to be expressed more in the presence of the drug 
than in the reference condition. The entire collection of colored dots on the plate is called 
a microarray. An example is shown in Figure 1.

To analyze microarray data the color intensity for each gene is translated into a 
numerical score in the interval s2`, `d, with negative values indicating green and posi-
tive values indicating red. For simplicity, let’s suppose there are five genes on the micro-
array and we have four different potential drugs, giving the following data:

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Drug A 1 3 5 6 9
Drug B 2 6 9 12 19
Drug C 21 6 7 0 3
Drug D 5 2 5 7 12

Suppose our goal is to determine the similarity of drugs A, B, C, and D in terms of the 
patterns of genome expression that they induce. To do so, we need a measure of similar-
ity of any two profiles.

	 1.	�� �Treating the expression profile for each drug as a point in R 5, calculate the dis-
tances between all pairs of profiles.

	 2.	�� �The next step is to group the drugs hierarchically according to their similarity. 
To do so, first take the two drugs that are closest and draw a circle around them. 
Then, take the drug that is next closest to either of these first two and draw a 
curve that encloses all three (see Figure 2). Proceed until all drugs are included, 
giving a diagram depicting hierarchical clusters of decreasing similarity as shown 
in Figure 2. It is also possible to depict the drug similarities using a dendogram, 
where the length of the path in the diagram between two drugs reflects the simi-
larity between the drugs (see Figure 3). Construct both.

	 3.	�� �The other commonly used measure of similarity between profiles involves the dot 
product. Treating the expression profile for each drug as a vector in V5, calculate 
the cosine of the angle between each of the pairs of profiles as a measure of simi-
larity. Repeat the clustering analysis in Problem 2 for this measure.

Problems 1 and 3 provide different measures of the similarity between pairs of pro-
files, and both are commonly used in microarray analysis. The similarity measure in 
Problem 1 is sometimes referred to as the Euclidean distance and the similarity measure 
in Problem 3 is sometimes referred to as the Pearson correlation coefficient.
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A microarray

XZ Y Q

Figure �2
An example of hierarchical clustering. 
Drugs X and Z are most similar, fol-
lowed by drug Y, and then drug Q.

X Z Y Q

Figure �3
An example of a dendogram corre-
sponding to the clusters in Figure 2
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■ Project  Vaccine Escape	 BB

Vaccine escape refers to the loss of effectiveness of a vaccine due to the antigenic evo-
lution of the pathogen. Suppose that a vaccine protects against all pathogens within a 
circle of radius 5 centered at the origin in two-dimensional antigenic space. Further, sup-
pose that the vector v giving the instantaneous velocity of evolution in antigenic space 
is always of fixed magnitude k and angle � from a line connecting the pathogen to the 
origin, with 0 , � , �y2. (See Figure 1.)

5

¨

1

k

1 5

v

	 1.	�� �Suppose the pathogen is currently at location s1, 1d in antigenic space. Using a 
vector projection, determine the vector that specifies the velocity at which the 
pathogen is evolving directly away from the origin.

	 2.	�� �Suppose the pathogen is currently at location s1, 1d in antigenic space. Using a 
scalar projection, determine the speed at which the pathogen is evolving directly 
away from the origin.

	 3.	�� �In general, suppose the pathogen is at location sx, yd. Using a scalar projection, 
determine the speed at which the pathogen is evolving directly away from the 
origin.

	 4.	�� �Use your result from Problem 3 to write a differential equation that governs the 
distance of the pathogen from the origin.

	 5.	�� �Integrate the differential equation from Problem 4 and determine the time at 
which vaccine escape occurs (that is, the time when the pathogen escapes the 
vaccine’s circle of protection), assuming the distance to the origin at time t − 0 
is s2 .
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8.4 Matrix Algebra

Many of the examples from Sections 8.2 and 8.3 involve vectors that change over time; 
for example, antigenic evolution of the influenza virus or the heart voltage vector. In 
Section 8.5 we will consider how to model such changes using what is called a matrix 
model. Before doing so, however, we first introduce some ideas from matrix algebra. We 
will return to biological applications in Section 8.5.

■ Matrix Notation
A matrix is a rectangular array of numbers. We use uppercase symbols to denote matrices. 
The size of a matrix is defined by the number of rows and columns it contains. For 
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example, an m 3 n matrix has m rows and n columns. If A is an m 3 n matrix, then the 
ijth entry of A is the entry in the ith row and the jth column. We denote this entry by aij. 
For example, the matrix

(1)	 A − c0 7 1

2 9 2
d 	

is a 2 3 3 matrix, and a12 − 7, a21 − 2, a23 − 2, and so forth.
A square matrix is one in which the number of rows is the same as the number of 

columns. We say that a square matrix is n 3 n, or has size n, if it has n rows and columns.
The transpose of a matrix is obtained by interchanging its rows and columns and 

is denoted by a superscript T . For example, the transpose of the matrix in Equation 1, 
denoted by AT, is

(2)	 AT − £
0 2

7 9

1 2
§ 	

If A is an m 3 n matrix, then AT is an n 3 m matrix.
Vectors are often treated using the notation of matrices by introducing a distinction 

between those that are written as columns and those that are written as rows. All vectors 
we have seen so far have been written as row vectors in that their components are listed 
as a row. For example, we have been writing the vector with components x and y as fx, yg. 
Another possibility is to write this vector by placing its components in a column, giv-

ing the column vector c x
y
d . The row and column forms of a vector quantify the same

thing but they are each used in different contexts in matrix algebra. We can view the row 
form of a vector as a 1 3 n matrix and the column form as an n 3 1 matrix. Further-
more, if v denotes a vector written in row form, then vT is the same vector written in 
column form.

■ Matrix Addition and Scalar Multiplication
Only matrices of the same size can be added. If A and B are both m 3 n matrices with 
entries aij and bij, then A 1 B is a new m 3 n matrix whose entries are aij 1 bij. Thus 
the matrix sum A 1 B is calculated by adding the corresponding entries of each matrix.

 Example 1   |  Evaluate the following sums, if possible.

(a)	 M 1 N, where M − c2 x 9

4 5 6
d  and N − c92 6 2

15 3 1
d

(b)	 X 1 Y, where X − c5 3

7 13
d  and Y − c3 9 21

5 7 6
d

Solution

(a)	 Both matrices are 2 3 3 and therefore can be added. Adding the corresponding 

entries gives M 1 N − c94 x 1 6 11

19 8 7
d .

(b)	 Matrix X is 2 3 2 while Y  is 2 3 3. Since they are not the same size, they cannot 
be added.	 ■
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Scalar multiplication with matrices works just as it does with vectors. If A is an 
m 3 n matrix with entries aij and c is a scalar, then the product cA is an m 3 n matrix 
with entries caij. In other words, the product cA is calculated by multiplying each entry 
of A by c.

Matrix subtraction can be defined through a combination of scalar multiplication and 
matrix addition. If A and B are both m 3 n matrices with entries aij and bij, then A 2 B 
is calculated by first multiplying B by 21 and then adding this to A. Thus the difference 
A 2 B is calculated by subtracting entry bij from aij. Again notice that matrix subtrac-
tion can be performed only with matrices of the same size.

Finally, two matrices A and B are said to be equal if A 2 B − 0 where 0 is an m 3 n 
matrix of zeros.

Properties of Matrix Addition � If A, B, and C are m 3 n matrices and a and 
b are scalars, then

1.	 A 1 B − B 1 A	 2.	 A 1 sB 1 Cd − sA 1 Bd 1 C

3.	 A 1 0 − A	 4.	 A 1 s2Ad − 0

5.	 asA 1 Bd − aA 1 aB	 6.	 sa 1 bdA − aA 1 bA

Properties 1–6 can be verified using the definitions of matrix addition and multiplica-
tion by a scalar.

■ Matrix Multiplication
Some matrices can also be multiplied with one another. Matrix multiplication can be 
viewed as an extension of the dot product of vectors. If we wish to calculate the matrix 
product AB, we view the matrix A as a collection of row vectors and B as a collection of 
column vectors. The ijth entry of the resulting product is then the dot product of the ith 
row of A with the jth column of B. (See Figure 1.) For example, if A is a 2 3 3 matrix 
and B is a 3 3 2 matrix, we have

ca11 a12 a13

a21 a22 a23
d £

b11 b12

b21 b22

b31 b32

§ − ca11b11 1 a12b21 1 a13b31 a11b12 1 a12b22 1 a13b32

a21b11 1 a22b21 1 a23b31 a21b12 1 a22b22 1 a23b32
d

Note that the resulting matrix is 2 3 2. More generally, if A is an m 3 n matrix and B 
is an n 3 p matrix, then C − AB is an m 3 p matrix whose ijth entry is found by taking 
the dot product of the ith row of A with the jth column of B, as shown in Figure 2.

£
: r1 :

: r2 :

f
: rm :

§ £
u u u

c1 c2 ∙ ∙ ∙ cp

u u u

§ − £
r1 ? c1 r1 ? c2 ∙ ∙ ∙ r1 ? cp

r2 ? c1 r2 ? c2 ∙ ∙ ∙ r2 ? cp

f f f f
rm ? c1 rm ? c2 ∙ ∙ ∙ rm ? cp

§

	 A	 B	 AB

Matrix multiplication is not defined for matrices where the number of columns of the 
first matrix is different from the number of rows of the second matrix. A simple way to 
determine if a given matrix multiplication is defined is to write the size of the first matrix, 

A AB

B

Figure �1

Figure �2
The ith row of A is indicated by ri.  

The jth column of B is indicated by c j.
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followed by the size of the second matrix (see Figure 3). If the two “inner” numbers are 
not the same, then the matrix multiplication is not defined. If they are the same, then the 
resulting matrix has size given by the two “outer” numbers as illustrated in Figure 3.

Matrix multiplication is summarized by the following rule.

Matrix Multiplication � If A is an m 3 n matrix and B is an n 3 p matrix, then 
their product C − AB is an m 3 p matrix whose entries are given by

cij − o
n

k−1
 aikbkj − ai1b1j 1 ai2b2 j 1 ∙ ∙ ∙ 1 ainbnj

for 1 < i < m and 1 < j < p.

 Example 2   |  Determine each matrix product if it is defined.

A − c2 7

9 23
d     B − c3 27 2

1 5 9
d     C − c5 26

8 2
d

(a)	 AB	 (b)	 BA	 (c)	 AC	 (d)	 CA

Solution

(a)	 Matrices A and B have sizes 2 3 2 and 2 3 3, respectively. From Figure 3, since 
n − q − 2, matrix multiplication is therefore defined and the resulting matrix is 2 3 3. 
Performing the calculation, we obtain

c2 7

9 23
d c3 27 2

1 5 9
d − c 6 1 7 214 1 35 4 1 63

27 2 3 263 2 15 18 2 27
d − c13 21 67

24 278 29
d

(b)	 Matrices B and A have sizes 2 3 3 and 2 3 2, respectively. From Figure 3, since 
n − 3 and q − 2, n ± q and the product is not defined.

(c)	 Using the rule from Figure 3, we have n − q − 2. The resulting matrix is 2 3 2. 
Performing the calculation, we obtain

c2 7

9 23
d c5 26

8 2
d − c10 1 56 212 1 14

45 2 24 254 2 6
d − c66 2

21 260
d

(d)	 Using the rule from Figure 3, we have n − q − 2. The resulting matrix is 2 3 2 
and, performing the calculation, we obtain

	 c5 26

8 2
d c2 7

9 23
d c10 2 54 35 1 18

16 1 18 56 2 6
d − c244 53

34 50
d 	 ■

Multiplication of two quantities � and � is said to be commutative if �� − ��. Parts 
(c) and (d) of Example 2 illustrate the important fact that matrix multiplication is not, in 
general, commutative (AC ± CA in this example).

An n 3 n matrix D is called diagonal if all off-diagonal entries are zero; that is, 
dij − 0 for all i ± j. Multiplication of a diagonal matrix with itself is especially easy.

q � p

m � p

=A B

m � n

n≠q

n=q

A B AB=
q � pm � n =

Figure �3
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 Example 3   |  For an arbitrary 2 3 2 diagonal matrix D with entries dii, calculate 
the matrix DD.

Solution � Calculating the matrix product, we obtain

DD − cd11 0

0 d22
d cd11 0

0 d22
d − cd11

2 0

0 d22
2 d

Thus DD is a diagonal matrix with entries dii
2.	 ■

An alternative notation for the matrix product MM is M 2. Likewise, M k represents 
the matrix M multiplied by itself k times. It is referred to as the k th power of M. Exercise 
7 shows that the simple pattern for the second power of a diagonal matrix illustrated in 
Example 3 also holds for larger matrices as well as for higher matrix powers.

A diagonal matrix is called an identity matrix if all the entries on the diagonal are 1. 
Identity matrices are usually denoted by I and play the same role in matrix multiplication 
that the number 1 plays in regular multiplication.

 Example 4   |  For an arbitrary 2 3 2 matrix A show that AI − IA − A.

Solution � Performing the required matrix products we obtain

 AI − ca11 a12

a21 a22
d c1 0

0 1
d − ca11 a12

a21 a22
d − A

and	  IA − c1 0

0 1
d ca11 a12

a21 a22
d − ca11 a12

a21 a22
d − A	 ■

We finish by summarizing some important properties of matrix multiplication. These 
can be verified using the definitions presented in this section (see Exercise 11).

Properties of Matrix Multiplication � Suppose A, B, and C are matrices and 
a and b are scalars. Provided the required matrix multiplications are defined, then

1.	 AsBCd − sABdC	 2.	 saAdsbBd − abAB

3.	 AsB 1 Cd − AB 1 AC	 4.	 sB 1 CdA − BA 1 CA

5.	 IA − A, AI − A	 6.	 0A − 0, A0 − 0

Note: Matrix multiplication is not, in general, commutative; that is, AB ± BA.

	� 1–2 � Suppose A, B, and C are 2 3 2 matrices, E, F, and G are 
3 3 3 matrices, H and K are 2 3 3 matrices, and L and M are 
3 3 2 matrices. For each of the following, if the operation is 
defined, specify the size of the matrix that results.

	 1.	 (a)	 A 1 4C	 (b)	 1
2K 1 L

		  (c)	 5K 1 3H	 (d)	 0G 1 3sE 1 Fd
		  (e)	 3A 1 6sB 1 Md	 (f)	 12M 2 L

		  (g)	 F 1 G 2 2C
		  (h)	 �F 1 �G, where � and � are scalars

	 2.	 (a)	 AB 1 C	 (b)	 3GF
		  (c)	 CK 1 B	 (d)	 CK 1 H
		  (e)	 EMC	 (f)	 GLH
		  (g)	 HLG	 (h)	 2EL 1 5MB

EXERCISES 8.4
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	 7.	�� (a)	� Show that, for all n 3 n diagonal matrices D having 
entries dii, the matrix D 2 is also diagonal with entries dii

2.
		  (b)	� For an arbitrary n 3 n diagonal matrix D, what do you 

think the entries of D k are?

	 8.	��� Show that, in general, if A is a 2 3 2 matrix, then

c a11 a12

a21 a22
d

2

± ca11
2

a21
2    

a12
2

a22
2 d

	 9.	��� Consider the matrix C − c0 1

1 0
d .

		  (a)	 Calculate C 2, C 3, C 4, and C 5.
		  (b)	 What do you think C k is?

	 10.	��� Find an example of a nonzero 2 3 2 matrix whose square is 
the zero matrix.

	 11.	��� For arbitrary 2 3 2 matrices A, B, and C, verify the 
following properties.

		  (a)	 AsBCd − sABdC
		  (b)	 AsB 1 Cd − AB 1 AC
		  (c)	 sB 1 CdA − BA 1 CA	

	 12.	��� Suppose that A and B are arbitrary 2 3 2 matrices. Is the 
quantity given always equal to sA 1 Bd2?

		  (a)	 A2 1 2AB 1 B 2

		  (b)	 sB 1 Ad2

		  (c)	 AsA 1 Bd 1 BsA 1 Bd
		  (d)	 A2 1 AB 1 BA 1 B 2

	 13.	��� Suppose that A is a 2 3 2 matrix that commutes with all 
possible 2 3 2 matrices. Show that, necessarily, a11 − a22 
and a12 − a21 − 0. Hint: Try using

X − c1 0

0 0
d     and    Y − c0 1

0 0
d

		���  as two particular 2 3 2 matrices with which A must 
commute.

	 14.	�� (a)	� For any 2 3 2 matrices A and B show that

sA 1 BdT − AT 1 B T

		  (b)	 For any n 3 n matrices A and B show that

sA 1 BdT − AT 1 B T

	 15.	�� (a)	� For any 2 3 2 matrices A and B show that

sABdT − B TAT

		  (b)	 For any n 3 n matrices A and B show that

sABdT − B TAT

	 3.	��� Using the given matrices, calculate the quantities, if they are 
defined.

A − c2 5

1 7
d     B − c7 x

a 5
d     C − c9 2

7 10
d

E − £
0 3 1

7 6 0

9 13 5
§     F − £

x 2 9

6 y 13

0 1 0
§

G − £
13 2 0

5 9 12

7 0 1
§

H − c 3 1 7

15 0 2
d     K − c1 0 1

0 y 1
d

		  (a)	 A 2 3C	 (b)	 3F 1 G 2 E
		  (c)	 5K 1 9H	 (d)	 H 2 12G
		  (e)	 5B 2 A	 (f)	 B 2 9K
		  (g)	 3F 2 F	 (h)	 H 2 K 1 2H

	 4.	��� Using the given matrices, calculate the quantities, if they are 
defined.

A − c7 0

1 9
d     B − c 0 2

13 6
d     C − c15 0

0 2
d

E − £
x 5 3

0 9 1

6 4 0
§     F − £

y 0 y

0 1 0

0 1 1
§

G − £
1 2 3

5 4 6

9 7 8
§

H − c2 1 3

3 7 6
d     K − £

9 2

1 5

7 8
§

		  (a)	 A 2 2BC	 (b)	 EG
		  (c)	 FK 2 2K	 (d)	 HEA
		  (e)	 3BC 2 HK	 (f)	 7K 2 H
		  (g)	 AHKB	 (h)	 BKHA

	 5.	��� Find the transpose of each matrix.

		  (a)	 £
3X

1

2
§ 	 (b)	 f3 3 9g

		  (c)	 c2 1 7

8 3 6
d 	 (d)	 c2 1

1 3
d

	� 6–10 � The notation Ak means the matrix A multiplied with itself 
k times.

	 6.	�� (a)	� For the 2 3 2 identity matrix I, show that I 2 − I.
		  (b)	 For the n 3 n identity matrix I, show that I 2 − I.
		  (c)	 What do you think the entries of I k are?
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8.5 Matrices and the Dynamics of Vectors

In this section we show how matrices can be used to model changes in a vector from one 
point in time to the next. Such models are called matrix models.

■ Systems of Difference Equations: Matrix Models
In Sections 1.6 and 2.1 we studied the following difference equation for population size:

(1)	 nt11 − Rnt	

Equation 1 has an equilibrium at n̂ − 0. For other values of n we saw that n grows in 
magnitude if R . 1 and decays to 0 if 0 , R , 1. In the special case where R − 1, any 
value of n is an equilibrium because Equation 1 then becomes nt11 − nt.

Suppose we want to model the population size when there are adults and juveniles. 
Each adult produces two juveniles in one time step, and half the juveniles survive to 
become adults. Finally, 1

3 of adults survive from one time step to the next. Using jt and 
at to denote the number of juveniles and adults at time t, we obtain the system of differ-
ence equations

 jt11 − 2at

(2)	
 at11 − 1

2 jt 1 1
3at

We can view the state of the population at any time t as a vector c jt

at
d  (see Figure 1). 

We have written this as a column vector in anticipation of using the techniques of matrix 
algebra from Section 8.4 to simplify the notation. In particular, let’s view this vector  
as a 2 3 1 matrix and consider calculating the following matrix product using the rules 
of matrix multiplication from Section 8.4:

c0 2
1
2

1
3
d c jt

at
d

This is the product of a 2 3 2 matrix with a 2 3 1 matrix, and so matrix multiplication 
is defined. From the rule in Figure 8.4.3, we anticipate the result to be a 2 3 1 matrix 
(that is, a column vector). 

Note: We have changed notation 
slightly from Sections 1.6 and 2.1––we 
are now using a lowercase n to denote 
population size.

a

a™

a¡

j¡ j™ j

t=1

t=2

Figure �1

	 18.	��� An upper triangular matrix is a square matrix with all 
zeros below its diagonal. A lower triangular matrix is a 
square matrix with all zeros above its diagonal.

		  (a)	��� For all 3 3 3 upper triangular matrices U, verify that 
U 2 is also upper triangular.

		  (b)	��� For all 3 3 3 lower triangular matrices L, verify that L 2 
is also lower triangular.

	 16.	��� A matrix A is called symmetric if AT − A. Verify, for all 
3 3 3 matrices B, that B 1 B T is symmetric.

	 17.	��� Suppose a matrix A satisfies the equation A 1 AT − 0. 
What must be true about the entries of A? Such matrices are 
called skew-symmetric.
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Performing the multiplication, we obtain

	 c0 2
1
2

1
3
d c jt

at
d − c0 ? jt 1 2at

1
2 jt 1 1

3at
d − c 2at

1
2 jt 1 1

3at
d 	

From Equations 2 we see that the resulting vector can be written as c jt11

at11
d , and therefore 

the system of difference equations in (2) can be written in matrix notation as

c jt11

at11
d − c0 2

1
2

1
3
d c jt

at
d

As a final step we define Q to be the matrix c0 2
1
2

1
3
d  and n t to be the column vector  

c jt

at
d . We then have

(3)	 n t11 − Qn t	

The parallel between the single-variable recursion in Equation 1 for nt and Equa-

tion 3 for the vector n t is now apparent. The change in the vector c jt

at
d  is described

by the product of the matrix of constants Q with this vector, just as the change in nt in 
Equation 1 is described by the product of the constant R with nt. In the vector setting the 
growth factor R in Equation 1 is replaced by the matrix Q in Equation 3. Models such as 
Equation 3 are called matrix models.

As with Equation 1, how the vector n t changes over time depends on the initial con-
dition and on the matrix of constants Q. And as with Equation 1, we can recursively 
apply Equation 3 to an initial vector to generate numerical solutions. Figure 2 illustrates 
an example of this for Equations 2. Both jt and at initially oscillate, but the population 
size of both juveniles and adults appears to grow in the long run. In later sections of this 
chapter we will learn how to determine the behavior of such matrix models mathemati-
cally. As with Equation 1, the long-term behavior of the model depends on a measure of 
the magnitude of the “growth factor” Q.

 Example 1   |  BB   Conservation biology of right whales  Matrix models 
are often used to predict the population size of endangered species such as right 
whales. Right whales have important stage structure to their life cycle. A simplified 
model considers three stages: (i) newborn calves, (ii) mature but nonreproducing 
adults, and (iii) reproductive adults. Let’s use ct, at, and rt, respectively, to denote the 
number of individuals in each of these stages. Suppose that newborn calves mature 
into adults with probability 0.072 each time step (otherwise they die). Nonreproducing 
adults remain that way with probability 0.8 or begin reproducing with probability 0.19 
(otherwise they die). Reproducing individuals produce, on average, 0.3 calves each 
time step and revert to the nonreproducing adult class with probability 0.88 (otherwise 
they die). Construct the matrix model for this population.

15

10

5

20 4 6 8 10

at

jt

Po
pu

la
tio

n 
si

ze

Time

Figure �2

Figure �3
A right whale
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Solution � First we summarize the model using what is called a matrix diagram in 
Figure 4.

ct at rt

0.072 0.19

0.88

0.3

0.8

We proceed by deriving a difference equation for each of the three variables in turn. 
From Figure 4 the number of calves at time t 1 1 is the per capita number produced  
by each reproductive individual, 0.3, multiplied by the number of these individuals at 
time t. Therefore, ct11 − 0.3rt. The number of adults at time t 1 1 is the number of 
calves at time t multiplied by the per capita probability that they mature, 0.072, plus the 
number of adults at time t multiplied by the per capita probability that they remain as 
nonreproducing adults, 0.8, plus the number of reproductive individuals at time t 
multiplied by the per capita probability that they revert to the nonreproducing adult 
stage, 0.88. This gives

at11 − 0.072ct 1 0.8at 1 0.88rt

Finally, the number of reproductive individuals at time t 1 1 is the number of adults at 
time t multiplied by the per capita probability that they move into the reproductive 
class, 0.19, giving rt11 − 0.19at. You can verify that organizing this using matrix 
notation gives

	 £
ct11

at11

rt11

§ − £
0 0 0.3

0.072 0.8 0.88

0 0.19 0
§ £

ct

at

rt

§ 	 ■

Example 1 introduces the idea of drawing a matrix diagram to organize the con-
struction of a matrix model. In general, such diagrams consists of a single circle for each 
variable of the model, and an arrow from circle j to i whenever type j contributes to 
the amount of type i in the next time step (see Figure 5). The corresponding matrix can 
then be written directly from the diagram by noting that the entry in the ith row and jth 
column of the matrix corresponds to the arrow from circle j to i.

Qk1

Q1k

1 2 kQ¡¡

Q™¡

Q™™

Q2k

Qj1

Qkk

Qjk

§ § §

Figure �4
Each circle represents a life stage.  

An arrow is drawn from circle j to i if 
stage j contributes to the number of  

individuals in stage i in the next time 
step. The numbers next to the arrows 
indicate the per capita contribution.

Figure �5
A matrix diagram
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 Example 2   |  Breast cancer  Consider a population of patients at risk of 
developing breast cancer. Each individual’s health status can be in one of three states: 
(1) healthy, (2) early-stage disease, or (3) late-stage disease. Each year 0.2% of healthy 
females develop early-stage disease, with the rest remaining healthy. Likewise, 45% of 
women with early-stage disease recover through treatment, 45% develop late-stage 
disease, and 10% remain in the early-stage category. All individuals with late-stage 
disease remain in that state.
(a)	 Using ht, et, and lt to denote the number of individuals in each category, construct 
the matrix diagram for this example.
(b)	 Construct the matrix model corresponding to the diagram from part (a).

Solution

(a)	 Each of the three states is denoted by a circle in Figure 6, and we draw arrows 
corresponding to the possible transitions in health status. Finally, we label each arrow 
with its appropriate value.

0.998

0.1

0.002

0.45

0.45

ht et lt 1

(b)	 We find the entry in the ith row and jth column of the matrix by looking for an 
arrow from circle j to circle i in Figure 6, giving

	 £
ht11

et11

lt11

§ − £
0.998 0.45 0

0.002 0.1 0

0 0.45 1
§ £

ht

et

lt

§ 	 ■

■ Leslie Matrices
Matrix models are often used to model the size of age-structured populations. Consider 
a simplified model for a Coho salmon population. Individuals hatch from eggs in  
rivers on the West Coast of North America and migrate to the ocean. At around three 
years of age they migrate back to the river, reproduce, and die. Let’s use n1,t, n2,t, and n3,t 
to denote the number of individuals in each age class at time t, where time is measured 
in years. Figure 7 gives the matrix diagram for the model, along with estimated values 
for the constants.

0.1 0.5

n¡,t n™,t n£,t

10

Figure �6

Figure �7
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The resulting matrix model is

£
n1,t11

n2,t11

n3,t11

§ − £
0 0 10

0.1 0 0

0 0.5 0
§ £

n1,t

n2,t

n3,t

§

Figure 8 shows the number of individuals in each age class over time. The graph looks 
rather complicated, but the population size appears to decay to zero in the long run.
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Matrices for age-structured models like that of the Coho salmon always have a special 
structure. They are called Leslie matrices after Patrick H. Leslie and are often denoted 
by the symbol L. To see this structure better, let’s examine the general case of k age 
classes. Using bi for the number of offspring produced by an age i individual and si for 
the probability that an age i individual survives to become an age i 1 1 individual, we 
have the matrix diagram shown in Figure 9.

n¡,t n™,t n£,t nk,t

s¡

b¡

b™

b£

s™ s£

bk

sk-1

Algebraically, we have

 n1,t11 − b1n1,t 1 b2n2,t 1 ∙ ∙ ∙ 1 bknk,t

 n2,t11 − s1n1,t

 n3,t11 − s2n2,t

	  f

 nk,t11 − sk21nk21,t

Figure �8

Leslie
Patrick H. Leslie was a mathemati-
cal biologist who worked at Oxford 
University and pioneered the use of 
matrix models in population biology in 
the 1940s.

Figure �9
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	 1.	��� Construct the corresponding matrix for each of the following 
matrix diagrams by placing an X as the ijth entry of the 
matrix if the entry is nonzero, and a 0 otherwise.

BA

C DBA

BA

BA C

BA C

BA

C DBA

BA

BA C

BA C

	 2.	��� For each of the following matrices an X in entry ij represents 
the fact that type j contributes to type i in the next time step. 
Construct the corresponding matrix diagram for each.

		  (a)	 cX X
0 X d 	 (b)	 £

X 0 X
0 0 X
X 0 0

§

		  (c)	 £
0 X 0 X
X 0 X 0
X X 0 0
0 0 X X

§ 	 (d)	 £
X 0 0
0 X 0
0 0 X

§

		  (e)	 c0 X
X 0 d

or, in matrix notation,D n1,t11

n2,t11

n3,t11

f
nk,t11

T − D b1 b2 b3 ∙ ∙ ∙ bk

s1 0 0 ∙ ∙ ∙ 0

0 s2 0 ∙ ∙ ∙ 0
f f f f f
0 0 0 sk21 0

T D n1,t

n2,t

n3,t

f
nk,t

T
Again we have assumed that a single time step corresponds to the time it takes to move 
from one age class to the next. As a result, all surviving individuals must progress from 
one age class to the next each time step, giving the matrix a special form. The age-spe-
cific birth rates make up the first row of the matrix, and the age-specific survival prob-
abilities lie along the subdiagonal of the matrix (that is, the diagonal lying immediately 
below the diagonal that runs from the top left to the bottom right corner of the matrix).

■ Summary
Matrix models are a special kind of dynamical system that govern how vectors change 
from one time step to the next. They consist of a column vector of variables, n t, that 
changes from one time step to the next, along with a matrix of constants, A, that deter-
mines how the vector changes. They take the form

n t11 − An t

For any given initial vector we can recursively apply the equation to obtain numerical 
solutions. As we will see in Section 8.8, we can also analyze such equations quite exten-
sively from a mathematical perspective and thereby gain a complete understanding of 
how the vector changes through time.

(a)

(b)

(c)

(d)

(e)
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BA C

2

3 4

1

A CB

2

3

1

4

D

1
2

1 A CB

4

D

3

6

8

5

10

A CB D E

2 4 5

3

6

1

(a)

(b)

(c)

(d)

	� 5–6 � Each of the following matrices represents a system of dif-
ference equations. Construct the corresponding matrix diagram.

	 5.	�� (a)	 c1 6

5 0
d 	 (b)	 £

2 0 3

5 1 2

7 9 0
§

		  (c)	 c1 1

1 1
d 	 (d)	 £

7 6 0

0 2 3

0 1 0
§

	 6.	�� (a)	 D 3 0 7 9 11

0.1 0.1 0.8 0 0

9 0 1 1 1

6 5 4 3 2

0 0 0 0 0

T
		  (b)	 £

0 1 3 0

3 1 3 1

0 0 9 0

7 0 0 0

§

		  (c)	 £
1 0 0

0.25 0.5 0.25

0 0 1
§

		  (d)	 £
1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

§

	 7.	��� Suppose the matrix representing a system of difference 
equations contains a row of zeros. What does this imply 
about the system?

	 8.	��� Suppose the matrix representing a system of difference 
equations contains a column of zeros. What does this imply 
about the system?

	� 9–15 � Construct the matrix diagram for each of the following 
models.

	 9.	� Dispersal �� A population of dragonflies occupies two 
ponds. Each day 20% of the individuals in pond A move to 
pond B, and 30% of the individuals in pond B move to pond 

	� 3–4 � Construct the corresponding matrix for each of the follow-
ing matrix diagrams.

	 3.	 (a)	

BA

2

1 3

BA

1

2

2

BA C

4

1 3

2

3

4

1

C DBA

		  (b)	

BA

2

1 3

BA

1

2

2

BA C

4

1 3

2

3

4

1

C DBA

		  (c)	

BA

2

1 3

BA

1

2

2

BA C

4

1 3

2

3

4

1

C DBA

		  (d)	

BA

2

1 3

BA

1

2

2

BA C

4

1 3

2

3

4

1

C DBA

	 4.	

BA C

2

3 4

1

A CB

2

3

1

4

D

1
2

1 A CB

4

D

3

6

8

5

10

A CB D E

2 4 5

3

6

1

(a)

(b)

(c)

(d)

		

BA C

2

3 4

1

A CB

2

3

1

4

D

1
2

1 A CB

4

D

3

6

8

5

10

A CB D E

2 4 5

3

6

1

(a)

(b)

(c)

(d)

		

BA C

2

3 4

1

A CB

2

3

1

4

D

1
2

1 A CB

4

D

3

6

8

5

10

A CB D E

2 4 5

3

6

1

(a)

(b)

(c)

(d)
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reproduction to help others reproduce. Therefore the 
population consists of three kinds of individuals: juveniles, 
helpers, and reproductives. Using jt, ht, and rt to denote the 
number of each kind at time t, a model for the population 
size of each is

 jt11 − 2rt

 ht11 − 0.9jt 1 0.8ht 1 0.1rt

 rt11 − 0.1jt 1 0.2ht 1 0.9rt

	 15.	�E cological succession ��is a process by which a biological 
community progresses between different states. Suppose the 
community can be either primarily grassland, primarily 
shrub, or primarily forest, and this can change from year to 
year. Using t t, st, and ft to denote the probability that the 
community is in each of the three possible states at time t, 
we have

 t t11 − 0.9t t 1 0.001st

 st11 − 0.1t t 1 0.799st 1 0.001 ft

 ft11 − 0.2st 1 0.999ft

	� 16–19 � Write the system of difference equations and construct 
the corresponding matrix that describes this system.

	 16.	� Vectorcardiography �� Suppose the components X and Y 
of the heart’s voltage vector change from one beat to the 
next according to the diagram

YX1 _1

	 17.	�A ntigenic evolution �� Suppose influenza viruses are 
plotted in two-dimensional antigenic space, and that the  
x- and y-coordinates change from one year to the next 
according to the diagram

3

yx2 0.9

	 18.	� Genome expression profiles �� A genome expression 
profile can be characterized as a vector. Consider a species 
of frog and suppose that global warming causes the com- 
ponents W, X, Y, and Z of its genome expression vector to 
change from one year to the next according to the diagram

2 W YX Z

1

0.954

0.3

	 19.	� Genetics of inbreeding �� Plants are sometimes bred with 
themselves to generate homozygous individuals (that is, 

A. Using At and Bt to denote the number of individuals in 
each pond at time t, we have

 At11 − 0.8At 1 0.3Bt

 Bt11 − 0.2At 1 0.7Bt

	 10.	� Mutation �� Each generation 5% of individuals carrying 
allele X mutate to carry allele Y. Using Xt and Yt to denote 
the number of individuals carrying each allele at time t, we 
have

 Xt11 − 0.95Xt

 Yt11 − 0.05Xt 1 Yt

	 11.	� Cancer progression �� Consider a population of women at 
risk of developing breast cancer. Each individual’s health 
status can be in one of three states: (1) healthy, (2) early-
stage disease, or (3) late-stage disease. Each year 0.2% of 
healthy females develop early-stage disease, with the rest 
remaining healthy. Likewise, 65% of women with early-
stage disease recover through treatment and 35% develop 
late-stage disease. Finally, 10% of individuals with 
late-stage disease revert to early stage disease while the rest 
remain in late stage. Using ht, et, and lt to denote the 
number of individuals in each state at time t, we have

 ht11 − 0.998ht 1 0.65et

 et11 − 0.002ht 1 0.1lt

 lt11 − 0.35et 1 0.9lt

	 12.	� Yellow perch �� Yellow perch is a species of freshwater fish. 
Suppose a population of interest lives to a maximum age of 
4 years. Only 5% of age 1 individuals survive to age 2, 20% 
of age 2 individuals survive to age 3, and 75% of age 3 
individuals survive to age 4. Both age 3 and age 4 individu-
als reproduce, producing 100 and 150 age 1 offspring, 
respectively. Using ni, t for the number of individuals of age i 
at time t, we have

 n1, t11 − 100n3, t 1 150n4, t

 n2, t11 − 0.05n1, t

 n3, t11 − 0.2n2, t

 n4, t11 − 0.75n3, t

	 13.	� Drug diffusion �� A drug taken orally eventually diffuses 
into the bloodstream through the stomach. Let st be the 
amount of drug in the stomach at time t and bt the amount 
that has been absorbed into the bloodstream. Each time 
step, 50% of the drug is absorbed from the stomach into the 
bloodstream and 80% of the drug in the bloodstream is 
metabolized. We have

 st11 − 0.5st

 bt11 − 0.5st 1 0.2bt

	 14.	� Breeding systems �� Cooperatively breeding bird species 
are those in which some individuals forgo their own 
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8.6 The Inverse and Determinant of a Matrix

This section introduces the ideas of matrix inverses and determinants and illustrates 
how they can be used to solve systems of equations. The inverse and determinant are 
defined only for square matrices. Our focus in the main text is on the mathematical 
details, with applications explored in the exercises and subsequent sections.

■ The Inverse of a Matrix
In Section 8.4 the identity matrix I was introduced and we noted that I plays the role of 
the number 1 in matrix multiplication. In particular, AI − A and IA − A just as a1 − a 
and 1a − a in scalar multiplication. In the scalar case we can rearrange the equation 
to obtain a21a − 1, where a21 − 1ya provided that a ± 0. In other words, a21 is the 
quantity that, when multiplied with a, gives 1. And if a − 0, then no such quantity exists.

Can something similar be defined for matrices? Is there a matrix that, when multiplied 
with A, gives the identity matrix I? We will see that, just as with the scalar case, some-
times there is and sometimes there isn’t. The existence of a matrix B such that BA − I 
requires that the matrix A, in some sense, not “act like zero.” One of the goals of this sec-
tion is to make this idea precise. When such a matrix exists, it is called the inverse of A.

 Example 1   |  Show that B is the inverse of A, where

A − c1 2

7 5
d       B − c2

5
9

2
9

7
9 21

9
d
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		���  individuals that carry two identical copies of a gene of 
interest). Suppose the numbers of plants that are AA, Aa, 
and aa in generation t are denoted by dt, ht, and rt, 
respectively. These variables then change from one 
generation to the next according to the diagram

hd r1 1

1
2

1
4

1
4

	� 20–22 � Write the system of equations and construct the cor-
responding matrix model for each of the following exercises.

	 20.	� DNA methylation �� DNA methylation is a process by 
which methyl chemical groups are attached to the DNA. 
Thus each gene in the genome can be methylated or 
unmethylated. Suppose that 80% of methylated genes 
remain methylated and 50% of unmethylated genes remain 
unmethylated each generation.

	 21.	� Mutation �� Suppose that one of three different alleles is 
present in each individual in a population. In each genera-
tion the following happens: 5% of individuals carrying 

allele X mutate to carry allele Y, 3% mutate to allele Z, and 
the rest remain unchanged; 0.1% of individuals carrying 
allele Y mutate to carry allele Z and the rest remain 
unchanged; 90% of individuals carrying allele Z mutate to 
carry allele X and the rest remain unchanged.

	 22.	� Spotted owls ��were at the center of a debate between 
conservation biologists and the logging industry in the 
1990s. Part of resolving the debate involved constructing a 
matrix model for their population. The owl population in 
year t can be divided into juveniles, subadults, and adults. 
Adults produce, on average, 0.33 juveniles each year. 
Approximately 60% of juveniles survive to be subadults the 
next year, while 71% of subadults survive to become adults. 
Approximately 94% of the adult population survives from 
one year to the next.
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Solution � Calculating the matrix product gives

	 BA − c2
5
9

2
9

7
9 21

9
d c1 2

7 5
d − c2

5
9s1d 1 2

9s7d 25
9s2d 1 2

9s5d
7
9 s1d 2 1

9s7d 7
9s2d 2 1

9s5d
d − c1 0

0 1
d − I	 ■

Definition � Suppose that A is an n 3 n matrix. If there exists an n 3 n matrix 
B such that

AB − BA − I

then B is called the inverse of A and is denoted by A21.

It is possible to show that, when the inverse of a matrix exists, it is unique (see Exer-
cise 8). It is also possible to show that, if there exists a matrix B such that AB − I, then 
necessarily BA − I as well (and vice versa). Therefore we need check only one order of 
multiplication when finding an inverse. If A has an inverse, then we say that A is invert-
ible or nonsingular. Otherwise A is called singular.

The following example illustrates how to calculate a matrix inverse in a 2 3 2 case, 
provided that the inverse exists.

 Example 2   |  Derive the inverse of the matrix A from Example 1 by using the 
definition of an inverse.

Solution � From the definition, if a matrix B − cb11 b12

b21 b22
d  is the inverse of

A − c1 2

7 5
d , then AB − BA − I. We need focus on only one of these orders of

�mulitplication. Choosing AB − I, we have

c1 2

7 5
d cb11 b12

b21 b22
d − c1 0

0 1
d

or	 c b11 1 2b21 b12 1 2b22

7b11 1 5b21 7b12 1 5b22
d − c1 0

0 1
d

Looking at this equation entry by entry, we see that it represents four equations in 
four unknowns. The four equations can be split into two pairs of equations, each with 
two unknowns:

b11 1 2b21 − 1

7b11 1 5b21 − 0
and     

b12 1 2b22 − 0

7b12 1 5b22 − 1

We can now solve each pair by substitution. If we focus on the first pair, we see that 
the second equation gives b21 − 27b11y5. Substituting this into the first equation of 
this pair then gives b11 1 2s27b11y5d − 1, whose solution is b11 − 25y9. This can 
then be back-substituted into b21 − 27b11y5 to give b21 − 7y9.

Similarly, the first equation of the second pair gives b12 − 22b22. Substituting this 
into the second equation of this pair then gives 7s22b22d 1 5b22 − 1, whose solution 
is b22 − 21y9. This can then be back-substituted into b12 − 22b22 to give b12 − 2y9.

Putting these results together in the matrix B gives

	 B − c2
5
9

2
9

7
9 21

9
d 	 ■

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



530    Chapter 8  |  Vectors and Matrix Models

The approach used in Example 2 leads to the following formula for the inverse of a 
2 3 2 matrix (see Exercise 4):

The Inverse of a 2 x 2 Matrix � Suppose

A − ca11 a12

a21 a22
d

and a11a22 2 a12a21 ± 0. Then A is invertible and

A21 −
1

a11a22 2 a12a21
 c a22 2a12

2a21 a11
d

If a11a22 2 a12a21 − 0, then A is not invertible (that is, A is singular).

 Example 3   |  If possible, find the inverse.

(a)	 M − c7 9

5 6
d 	 (b)	 N − c14 6

7 3
d 	 (c)	 J − c 2 3

21 22
d

Solution � From the formula for the inverse of a 2 3 2 matrix, an inverse will exist 
if and only if a11a22 2 a12a21 ± 0.

(a)	 m11m22 2 m12m21 − s7ds6d 2 s9ds5d − 42 2 45 − 23. Therefore an inverse 
exists. Using the formula, we obtain

M 21 −
1

23
 c 6 29

25 7
d − c22 3

5
3 27

3
d

(b)	 n11n22 2 n12n21 − s14ds3d 2 s6ds7d − 42 2 42 − 0. Therefore an inverse does not 
exist.

(c)	 j11 j22 2 j12 j21 − s2ds22d 2 s3ds21d − 24 1 3 − 21. Therefore an inverse 
exists. Using the formula, we obtain

J 21 −
1

21
 c22 23

1 2
d − c 2 3

21 22
d

Notice that this last example has the interesting property that J 21 − J. In other words, 
J is its own inverse.	 ■

The following properties of matrix inverses are often useful. These are proved in 
Exercises 6, 7, and 8.

Properties of Matrix Inverses � Suppose A and B are both invertible n 3 n 
matrices. Then

1.	 sA21d21 − A

2.	 sABd21 − B21A21

3.	 A21 is unique.
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■ The Determinant of a Matrix
The formula for the inverse of a 2 3 2 matrix allows us to determine when such a matrix 
is invertible. But how can we tell this for matrices of other sizes? As already mentioned, 
a matrix A is invertible if, in some sense, it does not “act like zero.” We now make this 
idea precise.

To any n 3 n matrix A we can assign a scalar quantity called its determinant, denoted 
by det A. If we view scalars as 1 3 1 matrices, then the definition of the determinant for 
matrices of sizes n − 1 through n − 3 is as follows.

The Determinant � Suppose A is an n 3 n matrix.

1.	 If n − 1, then det A − a11.

2.	 If n − 2, then det A − a11a22 2 a12a21.

3.	 If n − 3, then det A − a11a22a33 1 a12a23a31 1 a13a21a32

2 a13a22a31 2 a11a23a32 2 a12a21a33.

There is an algorithmic procedure for calculating the determinant of larger matrices 
but it becomes impractical to do so by hand for matrices larger than 3 3 3. There is also 
a simple graphical device for remembering the formula for the determinant of a 3 3 3 
matrix. To begin, duplicate the first two columns to the right of the matrix. You can then 
compute the determinant by multiplying the entries on six diagonals, adding the right-
ward products and subtracting the leftward products.

a11 a12 a13

a21 a22 a23

a31 a32

a11 a12

a21 a22

a31 a32a33

Given the determinant of a matrix we have the following theorem:

(1) Theorem � If A is an n 3 n matrix, then A is invertible if and only if 
det A ± 0.

Notice that the quantity in the denominator of the formula for the inverse of a 2 3 2 
matrix is its determinant.

 Example 4   |  Which of the following matrices are invertible?

(a)  A − f2g     (b)  B − c2 3

6 9
d      (c)  C − c5 3

2 1
d      (d)  D − £

10 7 3

13 5 8

6 21 7
§

Solution

(a)	 The matrix A is 1 3 1, with det A − 2. Therefore it is invertible.

(b)	 The matrix B is 2 3 2, with det B − s2ds9d 2 s3ds6d − 0. Therefore it is not 
invertible.

(c)	 The matrix C is 2 3 2, with det C − s5ds1d 2 s3ds2d − 21. Therefore it is 
invertible.
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(d)	 The matrix D is 3 3 3, and

 det D − s10ds5ds7d 1 s7ds8ds6d 1 s3ds13ds21d 2 s3ds5ds6d 2 s10ds8ds21d 2 s7ds13ds7d

 − 350 1 336 1 s239d 2 90 2 s280d 2 637

 − 0

Therefore D is not invertible.	 ■

■ Solving Systems of Linear Equations
One reason that matrix inverses (and therefore determinants) are useful is for solving 
linear systems of n equations with n unknowns. Consider, for example, the following 
pair of equations with two unknowns:

 3x1 2 2x2 − 24

 7x1 1 x2 − 19

Writing these equations in matrix notation gives

(2)	 Ax − b	

where A − c3 22

7 1
d  is a matrix of coefficients, x − cx1

x2
d  and b − c24

19
d . Such a sys-

tem of equations in which b ± 0 is called an inhomogeneous system. In general, there 
are three possibilities for such a system: (i) there is a unique nonzero solution for x,  
(ii) there are infinitely many solutions for x, or (iii) there is no solution for x.

To solve Equation 2 let’s first compare its form to the scalar equation.

(3)	 ax − b	

Provided that a ± 0 we can solve Equation 3 by multiplying both sides by a21 − 1ya to 
get a21ax − a21b, or x − a21b. In a similar fashion, provided that det A ± 0 the matrix 
A will be invertible and we can multiply both sides of Equation 2 by A21 to obtain

 A21Ax − A21b

or	  x − A21b	

Using the formula for the inverse of a 2 3 2 matrix, we obtain

x −
1

s3ds1d 2 s22ds7d
 c 1 2

27 3
d c24

19
d − c

1
17

2
17

2 7
17

3
17
d c24

19
d − £

24 1 38

17

28 1 57

17

§ − c2
5
d

Equation 2 thus has a unique solution given by x1 − 2, x2 − 5. Graphically, the two 
equations represent straight lines in the x1x2-plane and their intersection point is the 
unique solution illustrated in Figure 1. More generally, we have the following theorem.

(4) Theorem � Suppose A is an n 3 n matrix, x is an n 3 1 vector of unknowns, 
and b is an n 3 1 vector of constants. If A is invertible, then the inhomogeneous 
system of equations Ax − b has a unique solution given by x − A21b.

10 7 3

13 5 8

6 _1

10 7

13 5

6 _17

15

10

5

0

_5
1 2

x™

x°

7x¡+x™=19

3x¡-2x™=_4

(2, 5)

Figure �1
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If A in Theorem 4 is not invertible, then the system of equations can have either infinitely 
many solutions or no solution.

 Example 5   |  Using b − c2
1
d , obtain the solution to the inhomogeneous system of 

equations for each of the following matrices.

(a)  A − c1 21

2 1
d     (b)  B − c 1 21

21 1
d     (c)  C − c1 21

1
2 21

2
d

Solution

(a)	 First we calculate det A − 1 2 s22d − 3 and therefore the matrix A is invertible. 
Theorem 4 then tells us that the inhomogeneous equation Ax − b has a unique solu-
tion given by x − A21b. Using the formula of the inverse of a 2 3 2 matrix, we obtain 

x −
1

3
 c 1 1

22 1
d c2

1
d − c

1
3

1
3

22
3

1
3
d c2

1
d − £

2 1 1

3

24 1 1

3

§ − c 1

21
d

The solution corresponds to the intersection point of the lines defined by x1 2 x2 − 2 
and 2x1 1 x2 − 1, as shown in Figure 2.

(b)	 Calculating the determinant of B gives det B − 1 2 1 − 0. Therefore the matrix B 
is not invertible. The inhomogeneous equation Bx − b might have an infinite number 
of solutions or no solution. To determine which is the case, we need to investigate the 
equations in more depth. Carrying out the matrix multiplication gives the two equa-
tions x1 2 x2 − 2 and 2x1 1 x2 − 1. Solving the second equation for x2 gives 
x2 − 1 1 x1, and substituting this into the first equation gives x1 2 s1 1 x1d − 2. This 
simplifies to 21 − 2. Because there is no choice of x1 that will make this true, there  
is no solution. Graphically, the two equations represent parallel straight lines in the  
x1x2-plane and the lack of a solution corresponds to their not having an intersection 
point (see Figure 3).

(c)	 Calculating the determinant of C gives det C − 21
2 2 (21

2) − 0. Therefore the 
matrix C is not invertible and the inhomogeneous equation Cx − b might have an 
infinite number of solutions or no solution. Carrying out the matrix multiplication gives 
the two equations x1 2 x2 − 2 and 12 x1 2 1

2 x2 − 1. Solving the second equation for x1 
gives x1 − 2 1 x2, and substituting this into the first equation gives s2 1 x2d 2 x2 − 2. 
This simplifies to 2 − 2. This equation holds true no matter what value of x2 is chosen 
and therefore there are an infinite number of solutions. Graphically, the two equations 
represent the same straight line in the x1x2-plane, and therefore there are an infinite 
number of points of intersection as illustrated in Figure 4.	 ■

The solution to a system of linear equations is simplified considerably in the special 
case where b − 0. This results in an equation of the form Ax − 0, which is called a 
homogeneous system. Clearly x − 0 is always a solution and it is referred to as the 
trivial solution. There are therefore now only two possibilties: (i) the trivial solution is 
the unique solution, or (ii) there are an infinite number of nontrivial solutions. The fol-
lowing theorem tells us when each of these outcomes occurs.

2

0
2 3

x™

x¡
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2x¡+x™=1
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_4
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	 1.	��� Determine if matrices A and B are inverses of one another.

		  (a)	 A − c1 5

2 7
d 	 B − c2

7
3

5
3

2
3 21

3
d

		  (b)	 A − £
1 0 3

2 7 9

0 2 1
§ 	 B − £

211 6 221

22 1 23

4 22 7
§

		  (c)	 A − c0 1

3 2
d 	 B − c2 3

1 0
d

		  (d)	 A − c0 1

1 1
d 	 B − c21 1

1 0
d

		  (e)	 A − £
1 2 3

0 1 7

0 2 1
§ 	 B − £

1 0 1

0 5 3

7 0 1
§

		  (f)	 A − c9 0

2 3
d 	 B − c

1
9 0

2 2
27

1
3
d

	 2.	��� Find the inverse of the matrix.

		  (a)	 c5 0

9 6
d 	 (b)	 c1 3

1 0
d

		  (c)	 c9 2

7 5
d 	 (d)	 c1 1

2 3
d

		  (e)	 c3x y

2x y
d 	 (f)	 cx

2 2x

x 3 x
d

	 3.	��� Suppose that D is an n 3 n diagonal matrix with entries dii. 
Show that D21 is an n 3 n diagonal matrix with entries 
1ydii.

	 4.	��� Suppose A is an nonsingular 2 3 2 matrix. Derive the 
formula for its inverse, namely,

A21 −
1

a11a22 2 a12a21
 c a22 2a12

2a21 a11
d

	 5.	��� Find all 2 3 2 matrices A such that det A − 1 and A − A21.

	 6.	��� If A is nonsingular, then sA21d21 − A.
		  (a)	 Verify this theorem for 2 3 2 matrices.
		  (b)	 Prove the theorem for any n 3 n matrix.

	 7.	��� Suppose that A and B are nonsingular matrices. Then AB  
is also nonsingular. Furthermore, a theorem from linear 
algebra then states that sABd21 − B 21A21.

		  (a)	 Verify this theorem for 2 3 2 matrices.
		  (b)	 Prove the theorem for any n 3 n matrix.

	 8.	��� Suppose that A is nonsingular. Prove that its inverse A21 is 
unique. [Hint: Show that if there exists two matrices, B and 
C, such that BA − I and AC − I, then necessarily B − C.]

	 9.	��� If A is nonsingular, then sAT d21 − sA21dT.
		  (a)	� Verify this theorem for 2 3 2 matrices.
		  (b)	� Prove the theorem for any n 3 n matrix. [Hint: You 

might wish to use the property from Exercise 8.4.15(b).]

	 10.	��� Use the determinant to decide whether each matrix is singu-
lar or nonsingular.

		  (a)	 c3 2

6 4
d

		  (b)	 c a b

7a 9b
d     a ± 0, b ± 0

		  (c)	 £
1 0 5

4 2 6

3 2 1
§

		  (d)	 £
9 1 0

1 0 1

23 2 0
§

		  (e)	 c x x 1 x 2

3x 0
d     x ± 0, x ± 21

		  (f)	 c y 3 4y 3

3x 2 12x 2 d

	 11.	��� For which values of a is the matrix singular?

ca 4

2 8
d

	 12.	��� For which values of a and b is the matrix singular?

ca b

7 9
d

EXERCISES 8.6

(5) Theorem � Suppose A is an n 3 n matrix, x is an n 3 1 vector of unknowns, 
and 0 is an n 3 1 vector of zeros. If A is invertible, then the homogeneous system 
of equations Ax − 0 has a unique solution given by the trivial solution x − 0. If A 
is not invertible, then there are infinitely many nontrivial solutions.
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	 26.	 x1 − 1

2x1 1 3x2 − 6

	 27.	 3x1 1 6x2 − 2

9x1 1 12x2 − 1

	 28.	 5x1 1 x2 − 0

25x1 1 5x2 − 0

	 29.	 8x1 1 4x2 − 4

4x1 1 2x2 − 2

	 30.	� Vectorcardiography �� Suppose that the voltage vector vt of 
the heart changes from one beat to the next according to the 
equation

vt11 − c1 0

0 21
d vt

		���  If the voltage vector during the current heartbeat is c 0.3

20.2
d , 

what was the voltage vector in the previous heartbeat?

	 31.	�A ntigenic evolution �� Suppose the vector x t characterizing 
the antigenic state of an influenza virus population changes 
from one season to the next according to the equation

x t11 − c2 3

0 0.9
d x t

		���  If the vector in the current season is c 8

1.8
d , what was the 

vector in the previous influenza season?

	 32.	��� Find a second-degree polynomial (that is, an equation of  
the form y − a 1 bx 1 cx 2d that goes through the three 
points s0, 1d, s1, 0d, and s21, 0d. Is there more than one 
possibility?

	 33.	� Leslie matrices �� Consider the following model for the 
population size n t of an age-structured population with two 
age classes:

n t11 − cb 2
1
2 0

d n t

		���  An equilibrium is a value of the vector for which no change 
occurs (that is, n t11 − n t). Denoting such values by n̂, they 
must therefore satisfy the equation

n̂ − cb 2
1
2 0

d n̂

		  (a)	� Suppose that b ± 0. Find all possible equilibrium  
values.

		  (b)	� Suppose that b − 0. Find all possible equilibrium  
values.

	 34.	� Mutation �� Suppose that, as a result of mutation, the 
number of individuals in a population carrying allele A and 
allele B changes in a way described by the equation

yt11 − c0.95 0

0.05 1
d yt

	 13.	��� For which values of a is the matrix singular?

£
1 1 1

1 2 a

1 4 a 2

§

	 14.	��� If A and B are n 3 n matrices, then detsABd − det A det B. 
Verify this  theorem for 2 3 2 matrices.

	 15.	��� Using the theorem from Exercise 14, what can you say about 
the determinant of the matrix power Ak, where k is a positive 
integer, if the matrix A is nonsingular?

	 16.	��� If A is an n 3 n matrix, then det A − det AT. Verify this 
theorem for 2 3 2 matrices.

	 17.	��� If D is an n 3 n diagonal matrix with entries dii, then 
det D − d11d22 ∙ ∙ ∙ dnn. Verify this theorem for 2 3 2 
matrices.

	 18.	��� Write each system of linear equations in the form Ax − b by 
identifying the matrix A and the vectors x and b.

		  (a)	  3x1 2 x2 − 9 	 (b)	  2x1 − 10
			    2x1 1 9x2 − 210	  3x1 2 x 2 − 14

		  (c)	  x1 1 x2 2 x3 − 0	 (d)	 2x1 2 x2 1 9x3 − 12
			   2x1 2 2x2 1 9x3 − 5		  x1 2 1

2 x2 1 x3 − 1
			   x1 1 9x3 − 1		  x2 − 2

	 19.	��� For which values of k does the system of linear equations 
have zero, one, or an infinite number of solutions? 
[Note: Not all three possibilities need occur.]

3x1 1 x2 − 2

kx1 1 2x2 − 4

	 20.	��� For which values of k does the system of linear equations 
have zero, one, or an infinite number of solutions? 
[Note: Not all three possibilities need occur.]

2x1 2 x2 − 3

4x1 2 2x2 − k

	 21.	��� Consider the linear system of equations

a11x1 1 a12x2 − b1

a21x1 1 a22 x2 − b2

		���  Suppose that the matrix A − ca11 a12

a21 a22
d  is nonsingular.

		���  Derive expressions for the solutions x1 and x2.

	 22.	��� Suppose that x − p and x − q are both solutions to the 
inhomogeneous system of equations Ax − b. Show that 
z − �p 1 s1 2 �dq is then also a solution, where � is a 
scalar.

	 23.	��� Suppose that x − p and x − q are both solutions to the 
homogeneous system of equations Ax − 0. Show that 
z − �p 1 �q is then also a solution, where � and � are 
scalars.

	� 24–29 � Find all solutions to the system of linear equations.

	 24.	 x1 1 2x2 − 0

2x1 1 5x2 − 1

	 25.	 x1 2 3x2 − 5

x1 1 x2 − 2
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■ Project  Cubic Splines	

In many situations it is desirable to construct a curve that goes through specified points 
with certain slope and curvature properties at these points. For example, if we are inter-
ested in the relationship between birth weight and infant survival, as illustrated in Fig- 
ure 1, we might wish to fit a relatively flexible curve to data.1

One way to do this is to construct a curve that is made up of cubic polynomials, 
“pieced together” at specific points. Such a curve is called a cubic spline. We consider 
how to fit curves to data in more detail in Chapter 11, but for the present purposes we will 
simply construct a cubic spline that satisfies certain conditions.

Suppose we wish to construct a cubic spline that is made up of two segments and  
satisfies the following properties: (i) the spline goes through the points s0, 0d, s1, 1d and 
s2, 2d; (ii) the two segments are joined together at the point s1, 1d; (iii) the slope and 
second derivative of the spline are both zero at the points s0, 0d and s2, 2d; and (iv) the 
spline has continuous first and second derivatives everywhere between 0 and 2. Such a 
curve is shown in Figure 2.

Each segment of the cubic spline consists of a cubic polynomial of the form 
fi − ai 1 bix 1 cix 2 1 dix 3.

	 1.	�� �Consider the segment f1 that joins the points s0, 0d and s1, 1d. Obtain a system of 
four linear equations in four unknowns that characterizes the coefficients a1, b1, 
c1, and d1, and write it in matrix form.

	 2.	�� �Solve the system of equations from Problem 1.

	 3.	�� �Consider the segment f 2 that joins the points s1, 1d and s2, 2d. Obtain a system of 
four linear equations in four unknowns that characterizes the coefficients a2, b2, 
c2, and d2, and write it in matrix form.

	 4.	� Solve the system of equations from Problem 3.

x210

1

f¡

f™

2

y

Figure �2
CAS

1.� D. Schluter, “Estimating the Form of Natural Selection on a Quantitative Trait,” Evolution 42 (1988): 
849–61.
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		���  where yt is the vector whose components are the numbers 
of individuals carrying each allele at time t. An equilibrium 
is a value of the vector for which no change occurs (that is, 
yt11 − yt). Denoting such values by ŷ, they must therefore 
satisfy the equation

ŷ − c0.95 0

0.05 1
d ŷ

		���  Find all possible equilibrium values.

	 35.	� Vectorcardiography �� Suppose that the voltage vector vt 
of the heart changes from one beat to the next according to 
the equation

vt11 − c1 0

0 21
d vt

		���  An equilibrium is a value of the vector for which no change 
occurs (that is, vt11 − vt). Denoting such values by v̂, they 

		���  must therefore satisfy the equation

v̂ − c1 0

0 21
d v̂

		��  Find all possible equilibrium values.

	 36.	�R esource allocation �� Each day an organism has 100 J of 
energy to divide between growth and reproduction. Each 
millimeter of growth costs 3 J and each egg produced costs 
5 J. Denote the amount of growth per day by x1 and the 
number of eggs produced per day by x2.

		  (a)	��� Suppose that the organism divides its energy so that 
for every millimeter of growth that occurs each day, it 
produces (on average) two eggs. What is the amount of 
growth and number of eggs produced on each day?

		  (b)	��� Suppose that the organism divides its energy each day 
so that the total energy spent on eggs is twice that spent 
on growth. What is the amount of growth and number of 
eggs produced on each day?
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8.7 Eigenvectors and Eigenvalues

The mathematical background of Section 8.6 can now be used to return to our study  
of matrix models. In this section we introduce eigenvectors and eigenvalues. In Sec- 
tion 8.8 we then show how they are fundamental to understanding the behavior of matrix 
models.

■ Characterizing How Matrix Multiplication Changes Vectors
In Section 8.5 we studied models for the dynamics of vectors having the form

n t11 − An t

where n t is a vector of variables and A is a square matrix. Our goal now is to characterize 
in general what such multiplication of a vector by a matrix does to the vector.

As an example, suppose that

A − c1
1
2

1 3
2
d

Figure 1 shows how this matrix changes the vector from one time step to the next when 

n0 − c23

4
d  . The changes in the vector look quite complicated. For example, the direction 

of the vector keeps changing and sometimes the vector is compressed from one step 
to the next (for example, between time 0 and time 1) and sometimes it is stretched (for 
example, between time 2 and time 3).

x

n¸ n¡
n™

n£y

4

4_4

x

n¸
n¡

n™

n£
y

4

4_4

LARGE

MARGIN

If you were to experiment with different initial vectors n0, you would get different 
patterns. However, you might happen across an initial vector that results in a particularly

simple result. For example, suppose n0 − c1
2
d . In this case the vector remains on its 

Figure �1
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For Problem 2 you should be able to solve the system of equations by inspection. For 
Problem 4, however, to solve the system of equations using matrix inverses you will need 
to calculate the inverse of a 4 3 4 matrix by using a computer algebra system.
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initial axis, and it is simply stretched by a factor of 2 each time step, as shown in Fig-

ure 2(a). Likewise, if n0 − c21

1
d  then again the vector remains on its initial axis, but

now it is compressed by a factor of 1
2 each time step, as shown in Figure 2(b). Thus, for 

some special initial vectors, the change in the vector is relatively easy to describe.

5

_5 5 x

y

n¸

n¡

n™

(a)

_1 1 x

y

1

n™

n¡

n¸

(b)

As we will see in Section 8.8, such special vectors play a central role in understand-
ing the behavior of matrix models. These vectors are called eigenvectors of the matrix 
A, and the factor by which each vector is stretched or shrunk is called its corresponding 
eigenvalue. In the remainder of this section we will learn how to calculate eigenvec-
tors and eigenvalues. We will see that a matrix of size n has exactly n eigenvalues, 
although our focus will be primarily on n − 2. We also focus on matrices whose eigen-
values are distinct (that is, none of them have the same value). This is a sufficient condi-
tion for each eigenvalue to be associated with its own distinct eigenvector. Matrices for 
which this is not true are called defective and are studied in courses on linear algebra.

■ Eigenvectors and Eigenvalues
An eigenvector of a matrix is a vector that, when multiplied by the matrix, is simply 
changed in length.

(1) Definition � Suppose that A is an n 3 n matrix. A nonzero vector v that 
satisfies the equation

Av − �v

is called an eigenvector of the matrix A. The scalar � is the eigenvalue associated 
with this eigenvector. 

Definition 1 provides a precise description of the idea that eigenvectors always remain 
on their initial axis when multiplied by a matrix. If v is an eigenvector of A, then when 
we multiply v by A we obtain the vector v multiplied by a scalar �.

How do we find eigenvectors and eigenvalues? As the following calculations reveal, 
it is easiest to first calculate the eigenvalues of a matrix and then calculate their associ-
ated eigenvectors.

Consider the matrix A − c1
1
2

1 3
2
d  from our earlier example. From Definition (1) we 

have

 Av − �v

Figure �2
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or, equivalently,

 Av 2 �v − 0

where 0 is the zero vector. To proceed further, we factor out the vector v. To do so, we 
must first multiply � by the identity matrix I in order for the elements of the equation to 
maintain compatible sizes:

(2)	 sA 2 �I dv − 0	

Notice that, although � is a scalar, A 2 �I is a 2 3 2 matrix.
We now seek a vector v that satisfies Equation 2. Recalling Theorem 8.6.5, we see 

that, if the matrix A 2 �I is invertible, then the only solution is the trivial solution v − 0.  
Therefore, to have a nonzero eigenvector v, we require that A 2 �I be singular. From 
Theorem 8.6.1, this requires that

detsA 2 �I d − 0

Our considerations have allowed us to remove v from the equation, and therefore we 
now have an equation that determines the eigenvalues �. Calculating the matrix A 2 �I, 
we get

A 2 �I − c1 2 � 1
2

1 3
2 2 �

d

and, using the definition of the determinant of a 2 3 2 matrix, we have

 det c1 2 � 1
2

1 3
2 2 �

d − s1 2 �d(3
2 2 �) 2 1

2 ? 1

 − 3
2 2 � 2 3

2� 1 �2 2 1
2

 − �2 2 5
2� 1 1

Setting this result equal to zero and multiplying the equation by 2 then gives 
2�2 2 5� 1 2 − 0. This can be factored to produce s� 2 2ds2� 2 1d − 0, the solu-
tions of which are � − 2 and � − 1

2. These are the eigenvalues of A.
We can now calculate the eigenvector associated with each of the eigenvalues � − 2 

and � − 1
2. First let’s find the eigenvector associated with � − 2. We seek a vector v such 

that, when � − 2 is substituted into the left side of Equation 2, we get the zero vector. 
In other words,

c1 2 � 1
2

1 3
2 2 �

d cv1

v2
d − c1 2 2 1

2

1 3
2 2 2

d cv1

v2
d − c0

0
d

This gives the following pair of equations in two unknowns:

 2v1 1 1
2v2 − 0

 v1 2 1
2v2 − 0

These two equations are redundant because both specify that 2v1 − v2. As a result, there 
are infinitely many solutions—we are free to choose either v1 or v2 arbitrarily, and the 
other is then determined by this choice.
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To make our calculations simple, it is usually best to work with whole numbers. For 
example, we might choose v1 − 1, in which case we then have v2 − 2. The eigenvector 

associated with eigenvalue � − 2 is then v − c1
2
d . If we had made a different choice for v1,

we would have ended up with a different vector v. For example, if we choose v1 − 2, we 

would then have v2 − 4 and thus v − c2
4
d . Regardless of our choice, however, all the 

resulting vectors are eigenvectors and all lie on the same line because they all have the  

form v − c a

2a
d  or v − a c1

2
d  for some scalar a as shown in Figure 3.

We now calculate the eigenvector associated with � − 1
2. We obtain

c1 2 � 1
2

1 3
2 2 �

d cv1

v2
d − c1 2 1

2
1
2

1 3
2 2 1

2
d cv1

v2
d − c0

0
d

which gives the pair of equations
1
2v1 1 1

2v2 − 0

v1 1 v2 − 0

Again, these equations are redundant, both specifying that v1 − 2v2. Choosing v2 − 1, 

we then have v1 − 21 and therefore v − c21

1
d . Again the choice v2 − 1 is arbitrary, but 

all choices result in vectors lying on the same line because they all have the form

v − a c21

1
d  for some scalar a. (See Figure 4.)

Note that the eigenvector-eigenvalue pairs we just obtained are exactly those identi-
fied in Figure 2.

 Example 1   |  Consider the matrix A − c2 2

1 3
d .

(a)	 Find its eigenvalues.
(b)	 Find the eigenvectors associated with the eigenvalues from part (a).

solution

(a)	 Using the equation detsA 2 �Id − 0, we get

det c2 2 � 2

1 3 2 �
d − 0

or	 s2 2 �ds3 2 �d 2 2 − �2 2 5� 1 4 − s� 2 1ds� 2 4d − 0	

The eigenvalues are therefore � − 1 and � − 4.

(b)	 Beginning with eigenvalue � − 1, we can use Equation 2 to obtain

c2 2 � 2

1 3 2 �
d cv1

v2
d − c2 2 1 2

1 3 2 1
d cv1

v2
d − c0

0
d

This is the pair of equations

v1 1 2v2 − 0

v1 1 2v2 − 0

x4

4

2

2

_2

_2

_4

_4

y

2√¡-√™=0

Figure �3
All eigenvectors associated with the 
eigenvalue � − 2 lie on the red line.

x3

3

21

2

1

_2 _1

_2

_1
_3

_3

y

√¡+√™=0

Figure �4
All eigenvectors associated with the 
eigenvalue � − 1

2 lie on the red line.
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These are identical, both specifying that v1 − 22v2. We choose (arbitrarily) v2 − 1,

giving v1 − 22 and thus v − c22

1
d .

For the eigenvalue � − 4, we use Equation 2 to obtain

c2 2 � 2

1 3 2 �
d cv1

v2
d − c2 2 4 2

1 3 2 4
d cv1

v2
d − c0

0
d

or, equivalently,

22v1 1 2v2 − 0

v1 2 v2 − 0

Both equations specify that v1 − v2 and we choose (arbitrarily) v1 − 1, giving v2 − 1 

and thus v − c1
1
d . (See Figure 5.)	 ■

 Example 2   |  Consider the matrix A − c2 1

1 1
2
d .

(a)	 Find its eigenvalues.
(b)	 Find the eigenvectors associated with the eigenvalues from part (a).

solution

(a)	 Using the equation detsA 2 �Id − 0, we get

det c2 2 � 1

1 1
2 2 �

d − 0

or	 s2 2 �d(1
2 2 �) 2 1 − �(� 2 5

2) − 0	

The eigenvalues are therefore � − 0 and � − 5
2.

(b)	 Beginning with eigenvalue � − 0, we have

c2 2 � 1

1 1
2 2 �

d cv1

v2
d − c2 2 0 1

1 1
2 2 0

d cv1

v2
d − c0

0
d

or, equivalently,
2v1 1 v2 − 0

v1 1 1
2v2 − 0

Both equations specify that 2v1 − 2v2. We choose v1 − 1, giving the eigenvector

 v − c 1

22
d  associated with the eigenvalue � − 0.

For the eigenvalue � − 5
2, we have

c2 2 � 1

1 1
2 2 �

d cv1

v2
d − c2 2 5

2 1

1 1
2 2 5

2
d cv1

v2
d − c0

0
d

or, equivalently,

21
2v1 1 v2 − 0

v1 2 2v2 − 0

x3

3

2

2

1

_2 _1

_2

_1
_3

_3

y

√¡-√™=0

√¡+2√™=0

Figure �5
The eigenvectors for both eigenvalues, 
along with red lines indicating all scalar 
multiples of these eigenvectors.
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These equations both specify that v1 − 2v2. We choose v2 − 1, giving the eigenvector 

v − c2
1
d  associated with the eigenvalue � − 5

2. (See Figure 6).

42

2

_4

_2

_2 x

y

2√¡+√™=0

√¡-2√™=0

This example illustrates that a matrix can have an eigenvalue that is zero. In 
Example 8.8.2, we will see what happens geometrically when vectors are multiplied by 
such matrices.	 ■

It is possible to derive an explicit formula for the eigenvalues of an arbitrary 2 3 2 
matrix. Consider the matrix

A − ca11 a12

a21 a22
d

Again, using the equation detsA 2 �Id − 0, we get

det ca11 2 � a12

a21 a22 2 �
d − 0

or

sa11 2 �dsa22 2 �d 2 a12a21 − �2 2 sa11 1 a22d� 1 sa11a22 2 a12a21d − 0

The last equation is a quadratic polynomial in �, and it can therefore be solved using the 
quadratic formula (or perhaps by factoring).

In the preceding calculation we saw that the equation detsA 2 �Id − 0 is a second-
degree polynomial in �. Although we won’t prove it, for a square matrix A of size n, the 
equation detsA 2 �Id − 0 that determines its eigenvalues is an nth-degree polynomial 
in �. This polynomial is referred to as the characteristic polynomial of the matrix A.  
Our focus on matrices that have distinct eigenvalues is therefore a focus on matrices 
whose characteristic polynomial has no repeated roots.

Given that the eigenvalues of a matrix are the roots of a polynomial, we also must 
expect that eigenvalues are sometimes complex numbers. In general, if we define the 
quantity i − s21 , the eigenvalues of matrices whose entries are real numbers always 
come in complex conjugate pairs, having the form � − a 1 bi and � − a 2 bi for some 
real numbers a and b. (See Exercise 8.8.27.)

 Example 3   |  Consider the matrix A − c s3 21

1 s3 d .

(a)	 Find its eigenvalues.
(b)	 Find the eigenvectors associated with the eigenvalues from part (a).

Figure �6
The eigenvectors for both eigenvalues, 

along with red lines indicating all scalar 
multiples of these eigenvectors.

Appendix G provides a review of  
complex numbers.
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(c)	 Consider an arbitrary initial vector n0 − cx0

y0
d . How does multiplication of n0 by

A affect the length of this vector?
(d)	 Use the dot product to determine how multiplication by A affects the direction of 
the vector.
(e)	 Describe, overall, what multiplication by the matrix A does to vectors.

solution

(a)	 Calculating the characteristic polynomial and solving it using the quadratic 
formula gives the eigenvalues:

 � − 1
2 f2s3 6 s(22s3 )2 2 4s4d g

 − 1
2(2s3 6 s12 2 16 )

 − s3 6 i

(b)	 Beginning with eigenvalue � − s3 1 i, we have

cs3 2 � 21

1 s3 2 �
d cv1

v2
d − c2i 21

1 2i
d cv1

v2
d − c0

0
d

Both of these equations specify that v2 − 2iv1. We choose v1 − 1, giving v − c 1

2i
d .

For eigenvalue � − s3 2 i, we have

cs3 2 � 21

1 s3 2 �
d cv1

v2
d − c i 21

1 i
d cv1

v2
d − c0

0
d

These equations both specify that v2 − iv1. We choose v1 − 1, giving v − c1
i
d . Notice

that, when the eigenvalues are complex, their corresponding eigenvectors are also 
complex.

(c)	 Carrying out the matrix multiplication with the initial vector n0 − cx0

y0
d  gives

n1 − cs3  21

1 s3 d c
x0

y0
d − cs3 x0 2 y0

x0 1 s3 y0
d

The length of the initial vector is | n0 | − sx0
2 1 y0

2 , and the length of the vector n1 is

	 | n1 | − s(s3 x0 2 y0) 2 1 (x0 1 s3 y0) 2 

	 − s3x0
2 2 2s3 x0y0 1 y0

2 1 x0
2 1 2s3 x0y0 1 3y0

2 

	 − 2sx0
2 1 y0

2 

Therefore multiplication by A increases the length of the vector by a factor of 2.

(d)	 From the definition of the dot product, we have

cos � −
n0 ? n1

| n0 || n1 |
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where � is the angle between n0 and n1. Substituting the vectors n0 and n1 gives

 cos � −
fx0, y0g ? fs3 x0 2 y0, x0 1 s3 y0g

2sx0
2 1 y0

2 sx0
2 1 y0

2 

	  −
s3 x 2

0 2 x0y0 1 x0y0 1 s3 

2sx0
2 1 y0

2d
y0

2

	  −
s3

 

2

Solving for � shows that the angle between n0 and n1 is � − �y6. Thus multiplication 
by A rotates the vector by 30 degrees.

(e)	 From parts (c) and (d) and from Figure 7, we see that each multiplication by A 
rotates the vector 30 degrees in the counterclockwise direction and stretches its length 
by a factor of 2.

	

y

x

n£

n¸

n™

n¡

	 ■

Example 3 suggests that when the eigenvalues are complex, there are no longer vec-
tors in the x1x2-plane that remain on a fixed axis when multiplied by the matrix. (There 
are still such vectors, but they do not lie in the x1x2-plane because they are complex.) 
Instead, it appears that all vectors in the x1x2-plane get rotated through a fixed angle. As 
the next section will show, this is true in general when eigenvalues are complex.

Here we are writing n0 and n1 as row 
vectors.

Figure �7

	� 1–4 � Multiplication by a matrix has an interesting geometric 
interpretation. Consider the letter L in the plane, made up of the 
two vectors f0, 2g and f1, 0g:

x1_1_2

1

_1

_2

2

2

y

�	 Describe how multiplication by the given matrix changes L.

	 1.	��� The following matrices are sometimes called reflections.

		  (a)	 c1 0

0 21
d 	 (b)	 c21 0

0 1
d

		  (c)	 c21 0

0 21
d 	 (d)	 c 0 21

21 0
d

	 2.	��� The following matrices are sometimes called contractions 
or expansions.

		  (a)	 c2 0

0 1
d 	 (b)	 c1 0

0 1
3
d

		  (c)	 c
1
5 0

0 2
d 	 (d)	 c

1
2 0

0 1
2
d

EXERCISES 8.7
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		  (b)	 Left posterior hemiblock: h − f20.3, 20.2g
		  (c)	 Apical ischemia: h − f20.3, 0.2g
		  (d)	� Chronic obstructive pulmonary disease: 

h − f0.1, 20.0667g

	 8.	� Morphometrics �� D’arcy Thompson was a Scottish sci-
entist who pioneered the use of mathematics for describing 
differences in morphology between species. For example, 
he demonstrated how the shape of the fish species Argyro-
pelecus offers can be related to the shape of another species 
Sternoptyx diaphana through matrix multiplication:

Argyropelecus offers

Sternoptyx diaphana

Source: Title: ON GROWTH AND FORM ABRIDGED EDITION authored 

by D’Arcy W. Thompson, edited by John Tyler Bonner; Copyright © 1961 

Cambridge University Press. Reprinted with the permission of Cambridge 

University Press.

		���  What is the form of the matrix that describes this change?

	 9.	��� Determine whether or not the given scalar k is an eigenvalue 
of the matrix A.

		  (a)	 A − c1 2

2 1
d     k − 3

		  (b)	 A − £
0 2 1

2 1 0

0 2 1
§     k − 0

		  (c)	 A − c5 2

0 1
d     k − 2

		  (d)	 A − c1 21

1 1
d     k − 1 2 i

		  (e)	 A − £
1 2 1

0 2 0

2 1 0
§     k − 0

		  (f)	 A − c1 a

1 1
d     k − 1 1 sa 

	 3.	��� The following matrices are sometimes called shears.

		  (a)	 c1 1

0 1
d 	 (b)	 c 1 0

21 1
d

		  (c)	 c1 22

0 1
d 	 (d)	 c1 0

1 1
d

	 4.	��� The following matrices are sometimes called rotations.

		  (a)	 £
s3 

2

1

2

2
1

2
s3 

2

§ 	 (b)	 £
1

2
2

s3 

2

s3 

2

1

2

§

	 5.	��� Consider a unit square in the first quadrant.

x

y

1

1

		���  Each point in the square can be viewed as the tip of its 
position vector. What is the matrix that results in each of the 
following images when applied to these vectors?

		  (a)	

x

y

1

1

	 (b)	

x

y

1 2

1

		  (c)	

x

y

1 2

1

	(d)	

x

y

œ„2

	 6.	��� Use the dot product to show that the matrix

ccos � 2sin �

sin � cos �
d

		���  rotates vectors through an angle �. Choose a particular value 
of � and convince yourself that the direction of rotation is 
counterclockwise.

	 7.	� Vectorcardiography �� Suppose the voltage vector of a 
healthy heart is given by f0.3, 20.2g. Cardiac abnormalities 
result in changes to this vector. Each abnormality can be 
viewed as a change of a healthy heart voltage vector into a 
pathological voltage vector through matrix multiplication. 
For each of the following heart pathologies, find a matrix 
that produces the pathological voltage vector from a healthy 
voltage vector.

		  (a)	 Left anterior hemiblock: h − f0.3, 0.2g
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	 13.	��� Find the eigenvalues and eigenvectors of the matrix.

		  (a)	 c1 0

0 21
d 	 (b)	 c1 2

2 1
d

		  (c)	 c1 22

2 1
d 	 (d)	 c2 7

0 5
d

		  (e)	 c1 2

3 23
d 	 (f)	 c2 6

5 0
d

		  (g)	 £
1 0 1

2 1 0

3 0 1
§ 	 (h)	 £

1 2 3

0 1 7

0 2 1
§

	 14.	��� Derive a general formula for the eigenvalues of the 2 3 2 
matrix

ca b

c d
d

	 15.	��� The case of matrices with repeated eigenvalues is treated in 
courses on linear algebra. As an example, try calculating the 
eigenvalues and eigenvectors of the following matrices. 
Comment on anything unusual that occurs.

		  (a)	 c1 0

0 1
d 	 (b)	 c1 1

0 1
d 	 (c)	 £

1 0 0

0 1 0

0 0 2
§

	 16.	��� In general, the eigenvalues of a diagonal matrix are given by 
the entries on the diagonal. Verify this for 2 3 2 and 3 3 3 
matrices.

	 17.	��� In general, the eigenvalues of an upper triangular matrix are 
given by the entries on the diagonal. The same is true for a 
lower triangular matrix. Verify this for 2 3 2 and 3 3 3 
matrices.

	 18.	��� The trace of a matrix is given by the sum of its diagonal 
entries. In general, the trace of a matrix is equal to the sum 
of its eigenvalues, and its determinant is equal to the 
product of its eigenvalues. Verify this for 2 3 2 matrices.

	 19.	��� Suppose that A2 − 0 for some matrix A. Prove that the only 
possible eigenvalues of A are then 0.

	 20.	��� Suppose that an eigenvalue of matrix A is zero. Prove that A 
must therefore be singular.

	 21.	��� Show that the characteristic polynomials of A and AT are 
the same.

	 22.	��� Suppose that A is a nonsingular matrix with an eigenvalue  
�. Show that 1y� is then an eigenvalue of A21.

	 23.	��� Suppose that � is an eigenvalue of A. Show that 2� is then 
an eigenvalue of 2A.

	 10.	��� Determine whether or not x is an eigenvector of A. If it is, 
determine its associated eigenvalue.

		  (a)	 A − c3 21

2 0
d     x − c1

2
d

		  (b)	 A − £
23 21 5

22 1 2

22 21 4
§     x − £

2

1

1
§

		  (c)	 A − c 1 21

22 0
d     x − c1

0
d

		  (d)	 A − c 1 2

22 1
d     x − c 2

2i
d

		  (e)	 A − c2 1 3a 22 2 2a

3 1 3a 23 2 2a
d     x − c2

3
d

		  (f)	 A − £
29 4 6

26 3 4

29 4 6
§     x − £

2

0

3
§

	 11.	��� Find the eigenvalues of each matrix.

		  (a)	 c2 0

3 0
d 	 (b)	 c5 24

6 25
d

		  (c)	 c3 21

0 2
d 	 (d)	 c 0 2

21
2 0

d

		  (e)	 £
6 24 24

0 0 0

6 24 24
§ 	 (f)	 £

21 4 2

0 3 0

23 4 4
§

	 12.	��� Find an eigenvector associated with the given eigenvalue  
of A.

		  (a)	 A − c9 0

2 3
d     � − 9

		  (b)	 A − c1 5

2 7
d     � − 4 1 s19 

		  (c)	 A − £
1 0 3

2 0 0

0 2 1
§     � − 3

		  (d)	 A − c0 1

3 2
d     � − 21

		  (e)	 A − c0 1

1 1
d     � −

1 1 s5 

2

		  (f)	 A − £
1 2 3

0 1 7

0 2 1
§     � − 1 1 s14 
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8.8 Iterated Matrix Models

Matrix models are used in the life sciences to model how vectors change over multiple 
time steps. Section 8.5 introduced several examples. One way to determine the long-
term behavior of such vectors over time is to iterate the matrix multiplication repeatedly. 
Given an initial vector n0, we calculate successive vectors n1, n2, c using the recursion

(1)	 n t11 − An t	

We used this idea in Chapters 1 and 2 to explore the scalar recursion equation nt11 − Rnt. 
As in the scalar case, however, this becomes cumbersome for large values of t. A better 
alternative is to find the solution to the recursion.

■ Solving Matrix Models
To solve the recursion equation (1), let’s begin by repeatedly iterating it, starting with 
initial vector n0. For n1 we obtain

n1 − An0

Likewise, for n2 we get

n2 − An1 − AsAn0d − A2n0

	 29.	��� The Leslie matrix for an age-structured population is given 
by

c b 2
1
2 0

d

		���  Find its eigenvalues and associated eigenvectors.

	 CAS 	 30.	� Cancer progression �� Example 8.5.2 introduced a model 
for the progression of cancer that involved the matrix

£
0.998 0.45 0

0.002 0.1 0

0 0.45 1
§

		���  Find its eigenvalues and associated eigenvectors.

	 31.	��� The Leslie matrix for an age-structured population is given 
by

£
1 2 4
1
2 0 0

0 1
3 0

§

		��  Find its characteristic polynomial.

	 32.	�T he genetics of inbreeding �� A model for the genetics of 
inbreeding was introduced in Exercise 8.5.19 and can be 
described by the matrix

£
1 1

4 0

0 1
2 0

0 1
4 1

§

		���  Try calculating its eigenvalues and associated eigenvectors. 
You will find that one of the eigenvalues is repeated.

	 24.	��� Suppose that � is an eigenvalue of A. Show that �2 is then 
an eigenvalue of A2.

	 25.	��� Suppose that v is an eigenvector of matrix A with eigen-
value �A, and it is also an eigenvector of matrix B with 
eigenvalue �B.

		  (a)	� Show that v is an eigenvector of A 1 B and find its 
associated eigenvalue.

		  (b)	� Show that v is an eigenvector of AB and find its associ-
ated eigenvalue.

	 26.	� Vectorcardiography �� The voltage vector of a heart with  
a certain pathology changes from one beat to the next as 
described by the matrix

c1 0

0 21
d

		���  Find its eigenvalues and associated eigenvectors.

	 27.	��� The antigenic evolution of a virus in one season is 
described by the matrix

c2 3

0 9
10
d

		���  Find its eigenvalues and associated eigenvectors.

	 28.	��� The change in population size of a species with juvenile 
and adult individuals is described by the matrix

c0 2
1
2

1
3
d

		��  Find its eigenvalues and associated eigenvectors.
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where A2 is A multiplied with itself. Continuing, we see the general pattern

(2)	 n t − Atn0	

where At is A multiplied with itself t times.
Equation 2 is the solution to recursion equation (1), just as nt − Rtn0 is the solution to 

the scalar recursion equation nt11 − Rnt. To verify this we substitute Atn0 into the left 
side of Equation 1:

At11n0 − AAtn0 − An t

This is identical to the right side of Equation 1, demonstrating that it is a solution.
Unlike the scalar case, however, the matrix multiplication required to calculate At 

becomes very tedious, particularly if there are unspecified constants in A (try calculat-
ing A3 for an arbitrary 2 3 2 matrix). Furthermore, such calculations do little to help us 
understand the long-term behavior of n t. This is where the eigenvalues and eigenvectors 
of A enter the picture. We can use them to rewrite A in a more useful way.

Recall the definition of the eigenvectors and eigenvalues of A:

(3)	 Avi − �ivi	

Note that we have now used the subscript i on v and � to reflect the fact that there are 
n such pairs for an n 3 n matrix (ignoring defective matrices; see Section 8.7). For 
example, in the 2 3 2 case we have two eigenvectors, which we will denote as column 

vectors by £
u

v1

u

§  and £
u

v2

u

§ . These eigenvectors are associated with eigenvalues �1 and 

�2, respectively. We can write Equation 3 simultaneously for both pairs as

A £
u u

v1 v2

u u

§ − £
u u

v1 v2

u u

§ c�1 0

0 �2
d

where £
u u

v1 v2

u u

§  is a 2 3 2 matrix whose columns are the eigenvectors £
u

v1

u

§  and £
u

v2

u

§ .

More generally, for an n 3 n matrix A we can define an n 3 n matrix P whose col-
umns are the n eigenvectors of A, and an n 3 n diagonal matrix D whose entries along 
the diagonal are the corresponding eigenvalues. We can then write

AP − PD

Our goal now is to use this equation to rewrite A in a different form, using its eigenvec-
tors and eigenvalues. A theorem from linear algebra states that if A is not defective, then 
P is invertible. Therefore, multiplying both sides of the equation on the right by P21 gives

(4)	 A − PDP21	

How does the expression for A in Equation 4 help us evaluate Atn0 in Equation 2? Let’s 
iterate Equation 1 again, this time using our new way of expressing A. For n1 we obtain

n1 − An0 − PDP21n0

548    Chapter 8  |  Vectors and Matrix Models
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For n2 we get
 n2 − An1

 − sPDP21dn1

 − sPDP21dsPDP21dn0

 − sPDP21PDP21dn0

Recalling that P21P − I, this last equation simplifies as

 n2 − PDIDP21n0

 − PDDP21n0

 − PD 2P21n0

where D 2 is D multiplied with itself. Proceeding further, we see the general pattern:

(5)	 n t − PD tP21n0	

Although Equation 5 looks more complicated than Equation 2, it is much easier to 
work with. In particular, as we saw in Example 8.4.3 and Exercise 8.4.7, for any diagonal 
matrix D, the matrix D k is simply a diagonal matrix with each of the entries of D raised 
to the power of k. Therefore, once we have calculated the eigenvalues and eigenvectors 
of A, calculating the value of n t is straightforward for any t of interest.

Not only does Equation 5 often provide a computational advantage over Equation 2, 
it can also be used to better understand the structure of the solution. Let’s return to the 
case of n − 2. Writing Equation 5 more explicitly, we have

(6)	 n t − £
u u

v1 v2

u u

§ c�1
t 0

0 �2
t d P21n0	

If we define two new constants, c1 and c2, as

cc1

c2
d − P21n0

then Equation 6 can be written as

(7)	 n t − £
u u

v1 v2

u u

§ c�1
t 0

0 �2
t d c

c1

c2
d 	

− £
u u

v1 v2

u u

§ c c1�1
t

c2 �2
t d

 − c1 £
u

v1

u

§ �1
t 1 c2 £

u

v2

u

§ �2
t
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Equation 7 shows that the solution n t can be viewed as the sum of two parts, each of 
which corresponds to one of the eigenvector-eigenvalue pairs of the matrix A. More 
generally, for an n 3 n matrix we have

(8)	 n t − c1 £
u

v1

u

§ �1
t 1 c2 £

u

v2

u

§ �2
t 1 ∙ ∙ ∙ 1 cn £

u

vn

u

§ �n
t 	

 Example 1   |  Consider the matrix A − c1
1
2

1 3
2
d . On page 539 we found the 

eigenvalues to be �1 − 2 and �2 − 1
2, and their corresponding eigenvectors to be 

v1 − c1
2
d  and v2 − c21

1
d .

(a)	 Express the solution to the recursion n t11 − An t in terms of these eigenvalues and 

eigenvectors, assuming n0 − c2
1
d .

(b)	 What happens to the vector n t as t l `?

solution

(a)	 To evaluate Equation 7 explicitly we need to calculate the constants c1 and c2. 
These are determined from P21 and the vector n0. To calculate P21 we note that 

P − c1 21

2 1
d  and therefore, using the formula for the inverse of a 2 3 2 matrix 

on page 530, we get P21 − c
1
3

1
3

22
3

1
3
d  . The constants c1 and c2 are calculated as 

cc1

c2
d − P21n0 − c 1

21
d . We obtain

n t − s1d c1
2
d  2 t 1 s21d c21

1
dS 1

2D
t

− c1
2
d  2 t 1 c 1

21
dS 1

2D
t

(b)	 As t l `, the part of the solution corresponding to eigenvector v2 decays to zero 
because lim tl` (1

2)t
− 0. At the same time, the part of the solution corresponding to 

eigenvector v1 grows by a factor of 2 each time step. As a result, the vector n t ulti-
mately increases in magnitude and approaches the direction of the first eigenvector, 

v1 − c1
2
d , as shown in Figure 1.	 ■

 Example 2   |  In Example 8.7.2 (on page 541) we found the eigenvectors and eigen-

values of matrix A − c2 1

1 1
2
d  to be �1 − 0 and �2 − 5

2, and v1 − c 1

22
d  and v2 − c2

1
d .

(a)	 Express the solution to the recursion n t11 − An t in terms of these eigenvalues and 

eigenvectors, assuming n0 − ca
b
d .

(b)	 What happens to the vector n t as t l `?

solution

(a)	 We have P − c 1 2

22 1
d  and therefore P21 − c

1
5 22

5
2
5

1
5
d . Calculating cc1

c2
d − P21n0 

15105

5

10

15

_5 x¡

x™

n£

n¸

n™

n¡

Figure �1
The red lines indicate all scalar mul- 
tiples of the eigenvectors. The vector  
n1 was obtained by multiplying n0  
by A. The vector n2 was obtained by 
multiplying n1 by A, and so on.
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gives the constants c1 − sa 2 2bdy5 and c2 − s2a 1 bdy5. The solution is therefore

 n t −
a 2 2b

5
 c 1

22
d  0 t 1

2a 1 b

5
 c2

1
dS 5

2D
t

−
2a 1 b

5
 c2

1
dS 5

2D
t

Note that this solution is restricted to values of t satisfying t > 1 because 0 t is unde-
fined when t − 0. The exclusion of the case t − 0 in the solution of matrix models is 
typical whenever the matrix has a zero eigenvalue.

(b)	 Because �1 − 0, the part of the solution corresponding to its eigenvector drops out 
of the solution. As a result, although the initial vector n0 can lie anywhere in the plane, 
n1 always lies on the line containing the eigenvector v2. The solution n t lies on this axis 
for all subsequent times, growing in magnitude by a factor of 5

2 each time step. This is 
illustrated in Figure 2 for the specific initial vector n0 − f20.15, 0.65g.	 ■

 Example 3   |  BB   Class-structured population dynamics  On page 520 
we introduced matrix models with an example of a population of juveniles and adults 
that changes in size through time according to the recursion n t11 − Qn t, where

Q − c 0 2
1
2

1
3
d

(a)	 Use the eigenvectors and eigenvalues of Q to find an equation that gives the 
number of juveniles and adults at time t for an arbitrary initial condition

n0 − c j0

a0
d

(b)	 How do the numbers of juveniles and adults change each time step once t is very 
large?

solution

(a)	 The eigenvalues of Q can be calculated as �1 − (1 1 s37 )y6 < 1.18 and 
�2 − (1 2 s37 )y6 < 20.85. After some calculation, the corresponding eigenvectors 
are found to be

v1 − c21 1 s37 

3
d < c5.1

3
d       v2 − c21 2 s37 

3
d < c27.1

3
d

Therefore we have

P − c21 1 s37 21 2 s37 

3 3
d     and    P21 − £

1

2s37 

1 1 s37 

6s37 

2
1

2s37 

21 1 s37 

6s37 

§

where P21 follows from the definition on page 530.

Finally, calculating cc1

c2
d − P21n 0 gives the constants

 c1 −
j0

2s37 1 a0S 1 1 s37 

6s37 D < 0.08 j0 1 0.19a0

 c2 −
2j0

2s37 1 a0S21 1 s37 

6s37 D < 20.08 j0 1 0.14a0

21

1

2

_1

_2

_2 _1 x¡

x™

n£

n¸ n™

n¡

Figure �2
The red lines indicate all scalar mul- 
tiples of the eigenvectors. The vector  
n1 was obtained by multiplying n0  
by A. The vector n2 was obtained by 
multiplying n1 by A, and so on.
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The solution, in decimal form, is therefore

n t − s0.08 j0 1 0.19a0d c5.1

3
d  s1.18d t 1 s20.08 j0 1 0.14a0d c27.1

3
d  s20.85dt

(b)	 As t increases, the part of the solution corresponding to the first eigenvector grows 
by a factor �1 < 1.18 each time step. The part of the solution corresponding to the 
second eigenvector alternates in sign and decays in magnitude each time step, asymp-
totically going to zero. Therefore, for any choice of initial vector n0, once t gets large 
the solution vector n t will grow in magnitude by a factor < 1.18 each time step and 
asymptotically approach the line defined by the eigenvector

v1 − c21 1 s37 

3
d < c5.1

3
d

Figure 3 illustrates the specific case where n0 − f0.15, 0.65g (measured in thousands of 
individuals).

21

2

1

j

a

n£

n¢

nß

n∞
n¸

n™

n¡

Thus, once t is large, both juvenile and adult subpopulations grow by a factor 1.18 
each time step [see Figure 4(a)]. Their relative abundances approach a constant ratio 
given by the ratio of the components of v1. This is illustrated in Figure 4(b).
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Figure �4  Plots of the components of vectors in Figure 3 as functions of time. Dashed lines in part (b) indicate 
the components of the vector kv1, where k − 1ys5.1 1 3d − 1y8.1. This scaling of v1 was chosen so that the 
components of the resulting vector add to 1. ■

■ Solutions with Complex Eigenvalues
In Section 8.7 we saw that the eigenvector-eigenvalue pairs of some matrices involve 
complex numbers. How do we interpret Equation 8 in this case? An important result 
from complex analysis called De Moivre’s Theorem provides the key.

Figure �3
The red lines indicate all scalar  

multiples of the eigenvectors. The  
vector n1 was obtained by multiplying 

n0 by A. The vector n2 was obtained  
by multiplying n1 by A, and so on.
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De Moivre’s Theorem provides a relationship between powers of complex numbers 
and the trigonometric functions sine and cosine. If a 1 bi is a complex number (where a 
and b are real numbers) and k is a positive integer, then

sa 1 bid k − r kscos k� 1 i sin k�d

where r − sa 2 1 b 2  is called the modulus of a 1 bi and � is called its argument. Spe-
cifically, � − tan21sbyad.

To illustrate the consequences of De Moivre’s Theorem, we return to Example 8.7.3.

There we studied the matrix A − cs3 21

1 s3 d  and found its eigenvalues to be 

�1 − s3 1 i and �2 − s3 2 i, with associated eigenvectors v1 − c 1

2i
d  and v2 − c1

i
d . 

Substituting these into Equation 7 gives the solution

 n t − c1 c 1

2i
d  (s3 1 i)t

1 c2 c1
i
d  (s3 2 i)t

 − c1 c 1

2i
d  2 t acos(�

6 t) 1 i sin(�
6 t)b 1 c2 c1

i
d  2 t acos(�

6 t) 2 i sin(�
6 t)b

where we have used the facts that

r − s(s3 )2 1 12 − 2    � − tan21S 1

s3 D −
�

6
    � − tan21S2

1

s3 D − 2
�

6

as well as the fact that sine is an odd function.

The final step is to calculate the constants c1 and c2. First, we have P − c 1 1

2i i
d  and

therefore P21 − £
1

2

i

2

1

2
2

i

2

§ . The constants c1 and c2 are then

cc1

c2
d − P21n0 − c sx0 1 y0idy2

sx0 2 y0idy2
d

Substituting these into the solution gives

 n t −
x0 1 y0i

2
 c 1

2i
d  2t acos(�

6 t) 1 i sin(�
6 t)b 1

x0 2 y0i

2
 c1

i
d  2t acos(�

6 t) 2 i sin(�
6 t)b

 −
1

2
 c x0 1 y0i

2x0i 1 y0
d  2 t acos(�

6 t) 1 i sin(�
6 t)b 1

1

2
 cx0 2 y0i

x0i 1 y0
d  2t acos(�

6 t) 2 i sin(�
6 t)b

 − 2t cx0 cos(�
6 t) 2 y0 sin(�

6 t)
x0 sin(�

6 t) 1 y0 cos(�
6 t) d − 2t ccos(�

6 t) 2sin(�
6 t)

sin(�
6 t) cos(�

6 t) d cx0

y0
d

Complex numbers and De Moivre’s 
Theorem are discussed in Appendix G.
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The second-last equality follows after considerable simplification, in which all of the 
imaginary parts of the solution cancel. As conjectured in Example 8.7.3, we can now 
see, using the result of Exercise 8.7.6, that n t gets stretched by a factor of 2 each time 
step and rotated through an angle of �y6 radians. Figure 5 illustrates a specific example 
where n0 − f0.35, 20.25g. The components of n t from Figure 5 are plotted as functions 
of time in Figure 6.

x

y

n¸ n¡

n£

n™

          

Time

x

y

Figure �5
The vector n1 was obtained by mul-
tiplying n0 by A. The vector n2 was 
obtained by multiplying n1 by A, and 
so on.

        

Figure �6
The components of n t as functions of 
time

The cancellation of imaginary parts in the solution of the preceding example occurs 
in general when the eigenvalues of A are complex. The solution in such cases always 
consists of the oscillatory functions sine and cosine, and the solution grows or decays in 
magnitude depending on the modulus of the eigenvalues (see Exercise 29).

■ Perron-Frobenius Theory
In Examples 1–3 the long-term behavior of the solution (that is, the behavior of n t as 
t l `) was determined by just one of the eigenvector-eigenvalue pairs of the matrix A. 
The reason can be seen from Equation 8: Suppose that the eigenvalues in Equation 8 are 
ordered in terms of their absolute value (or modulus, if they are complex) from the larg-
est �1 to the smallest �n, with | �1 | . | �i | for all i ± 1 (that is, �1 is strictly larger in 
modulus than all other eigenvalues). Dividing both sides of Equation 8 by � t

1 gives

n t

�1
t − c1 £

u

v1

u

§ 1 c2 £
u

v2

u

§  
�t

2

�1
t 1 ∙ ∙ ∙ 1 cn £

u

vn

u

§  
�t

n

�t
1

Now taking the limit t l `, we have

lim
t l `

 
n t

�t
1

− c1 £
u

v1

u

§

This shows that, in the long term, as t l ` the components of n t become propor-
tional to the components of the eigenvector v1. Thus the solution vector asymptotically 
approaches the line containing v1, regardless of the initial vector n0. This is a powerful 
piece of information: In the long run, all components of the vector n t change by a fac-
tor �1 each time step, with the relative sizes of its components being proportional to the 
components of v1.
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The preceding considerations are true only when �1 is strictly larger in magnitude 
than the other eigenvalues, and when the components of the associated eigenvector are 
positive. The power of matrix models in the life sciences stems, in large part, from 
the fact that many biological processes correspond to matrices whose eigenvectors and 
eigenvalues satisfy these conditions. The following definition and theorem specify pre-
cisely the kinds of matrices that have these properties.

Definition � An n 3 n matrix A whose entries are nonnegative is called primi-
tive if there exists a positive integer k such that all the entries of Ak are positive.

With this definition, we can now state the following theorem.

Perron-Frobenius Theorem � Suppose that A is an n 3 n matrix whose 
entries are all nonnegative. If A is primitive, then all of the following are true:

1.	 There exists an eigenvalue of A, call it �1, that is real and positive.

2.	� | �1 | . | �i | for all i ± 1 (that is, �1 is greater in magnitude than all other 
eigenvalues).

3.	� The components of the eigenvector associated with �1 are all positive. 

 Example 4   |  Consider the recursion n t11 − An t, where A − c2 1

1 2
d .

(a)	 What happens to the magnitude of n t as t l `?
(b)	 What happens to the direction of n t as t l `?

solution � Since A is primitive, we can apply the Perron-Frobenius Theorem. One 
eigenvalue is real and positive, larger in modulus than the other, and has an eigenvector 
with positive components. In this case we can calculate them explicitly, obtaining

���1 − 3 and �2 − 1, along with the eigenvectors v1 − c1
1
d  and v2 − c21

1
d .

(a)	 As t l ` the vector n t eventually grows in magnitude by a factor of �1 − 3 each 
time step, regardless of the initial vector n0.

(b)	 As t l ` the vector n t eventually points in the direction of v1 − c1
1
d , regardless of 

the initial vector n0. Figure 7 illustrates this behavior when n0 − f20.35, 0.45g.	 ■

 Example 5   |  BB   Age structure and the Leslie matrix  Consider an 
age-structured population whose size is governed by the equation

£
n1,t11

n2,t11

n3,t11

§ − £
2 2 2
1

10 0 0

0 1
2 0

§ £
n1,t

n2,t

n3,t

§

What is the long-term fate of the population?

solution � Denoting the Leslie matrix in the equation by L, we begin by exploring 
the first few powers of L. We find that L 3 has entries that are all positive, meaning that 
L is primitive. Therefore we can apply the Perron-Frobenius Theorem and so there is a 
positive, real eigenvalue that is larger in magnitude than all others. In the long term the 

1 2

2

_1

_1

_2

_2

n¸
n¡

n¢

n£

n™

x

y

Figure �7
The red lines indicate all scalar mul-
tiples of the eigenvectors. Each vector 
was obtained from the preceding one 
through multiplication by A.
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EXERCISES 8.8

	� 1–8 � Show that A − PDP 21, where P is a matrix whose col-
umns are the eigenvectors of A, and D is a diagonal matrix with 
the corresponding eigenvalues.

	 1.	 A − c2 0

0 1
d 	 2.	 A − c1 1

0 3
d

	 3.	 A − c1 2

2 1
d 	 4.	 A − c1 21

1 1
d

	 5.	 A − c 1 2

23 3
d 	 6.	 A − c0 a

0 b
d  �� with b ± 0

population will grow or decay depending on whether this eigenvalue is larger or 
smaller than 1.

Calculating the characteristic polynomial of L gives f s�d − �3 2 2�2 2 1
5 � 2 1

10. 
This polynomial does not factor and therefore its roots are difficult to find. But the 
Perron-Frobenius Theorem tells us that the largest root of the equation f s�d − 0 is 
positive. Therefore, since lim �l` f s�d − `, as the value of � increases, the graph of 
the function f s�d crosses the horizontal axis for the last time in one of the two ways 
illustrated in Figure 8.

1

f(¬)

¬

(a)       (b)

¬

f(¬)

1

Furthermore, by noting that f s1d − 213y10 , 0, we can see that Figure 8(a) 
cannot be correct because it requires f s1d . 0. Indeed, because f s1d − 213y10 and 
lim �l ` f s�d − `, the Intermediate Value Theorem tells us that the largest root in the 
Perron-Frobenius Theorem must be larger than 1. Consequently, in the long term the 
population will grow. The Perron-Frobenius Theorem also tells us that the fraction of 
the population made up of each age class stabilizes to constant values that are propor-
tional to the components of the eigenvector associated with �1. Figure 9 illustrates the 
case where n1,0 − 0.1, n2,0 − 1, and n3,0 − 1.
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Figure �9
Dashed lines indicate the components 
of the eigenvector associated with the 

largest eigenvalue.
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	 25.	 A − ca b

b a
d  �� with b ± 0

	� 26–29 � Like scalars, vectors with complex components can be 
broken into real and imaginary parts. For example, v − a 1 bi, 
where a and b are the real and imaginary parts of the vector, 
respectively. The complex conjugate of v is v − a 2 bi. The 
analogous notation holds for matrices. The following rules from 
complex analysis, familiar from the scalar case, carry over to 
vectors and matrices: rx − r x, Bx − B x, BC − B C, and 
rB − r B, where r is a scalar, x is a vector, and B and C are 
matrices. (Note: Complex numbers are discussed in Appendix G.)

	 26.	��� Suppose that A is a matrix with real entries. Show that if  
� is a complex eigenvalue of A, then its associated eigen-
vector will also be complex.

	 27.	��� Suppose that A is a matrix with real entries. If � is a 
complex eigenvalue of A with associated eigenvector x, 
show that � is also an eigenvalue of A with associated 
eigenvector x (that is, eigenvalues and eigenvectors of real 
matrices always come in complex conjugate pairs).

	 28.	��� Suppose that T − ca 2b

b a
d  with a ± 0 and b ± 0.

		  (a)	 Show that the eigenvalues of T are � − a 6 bi.
		  (b)	 Show that T can be written as

T − r ccos � 2sin �

sin � cos �
d

			�   where r − sa 2 1 b 2  is the modulus of the eigenvalues 
and � is the argument. This shows that the matrix T  
represents a rotation that also scales all vectors by a  
factor r. (Note: Recall Exercise 8.7.6.)

	 29.	��� Suppose that A is any 2 3 2 matrix with complex eigenval-
ues � − a 6 bi. We can write A − PDP 21, where P is a 
matrix whose columns contain the (complex) eigenvectors 
of A, and D is a diagonal matrix with their associated 
(complex) eigenvalues.

		  (a)	 Show that D − R 21TR, where

R − c i 2i

1 1
d     and    T − ca 2b

b a
d

		  (b)	��� Part (a) shows that A can be written as 
A − PR 21TRP 21. Show that S − PR 21 is a 2 3 2 
matrix whose columns are the real and imaginary com-
ponents of the eigenvectors of A.

		  (c)	� Part (b) shows that A − STS 21, where S is a 2 3 2 
matrix whose columns are the real and imaginary com-
ponents of the eigenvectors of A. In light of Exercise 
28, show that we can then write A as

A − rS ccos � 2sin �

sin � cos �
d  S 21

	 CAS 	 7.	 A − £
0 0 1

0 1 0

0 0 2
§

	 CAS 	 8.	 A − £
1 0 1

2 1 0

3 0 1
§

	� 9–14 � Show that A2 − PD 2P 21, where P is a matrix whose col-
umns are the eigenvectors of A, and D is a diagonal matrix with 
the corresponding eigenvalues.

	 9.	 A − c1 0

0 4
d 	 10.	 A − c1 4

0 4
d

	 11.	 A − c2 2

0 1
d 	 12.	 A − c1 21

2 1
d

	 13.	 A − ca 0

0 b
d   ��  with a ± b

	 14.	 A − ca b

0 c
d   ��  with a ± c

	� 15–20 � Express the solution to the recursion n t11 − An t in terms 
of the eigenvectors and eigenvalues of A, assuming that

	� �n0 − c1
1
d .

	 15.	 A − c2 0

0 1
d 	 16.	 A − c0 1

1 0
d

	 17.	 A − c1 1

0 2
d 	 18.	 A − c1 1

1 1
d

	 19.	 A − c1 a

0 2
d  �� with a ± 0

	 20.	 A − c1 a

0 b
d  �� with a ± 0 and b ± 1

	� 21–25 � Express the solution to the recursion n t11 − An t in terms 
of the eigenvectors and eigenvalues of A, assuming arbitrary 
initial conditions.

	 21.	 A − ca 0

0 b
d  �� with a ± b	 22.	 A − c0 1

1 0
d

	 23.	 A − c2 1

0 1
d

	 24.	 A − ca 1

0 1
d  �� with a ± 1
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	 37.	� Mutation �� In Exercise 8.6.34 we modeled mutation with a 
recursion of the form yt11 − Ayt. Suppose

A − c
9
10

1
5

1
10

4
5
d

		  (a)	 Calculate the eigenvalues of A.
		  (b)	� In light of the Perron-Frobenius Theorem, what is the 

long-term behavior of yt?

		  (c)	� Using the initial condition y0 − c1
0
d , express the solu-

			�   tion to the recursion in terms of the eigenvectors and 
eigenvalues of A.

		  (d)	� Verify your answer to part (b) using the solution 
obtained in part (c).

	 38.	� Leslie matrices �� In Exercise 8.7.29 we modeled an 
age-structured population using the recursion n t11 − Ln t, 
where

L − cb 2
1
2 0

d     b . 0

		  (a)	� Verify that the Perron-Frobenius Theorem can be 
applied to this model.

		  (b)	 Calculate the eigenvalues of L.
		  (c)	� Given your answers to parts (a) and (b), what is the 

long-term behavior of n t as a function of b?

		  (d)	� Using the initial condition n0 − c1
0
d , express the solu-

			�   tion to the recursion in terms of the eigenvectors and 
eigenvalues of L.

		  (e)	� Verify your answer to part (c) using the solution you 
obtained in part (d).

	 39.	� Methylation �� In Exercise 8.5.20 we modeled DNA 
methylation with the recursion x t11 − Ax t, where

A − c
8
10

1
2

2
10

1
2
d

		  (a)	 Calculate the eigenvalues of A.
		  (b)	� The Perron-Frobenius Theorem can clearly be applied 

to the matrix A. Given your answer to part (a), what is 
the long-term behavior of x t?

		  (c)	� Using the initial condition x0 − c a

1 2 a
d , express the 

			�   solution to the recursion in terms of the eigenvectors 
and eigenvalues of A.

		  (d)	� Verify your answer to part (b) using the solution you 
obtained in part (c).

			���   where r − sa 2 1 b 2  is the modulus of the eigenvalues 
and � is the argument.

		  (d)	� Show that

At − r tS ccos �t 2sin �t

sin �t cos �t
d  S 21

			�   This proves that all 2 3 2 matrices with complex eigen-
values rotate vectors by an angle � and stretch them by 
a factor r each time step.

	� 30–34 � Express the solution to the recursion n t11 − An t 
in terms of the eigenvectors and eigenvalues of A. Use De 
Moivre’s Theorem to simplify the solution if appropriate.

	 30.	 A − c0 21

1 0
d  �� with n0 − c1

1
d

	 31.	 A − c1 21

1 1
d  �� with n0 − c1

1
d

	 32.	 A − c1 21

2 1
d  �� with n0 − c1

0
d

	 33.	 A − c 1 5

21 1
d  �� with n0 − c0

1
d

	 34.	 A − c1 2a

a 1
d  �� with n0 − c1

0
d   where a is a real number

	 35.	� Vectorcardiography �� In Exercise 8.7.26 we modeled the 
heart voltage vector with the recursion v t11 − Avt, where 

		��  A − c1 0

0 21
d .

		  (a)	� Can you apply the Perron-Frobenius Theorem to this 
model?

		  (b)	��� Using the initial condition v0 − c 0.3

20.2
d , express the 

			���   solution to the recursion in terms of the eigenvectors 
and eigenvalues of A.

		  (c)	 Describe the long-term behavior of vt .

	 36.	�A ntigenic evolution �� In Exercise 8.7.27 we modeled 
antigenic evolution with the recursion x t11 − Ax t, where

A − c2 3

0 9
10
d

		  (a)	��� Using the initial condition x0 − c1
1
d , express the solu-

			�   tion to the recursion in terms of the eigenvectors and 
eigenvalues of A.

		  (b)	� Describe the long-term behavior of x t .
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	 41.	� Fibonacci numbers �� The nth Fibonacci number is 
generated by the recursion equation Fn − Fn21 1 Fn22 with 
F0 − F1 − 1. Define the two new variables xn − Fn and 
yn − Fn21.

		  (a)	� Show that the vector zn − cxn

yn
d  obeys the recursion 

			   zn − Azn21, where A − c1 1

1 0
d .

		  (b)	 Find the eigenvalues of A.
		  (c)	� Can the Perron-Frobenius Theorem be applied to the 

matrix A? If so, what is the long-term behavior of the 
vector zn?

		  (d)	 Find a formula for the nth Fibonacci number.

	 CAS 	40.	� Breast cancer �� In Example 8.5.2 a model for the 
dynamics of breast cancer was given by the recursion 
n t11 − An t, where

A − £
0.998 0.45 0

0.002 0.1 0

0 0.45 1
§

		  (a)	� Using the initial condition n0 − £
1

0

0
§ , express the 

			�   solution to the recursion in terms of the eigenvectors 
and eigenvalues of A.

		  (b)	� Describe the long-term behavior of n t.

1.� M. Gibson et al., “The Emergence of Geometric Order in Proliferating Metazoan Epithelia,” Nature 442 
(2006): 1038–41.

■ Project  The Emergence of Geometric Order in Proliferating Cells	

When some cells divide they form thin sheets in which the majority of cells are each 
adjacent to six other cells. This gives the sheet a hexagonal pattern as shown in Figure 1. 
In this project we will see how a mathematical model1 predicts the emergence of this 
pattern simply by the way cells divide.

Each cell in a sheet can be viewed as a polygon having a certain number of edges and 
vertices (see Figure 2). We assume that each cell has a minimum of four edges and that, 
when a cell division occurs (that is, when a cell splits into two daughter cells), the line of 
cell division always connects two edges, subdividing each edge (see Figure 3). The cells 
divide asynchronously and we take a single time step to be the time after which all cells 
in the sheet have divided once. Let ct, vt, and et denote the total number of cells, vertices, 
and edges after t cell divisions. Since each cell divides into two in a single time step, we 
have ct11 − 2ct.

	 1.	�� �Explain why the total number of vertices in the cell sheet obeys the recur-
sion vt11 − vt 1 2ct, and why the total number of edges obeys the recursion 
et11 − et 1 3ct. (Figure 3 might be helpful for this.)
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Figure �2
The shaded cell has four  

vertices and edges.

Figure �3
Numerals in each cell indicate  

the number of edges.
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CONCEPT CHECK

Chapter 8 Review

	 1.	�� What is the difference between a vector and a scalar?

	 2.	�� �How do you add two vectors geometrically? How do you add 
them algebraically?

	 3.	��� If a is a vector and c is a scalar, how is ca related to a 
geometrically? How do you find ca algebraically?

	 4.	�� �How do you find the vector from one point to another 
algebraically?

	 5.	��� How do you find the dot product a ? b of two vectors if you 
know their lengths and the angle between them? What if you 
know their components?

	 6.	��� How are dot products useful?

	 7.	��� Write expressions for the scalar and vector projections of b 
onto a. Illustrate with diagrams.

	 8.	��� What is the equation of a sphere?

	 9.	�� (a)	� How do you tell if two vectors are parallel?
		  (b)	� How do you tell if two vectors are perpendicular?

	 10.	��� What is a symmetric matrix?

	 11.	��� If a matrix A rotates vectors counterclockwise by � 
degrees, what does the matrix A21 do?

	 12.	��� If a 2 3 2 matrix has complex eigenvalues, what does this 
matrix do to vectors upon multiplication?

	 13.	��� Suppose A is a matrix and k is a positive integer. What does 
the notation Ak mean?

	 14.	��� What is the relationship between the inverse of a matrix 
and the determinant of a matrix?

	 15.	��� Explain what eigenvalues and eigenvectors are.

	 16.	��� Why does a 2 3 2 matrix have two eigenvalues?

	 17.	��� Suppose a 2 3 2 matrix with real entries has complex 
eigenvalues. Why must the eigenvalues be complex 
conjugates?

	 18.	��� Why is it sometimes useful to write a matrix A in the form 
A − PDP 21, where D is a diagonal matrix?

	 19.	��� What does the Perron-Frobenius Theorem say, and why is 
it useful?

560    Chapter 8  |  Vectors and Matrix Models

	 2.	�� Write the system of recursion equations for ct, vt, and et in matrix notation.

	 3.	�� What are the eigenvalues of the matrix from Problem 2? Show that 

		�  �£
1

2

3
§ , £

0

1

0
§ , and £

0

0

1
§  are eigenvectors corresponding to these eigenvalues.

	 4.	�� Write the solution to the recursion from Problem 2 in terms of its eigenvectors 
and eigenvalues for an arbitrary initial condition.

	 5.	�� If we ignore complications arising from the fact that cells on the boundary are 
not completely surrounded by other cells, then the average number of sides per 
cell at time t is st − 2etyct. Why?

	 6.	�� Show that, in the long term (that is, when t l `), the average number of sides 
per cell st approaches six.

Answers to the Concept Check can be found on the back endpapers.
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TRUE-FALSE QUIZ

	� Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

	 1.	�� For any vectors u and v in V3, u ? v − v ? u.

	 2.	��� For any scalar c and vectors u and v, csu 1 vd − cu 1 cv.

	 3.	��� If u ? v − 0, then u − 0 or v − 0.

	 4.	��� If u − fu1, u2 g  and v − fv1, v2 g , then u ? v − fu1v1, u2v2 g.

	 5.	��� The set of points h sx, y, zd |  x 2 1 y 2 − 1j  is a circle.

	 6.	��� The dot product of parallel vectors is zero.

	 7.	��� For any square matrices of the same size, AB − BA.

	 8.	��� For any square matrices of the same size, 
AsB 1 Cd − AB 1 AC.

	 9.	��� The determinant of the identity matrix is 1.

	 10.	��� If Ax − ax for a square matrix A, vector x, and scalar a, 
where x ± 0, then a is an eigenvalue of A.

	 11.	��� If y is an eigenvector of A, then Ay − ky for some scalar k.

	 12.	��� If a square matrix A is singular, it has a zero eigenvalue.

	 13.	��� The eigenvalues of any square matrix lie on its diagonal.

	 14.	��� If a 2 3 2 matrix A has complex eigenvalues, then it 
stretches and rotates vectors.

	 15.	��� All square matrices A with distinct eigenvalues can be 
written as A − PDP 21.

	 16.	��� The inhomogeneous system of equations Ax − b, where 
b ± 0, has either the trivial solution or an infinite number of 
solutions.

	 17.	��� The homogeneous system of equations Ax − 0 has either 
the trivial solution or an infinite number of solutions.

	 18.	��� If u and v are in V3, then | u ? v | < | u | | v |.

	 1.	�� (a)	� Find an equation of the sphere that passes through the 
point s6, 22, 3d and has center s21, 2, 1d.

		  (b)	� Find the curve in which this sphere intersects the  
yz-plane.

		  (c)	� Find the center and radius of the sphere

x 2 1 y2 1 z2 2 8x 1 2y 1 6z 1 1 − 0

	 2.	��� Copy the vectors in the figure and use them to draw each of 
the following vectors.

		  (a)	 a 1 b	 (b)	 a 2 b
		  (c)	 2 1

2 a	 (d)	 2a 1 b

a
b

	 3.	��� A hypersphere with center at point P and radius r in Rn is 
the set of all points that are a distance r from P. Give the 
equation of a hypersphere.

	 4.	��� Calculate the given quantity if

 a − f1, 1, 22g

 b − f3, 22, 1g

 c − f0, 1, 25g

		  (a)	 2a 1 3b	 (b)	 | b |
		  (c)	 a ? b	 (d)	 compab

		  (e)	 projab
		  (f)	� The angle between a and b (correct to the nearest 

degree)

	 5.	��� �Find the values of x such that the vectors f3, 2, x g  and 
f2x, 4, x g  are orthogonal.

	 6.	�� �Find two unit vectors that are orthogonal to both f0, 1, 2g 
and f1, 22, 3g.

	 7.	��� Find the acute angle between the lines.
		  (a)	 2x 2 y − 3,    3x 1 y − 7
		  (b)	 x 1 2y − 7,    5x 2 y − 2

	 8.	��� Find the acute angle between two diagonals of a cube.

	 9.	��� Use a scalar projection to show that the distance from a 
point P1sx1, y1d to the line ax 1 by 1 c − 0 is

| ax1 1 by1 1 c |
sa 2 1 b 2 

		��  �Use this formula to find the distance from the point s22, 3d 
to the line 3x 2 4y 1 5 − 0.

	 10.	� Viral identification �� Viruses from the same geographic 
location tend to cluster together in antigenic space. Suppose 
all viruses from Asia fall within a sphere of radius 1 cen- 
tered at s2, 3, 1d in antigenic space, viruses from North 
America fall within a sphere of radius 1 centered at 
s23, 2, 0d, and those from Europe fall within a sphere of 
radius 1 centered at s1, 0, 1d. (All numbers are dimension-
less quantities.) A patient is infected with a virus located at 

EXERCISES
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	 16.	��� Calculate the given quantity, if it is defined, using the given 
matrices:

 A − c1 0

1 9
d        B − £

1 1

1 9

0 9
§

 C − c1 2

9 2
d        D − c1 1 7

0 3 2
d

		  (a)	 AD	 (b)	 C 1 C T

		  (c)	 AsB 1 Cd	 (d)	 sDBd21

		  (e)	 sC 2 2AdB	 (f)	 ABCD

	 17.	��� For all matrices ca11 a12

a21 a22
d  where all components aij are 

		���  nonzero, show that if A − A21, then det A − 21 and 
a11 − 2a22.

	 18.	��� If A is nonsingular, then det A21 − 1ysdet Ad. Verify this 
theorem for 2 3 2 matrices.

	 19.	��� If I is the n 3 n identity matrix, then det I − 1. Verify this 
theorem for 2 3 2 matrices.

	 20.	� Stage-structured population �� Suppose a population 
contains juveniles and adults, and the vector n t of the 
numbers of each of these changes from one year to the next 
according to the equation

n t11 − c 0 2
1
2

1
3
d n t

		���  If the number of juveniles and adults in the current year is 

		���  given by the vector c30

8
d , find the numbers of juveniles and 

		��  adults ��in the previous year.

	� 21–24 � Solve the system of equations.

	 21.	  3x 2 y − 2	 22.	  2x 1 y − 2

		   x 1 7y − 4		  4x 2 y − 4

	 23.	 7x 1 y − 0	 24.	 x 2 2y − 2

		  14x 1 2y − 0		 3x 2 6y − 4

	 25.	� Leslie matrix �� Consider the following model for an 
age-structured population with three age classes:

n t11 − £
1 2 4
1
2 0 0

0 1
3 0

§ n t

s2.5, 3, 1.75d in antigenic space. In which geographic 
location was this patient infected?

	 11.	� Genome expression divergence �� The genome expression 
profiles of two closely related species are given by the 
points s21, 3d and s1, 1d in dimensionless quantities.

		  (a)	� Calculate the difference in expression profile as meas-
ured by distance in “expression space.”

		  (b)	��� Suppose the points in expression space are treated as 
the tips of position vectors. Calculate the difference in 
expression profile as measured by the angle between the 
expression vectors.

	 12.	� Influenza �� Each month all individuals in a city are 
characterized as being either susceptible to influenza 
infection, currently infected, or resistant to infection. Sup- 
pose that susceptible individuals can become infected, 
infected individuals can either become susceptible again or 
resistant, and resistant individuals remain resistant. Draw a 
matrix diagram for this situation.

	 13.	��� Construct the matrix model for the following matrix 
diagram.

BA C

0.5 0.5

2

1

	 14.	� Leslie matrix modeling �� Suppose that a species lives for a 
maximum of three years and individuals of all age classes 
produce three new offspring each year. Further, suppose the 
annual survival rates are 10% at age 1 and 30% at age 2.

		  (a)	 Construct the matrix diagram for this situation.
		  (b)	� Construct the matrix model from the diagram in  

part (a).

	 15.	��� Calculate the given quantity, if it is defined, using the given 
matrices:

 A − c7 0

1 9
d        B − £

1 4

1 0

0 9
§

 C − c1 2

9 6
d        D − c15 0 7

0 5 2
d

		  (a)	 A 2 D	 (b)	 2C 1 A
		  (c)	 A 1 2B 1 C	 (d)	 D 2 B
		  (e)	 B T 1 D	 (f)	 2C 2 A21
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	 29.	 A − c 2 1

21 2
d 	 30.	 A − ca 21

1 a
d

	 31.	��� Suppose A is a 2 3 2 matrix whose columns sum to one. 
Show that � − 1 is an eigenvalue of A.

	� 32–35 � Express the solution to the recursion n t11 − An t in terms 
of the eigenvectors and eigenvalues of A. Use De Moivre’s 
Theorem to simplify the solution, if appropriate.

	 32.	 A − c1 1

2 1
d   ��  and    n0 − c1

0
d

	 33.	 A − c 2 3

24 26
d   ��  and    n0 − c1

0
d

	 34.	 A − c2 21

1 1
d   ��  and    n0 − c1

0
d

	 35.	� A − ca 21

1 a
d   ��  and    n0 − c1

1
d ,  where a is a real 

		���  number

	 36.	� Dispersal �� In Exercise 8.5.9 we modeled the dispersal of 
dragonflies using the recursion x t11 − Ax t, where

A − c0.8 0.3

0.2 0.7
d

		  (a)	� Verify that the Perron-Frobenius Theorem can be 
applied to this model.

		  (b)	� Calculate the eigenvalues of A.
		  (c)	� Given your answers to parts (a) and (b), what is the 

long-term behavior of x t?

		  (d)	� Using the initial condition x0 − c1
1
d , express the solu-

			���   tion to the recursion in terms of the eigenvectors and 
eigenvalues of A.

		  (e)	� Verify your answer to part (c) using the solution you 
obtained in part (d).

	 37.	� Succession �� In Exercise 8.5.15 we modeled ecological 
succession using the recursion yt11 − Ayt, where

A − £
0.9 0.001 0

0.1 0.799 0.001

0 0.2 0.999
§

		���  Can the Perron-Frobenius Theorem be applied to this 
model?

		���  An equilibrium is a value of the vector for which no change 
occurs (that is, n t11 − n t). Denoting this value by n̂, it must 
therefore satisfy the equation

n̂ − £
1 2 4
1
2 0 0

0 1
3 0

§ n̂

		���  Find all equilibria and explain what each represents 
biologically.

	 26.	� CAT scans �� Computed Axial Tomography uses narrow 
X-ray beams directed though the body at several angles to 
construct an image of internal organs and structures. The 
density of the material through which the beam passes 
affects the extent to which it is diminished before exiting 
the body. In most cases the part of the body to be scanned is 
overlaid with a grid, and X-ray beams are directed through 
the elements of this grid at different angles. Measurements 
of the exiting beams can then be used to calculate the den-
sity of each element of the grid.

		  (a)	� Consider a simple grid with three elements, and three 
X-ray beams directed through them at different angles, 
as shown in the figure. The unknown densities of the 
material in each element are x1, x2 and x3.

x¡

x™ x£

Detector A

Detector B

Detector C

		���  Suppose that, if a beam travels through elements i and j, its 
intensity upon exiting is e2sxi1xjd. If the measured intensities 
of the beams at detectors A, B, and C are a, b, and c, 
respectively, construct a system of equations for the 
unknown densities.

		  (b)	� Using a − 0.6, b − 0.5, and c − 0.7, determine the 
density of each element. In CAT scans these densities 
are then used to color the pixels of the image.

	� 27–30 � Find the eigenvectors and eigenvalues for the matrix.

	 27.	 A − c3 1

1 3
d 	 28.	 A − c 2 22

24 4
d
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			�   tion to the recursion in terms of the eigenvectors and 
eigenvalues of A.

	 39.	��� A sequence is given recursively by the equation

an −
san21 1 an22d

2

		���  Define the two new variables xn − an and yn − an21.

		  (a)	� Find a matrix A such that the vector zn − c xn

yn
d  obeys 

			   the recursion zn − Azn21.
		  (b)	� Verify that the Perron-Frobenius Theorem can be 

applied.
		  (c)	 Find the eigenvalues of A.
		  (d)	� In light of the Perron-Frobenius Theorem, what is the 

long-term behavior of the vector zn?
		  (e)	� Evaluate limnl` an.

	 38.	� Inbreeding �� In Exercise 8.5.19 we modeled inbreeding 
using the recursion x t11 − Ax t, where

A − £
1 1

4 0

0 1
2 0

0 1
4 1

§

		  (a)	� Calculate the eigenvalues of A. (You will find a repeated 
eigenvalue.)

		  (b)	� Verify that the eigenvectors of A are

v1 − £
1

0

0
§     v2 − £

0

0

1
§     v3 − £

1

22

1
§

CAS 		  (c)	� Using the initial condition x0 − £
0

1

0
§ , express the solu-
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The energy needed by a lizard 

(such as this iguana) to walk  

or run depends on both its  

weight and its speed. So the 

energy is a function of two vari-

ables, which we investigate in 

Exercise 47 in Section 9.2.

© Ryan Jackson
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Biological Quantities often depend on two or more variables. In this 

chapter we extend the basic ideas of differential calculus to functions of several 

variables.

9.1 Functions of Several Variables

In this section we study functions of two or more variables from four points of view:

■  verbally	 (by a description in words)

■  numerically	 (by a table of values)

■  algebraically	 (by an explicit formula)

■  visually	 (by a graph or level curves)

■ Functions of Two Variables
The temperature T  at a point on the surface of the earth at any given time depends on 
the longitude x and latitude y of the point. We can think of T  as being a function of the 
two variables x and y, or as a function of the pair sx, yd. We indicate this functional 
dependence by writing T − f sx, yd.

The resistance R of blood flowing through an artery depends on the radius r and 
length L of the artery. In fact, one of Poiseuille’s laws states that R − CLyr 4, where C is 
a positive constant determined by the viscosity of the blood. We say that R is a function 
of r and L, and we write

Rsr, Ld − C 
L

r 4

Definition � A function f  of two variables is a rule that assigns to each ordered 
pair of real numbers sx, yd in a set D a unique real number denoted by f sx, yd. The 
set D is the domain of f  and its range is the set of values that f  takes on, that is, 
h f sx, yd | sx, yd [ Dj.

We often write z − f sx, yd to make explicit the value taken on by f  at the general 
point sx, yd. The variables x and y are independent variables and z is the dependent 
variable. [Compare this with the notation y − f sxd for functions of a single variable.]

The domain is a subset of R 2, the xy-plane. We can think of the domain as the set of 
all possible inputs and the range as the set of all possible outputs. If a function f  is given 
by a formula and no domain is specified, then the domain of f  is understood to be the set 
of all pairs sx, yd for which the given expression is a well-defined real number.

 Example 1   |  Wind-chill index  In regions with severe winter weather, the 
wind-chill index is often used to describe the apparent severity of the cold. This index 
W  is a subjective temperature that depends on the actual temperature T  and the wind 
speed v. So W  is a function of T  and v, and we can write W − f sT, vd. Table 1 records 
values of W  compiled by the National Weather Service of the US and the Meteorologi-
cal Service of Canada.
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Table 1  Wind-chill index as a function of air temperature and wind speed
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For instance, the table shows that if the temperature is 25°C and the wind speed is 
50 kmyh, then subjectively it would feel as cold as a temperature of about 215°C with 
no wind. So

	 f s25, 50d − 215°C	 ■

 Example 2   |  The body mass index (BMI) of a person is defined by the equation

Bsm, hd −
m

h 2

where m is the person’s mass (in kilograms) and h is the height (in meters). So B is a 
function of the two variables m and h. A rough guideline is that a person is under-
weight if the BMI is less than 18.5; optimal if the BMI lies between 18.5 and 25; 
overweight if the BMI lies between 25 and 30; and obese if the BMI exceeds 30. If 
someone weighs 64 kg and is 168 cm high, what is the BMI?

Solution � With m − 64 kg and h − 1.68 m, the BMI is

Bs64, 1.68d −
64

s1.68d2 < 22.7 kgym2

Because	 18.5 < Bs64, 1.68d < 25

this person is considered to have optimal weight.	 ■

 Example 3   |  For each of the following functions, evaluate f s3, 2d and find and 
sketch the domain.

(a)	 f sx, yd −
sx 1 y 1 1

x 2 1
	 (b)	 f sx, yd − x lnsy 2 2 xd

solution

(a)	 f s3, 2d −
s3 1 2 1 1

3 2 1
−

s6 

2

The Wind-Chill Index
A new wind-chill index was intro-
duced in November of 2001 and is 
more accurate than the old index for 
measuring how cold it feels when it’s 
windy. The new index is based on a 
model of how fast a human face loses 
heat. It was developed through clinical 
trials in which volunteers were exposed 
to a variety of temperatures and wind 
speeds in a refrigerated wind tunnel.
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The expression for f  makes sense if the denominator is not 0 and the quantity under 
the square root sign is nonnegative. So the domain of f  is

D − hsx, yd | x 1 y 1 1 > 0,  x ± 1j

The inequality x 1 y 1 1 > 0, or y > 2x 2 1, describes the points that lie on or 
above the line y − 2x 2 1, while x ± 1 means that the points on the line x − 1 must 
be excluded from the domain (see Figure 1).

(b)	 f s3, 2d − 3 lns22 2 3d − 3 ln 1 − 0

Since lnsy 2 2 xd is defined only when y 2 2 x . 0, that is, x , y 2, the domain of f  is 
D − hsx, yd | x , y 2 j. This is the set of points to the left of the parabola x − y 2. (See 
Figure 2.)

	

x0

y

x=¥

	 ■

 Example 4   |  Find the domain and range of tsx, yd − s9 2 x 2 2 y 2 .

SOLUTION � The domain of t is

D − hsx, yd | 9 2 x 2 2 y 2 > 0j − hsx, yd | x 2 1 y 2 < 9j

which is the disk with center s0, 0d and radius 3. (See Figure 3.) The range of t is

h z | z − s9 2 x 2 2 y 2 , sx, yd [ D j

Since z is a positive square root, z > 0. Also, because 9 2 x 2 2 y 2 < 9, we have

s9 2 x 2 2 y 2 < 3

So the range is

	 hz | 0 < z < 3j − f0, 3g	 ■

■ Graphs
One way of visualizing the behavior of a function of two variables is to consider its 
graph.

Definition � If f  is a function of two variables with domain D, then the graph of 
f  is the set of all points sx, y, zd in R3 such that z − f sx, yd and sx, yd is in D.

Just as the graph of a function f  of one variable is a curve C with equation y − f sxd, 
so the graph of a function f  of two variables is a surface S with equation z − f sx, yd. 
We can visualize the graph S of f  as lying directly above or below its domain D in the  
xy-plane (see Figure 4).

Figure �2
Domain of f(x, y)=x ln(¥-x)

≈+¥=9

3_3 x

y

Figure �3

Domain of g(x, y)=œ„„„„„„„„„9-≈-¥

f(x, y)
0

z

y
x

D

S
{x, y, f(x, y)}

(x, y, 0)

S

Figure �4

x0

y

_1

_1

x=1

x+y+1=0

Figure �1
œ„„„„„„„

x-1
x+y+1

Domain of f(x, y)=
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 Example 5   |  Sketch the graph of the function f sx, yd − 6 2 3x 2 2y.

SOLUTION � The graph of f  has the equation z − 6 2 3x 2 2y, or 3x 1 2y 1 z − 6, 
which represents a plane (see Section 8.3). To graph the plane we first find the inter-
cepts. Putting y − z − 0 in the equation, we get x − 2 as the x-intercept. Similarly, the 
y-intercept is 3 and the z-intercept is 6. This helps us sketch the portion of the graph 
that lies in the first octant in Figure 5.	 ■

The function in Example 5 is a special case of the function

f sx, yd − ax 1 by 1 c

which is called a linear function. The graph of such a function has the equation

z − ax 1 by 1 c        or        ax 1 by 2 z 1 c − 0

so it is a plane. In much the same way that linear functions of one variable are impor-
tant in single-variable calculus, we will see that linear functions of two variables play a 
central role in multivariable calculus.

 Example 6   |  Sketch the graph of tsx, yd − s9 2 x 2 2 y 2 .

SOLUTION � The graph has equation z − s9 2 x 2 2 y 2 . We square both sides of this 
equation to obtain z2 − 9 2 x 2 2 y 2, or x 2 1 y 2 1 z2 − 9, which we recognize as an 
equation of the sphere with center the origin and radius 3. (See Section 8.1.) But, since 
z > 0, the graph of t is just the top half of this sphere (see Figure 6).	 ■

Note � An entire sphere can’t be represented by a single function of x and y. As we 
saw in Example 6, the upper hemisphere of the sphere x 2 1 y 2 1 z2 − 9 is represented 
by the function tsx, yd − s9 2 x 2 2 y 2 . The lower hemisphere is represented by the 
function hsx, yd − 2s9 2 x 2 2 y 2 .

 Example 7   |  Find the domain and range and sketch the graph of hsx, yd − x 2 1 y 2.

SOLUTION � Notice that hsx, yd is defined for all possible ordered pairs of real num- 
bers sx, yd, so the domain is R2, the entire xy-plane. The range of h is the set f0, `d of 
all nonnegative real numbers. [Notice that x 2 > 0 and y 2 > 0, so hsx, yd > 0 for all x 
and y.]

The graph of h has the equation z − x 2 1 y 2. If we put x − 0, we get z − y 2, so  
the yz-plane intersects the surface in a parabola. If we put x − k (a constant), we get 
z − y 2 1 k 2. This means that if we slice the graph with any plane parallel to the  
yz-plane, we obtain a parabola that opens upward. (These curves that we get by slicing 
a surface with a plane parallel to one of the coordinate planes are called traces.) 
Similarly, if y − k, the trace is z − x 2 1 k 2, which is again a parabola that opens 
upward. If we put z − k, we get the horizontal traces x 2 1 y 2 − k, which we recognize 
as a family of circles. Knowing the shapes of the traces, we can sketch the graph of f  
in Figure 7. Because of the parabolic traces, the surface z − x 2 1 y 2 is called a 
paraboloid.	 ■

Computer programs are readily available for graphing functions of two variables. In 
most such programs, traces in the vertical planes x − k and y − k are drawn for equally 
spaced values of k and parts of the graph are eliminated using hidden line removal.
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(0, 3, 0)
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x

(0, 0, 6)

Figure �5

0
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Figure 8 shows computer-generated graphs of several functions. Notice that we get 
an especially good picture of a function when rotation is used to give views from dif-
ferent vantage points. In parts (a) and (b) the graph of f  is very flat and close to the  
xy-plane except near the origin; this is because e2x 22 y 2

 is very small when x or y is large.

(c) f(x, y)=sin x+sin y

z

x y

x

z

y

(d) f(x, y)=
sin x  sin y

xy

(a) f(x, y)=(≈+3¥)e_≈_¥

z

y
x

(b) f(x, y)=(≈+3¥)e_≈_¥

x

z

■ Level Curves
Another method for visualizing functions, borrowed from mapmakers, is a contour map 
on which points of constant elevation are joined to form contour lines, or level curves.

Definition � The level curves of a function f  of two variables are the curves 
with equations f sx, yd − k, where k is a constant (in the range of f  ).

A level curve f sx, yd − k is the set of all points in the domain of f  at which f  takes 
on a given value k. In other words, it shows where the graph of f  has height k.

You can see from Figure 9 the relation between level curves and horizontal traces. 
The level curves f sx, yd − k are just the traces of the graph of f  in the horizontal plane  
z − k projected down to the xy-plane. So if you draw the level curves of a function and 
visualize them being lifted up to the surface at the indicated height, then you can men-
tally piece together a picture of the graph. The surface is steep where the level curves are 
close together. It is somewhat flatter where they are farther apart.

Figure �8
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One common example of level curves occurs in topographic maps of mountainous 
regions, such as the map in Figure 10. The level curves are curves of constant elevation 
above sea level. If you walk along one of these contour lines, you neither ascend nor 
descend. Another common example is the temperature at locations sx, yd with longitude 
x and latitude y. Here the level curves are called isothermals and join locations with the 
same temperature. Figure 11 shows a weather map of the world indicating the average 
July temperatures. The isothermals are the curves that separate the colored bands.

Figure �11  Average air temperature near sea level in July (°F) 

 TEC   Visual 9.1A animates Figure 9 by  
showing level curves being lifted up to 
graphs of functions.
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In weather maps of atmospheric pressure at a given time as a function of longitude 
and latitude, the level curves are called isobars and join locations with the same pressure 
(see Exercise 28). Surface winds tend to flow from areas of high pressure across the iso-
bars toward areas of low pressure, and are strongest where the isobars are tightly packed.

A contour map of worldwide precipitation is shown in Figure 12. Here the level curves 
are not labeled but they separate the colored regions and the amount of precipitation in 
each region is indicated in the color key.
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 Example 8   |  A contour map for a function f  is shown in Figure 13. Use it to 
estimate the values of f s1, 3d and f s4, 5d.

SOLUTION � The point (1, 3) lies partway between the level curves with z-values 70 
and 80. We estimate that

f s1, 3d < 73

Similarly, we estimate that

	 f s4, 5d < 56	 ■
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Figure �12  Precipitation 
From Russell/Hertz/McMillan, Biology, 2E. © 2012 Cengage Learning.
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 Example 9   |  Sketch the level curves of the function f sx, yd − 6 2 3x 2 2y for the  
values k − 26, 0, 6, 12.

SOLUTION � The level curves are

6 2 3x 2 2y − k        or        3x 1 2y 1 sk 2 6d − 0

This is a family of lines with slope 23
2. The four particular level curves with  

k − 26, 0, 6, and 12 are 3x 1 2y 2 12 − 0, 3x 1 2y 2 6 − 0, 3x 1 2y − 0, and 
3x 1 2y 1 6 − 0. They are sketched in Figure 14. The level curves are equally spaced 
parallel lines because the graph of f  is a plane (see Figure 5).	 ■

 Example 10   |  Sketch the level curves of the function

tsx, yd − s9 2 x 2 2 y 2         for    k − 0, 1, 2, 3

SOLUTION � The level curves are

s9 2 x 2 2 y 2 − k        or        x 2 1 y 2 − 9 2 k 2

This is a family of concentric circles with center s0, 0d and radius s9 2 k 2 . The cases 
k − 0, 1, 2, 3 are shown in Figure 15. Try to visualize these level curves lifted up to  
form a surface and compare with the graph of t (a hemisphere) in Figure 6. (See TEC 
Visual 9.1A.)

	

y

x0

k=3
k=2

k=1
k=0

(3, 0)

	 ■

 Example 11   |  Body mass index (continued)  In Example 2 we discussed 
the body mass index function

Bsm, hd −
m

h 2

Sketch some level curves for this function.

SOLUTION � The level curves have the equations

m

h 2 − k    or    m − kh 2

for various values of k. These are parabolas in the hm-plane but, since h . 0 and 

x

y

0k=
12

k=
6

k=
0

k=
_6

Figure �14

Contour map of 
f(x, y)=6-3x-2y

Figure �15

Contour map of g(x, y)=œ„„„„„„„„„9-≈-¥

 TEC   Visual 9.1B demonstrates the  
connection between surfaces and their  
contour maps.
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m . 0, the level curves are the portions that lie in the first quadrant. In Figure 16 these 
curves are labeled with the value of the BMI. For instance, the curve labeled 20 shows 
all values of the height h and mass m that result in a BMI of 20.
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 Example 12   |  BB   Infectious disease control  A quantity of central 
importance in the spread of infectious diseases is the basic reproduction number R0 
(see Example 5 on page 56). This gives the average number of new infections that each 
infected individual produces when introduced into a completely susceptible population. 
Models for the spread of SARS have been constructed to determine the effect of vac- 
cination and quarantine on R0.1 In the simplest case, we have

R0sd, vd − 5s1 2 vd 
d

1 1 d

where v is the fraction of the population that is vaccinated and d is the average number 
of days that individuals remain in the population while infectious. (Quarantine reduces 
this number.)

Figure 17(a) shows a graph of R0sd, vd drawn by a computer algebra system. Notice 
how the reproduction number approaches 0 as v approaches 1 (the entire population is 
vaccinated). From the rotated graph in Figure 17(b) we see how R0 approaches 5 as d 
increases and v approaches 0. Thus, qualitatively, the spread of SARS in the population 
is reduced when the vaccination fraction is high (v l 1) and when quarantine levels 
are high (d l 0). In the coming sections we will explore the effects of these two 
interventions more quantitatively. The level curves of R0 are shown in Figure 17(c).

0

√

d

1

20

1

2

3

4
0

R¸

1

√

d

 5       5      
R¸

√d 20 1

(a) (b) (c) ■

Figure �16
Level curves for body mass index

1.� A. Gumel et al., “Modelling Strategies for Controlling SARS Outbreaks,” Proceedings of the Royal Soci-
ety: Series B 271 (2004): 2223–32.

Figure �17
Visualizing the basic reproduction 
number
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Figure 18 shows some computer-generated level curves together with the correspond-
ing computer-generated graphs. Notice that the level curves in part (c) crowd together 
near the origin. That corresponds to the fact that the graph in part (d) is very steep near 
the origin.

(a) Level curves of f(x, y)=_xye_≈_¥

x

y

(c) Level curves of f(x, y)=
_3y

≈+¥+1

y

x

(d) f(x, y)=
_3y

≈+¥+1

z

y

x

(b) Two views of f(x, y)=_xye_≈_¥

z

y
x

z

■ Functions of Three Variables
A function of three variables, f , is a rule that assigns to each ordered triple sx, y, zd in a 
domain D � R 3 a unique real number denoted by f sx, y, zd. For instance, the tempera-
ture T  at a point on the surface of the earth depends on the longitude x and latitude y of 
the point and on the time t, so we could write T − f sx, y, td.

 Example 13   |  When migrating fish swim at a speed v relative to the water, the 
energy expenditure per unit time is proportional to v 3. Suppose the fish swim for a 
distance d against a current that has speed u, where u , v. Write the required energy E 
as a function of the three variables u, v, and d.

Solution � When swimming against the current, the ground speed of the fish is 
v 2 u. If T  is the time required to travel the ground distance d, then d − sv 2 udT , so

T −
d

v 2 u

Figure �18
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The energy per unit time is av 3, where a is the proportionality constant. So the total 
energy is

E − av 3 ? T − av 3 ?
d

v 2 u

Thus the energy as a function of u, v, and d is

	 Esu, v, dd −
av 3d

v 2 u
	 ■

 Example 14   |  Find the domain of f  if

f sx, y, zd − lnsz 2 yd 1 xy sin z

SOLUTION � The expression for f sx, y, zd is defined as long as z 2 y . 0, so the 
domain of f  is

D − hsx, y, zd [ R 3 | z . yj

This is a half-space consisting of all points that lie above the plane z − y.	 ■

Functions of any number of variables can be considered. A function of n variables 
is a rule that assigns a number z − f sx1, x2, . . . , xn d to an n-tuple sx1, x2, . . . , xn d of real 
numbers. We denote by Rn the set of all such n-tuples. For example, if a company uses n 
different ingredients in making a food product, ci is the cost per unit of the ith ingredi-
ent, and xi units of the ith ingredient are used, then the total cost C of the ingredients is 
a function of the n variables x1, x2, . . . , xn:

C − f sx1, x2, . . . , xn d − c1 x1 1 c2 x2 1 ∙ ∙ ∙ 1 cn xn

■ Limits and Continuity
For functions of a single variable, recall from Section 2.3 the meaning of a limit: 
limxla f sxd − L means that we can make the values of f sxd as close to L as we like by 
taking x to be sufficiently close to a, but not equal to a. For functions of two variables 
we use the notation

lim
s x, yd l s a, bd

 
 f sx, yd − L

to indicate that the values of f sx, yd approach the number L as the point sx, yd approaches 
the point sa, bd along any path that stays within the domain of f.

(1) Definition � We write

lim 
sx, yd l sa, bd

 f sx, yd − L

and we say that the limit of f sx, yd as sx, yd approaches sa, bd is L if we can 
make the values of f sx, yd as close to L as we like by taking the point sx, yd suf-
ficiently close to the point sa, bd, but not equal to sa, bd.

For functions of a single variable, when we let x approach a, there are only two possible 
directions of approach, from the left or from the right. We recall from Chapter 2 that if 
limx l a2 f sxd ± limx l a1 f sxd, then limx l a f sxd

 

 does not exist.

A more precise definition of the limit of 
a function of two variables is given in 
Appendix D.

576    Chapter 9  |  Multivariable Calculus
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For functions of two variables the situation is not as simple because we can let sx, yd 
approach sa, bd from an infinite number of directions in any manner whatsoever (see 
Figure 19) as long as sx, yd stays within the domain of f.

Definition 1 says that the distance between f sx, yd and L can be made arbitrarily 
small by making the distance from sx, yd to sa, bd sufficiently small (but not 0). The 
definition refers only to the distance between sx, yd and sa, bd. It does not refer to the 
direction of approach. Therefore, if the limit exists, then f sx, yd must approach the same 
limit no matter how sx, yd approaches sa, bd. Thus, if we can find two different paths 
of approach along which the function f sx, yd has different limits, then it follows that 
limsx, yd l sa, bd f sx, yd does not exist.

If f sx, yd l L1 as sx, yd l sa, bd along a path C1 and f sx, yd l L2 as 
sx, yd l sa, bd along a path C2, where L1 ± L2, then limsx, yd l sa, bd f sx, yd does  
not exist.

 Example 15   |  If f sx, yd − xyysx 2 1 y 2 d, does lim 
sx, ydl s0, 0d

 f sx, yd exist?

SOLUTION � First let’s approach s0, 0d along the x-axis. If y − 0, then 
f sx, 0d − 0yx 2 − 0. Therefore

f sx, yd l 0        as        sx, yd l s0, 0d along the x-axis

If x − 0, then f s0, yd − 0yy 2 − 0, so

f sx, yd l 0        as        sx, yd l s0, 0d along the y-axis

Although we have obtained identical limits along the axes, that does not show that the 
given limit is 0. Let’s now approach s0, 0d along another line, say y − x. For all x ± 0,

f sx, xd −
x 2

x 2 1 x 2 −
1

2

Therefore	 f sx, yd l 1
2         as        sx, yd l s0, 0d along y − x	

(See Figure 20.) Since we have obtained different limits along different paths, the  
given limit does not exist.	 ■

Figure 21 sheds some light on Example 15. The ridge that occurs above the line 
y − x corresponds to the fact that f sx, yd − 1

2 for all points sx, yd on that line except the 
origin.

z y

x

b

a0

y

x

Figure �19

y

f=0

xf=0

y=x

1
2f=

Figure �20

 TEC   In Visual 9.1C a rotating line on 
the surface in Figure 21 shows differ-
ent limits at the origin from different 
directions.

Figure �21

f(x, y)=
xy

≈+¥
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Just as for functions of one variable, the calculation of limits for functions of two 
variables can be greatly simplified by the use of properties of limits. The Limit Laws 
listed in Section 2.4 can be extended to functions of two variables: The limit of a sum 
is the sum of the limits, the limit of a product is the product of the limits, and so on. In 
particular, the following equations are true.

(2)	 lim
sx, yd l sa, bd

 x − a            lim
sx, yd l sa, bd

 y − b            lim
sx, yd l sa, bd

 c − c	

The Squeeze Theorem also holds.

 Example 16   |  Find lim
sx, yd l s0, 0d

 
3x2y

x2 1 y2  if it exists.

SOLUTION � If we let sx, yd l s0, 0d along any line through the origin, we find that 
f sx, yd l 0. This doesn’t prove that the given limit is 0, but let’s look at the distance 
from f sx, yd to 0:

Z 3x 2 y

x 2 1 y 2 2 0 Z − Z 3x 2y

x 2 1 y 2 Z −
3x 2 | y |
x 2 1 y 2

Notice that x 2 < x 2 1 y 2 because y 2 > 0. So

x 2

x 2 1 y 2 < 1

Thus	 0 <
3x 2 | y |
x 2 1 y 2 < 3 | y |

Now we use the Squeeze Theorem. Since

lim
sx, yd l s0, 0d

 0 − 0    and    lim
sx, yd l s0, 0d

 3 | y | − 0    [by (2)]

we conclude that	 lim
sx, yd l s0, 0d

 
3x 2y

x 2 1 y 2 − 0	 ■

Recall that evaluating limits of continuous functions of a single variable is easy. It 
can be accomplished by direct substitution because the defining property of a continuous 
function is limx l a f sxd − f sad. Continuous functions of two variables are also defined 
by the direct substitution property.

(3) Definition � A function f  of two variables is called continuous at sa, bd if

lim
sx, yd l sa, bd

 
 f sx, yd − f sa, bd

We say f  is continuous on D if f  is continuous at every point sa, bd in D.

The intuitive meaning of continuity is that if the point sx, yd changes by a small 
amount, then the value of f sx, yd changes by a small amount. This means that a surface 
that is the graph of a continuous function has no hole or break.

Using the properties of limits, you can see that sums, differences, products, and quo-
tients of continuous functions are continuous on their domains. Let’s use this fact to give 
examples of continuous functions.
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A polynomial function of two variables (or polynomial, for short) is a sum of terms 
of the form cxmyn, where c is a constant and m and n are nonnegative integers. A rational 
function is a ratio of polynomials. For instance,

f sx, yd − x 4 1 5x 3y 2 1 6xy 4 2 7y 1 6

is a polynomial, whereas

tsx, yd −
2xy 1 1

x 2 1 y 2

is a rational function.
The limits in (2) show that the functions f sx, yd − x, tsx, yd − y, and hsx, yd − c are 

continuous. Since any polynomial can be built up out of the simple functions f , t, and h 
by multiplication and addition, it follows that all polynomials are continuous on R 2. Like-
wise, any rational function is continuous on its domain because it is a quotient of continu- 
ous functions.

 Example 17   |  Evaluate lim
sx, yd l s1, 2d

 
 sx 2y 3 2 x 3y 2 1 3x 1 2yd.

SOLUTION � Since f sx, yd − x 2 y 3 2 x 3y 2 1 3x 1 2y is a polynomial, it is continuous 
everywhere, so we can find the limit by direct substitution:

	 lim
sx, yd l s1, 2d

 
 sx 2y 3 2 x 3y 2 1 3x 1 2yd − 12 ? 23 2 13 ? 22 1 3 ? 1 1 2 ? 2 − 11	 ■

 Example 18   |  Let

f sx, yd − H 3x 2y

x 2 1 y 2 if sx, yd ± s0, 0d

0 if sx, yd − s0, 0d

We know f  is continuous for sx, yd ± s0, 0d since it is equal to a rational function there. 
Also, from Example 16, we have

lim
sx, yd l s0, 0d

 fsx, yd − lim
sx, yd l s0, 0d

 
3x 2y

x 2 1 y 2 − 0 − f s0, 0d

Therefore f  is continuous at s0, 0d, and so it is continuous on R 2.	 ■

Just as for functions of one variable, composition is another way of combining two 
continuous functions to get a third. In fact, it can be shown that if f  is a continuous func-
tion of two variables and t is a continuous function of a single variable that is defined on 
the range of f , then the composite function h − t 8 f  defined by hsx, yd − ts f sx, ydd is 
also a continuous function.

 Example 19   |  Where is the function hsx, yd − arctansyyxd continuous?

SOLUTION � The function f sx, yd − yyx is a rational function and therefore continu-
ous except on the line x − 0. The function tstd − arctan t is continuous everywhere. So 
the composite function

ts f sx, ydd − arctansyyxd − hsx, yd

Figure 22 shows the graph of the con-
tinuous function in Example 18.

z

y

x

Figure �22
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is continuous except where x − 0. Figure 23 shows the break in the graph of h above 
the y-axis.
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Everything that we have done in this section can be extended to functions of three or 
more variables. The notation

lim
sx, y, zd l sa, b, cd

 
 f sx, y, zd − L

means that the values of f sx, y, zd approach the number L as the point sx, y, zd approaches 
the point sa, b, cd along any path in the domain of f . The function f  is continuous at 
sa, b, cd if

lim
sx, y, zd l sa, b, cd

 
 f sx, y, zd − f sa, b, cd

For instance, the function

f sx, y, zd −
1

x 2 1 y 2 1 z2 2 1

is a rational function of three variables and so is continuous at every point in R 3 except 
where x 2 1 y 2 1 z2 − 1. In other words, it is discontinuous on the sphere with center 
the origin and radius 1.

Figure �23
The function hsx, yd − arctansyyxd  

is discontinuous where x − 0. 

	 1.	� Wind chill �� In Example 1 we considered the function 
W − f sT, vd, where W is the wind-chill index, T is the actual 
temperature, and v is the wind speed. A numerical represen-
tation is given in Table 1.

		  (a)	� What is the value of f s215, 40d? What is its meaning?
		  (b)	� Describe in words the meaning of the question “For  

what value of v is f s220, vd − 230?” Then answer the 
question.

		  (c)	� Describe in words the meaning of the question “For  
what value of T is f sT, 20d − 249?” Then answer the 
question.

		  (d)	� What is the meaning of the function W − f s25, vd? 
Describe the behavior of this function.

		  (e)	� What is the meaning of the function W − f sT, 50d? 
Describe the behavior of this function.

	 2.	��� The temperature-humidity index I (or humidex, for short) 
is the perceived air temperature when the actual tempera- 
ture is T and the relative humidity is h, so we can write 
I − f sT, hd. The following table of values of I is an excerpt 
from a table compiled by the National Oceanic & Atmo-
spheric Administration.

Table 2  �Apparent temperature as a function  
of temperature and humidity
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		  (a)	� What is the value of f s95, 70d? What is its meaning?

		  (b)	 For what value of h is f s90, hd − 100?

		  (c)	 For what value of T is f sT, 50d − 88?

		  (d)	� What are the meanings of the functions I − f s80, hd  
and I − f s100, hd? Compare the behavior of these two 
functions of h.

EXERCISES 9.1
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	 8.	� Blood flow �� The shape of a blood vessel (a vein or artery) 
can be modeled by a cylindrical tube with radius R and 
length L. The velocity v of the blood is modeled by Poi-
seuille’s law of laminar flow, which expresses v as a function 
of five variables:

v − f sP, �, L, R, rd −
P

4�L
 sR 2 2 r 2d

		���  where � is the viscosity of the blood, P is the pressure dif-
ference between the ends of the tube (in dynesycm2), r is the 
distance from the central axis of the tube, and r, R, and L are 
measured in centimeters.

		  (a)	� Evaluate f s4000, 0.027, 2, 0.008, 0.002d and interpret it. 
(These values are typical for some of the smaller human 
arteries.)

		  (b)	� Where in the artery is the flow the greatest? Where is it 
least?

	 9.	�� Let tsx, yd − cossx 1 2yd.
		  (a)	 Evaluate ts2, 21d.
		  (b)	 Find the domain of t.
		  (c)	 Find the range of t.

	 10.	��� Let Fsx, yd − 1 1 s4 2 y 2 .
		  (a)	 Evaluate F s3, 1d.
		  (b)	 Find and sketch the domain of F.
		  (c)	 Find the range of F.

	 11.	�� Let f sx, y, zd − sx 1 sy 1 sz 1 lns4 2 x 2 2 y 2 2 z 2d.
		  (a)	 Evaluate f s1, 1, 1d.
		  (b)	 Find and describe the domain of f.

	 12.	�� Let tsx, y, zd − x 3y 2zs10 2 x 2 y 2 z .
		  (a)	 Evaluate ts1, 2, 3d.
		  (b)	 Find and describe the domain of t.

	� 13–20 � Find and sketch the domain of the function.

	 13.	 f sx, yd − s2x 2 y 	 14.	 f sx, yd − sxy 

	 15.	 f sx, yd − s1 2 x 2 2 s1 2 y 2  

	 16.	 f sx, yd − lnsx 2 1 y 2 2 2d

	 17.	 f sx, yd −
sy 2 x 2 

1 2 x 2

	 18.	 f sx, yd − sy 1 s25 2 x 2 2 y 2 

	 19.	 f sx, y, zd − s1 2 x 2 2 y 2 2 z2 

	 20.	 f sx, y, zd − sz 1 lns1 2 x 2 2 y2d

	� 21–25 � Sketch the graph of the function.

	 21.	 f sx, yd − 3	 22.	 f sx, yd − y

	 23.	 f sx, yd − 10 2 4x 2 5y	 24.	 f sx, yd − 1 1 2x 2 1 2y 2

	 25.	 f sx, yd − y 2 1 1

	 3.	� Body surface area �� A model for the surface area of a 
human body is given by the function

S − f sw, hd − 0.1091w 0.425h 0.725

		��  �where w is the weight (in pounds), h is the height (in inches), 
and S is measured in square feet.

		  (a)	� Find f s160, 70d and interpret it.
		  (b)	� What is your own surface area?

	 4.	��� The wind-chill index W discussed in Example 1 has been  
modeled by the following function:

WsT, vd − 13.12 1 0.6215T 2 11.37v 0.16 1 0.3965Tv 0.16

		��  �Check to see how closely this model agrees with the values 
in Table 1 for a few values of T and v.

	 5.	��� A manufacturer has modeled its yearly production function 
P (the monetary value of its entire production) as a so-called 
Cobb-Douglas function

PsL, Kd − 1.47L 0.65K 0.35

		���  where L is the number of labor hours (in thousands) and K is 
the invested capital (in millions of dollars).

		  (a)	 Find Ps120, 20d and interpret it.
		  (b)	� If both the amount of labor and the amount of capital are 

doubled, verify that the production is also doubled.

	 6.	��� A company makes two kinds of chocolate bars: plain, and 
with almonds. Fixed production costs are $10,000 and it 

		���  costs $1.10 to make a plain chocolate bar and $1.25 to make 
one with almonds.

		  (a)	� Express the cost of making x plain bars and y bars with 
almonds as a function of two variables C − f sx, yd.

		  (b)	� Find f s2000, 1000d and interpret it.
		  (c)	� What is the domain of f ?

	 7.	�S nake reversals and stripes �� In a study of the survivorship 
of juvenile garter snakes, a researcher arrived at the model

F − 4.2 1 0.008R 1 0.102S 1 0.017R 2 2 0.034S 2 2 0.268RS

		���  where F is a measure of the fitness of the snake, R measures 
the number of reversals of direction during flight from a 
predator, and S measures the degree of stripedness in the 
color pattern of the snake. Which is likelier to survive longer, 
a snake with R − 3 and S − 1 or one with R − 1 and S − 3?

Source: Adapted from E. Brodie III, “Correlational Selection for Color Pat-

tern and Antipredator Behavior in the Garter Snake Thamnophis Ordinoides,” 

Evolution 46 (1992): 1284–98.
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		  (b)	� At which of these locations were the winds strongest?

C

N

V

S

1004

1008

1012

1016

1012
1008

1016

	 29.	��� Level curves (isothermals) are shown for the water tempera-
ture (in °C) in Long Lake (Minnesota) in 1998 as a function 
of depth and time of year. Estimate the temperature in the 
lake on June 9 (day 160) at a depth of 10 m and on June 29 
(day 180) at a depth of 5 m.

2016

15

120

10D
ep

th
 (

m
)

12
8

8

121620

5

0

160 200

Day of 1998

240 280

	 30.	��� Two contour maps are shown. One is for a function f  whose 
graph is a cone. The other is for a function t whose graph is 
a paraboloid. Which is which, and why?

I II

x x

y y

I II

x x

y y

	 26.	��� Match the function with its graph (labeled I–VI). Give 
reasons for your choices.

		  (a)	 f sx, yd − | x | 1 | y |	 (b)	 f sx, yd − | xy |
		  (c)	 f sx, yd −

1

1 1 x 2 1 y 2 	 (d)	 f sx, yd − sx 2 2 y 2 d2

		  (e)	 f sx, yd − sx 2 yd2	 (f)	 f sx, yd − sins|x | 1 | y |d

I II z

yx

z

yx

III IV z

yx

z

y
x

V VIz

yx

z

yx

	 27.	��� A contour map for a function f  is shown. Use it to estimate 
the values of f s23, 3d and f s3, 22d. What can you say about 
the shape of the graph?

	

y

x0 1

1
70 60 50 40

30
20
10

	 28.	��� Shown is a contour map of atmospheric pressure in North 
America on August 12, 2008. On the level curves (called  
isobars) the pressure is indicated in millibars (mb).

		  (a)	� Estimate the pressure at C (Chicago), N (Nashville),  
S (San Francisco), and V (Vancouver).
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	 CAS 	 47.	� Snake reversals and stripes �� Use computer software to 
graph the fitness function F in Exercise 7 as well as a 
contour map. How would you describe the shape of the 
surface?

	 CAS 	 48.	��� Use computer software to graph the function

f sx, yd − xy 2 2 x 3

		���  Why do you think the surface is called a monkey saddle?

	� 49–58 � Find the limit, if it exists, or show that the limit does  
not exist.

	 49.	 lim
sx, ydls1, 2d

 s5x 3 2 x 2 y2d

	 50.	 lim
sx, ydls1, 21d

 e2x y cossx 1 yd

	 51.	 lim
sx, yd l s2, 1d

 
4 2 xy

x 2 1 3y 2 	 52.	 lim
sx, y, zd l s�, 0, 1y3d

 e y2

tansxzd

	 53.	 lim
sx, yd l s0, 0d

 
y 4

x 4 1 3y 4 	 54.	 lim
sx, yd l s0, 0d

 
x 2 1 sin2 y

2x 2 1 y 2

	 55.	 lim
sx, yd l s0, 0d

 
xy cos y

3x 2 1 y 2 	 56.	 lim
sx, yd l s0, 0d

 
6x 3y

2x 4 1 y 4

	 57.	 lim
sx, yd l s0, 0d

 
xy

sx 2 1 y 2 
	 58.	 lim

sx, yd l s0, 0d
 

x 2 sin2 y

x2 1 2y2

	� 59–66 � Determine the set of points at which the function is  
continuous.

	 59.	 Fsx, yd − arctan(x 1 sy )

	 60.	 Fsx, yd − coss1 1 x 2 y 

	 61.	 Gsx, yd − lnsx 2 1 y 2 2 4 d

	 62.	 Hsx, yd −
e x 1 e y

e xy 2 1

	 63.	 f sx, y, zd −
sy 

x 2 2 y 2 1 z 2

	 64.	 f sx, y, zd − sx 1 y 1 z 

	 65.	 f sx, yd − H
1

x 2 y 3

2x 2 1 y 2 if

if

sx, yd ± s0, 0d

sx, yd − s0, 0d

	 66.	 f sx, yd − H
0

xy

x 2 1 xy 1 y 2 if

if

sx, yd ± s0, 0d

sx, yd − s0, 0d

	 31.	��� Locate the points A and B on the map of Lonesome 
Mountain (see Figure 10). How would you describe the 
terrain near A? Near B?

	 32.	��� Make a rough sketch of a contour map for the function 
whose graph is shown.

z

y

x

	� 33–38 � Draw a contour map of the function showing several 
level curves.

	 33.	 f sx, yd − 2x 2 y	 34.	 f sx, yd − y 2 x 2

	 35.	 f sx, yd − xy

	 36.	 f sx, yd − s36 2 x 2 2 y 2 

	 37.	 f sx, yd − ye x	 38.	 f sx, yd −
y

x 1 1

	 39.	� Body mass index ��was discussed in Examples 2 and 11. 
Draw the level curves Bsm, hd − 18.5, Bsm, hd − 25, 
Bsm, hd − 30, and Bsm, hd − 40. Then shade the region 
corresponding to optimal BMI. Does someone who weighs 
62 kg and is 152 cm tall fall into this category?

	 40.	� Body mass index �� Draw the level curve of the body mass 
index function corresponding to someone who is 200 cm 
tall and weighs 80 kg. Find the weights and heights of two 
other people with that same level curve.

	� 41–46 � Match the function (a) with its graph (labeled A–F on 
page 584) and (b) with its contour map (labeled I–VI). Give 
reasons for your choices.

	 41.	 z − sinsxyd	 42.	 z − e x cos y

	 43.	 z − sinsx 2 yd	 44.	 z − sin x 2 sin y

	 45.	 z − s1 2 x 2ds1 2 y 2d	

	 46.	 z −
x 2 y

1 1 x 2 1 y 2
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z

y
x

A B C z

y

x

z

yx

Graphs and Contour Maps for Exercises 41–46

z

yx

D E Fz

y

x

z

y
x

I II III

IV V VI

x

y

x

y

x

y

x

y

x
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x
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9.2 Partial Derivatives

On a hot day, extreme humidity makes us think the temperature is higher than it really  
is, whereas in very dry air we perceive the temperature to be lower than the thermom- 
eter indicates. The National Weather Service has devised the heat index (also called the 
temperature-humidity index, or humidex, in some countries) to describe the combined 
effects of temperature and humidity. The heat index I is the perceived air temperature 
when the actual temperature is T  and the relative humidity is H. So I is a function of T  
and H and we can write I − f sT, H d. The following table of values of I is an excerpt 
from a table compiled by the National Weather Service.

Table 1  Heat index I as a function of temperature and humidity

T
H

Relative humidity (%)

Actual
temperature

(°F)

90

92

94

96

98

100

50 55 60 65 70 75 80 85 90

96

100

104

109

114

119

98

103

107

113

118

124

100

105

111

116

123

129

103

108

114

121

127

135

106

112

118

125

133

141

109

115

122

130

138

147

112

119

127

135

144

154

115

123

132

141

150

161

119

128

137

146

157

168

If we concentrate on the highlighted column of the table, which corresponds to a rela-
tive humidity of H − 70%, we are considering the heat index as a function of the single 
variable T  for a fixed value of H. Let’s write tsT d − f sT, 70d. Then tsT d describes how 
the heat index I increases as the actual temperature T  increases when the relative humid-
ity is 70%. The derivative of t when T − 96°F is the rate of change of I with respect to 
T  when T − 96°F:

t9s96d − lim
h l 0

 
ts96 1 hd 2 ts96d

h
− lim

h l 0
 
 f s96 1 h, 70d 2 f s96, 70d

h

We can approximate t9s96d using the values in Table 1 by taking h − 2 and 22:

 t9s96d <
ts98d 2 ts96d

2
−

 f s98, 70d 2 f s96, 70d
2

−
133 2 125

2
− 4

 t9s96d <
ts94d 2 ts96d

22
−

 f s94, 70d 2 f s96, 70d
22

−
118 2 125

22
− 3.5

Averaging these values, we can say that the derivative t9s96d is approximately 3.75. This 
means that, when the actual temperature is 96°F and the relative humidity is 70%, the 
apparent temperature (heat index) rises by about 3.75°F for every degree that the actual 
temperature rises!

Now let’s look at the highlighted row in Table 1, which corresponds to a fixed temper
ature of T − 96°F. The numbers in this row are values of the function GsH d − f s96, H d, 
which describes how the heat index increases as the relative humidity H increases when 
the actual temperature is T − 96°F. The derivative of this function when H − 70% is 
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the rate of change of I with respect to H when H − 70%:

G9s70d − lim
h l 0

 
Gs70 1 hd 2 Gs70d

h
− lim

h l 0
 
 f s96, 70 1 hd 2 f s96, 70d

h

By taking h − 5 and 25, we approximate G9s70d using the tabular values:

 G9s70d <
Gs75d 2 Gs70d

5
−

 f s96, 75d 2 f s96, 70d
5

−
130 2 125

5
− 1

 G9s70d <
Gs65d 2 Gs70d

25
−

 f s96, 65d 2 f s96, 70d
25

−
121 2 125

25
− 0.8

By averaging these values we get the estimate G9s70d < 0.9. This says that, when the 
temperature is 96°F and the relative humidity is 70%, the heat index rises about 0.9°F for 
every percent that the relative humidity rises.

In general, if f  is a function of two variables x and y, suppose we let only x vary while 
keeping y fixed, say y − b, where b is a constant. Then we are really considering a func-
tion of a single variable x, namely, tsxd − f sx, bd. If t has a derivative at a, then we call 
it the partial derivative of f  with respect to x at sa, bd and denote it by fxsa, bd. Thus

(1)	 fxsa, bd − t9sad        where        tsxd − f sx, bd	

By the definition of a derivative, we have

t9sad − lim
h l 0

 
tsa 1 hd 2 tsad

h

and so Equation 1 becomes

(2)	 fxsa, bd − lim
h l 0

 
 f sa 1 h, bd 2 f sa, bd

h
	

Similarly, the partial derivative of f  with respect to y at sa, bd, denoted by fysa, bd, is 
obtained by keeping x fixed sx − ad and finding the ordinary derivative at b of the func-
tion Gsyd − f sa, yd:

(3)	 fysa, bd − lim
h l 0

 
 f sa, b 1 hd 2 f sa, bd

h
	

With this notation for partial derivatives, we can write the rates of change of the 
heat index I with respect to the actual temperature T  and relative humidity H when  
T − 96°F and H − 70% as follows:

fTs96, 70d < 3.75            fHs96, 70d < 0.9

If we now let the point sa, bd vary in Equations 2 and 3, fx and fy become functions 
of two variables.

586    Chapter 9  |  Multivariable Calculus
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(4) � If f  is a function of two variables, its partial derivatives are the functions fx 
and fy defined by

 fxsx, yd − lim
h l 0

 
 f sx 1 h, yd 2 f sx, yd

h

 fysx, yd − lim
h l 0

 
 f sx, y 1 hd 2 f sx, yd

h

An alternative notation for partial derivatives is similar to Leibniz notation but uses 
the symbol − instead of d. If z − f sx, yd, we write

 fxsx, yd − fx −
−f

−x
−

−

−x
 f sx, yd −

−z

−x

 fysx, yd − fy −
−f

−y
−

−

−y
 f sx, yd −

−z

−y

To compute partial derivatives, all we have to do is remember from Equation 1 that  
the partial derivative with respect to x is just the ordinary derivative of the function t of 
a single variable that we get by keeping y fixed. Thus we have the following rule.

Rule for Finding Partial Derivatives of z − f sx, yd �

1. �� To find fx, regard y as a constant and differentiate f sx, yd with respect to x.

2.  To find fy, regard x as a constant and differentiate f sx, yd with respect to y.

 Example 1   |  If f sx, yd − x 3 1 x 2 y 3 2 2y 2, find fxs2, 1d and fys2, 1d.

SOLUTION � Holding y constant and differentiating with respect to x, we get

 fxsx, yd − 3x 2 1 2xy 3

and so	  fxs2, 1d − 3 ? 22 1 2 ? 2 ? 13 − 16	

Holding x constant and differentiating with respect to y, we get

fysx, yd − 3x 2 y 2 2 4y

	 fys2, 1d − 3 ? 22 ? 12 2 4 ? 1 − 8	 ■

■ Interpretations of Partial Derivatives
To give a geometric interpretation of partial derivatives, we recall that the equation 
z − f sx, yd represents a surface S (the graph of f ). If f sa, bd − c, then the point Psa, b, cd 
lies on S. By fixing y − b, we are restricting our attention to the curve C1 in which the 
vertical plane y − b intersects S. (In other words, C1 is the trace of S in the plane y − b.) 
Likewise, the vertical plane x − a intersects S in a curve C2. Both of the curves C1 and 
C2 pass through the point P. (See Figure 1.)

Notice that the curve C1 is the graph of the function tsxd − f sx, bd, so the slope  
of its tangent T1 at P is t9sad − fxsa, bd. The curve C2 is the graph of the function  
Gsyd − f sa, yd, so the slope of its tangent T2 at P is G9sbd − fysa, bd.

0

(a, b, 0)

C™

C¡

T¡

P(a, b, c)

S T™

z

yx

Figure �1
The partial derivatives of f  at sa, bd are 
the slopes of the tangents to C1 and C2.
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Thus the partial derivatives fxsa, bd and fy sa, bd can be interpreted geometrically as the 
slopes of the tangent lines at Psa, b, cd to the traces C1 and C2 of S in the planes y − b  
and x − a.

 Example 2   |  If f sx, yd − 4 2 x 2 2 2y 2, find fxs1, 1d and fys1, 1d and interpret 
these numbers as slopes.

SOLUTION � We have

 fxsx, yd − 22x            fysx, yd − 24y

 fxs1, 1d − 22             fys1, 1d − 24

The graph of f  is the paraboloid z − 4 2 x 2 2 2y 2 and the vertical plane y − 1 
intersects it in the parabola z − 2 2 x 2, y − 1. (As in the preceding discussion, we 
label it C1 in Figure 2.) The slope of the tangent line to this parabola at the point 
s1, 1, 1d is fxs1, 1d − 22. Similarly, the curve C2 in which the plane x − 1 intersects 
the paraboloid is the parabola z − 3 2 2y 2, x − 1, and the slope of the tangent line at 
s1, 1, 1d is fys1, 1d − 24. (See Figure 3.)	 ■

As we have seen in the case of the heat index function, partial derivatives can also be 
interpreted as rates of change. If z − f sx, yd, then −zy−x represents the rate of change 
of z with respect to x when y is fixed. Similarly, −zy−y represents the rate of change of z 
with respect to y when x is fixed.

 Example 3   |  Body mass index  In Example 9.1.2 we defined the body mass 
index of a person as

Bsm, hd −
m

h 2

Calculate the partial derivatives of B for a man with m − 64 kg and h − 1.68 m and 
interpret them.

Solution � Regarding h as a constant, we see that the partial derivative with respect 
to m is

−B

−m
 sm, hd −

−

−m
 S m

h 2D −
1

h 2

so

−B

−m
 s64, 1.68d −

1

s1.68d2 < 0.35 skgym2dykg

This is the rate at which his BMI increases with respect to his weight when he weighs 
64 kg and his height is 1.68 m. So if his weight increases by a small amount, a kilo-
gram for instance, and his height remains unchanged, then his BMI will increase by 
about 0.35 kgym2.

Now we regard m as a constant. The partial derivative with respect to h is

−B

−h
 sm, hd −

−

−h
 S m

h 2D − mS2
2

h 3D − 2
2m

h 3

so
−B

−h
 s64, 1.68d − 2

2 ? 64

s1.68d3 < 227 skgym2dym

(1, 1, 1)

z=4-≈-2¥

(1, 1)
2

y=1

C¡

(1, 1, 1)

z=4-≈-2¥

(1, 1)
2

x=1

C™

z

y

x

z

y

x

Figure �2

(1, 1, 1)

z=4-≈-2¥

(1, 1)
2

y=1

C¡

(1, 1, 1)

z=4-≈-2¥

(1, 1)
2

x=1

C™

z

y

x

z

y

x

Figure �3
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This is the rate at which his BMI increases with respect to his height when he weighs 
64 kg and his height is 1.68 m. So if his weight stays unchanged while his height 
increases by a small amount, say 1 cm, then his BMI will decrease by about 
27s0.01d − 0.27 kgym2.	 ■

 Example 4   |  If f sx, yd − sinS x

1 1 yD, calculate 
−f

−x
 and 

−f

−y
.

SOLUTION � Using the Chain Rule for functions of one variable, we have

 
−f

−x
− cosS x

1 1 yD ?
−

−x
 S x

1 1 yD − cosS x

1 1 yD ?
1

1 1 y

	  
−f

−y
− cosS x

1 1 yD ?
−

−y
 S x

1 1 yD − 2cosS x

1 1 yD ?
x

s1 1 yd2 	 ■

 Example 5   |  BB   Infectious disease control  In Example 9.1.12 we 
explored a model for the effect of vaccination and quarantine on the spread of SARS. 
We used the equation

R0sd, vd − 5s1 2 vd 
d

1 1 d

where R0 is the average number of new infections that each infected individual pro-
duces, v is the fraction of the population that is vaccinated, and d is the average number 
of days an individual remains in the population while infectious. Suppose that an 
outbreak has just begun and there is currently no vaccination sv − 0d. Also suppose 
that there is currently no quarantine, and infectious individuals therefore circulate in 
the population for an average of four days. Evaluate R0, −R0 y−d, and −R0 y−v at d − 4 
and v − 0, and provide a biological interpretation of the results.

SOLUTION � The value R0s4, 0d − 5 ? 4
5 − 4 means that each infected individual is 

currently causing, on average, four new infections.
The partial derivative of R0 with respect to d is

−R0

−d
 sd, vd − 5s1 2 vd ?

s1 1 dd ? 1 2 d ? 1

s1 1 dd2 −
5s1 2 vd
s1 1 dd2

so	
−R0

−d
 s4, 0d −

5

52 −
1

5
	

This means that, if we were to introduce a small amount of quarantine (which would 
cause d to decrease slightly and thus reduce the spread of SARS), the value of R0 
would decline at a rate of 15 new infections per day of decrease in d.

The partial derivative of R0 with respect to v is

−R0

−v
 sd, vd − 2

5d

1 1 d
    so  

−R0

−v
 s4, 0d − 2

5 ? 4

5
− 24

This value means that, if we were to introduce a small amount of vaccination (which 
would increase v slightly and thus reduce the spread of SARS), the value of R0 would 
decline at a rate of four new infections per unit increase in v. Thus the spread of SARS 
is more sensitive to vaccination than to quarantine.	 ■
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 Example 6   |  Find −zy−x and −zy−y if z is defined implicitly as a function of x and 
y by the equation

x 3 1 y 3 1 z3 1 6xyz − 1

SOLUTION � To find −zy−x, we differentiate implicitly with respect to x, being careful 
to treat y as a constant:

3x 2 1 3z2 
−z

−x
1 6yz 1 6xy 

−z

−x
− 0

Solving this equation for −zy−x, we obtain

−z

−x
− 2

x 2 1 2yz

z 2 1 2xy

Similarly, implicit differentiation with respect to y gives

	
−z

−y
− 2

y 2 1 2xz

z 2 1 2xy
	 ■

■ Functions of More Than Two Variables
Partial derivatives can also be defined for functions of three or more variables. For exam-
ple, if f  is a function of three variables x, y, and z, then its partial derivative with respect 
to x is defined as

fxsx, y, zd − lim
h l 0

 
 f sx 1 h, y, zd 2 f sx, y, zd

h

and it is found by regarding y and z as constants and differentiating f sx, y, zd with respect 
to x. If w − f sx, y, zd, then fx − −wy−x can be interpreted as the rate of change of w with 
respect to x when y and z are held fixed. But we can’t interpret it geometrically because 
the graph of f  lies in four-dimensional space.

In general, if u is a function of n variables, u − f sx1, x2, . . . , xn d, its partial derivative 
with respect to the ith variable xi is

−u

−xi
− lim

h l 0

 f sx1, . . . , xi21, xi 1 h, xi11, . . . , xn d 2 f sx1, . . . , xi , . . . , xnd
h

and we also write
−u

−xi
−

−f

−xi
− fxi − Di f

 Example 7   |  Find fx, fy, and fz if f sx, y, zd − ex y ln z.

SOLUTION � Holding y and z constant and differentiating with respect to x, we have

fx − yex y ln z

Similarly,	 fy − xex y ln z        and        fz −
exy

z
	 ■

 Example 8   |  Migrating fish  In Example 9.1.13 we derived an expression for 
the energy expended by migrating fish:

Esu, v, dd −
av 3d

v 2 u

Figure �4

Some computer algebra systems can 
plot surfaces defined by implicit equa-
tions in three variables. Figure 4 shows 
such a plot of the surface defined by the 
equation in Example 6.
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where a is a positive constant, v is the speed of the fish relative to the water, u is the 
speed of the current, and d is the distance the fish swim upstream. Find the partial 
derivatives of E with repect to u, v, and d. What are their biological meanings?

Solution � Keeping v and d constant and differentiating with respect to u, we get

−E

−u
− sav 3ddF2

1

sv 2 ud2  s21dG −
av 3d

sv 2 ud2

This represents the rate of change in energy expended that occurs from an increase in 
current speed while holding swimming speed and distance constant. It is positive, 
meaning that the energy expended increases as current speed increases.

Now we keep u and d constant and differentiate with respect to v using the Quotient 
Rule:

−E

−v
−

sv 2 uds3av 2dd 2 sav 3dd ? 1

sv 2 ud2 −
2av 3d 2 3auv 2d

sv 2 ud2 −
av 2ds2v 2 3ud

sv 2 ud2

This represents the rate of change in energy expended that occurs from an increase in 
swimming speed while holding current speed and distance constant. This quantity can 
be positive (when 2v . 3u) or negative (when 2v , 3u). Thus the energy expended can 
increase or decrease as swimming speed increases, depending on the situation.

Finally we keep u and v constant and differentiate with respect to d:

−E

−d
−

av 3

v 2 u

This represents the rate of change in energy expended that occurs from an increase in 
distance while holding swimming speed and current speed constant. It is positive, 
meaning that the energy expended increases as the distance increases.	 ■

■ Higher Derivatives
If f  is a function of two variables, then its partial derivatives fx and fy are also functions 
of two variables, so we can consider their partial derivatives s fx dx, s fx dy, s fy dx, and s fy dy, 
which are called the second partial derivatives of f. If z − f sx, yd, we use the follow-
ing notation:

 s fx dx − fxx −
−

−x
 S −f

−xD −
−2f

−x 2 −
−2z

−x 2

 s fx dy − fxy −
−

−y
 S −f

−xD −
−2f

−y −x
−

−2z

−y −x

 s fy dx − fyx −
−

−x
 S −f

−yD −
−2f

−x −y
−

−2z

−x −y

 s fy dy − fyy −
−

−y
 S −f

−yD −
−2f

−y 2 −
−2z

−y 2

Thus the notation fx y (or −2fy−y −x) means that we first differentiate with respect to x and 
then with respect to y, whereas in computing fyx the order is reversed.
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 Example 9   |  Find the second partial derivatives of

f sx, yd − x 3 1 x 2 y 3 2 2y 2

SOLUTION � In Example 1 we found that

fxsx, yd − 3x 2 1 2xy 3            fysx, yd − 3x 2 y 2 2 4y

Therefore

	  fxx −
−

−x
 s3x 2 1 2xy 3 d − 6x 1 2y 3           fxy −

−

−y
 s3x 2 1 2xy 3 d − 6xy 2 	

	  fyx −
−

−x
 s3x 2 y 2 2 4yd − 6xy 2            fyy −

−

−y
 s3x 2 y 2 2 4yd − 6x 2 y 2 4	 ■

Notice that fx y − fyx in Example 9. This is not just a coincidence. It turns out that 
the mixed partial derivatives fx y and fyx are equal for most functions that one meets in 
practice. The following theorem, which was discovered by the French mathematician 
Alexis Clairaut (1713–1765), gives conditions under which we can assert that fx y − fyx. 
The proof is given in Appendix E.

Clairaut’s Theorem � Suppose f  is defined on a disk D that contains the point 
sa, bd. If the functions fx y and fyx are both continuous on D, then

fx ysa, bd − fyxsa, bd

Partial derivatives of order 3 or higher can also be defined. For instance,

fx yy − s fx y dy −
−

−y
 S −2f

−y −xD −
−3f

−y 2 −x

and using Clairaut’s Theorem it can be shown that fx yy − fyx y − fyyx if these functions 
are continuous.

 Example 10   |  Calculate fxx yz if f sx, y, zd − sins3x 1 yzd.

SOLUTION	  fx − 3 coss3x 1 yzd 	

 fxx − 29 sins3x 1 yzd

 fxx y − 29z coss3x 1 yzd

	  fxx yz − 29 coss3x 1 yzd 1 9yz sins3x 1 yzd	 ■

■ Partial Differential Equations
Partial derivatives occur in partial differential equations that express certain physical 
and biological laws. For instance, the partial differential equation

−2u

−t 2 − a 2 
−2u

−x 2

is called the wave equation and describes the motion of a waveform, which could be 

Clairaut
Alexis Clairaut was a child prodigy 
in mathematics: he read l’Hospital’s 
textbook on calculus when he was ten 
and presented a paper on geometry to 
the French Academy of Sciences when 
he was 13. At the age of 18, Clairaut 
published Recherches sur les courbes 
à double courbure, which was the first 
systematic treatise on three-dimensional 
analytic geometry and included the 
calculus of space curves.
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an ocean wave, a sound wave, a light wave, or a wave traveling along a vibrating string. 
For instance, if usx, td represents the displacement of a vibrating violin or guitar string at 
time t and at a distance x from one end of the string (as in Figure 5), then usx, td satisfies 
the wave equation. Here the constant a depends on the density of the string and on the 
tension in the string. The wave equation also arises in the description of such biological 
phenomena as the spread of colonies of bacteria or viruses and the propagation of nerve 
signals in neurons.

 Example 11   |  Verify that the function usx, td − sinsx 2 atd satisfies the wave 
equation.

SOLUTION	  ux − cossx 2 atd	  ut − 2a cossx 2 atd

	  uxx − 2sinsx 2 atd             utt − 2a 2 sinsx 2 atd − a 2uxx

So u satisfies the wave equation.	 ■

Another partial differential equation that arises frequently in biology is the diffusion 
equation:

−c

−t
− D 

−2c

−x 2

where D is a positive constant called the diffusion constant. This equation describes 
several biological processes. The function csx, td could represent, for example, the con-
centration of a pollutant at time t at a distance x from the source of the pollution. The 
diffusion equation can also describe the invasion of alien species into a new habitat, 
or the diffusion of heat through a solid, or the movement of organisms along chemical 
gradients.

In Exercise 70 you are asked to verify that the function

csx, td −
1

s4�Dt 
 e2x2ys4Dtd

is a solution of the diffusion equation.

u(x, t)

x

Figure �5

	 1.	��� The temperature T (in °C) at a location in the Northern 
Hemisphere depends on the longitude x, latitude y, and time 
t, so we can write T − f sx, y, td. Let’s measure time in 
hours from the beginning of January.

		  (a)	� What are the meanings of the partial derivatives −Ty−x,
−Ty−y, and −Ty−t?

		  (b)	� Honolulu has longitude 158°W and latitude 21°N. Sup-
pose that at 9:00 am on January 1 the wind is blowing 
hot air to the northeast, so the air to the west and south 
is warm and the air to the north and east is cooler. 
Would you expect fxs158, 21, 9d, fys158, 21, 9d, and 
fts158, 21, 9d to be positive or negative? Explain.

	 2.	��� At the beginning of this section we discussed the function 
I − f sT, H d, where I is the heat index, T is the temperature, 
and H is the relative humidity. Use Table 1 to estimate 
fT s92, 60d and fH s92, 60d. What are the practical interpreta-
tions of these values?

	 3.	� The wind-chill index ��W is the perceived temperature 
when the actual temperature is T and the wind speed is v, so 
we can write W − f sT, vd. The following table of values is 
an excerpt from Table 9.1.1.

�18

�24

�30

�37

�20

�26

�33

�39

�21

�27

�34

�41

�22

�29

�35

�42

�23

�30

�36

�43

T
v 20 30 40 50 60

�10

�15

�20

�25A
ct

ua
l t

em
pe

ra
tu

re
 (

°C
) 70

�23

�30

�37

�44

Wind speed (km /h)

		  (a)	� Estimate the values of fT s215, 30d and fvs215, 30d. 
What are the practical interpretations of these values?

EXERCISES 9.2
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	 8.	��� A contour map is given for a function f. Use it to estimate 
fxs2, 1d and fys2, 1d.

3 x

y

3

_2
0

6 8

10

14
16

12

18

2
4

_4

1

	� 9–32 � Find the first partial derivatives of the function.

	 9.	 f sx, yd − y 5 2 3xy	 10.	 f sx, yd − x 4y 3 1 8x 2y

	 11.	 f sx, td − e2t cos �x	 12.	 f sx, td − sx  ln t

	 13.	 z − s2x 1 3yd10	 14.	 z − tan xy

	 15.	 f sx, yd −
x 2 y

x 1 y
	 16.	 f sx, yd − x y

	 17.	 w − sin � cos �	 18.	 w −
ev

u 1 v 2

	 19.	 f sr, sd − r lnsr 2 1 s 2d	 20.	 f sx, td − arctan(xst )

	 21.	 u − tewyt	 22.	 f sx, yd − yx

y
 cosst 2d dt

	 23.	 f sx, y, zd − xz 2 5x 2y 3z4	 24.	 f sx, y, zd − x sinsy 2 zd

	 25.	 w − lnsx 1 2y 1 3zd	 26.	 w − ze xyz

	 27.	 u − xe2t sin �	 28.	 u − x yyz

	 29.	 f sx, y, z, td − xyz 2 tansytd	 30.	 f sx, y, z, td −
xy 2

t 1 2z

	 31.	 u − sx 2
1 1 x 2

2 1 ∙ ∙ ∙ 1 x 2
n

	 32.	 u − sinsx1 1 2x2 1 ∙ ∙ ∙ 1 nxn d

	� 33–36 � Find the indicated partial derivative.

	 33.	�� f sx, yd − ln(x 1 sx 2 1 y 2 );  fx s3, 4d

	 34.	�� f sx, yd − arctansyyxd;  fx s2, 3d

	 35.	�� f sx, y, zd −
y

x 1 y 1 z
 ;  fy s2, 1, 21d

	 36.	�� f sx, y, zd − ssin2x 1 sin2y 1 sin2z ;  fz s0, 0, �y4d

	� 37–40 � Use implicit differentiation to find −zy−x and −zy−y.

	 37.	 x 2 1 y 2 1 z 2 − 3xyz	 38.	 yz − lnsx 1 zd

	 39.	 x 2 z − arctansyzd	 40.	 sinsxyzd − x 1 2y 1 3z

		  (b)	� In general, what can you say about the signs of −Wy−T  
and −Wy−v?

		  (c)	 What appears to be the value of the following limit?

lim
v l `

 
−W

−v

	 4.	��� The wave heights h in the open sea depend on the speed v  
of the wind and the length of time t that the wind has been 
blowing at that speed. Values of the function h − f sv, td are 
recorded in feet in the following table.
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		  (a)	� What are the meanings of the partial derivatives −hy−v  
and −hy−t?

		  (b)	� Estimate the values of fvs40, 15d and fts40, 15d. What 
are the practical interpretations of these values?

		  (c)	 What appears to be the value of the following limit?

lim
t l `

 
−h

−t

	� 5–6 � Determine the signs of the partial derivatives for the  
function f  whose graph is shown.

1x

y

z

2

	 5.	�� (a)	 fxs1, 2d	 (b)	 fys1, 2d

	 6.	�� (a)	 fxs21, 2d	 (b)	 fys21, 2d

	 7.	�� �If f sx, yd − 16 2 4x 2 2 y 2, find fxs1, 2d and fys1, 2d and 
interpret these numbers as slopes. Illustrate with either 
hand-drawn sketches or computer plots.
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patient’s blood (in mL), and c0 is the amount of urea in the 
blood (in mg) at time t − 0. Calculate −cy−K, −cy−t, and 
−cy−V and interpret them.

	 47.	� Lizard energy expenditure �� The average energy E (in 
kcal) needed for a lizard to walk or run a distance of 1 km 
has been modeled by the equation

Esm, vd − 2.65m 0.66 1
3.5m 0.75

v

		���  where m is the body mass of the lizard (in grams) and v is 
its speed (in kmyh). Calculate Ems400, 8d and Evs400, 8d 
and interpret your answers.

Source: Adapted from C. Robbins, Wildlife Feeding and Nutrition, 2nd ed. 

(San Diego: Academic Press, 1993).

	 48.	� Snake reversals and stripes �� In a study of the survivor-
ship of juvenile garter snakes, a researcher arrived at the 
model

FsR, Sd − 4.2 1 0.008R 1 0.102S 1 0.017R 2

2 0.034S 2 2 0.268RS

		��  �where F is a measure of the fitness of the snake, R measures 
the number of reversals of direction during flight from a 
predator, and S measures the degree of stripedness in the 
color pattern of the snake. Calculate and interpret the partial 
derivatives.

		  (a)	
−F

−R
 s2, 3d	 (b)	

−F

−S
 s2, 3d

Source: Adapted from E. Brodie III, “Correlational Selection for Color Pat-

tern and Antipredator Behavior in the Garter Snake Thamnophis ordinoides,” 

Evolution 46 (1992): 1284–98.

	 49.	��� The van der Waals equation for n moles of a gas is

SP 1
n 2a

V 2  DsV 2 nbd − nRT

		��  �where P is the pressure, V is the volume, and T is the 
temperature of the gas. The constant R is the universal gas 
constant and a and b are positive constants that are 
characteristic of a particular gas. Calculate −Ty−P and 
−Py−V .

©
 tr

at
on

g 
/ S

hu
tt

er
st

oc
k.

co
m

	 41.	� Body surface area �� A model for the surface area of a 
human body is given by the function

S − f sw, hd − 0.1091w 0.425h0.725

		���  where w is the weight (in pounds), h is the height (in 
inches), and S is measured in square feet. Calculate and 
interpret the partial derivatives.

		  (a)	
−S

−w
 s160, 70d	 (b)	

−S

−h
 s160, 70d

	 42.	��� The wind-chill index is modeled by the function

W − 13.12 1 0.6215T 2 11.37v 0.16 1 0.3965Tv 0.16 

		��  �where T is the temperature (in °C) and v is the wind speed 
(in kmyhd. When T − 215 °C and v − 30 kmyh, by how 
much would you expect the apparent temperature W to drop 
if the actual temperature decreases by 1°C? What if the 
wind speed increases by 1 kmyh?

	 43.	� Blood flow �� One of Poiseuille’s laws states that the 
resistance of blood flowing through an artery is

R − C 
L

r 4

		���  where L and r are the length and radius of the artery and C 
is a positive constant determined by the viscosity of the 
blood. Calculate −Ry−L and −Ry−r and interpret them.

	 44.	� Antibiotic concentration �� If an antibiotic is administered 
to a patient at a constant rate through intravenous supply 
and is metabolized, then the concentration of antibiotic after 
one unit of time is

cs�, Vd − c0e21yV 1 �Vs1 2 e21yV d

		���  where c0 is the initial concentration, � is the rate of supply, 
and V is the volume of the patient’s blood. Calculate −cy−� 
and −cy−V and interpret them.

	 45.	� Flapping and gliding �� In the project on page 297 we 
expressed the power needed by a bird during its flapping 
mode as

Psv, x, md − Av 3 1
Bsmtyxd2

v

		���  where A and B are constants specific to a species of bird,  
v is the velocity of the bird, m is the mass of the bird, t is 
the acceleration due to gravity, and x is the fraction of the 
flying time spent in flapping mode. Calculate −Py−v, −Py−x, 
and −Py−m and interpret them.

	 46.	� Dialysis ��removes urea from a patient’s blood by diverting 
some blood flow externally through a dialyzer. The rate at 
which urea is removed from the blood (in mgymin) is 
modeled by the equation

csK, t, Vd −
K

V
 c0e2KtyV

	�� 	� where K is the rate of blood flow through the dialyzer (in 
mLymin), t is the time (in min), V is the volume of the 
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	 66.	��� If tsx, y, zd − s1 1 xz 1 s1 2 xy , find txyz. [Hint: Use a 
different order of differentiation for each term.]

	 67.	��� Verify that the function u − e2�2k2t sin kx is a solution of the 
heat conduction equation ut − �2uxx.

	 68.	��� Determine whether each of the following functions is a 
solution of Laplace’s equation uxx 1 uyy − 0.

		  (a)	 u − x 2 1 y 2	 (b)	 u − x 2 2 y 2

		  (c)	 u − x 3 1 3xy 2	 (d)	 u − ln sx 2 1 y 2 

		  (e)	 u − e2x cos y 2 e2y cos x

	 69.	��� Show that each of the following functions is a solution of 
the wave equation ut t − a 2uxx.

		  (a)	 u − sinskxd sinsaktd
		  (b)	 u − tysa 2t 2 2 x 2 d
		  (c)	 u − sx 2 atd6 1 sx 1 atd6

		  (d)	 u − sinsx 2 atd 1 lnsx 1 atd

	 70.	� Diffusion equation �� Verify that the function

csx, td −
1

s4�Dt 
 e2x2ys4Dtd

		���  is a solution of the diffusion equation

−c

−t
− D 

−2c

−x 2

	 71.	��� If u − xe y 1 ye x, show that

−3u

−x 3 1
−3u

−y 3 − x 
−3u

−x−y 2 1 y 
−3u

−x 2 −y

	 72.	��� Show that the Cobb-Douglas production function 
P − bL�K � satisfies the equation

L 
−P

−L
1 K 

−P

−K
− s� 1 �dP

	 73.	��� You are told that there is a function f  whose partial deriva- 
tives are fxsx, yd − x 1 4y and fysx, yd − 3x 2 y. Should 
you believe it?

	 50.	�� (a)	� The gas law for a fixed mass m of an ideal gas at 
absolute temperature T, pressure P, and volume V is 
PV − mRT, where R is the gas constant. Show that

−P

−V
 
−V

−T
 
−T

−P
− 21

		  (b)	 Show that, for an ideal gas,

T 
−P

−T
 
−V

−T
− mR

	� 51–56 � Find all the second partial derivatives.

	 51.	 f sx, yd − x 3y 5 1 2x 4y	 52.	 f sx, yd − sin2smx 1 nyd

	 53.	 w − su 2 1 v 2 	 54.	 v −
xy

x 2 y

	 55.	 z − arctan 
x 1 y

1 2 xy
	 56.	 v − e xey

	� 57–58 � Verify that the conclusion of Clairaut’s Theorem holds, 
that is, ux y − uyx.

	 57.	 u − xe xy	 58.	 u − tans2x 1 3yd

	� 59–64 � Find the indicated partial derivative(s).

	 59.	�� f sx, yd − 3xy 4 1 x 3y 2;  fxxy,  fyyy

	 60.	�� f sx, td − x 2e2ct;  fttt,  ftxx

	 61.	�� f sx, y, zd − coss4x 1 3y 1 2zd;  fxyz,  fyzz

	 62.	�� f sr, s, td − r lnsrs 2t 3d;  frss,  frst

	 63.	�� u − e r� sin �;    
− 3u

−r 2 −�

	 64.	�� u − x a y bz c;  
−6u

−x −y 2 −z 3

	 65.	��� If f sx, y, zd − xy 2z 3 1 sec2(xsz ), find fxzy. [Hint: Which 
order of differentiation is easiest?]

9.3 Tangent Planes and Linear Approximations

One of the most important ideas in single-variable calculus is that as we zoom in toward  
a point on the graph of a differentiable function, the graph becomes indistinguishable  
from its tangent line and we can approximate the function by a linear function. (See Sec- 
tion 3.8.) Here we develop similar ideas in three dimensions. As we zoom in toward a 
point on a surface that is the graph of a differentiable function of two variables, the sur-
face looks more and more like a plane (its tangent plane) and we can approximate the 
function by a linear function of two variables. 
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■ Tangent Planes
Suppose a surface S has equation z − f sx, yd, where f  has continuous first partial deriva-
tives, and let Psx0, y0, z0 d be a point on S. As in the preceding section, let C1 and C2 be the 
curves obtained by intersecting the vertical planes y − y0 and x − x0 with the surface S. 
Then the point P lies on both C1 and C2. Let T1 and T2 be the tangent lines to the curves 
C1 and C2 at the point P. Then the tangent plane to the surface S at the point P is defined 
to be the plane that contains both tangent lines T1 and T2. (See Figure 1.)

It can be proved that if C is any other curve that lies on the surface S and passes 
through P, then its tangent line at P also lies in the tangent plane. Therefore you can 
think of the tangent plane to S at P as consisting of all possible tangent lines at P to 
curves that lie on S and pass through P. The tangent plane at P is the plane that most 
closely approximates the surface S near the point P.

We know from Section 8.3 that any plane passing through the point Psx0, y0, z0 d has 
an equation of the form

Asx 2 x0 d 1 Bsy 2 y0 d 1 Csz 2 z0 d − 0

By dividing this equation by C and letting a − 2AyC and b − 2ByC, we can write it 
in the form

(1)	 z 2 z0 − asx 2 x0d 1 bsy 2 y0 d	

If Equation 1 represents the tangent plane at P, then its intersection with the plane y − y0 
must be the tangent line T1. Setting y − y0 in Equation 1 gives

z 2 z0 − asx 2 x0 d            y − y0

and we recognize this as the equation (in point-slope form) of a line with slope a. 
But from Section 9.2 we know that the slope of the tangent T1 is fxsx0, y0 d. Therefore 
a − fxsx0, y0 d.

Similarly, putting x − x0 in Equation 1, we get z 2 z0 − bsy 2 y0 d, which must rep-
resent the tangent line T2, so b − fysx0, y0 d.

(2) � Suppose f  has continuous partial derivatives. An equation of the tangent
plane to the surface z − f sx, yd at the point Psx0, y0, z0 d is

z 2 z0 − fxsx0, y0 dsx 2 x0 d 1 fysx0, y0 dsy 2 y0 d

 Example 1   |  Find the tangent plane to the paraboloid z − 2x 2 1 y 2 at the  
point s1, 1, 3d.

SOLUTION � Let f sx, yd − 2x 2 1 y 2. Then

 fxsx, yd − 4x fysx, yd − 2y

 fxs1, 1d − 4  fys1, 1d − 2

Then (2) gives the equation of the tangent plane at s1, 1, 3d as

 z 2 3 − 4sx 2 1d 1 2sy 2 1d

or	  z − 4x 1 2y 2 3 	 ■

y

x

z

T¡

T™

C¡

C™P

0

Figure �1
The tangent plane contains the tangent 
lines T1 and T2.

Note the similarity between the equa-
tion of a tangent plane and the equation 
of a tangent line:

y 2 y0 − f 9sx0 dsx 2 x0 d
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Figure 2(a) shows the paraboloid and its tangent plane at (1, 1, 3) that we found in 
Example 1. In parts (b) and (c) we zoom in toward the point (1, 1, 3) by restricting the 
domain of the function f sx, yd − 2x 2 1 y 2. Notice that the more we zoom in, the flatter 
the graph appears and the more it resembles its tangent plane.
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Figure �2  The paraboloid z − 2x 2 1 y 2 appears to coincide with its tangent plane as we zoom in toward s1, 1, 3d.

In Figure 3 we corroborate this impression by zooming in toward the point (1, 1) on 
a contour map of the function f sx, yd − 2x 2 1 y 2. Notice that the more we zoom in, the 
more the level curves look like equally spaced parallel lines, which is characteristic of 
a plane.

0.95 1.05

1.05

0.8 1.2

1.2

0.5 1.5

1.5

■ Linear Approximations
In Example 1 we found that an equation of the tangent plane to the graph of the function 
f sx, yd − 2x 2 1 y 2 at the point (1, 1, 3) is z − 4x 1 2y 2 3. Therefore, in view of the 
visual evidence in Figures 2 and 3, the linear function of two variables

Lsx, yd − 4x 1 2y 2 3

is a good approximation to f sx, yd when sx, yd is near (1, 1). The function L is called the 
linearization of f  at (1, 1) and the approximation

f sx, yd < 4x 1 2y 2 3

is called the linear approximation or tangent plane approximation of f  at (1, 1).
For instance, at the point (1.1, 0.95) the linear approximation gives

f s1.1, 0.95d < 4s1.1d 1 2s0.95d 2 3 − 3.3

which is quite close to the true value of f s1.1, 0.95d − 2s1.1d2 1 s0.95d2 − 3.3225. But 

 TEC   Visual 9.3 shows an animation  
of Figures 2 and 3.

Figure �3
Zooming in toward s1, 1d  
on a contour map of 
f sx, yd − 2x 2 1 y 2
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if we take a point farther away from (1, 1), such as (2, 3), we no longer get a good approxi
mation. In fact, Ls2, 3d − 11 whereas f s2, 3d − 17.

In general, we know from (2) that an equation of the tangent plane to the graph of a 
function f  of two variables at the point sa, b, f sa, bdd is

z − f sa, bd 1 fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd

The linear function whose graph is this tangent plane, namely,

(3)	 Lsx, yd − f sa, bd 1 fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd	

is called the linearization of f  at sa, bd and the approximation

(4)	 f sx, yd < f sa, bd 1 fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd	

is called the linear approximation or the tangent plane approximation of f  at sa, bd.
We have defined tangent planes for surfaces z − f sx, yd, where f  has continuous first 

partial derivatives. What happens if fx and fy are not continuous? Figure 4 pictures such 
a function; its equation is

f sx, yd − H
0

xy

x 2 1 y 2 if

if

sx, yd ± s0, 0d

sx, yd − s0, 0d

It can be shown that its partial derivatives exist at the origin and, in fact, fxs0, 0d − 0 
and fys0, 0d − 0, but fx and fy are not continuous. The linear approximation would be 
f sx, yd < 0, but f sx, yd − 1

2 at all points on the line y − x. So a function of two vari-
ables can behave badly even though both of its partial derivatives exist. To rule out such 
behavior, we formulate the idea of a differentiable function of two variables by requiring 
the distance between f sx, yd and its linear approximation Lsx, yd to approach 0 faster 
than the distance from sx, yd to sa, bd.

(5) Definition � The function f sx, yd is differentiable at sa, bd if

lim
sx, yd lsa, bd

 | f sx, yd 2 Lsx, yd |
ssx 2 ad2 1 sy 2 bd2 

− 0

Definition 5 says that a differentiable function is one for which the linear approxima-
tion (4) is a good approximation when sx, yd is near sa, bd. In other words, the tangent 
plane approximates the graph of f  well near the point of tangency.

It’s sometimes hard to use Definition 5 directly to check the differentiability of a 
function, but the next theorem (which we will not prove) provides a convenient sufficient 
condition for differentiability.

(6) Theorem � If the partial derivatives fx and fy exist near sa, bd and are con-
tinuous at sa, bd, then f  is differentiable at sa, bd.

z y

x

Figure �4

f(x, y)= xy
≈+¥  if (x, y)≠(0, 0),

f(0, 0)=0

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



600    Chapter 9  |  Multivariable Calculus

 Example 2   |  Show that f sx, yd − xex y is differentiable at (1, 0) and find its 
linearization there. Then use it to approximate f s1.1, 20.1d.

SOLUTION � The partial derivatives are

 fxsx, yd − exy 1 xyexy             fysx, yd − x 2exy

 fxs1, 0d − 1              fys1, 0d − 1

Both fx and fy are continuous functions, so f  is differentiable by Theorem 6. The 
linearization is

 Lsx, yd − f s1, 0d 1 fxs1, 0dsx 2 1d 1 fys1, 0dsy 2 0d

 − 1 1 1sx 2 1d 1 1 ? y − x 1 y

The corresponding linear approximation is

 xexy < x 1 y

so	    f s1.1, 20.1d < 1.1 2 0.1 − 1	

Compare this with the actual value of f s1.1, 20.1d − 1.1e20.11 < 0.98542.	 ■

 Example 3   |  Heat index  At the beginning of Section 9.2 we discussed the heat 
index (perceived temperature) I as a function of the actual temperature T  and the 
relative humidity H and gave the following table of values from the National Weather 
Service.

96
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116

123
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114
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135
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133

141
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115
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130

138

147
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119

127

135

144

154

115
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141

150

161
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137

146

157

168

T
H

Relative humidity (%)

Actual
temperature

(°F)

90

92

94

96

98

100

50 55 60 65 70 75 80 85 90

Find a linear approximation for the heat index I − f sT, H d when T  is near 96°F and H 
is near 70%. Use it to estimate the heat index when the temperature is 97°F and the 
relative humidity is 72%.

SOLUTION � We read from the table that f s96, 70d − 125. In Section 9.2 we used the 
tabular values to estimate that fTs96, 70d < 3.75 and fHs96, 70d < 0.9. (See pages 
585–86.) So the linear approximation is

 f sT, H d < f s96, 70d 1 fTs96, 70dsT 2 96d 1 fHs96, 70dsH 2 70d

 < 125 1 3.75sT 2 96d 1 0.9sH 2 70d

1
0

_1

6

4

2

0

yx

z

1
0

Figure �5

Figure 5 shows the graphs of the 
function f  and its linearization L in 
Example 2.
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In particular,

f s97, 72d < 125 1 3.75s1d 1 0.9s2d − 130.55

Therefore, when T − 97°F and H − 72%, the heat index is

	 I < 131°F	 ■

 Example 4   |  The wind-chill index WsT, vd is the subjective temperature that we 
perceive when the actual temperature is T  and the wind speed is v. (See Example 9.1.1.) 
If T  is measured in °C and v in kmyh, then a model for W  is

WsT, vd − 13.12 1 0.6215T 2 11.37v 0.16 1 0.3965Tv 0.16

Use this equation to find the linearization of W  at s212, 20d.

SOLUTION � The partial derivatives of W  are

 WTsT, vd − 0.6215 1 0.3965v 0.16

 WvsT, vd − 21.8192v20.84 1 0.06344Tv20.84

Evaluating W , WT, and Wv to two decimal places when T − 212 and v − 20, we get

Ws212, 20d − 220.38    WTs212, 20d − 1.26    Wvs212, 20d − 20.21

So the linearization of the wind chill function at s212, 20d is

LsT, vd − 220.38 1 1.26sT 1 12d 2 0.21sv 2 20d

This linear function is a good approximation to the wind chill function WsT, vd when T  
is near 212°C and v is near 20 kmyh. The accuracy of this approximation decreases as 
we move away from these values.	 ■

Linear approximations and differentiability can be defined in a similar manner for 
functions of more than two variables. A differentiable function is defined by an expres-
sion similar to the one in Definition 5. For functions of three variables the linear 
approximation is

f sx, y, zd < f sa, b, cd 1 fxsa, b, cdsx 2 ad 1 fysa, b, cdsy 2 bd 1 fzsa, b, cdsz 2 cd

and the linearization Lsx, y, zd is the right side of this expression.

	� 1–6 � Find an equation of the tangent plane to the given surface 
at the specified point.

	 1.	�� z − 3y 2 2 2x 2 1 x,    s2, 21, 23d

	 2.	�� z − 3sx 2 1d2 1 2sy 1 3d2 1 7,    s2, 22, 12d

	 3.	�� z − sxy ,    s1, 1, 1d

	 4.	�� z − xe xy,    s2, 0, 2d

	 5.	�� z − y cossx 2 yd,    s2, 2, 2d

	 6.	�� z − lnsx 2 2yd,    s3, 1, 0d

	� 7–12 � Explain why the function is differentiable at the given 
point. Then find the linearization of the function at that point.

	 7.	�� f sx, yd − xsy ,    s1, 4d	 8.	�� f sx, yd − x 3y 4,    s1, 1d

EXERCISES 9.3
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	 19.	��� Use the table in Example 3 to find a linear approximation to 
the heat index function when the temperature is near 94°F  
and the relative humidity is near 80%. Then estimate the 
heat index when the temperature is 95°F and the relative 
humidity is 78%.

	 20.	�� �The wind-chill index W is the perceived temperature when 
the actual temperature is T and the wind speed is v, so we 
can write W − f sT, vd. The following table of values is an 
excerpt from Table 9.1.1. Use the table to find a linear 
approximation to the wind-chill index function when T is 
near 215°C and v is near 50 kmyh. Then estimate the 
wind-chill index when the temperature is 217°C and the 
wind speed is 55 kmyhr.
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	 21.	� Lizard energy expenditure �� The average energy E (in 
kcal) needed for a lizard to walk or run a distance of 1 km 
has been modeled by the equation

Esm, vd − 2.65m 0.66 1
3.5m 0.75

v

		���  where m is the body mass of the lizard (in grams) and v is 
its speed (in kmyh). Find the linearization of the energy 
function at s400, 8d.
Source: Adapted from C. Robbins, Wildlife Feeding and Nutrition, 2nd ed. 

(San Diego: Academic Press, 1993).

	 22.	� Body surface area �� A model for the surface area of a 
human body is given by the function

S − f sw, hd − 0.1091w 0.425h 0.725

		���  where w is the weight (in pounds), h is the height (in 
inches), and S is measured in square feet.

		  (a)	� Calculate the linearization Lsw, hd of this function when 
w − 160 lb and h − 70 in.

		  (b)	� Compare the values of f sw, hd and Lsw, hd when 
sw, hd − s162, 73d and when sw, hd − s170, 80d Com-
ment on the relative accuracy of the approximations.

	 9.	�� f sx, yd −
x

x 1 y
,    s2, 1d

	 10.	�� f sx, yd − sx 1 e 4y ,    s3, 0d

	 11.	�� f sx, y, zd − x 2y 1 y 2z,    s1, 2, 3d

	 12.	�� f sx, y, zd − e2xy cos z,    s0, 2, 0d

	� 13–14 � Verify the linear approximation at s0, 0d.

	 13.	
2x 1 3

4y 1 1
< 3 1 2x 2 12y	 14.	 sy 1 cos2 x < 1 1 1

2 y

	 15.	��� Given that f  is a differentiable function with f s2, 5d − 6, 
fx s2, 5d − 1, and fy s2, 5d − 21, use a linear approximation 
to estimate f s2.2, 4.9d.

	 16.	��� Find the linear approximation of the function

f sx, yd − lnsx 2 3yd

		���  at s7, 2d and use it to approximate f s6.9, 2.06d.

	 17.	��� Find the linear approximation of the function

f sx, y, zd − sx 2 1 y 2 1 z 2 

		��  at s3, 2, 6d and use it to approximate the number

ss3.02d 2 1 s1.97d 2 1 s5.99d 2 

	 18.	��� The wave heights h in the open sea depend on the speed v  
of the wind and the length of time t that the wind has been 
blowing at that speed. Values of the function h − f sv, td are 
recorded in feet in the following table. Use the table to find 
a linear approximation to the wave height function when v  
is near 40 knots and t is near 20 hours. Then estimate the 
wave heights when the wind has been blowing for 24 hours 
at 43 knots.
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■ Project  The Speedo LZR Racer	

Many technological advances have occurred in sports that have contributed to increased 
athletic performance. One of the best known is the introduction, in 2008, of the Speedo 
LZR racer. It was claimed that this full-body swimsuit reduced a swimmer’s drag in the 
water. Figure 1 shows the number of world records broken in men’s and women’s long-
course freestyle swimming events from 1990 to 2011.1 The dramatic increase in 2008 
when the suit was introduced led people to claim that such suits are a form of technologi-
cal doping. As a result all full-body suits were banned from competition starting in 2010.

y
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Figure �1  Number of world records set in long-course men’s and women’s freestyle swimming event 1990–2011

It might be surprising that a simple reduction in drag could have such a big effect on 
performance. We can gain some insight into this using a simple mathematical model.2

The speed v of an object being propelled through water is given by

vsP, Cd − S 2P

kCD
1y3

where P is the power being used to propel the object, C is the drag coefficient, and k is 
a positive constant. Athletes can therefore increase their swimming speeds by increasing 
their power or reducing their drag coefficients. But how effective is each of these?

To compare the effect of increasing power versus reducing drag, we need to some-
how compare the two in common units. The most common approach is to determine the 
percentage change in speed that results from a given percentage change in power and 
in drag.

If we work with percentages as fractions, then when power is changed by a fraction 
x swith x corresponding to 100x percent), P changes from P to P 1 xP. Likewise, if 
the drag coefficient is changed by a fraction y, this means that it has changed from C to 
C 1 yC. Finally, the fractional change in speed resulting from both effects is

(1)	
vsP 1 xP, C 1 yCd 2 vsP, Cd

vsP, Cd
	

 1.	�� �Expression 1 gives the fractional change in speed that results from a change x in 
power and a change y in drag. Show that this reduces to the function

f sx, yd − S 1 1 x

1 1 yD
1y3

2 1

		��  Given the context, what is the domain of f ?
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1.� L. Foster et al., “Influence of Full Body Swimsuits on Competitive Performance,” Procedia Engineering 
34 (2012): 712–17.

2. �Adapted from http://plus.maths.org/content/swimming.
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	 2.	�� Suppose that the possible changes in power x and drag y are small. Find the lin-
ear approximation to the function f sx, yd. What does this approximation tell you 
about the effect of a small increase in power versus a small decrease in drag?

	 3.	�� Calculate fxxsx, yd and fyysx, yd. Based on the signs of these derivatives, does the 
linear approximation in Problem 2 result in an overestimate or an underestimate 
for an increase in power? What about for a decrease in drag? Use your answer to 
explain why, for changes in power or drag that are not very small, a decrease in 
drag is more effective.

	 4.	�� Graph the level curves of f sx, yd. Explain how the shapes of these curves relate 
to your answers to Problems 2 and 3.

9.4 The Chain Rule

Recall that the Chain Rule for functions of a single variable gives the rule for differenti-
ating a composite function: If y − f sxd and x − tstd, where f  and t are differentiable 
functions, then y is indirectly a differentiable function of t and

(1)	
dy

dt
−

dy

dx
 
dx

dt
	

For functions of two variables we have z − f sx, yd, where each of the variables 
x and y is a function of a variable t. This means that z is indirectly a function of t, 
z − f ststd, hstdd, and the Chain Rule gives a formula for differentiating z as a function  
of t. We assume that f  is differentiable (Definition 9.3.5). Recall that this is the case 
when fx and fy are continuous (Theorem 9.3.6).

(2) The Chain Rule � Suppose that z − f sx, yd is a differentiable function of x 
and y, where x − tstd and y − hstd are both differentiable functions of t. Then z is 
a differentiable function of t and

dz

dt
−

−z

−x
 
dx

dt
1

−z

−y
 
dy

dt

A rigorous proof of the Chain Rule is rather technical and is similar to the proof of the 
single-variable case at the end of Section 3.5. Instead, we give a more intuitive indication 
of why it is true.

Near a point sa, bd in the domain of f, we approximate the differentiable function f  
by its linear approximation:

f sx, yd < Lsx, yd − f sa, bd 1 fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd

Let Dx − x 2 a, Dy − y 2 b, and Dz − f sx, yd 2 f sa, bd. Then we can write

Dz <
−z

−x
 Dx 1

−z

−y
 Dy

A change of Dt in t produces changes of Dx in x and Dy in y which, in turn, produce a 
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change of Dz in z. Dividing both sides of this last equation by Dt, we get

Dz

Dt
<

−z

−x
 
Dx

Dt
1

−z

−y
 
Dy

Dt

If we now let Dt l 0, this approximation becomes better and we have

Dz

Dt
 l 

dz

dt
    

Dx

Dt
 l 

dx

dt
    

Dy

Dt
 l 

dy

dt

So it seems reasonable that

dz

dt
−

−z

−x
 
dx

dt
1

−z

−y
 
dy

dt

 Example 1   |  If z − x 2 y 1 3xy4, where x − sin 2t and y − cos t, find dzydt when 
t − 0.

SOLUTION � The Chain Rule gives

 
dz

dt
−

−z

−x
 
dx

dt
1

−z

−y
 
dy

dt

 − s2xy 1 3y 4 ds2 cos 2td 1 sx 2 1 12xy 3 ds2sin td

It’s not necessary to substitute the expressions for x and y in terms of t. We simply 
observe that when t − 0, we have x − sin 0 − 0 and y − cos 0 − 1. Therefore

	
dz

dt Z
t−0

− s0 1 3ds2 cos 0d 1 s0 1 0ds2sin 0d − 6	 ■

Strictly speaking, it’s not absolutely necessary to use Theorem 2 to solve Example 1. 
Instead we could have substituted x − sin 2t and y − cos t into the expression for z and 
then used the ordinary chain rule. But in the next example it really is necessary to use 
Theorem 2.

 Example 2   |  BB   Tuna biomass depends on the availability of the small fish 
that they eat (such as puffer fish and trigger fish) as well as the size of the catch of the 
annual commercial tuna fishery (currently about four million tons per year). Use the 
Chain Rule to discuss whether the tuna biomass is increasing or decreasing.

SOLUTION � Let T  be the tuna biomass and S the biomass of the small fish that tuna 
eat. Let C be the size of the annual tuna catch. Then we can write T − f sS, Cd. If t 
denotes time, then the Chain Rule says that

(3)	
dT

dt
−

−T

−S
 
dS

dt
1

−T

−C
 
dC

dt
	

If we suppose that the population of small fish is increasing, then dSydt is positive. 
What about −Ty−S? If S increases and C remains the same, then the tuna have more to 
eat and so T  also increases. Thus −Ty−S . 0. So the first term on the right side of (3) is 
positive.

If S remains the same and the catch increases, then T  will decrease, which means 
that −Ty−C is negative. What is the sign of dCydt? The size of the tuna catch has been 
increasing in recent decades but overfishing has resulted in international quotas, which 
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are sometimes ignored. If C continues to increase, then dCydt . 0 and so the second 
term in (3) is negative. From Equation 3 we see that dTydt is the sum of a positive term 
and a negative term, so we are unable to determine whether dTydt is positive or negative. 
On the other hand, if the catch decreases, then the second term is positive and so dTydt 
is positive and the tuna biomass increases.	 ■

 Example 3   |  The pressure P (in kilopascals), volume V  (in liters), and temperature 
T  (in kelvins) of a mole of an ideal gas are related by the equation PV − 8.31T . Find 
the rate at which the pressure is changing when the temperature is 300 K and increas­
ing at a rate of 0.1 Kys and the volume is 100 L and increasing at a rate of 0.2 Lys.

SOLUTION � If t represents the time elapsed in seconds, then at the given instant we 
have T − 300, dTydt − 0.1, V − 100, dVydt − 0.2. Since

P − 8.31 
T

V

the Chain Rule gives

 
dP

dt
−

−P

−T
 
dT

dt
1

−P

−V
 
dV

dt
−

8.31

V
 
dT

dt
2

8.31T

V 2  
dV

dt

 −
8.31

100
 s0.1d 2

8.31s300d
1002  s0.2d − 20.04155

The pressure is decreasing at a rate of about 0.042 kPays.	 ■

For functions of three variables, where w − f sx, y, zd is differentiable and x, y, and z 
are differentiable functions of t, the Chain Rule has an extra term:

dw
dt

−
−w
−x

 
dx

dt
1

−w
−y

 
dy

dt
1

−w
−z

 
dz

dt

 Example 4   |  Find dwydt if w − xeyyz, where x − 3t 1 2, y − t 2, and z − t 3 2 1.

SOLUTION � By the Chain Rule, we have

 
dw
dt

−
−w
−x

 
dx

dt
1

−w
−y

 
dy

dt
1

−w
−z

 
dz

dt

 − eyyz ? 3 1 xeyyz ?
1

z
? 2t 1 xeyyzS2

y

z 2D ? 3t 2

	  − eyyzS3 1
2xt

z
2

3xyt 2

z 2 D 	 ■

■ Implicit Differentiation
The Chain Rule can be used to give a more complete description of the process of  
implicit differentiation that was introduced in Sections 3.5 and 9.2. We suppose that an 
equation of the form Fsx, yd − 0 defines y implicitly as a differentiable function of x, 
that is,  y − f sxd, where Fsx, f sxdd − 0 for all x in the domain of f. If F is differentiable, 
we can apply the Chain Rule to differentiate both sides of the equation Fsx, yd − 0 with 
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respect to x. Since both x and y are functions of x, we obtain

−F

−x
 
dx

dx
1

−F

−y
 
dy

dx
− 0

But dxydx − 1, so if −Fy−y ± 0 we solve for dyydx and obtain

(4)	
dy

dx
− 2 

−F

−x

−F

−y

− 2 
Fx

Fy
	

To derive this equation we assumed that Fsx, yd − 0 defines y implicitly as a function 
of x. The Implicit Function Theorem, proved in advanced calculus, gives conditions 
under which this assumption is valid: It states that if F is defined on a disk containing 
sa, bd, where Fsa, bd − 0, Fysa, bd ± 0, and Fx and Fy are continuous on the disk, then 
the equation Fsx, yd − 0 defines y as a function of x near the point sa, bd and the deriva­
tive of this function is given by Equation 4.

 Example 5   |  Find y9 if x 3 1 y 3 − 6xy.

SOLUTION � The given equation can be written as

Fsx, yd − x 3 1 y 3 2 6xy − 0

so Equation 4 gives

	
dy

dx
− 2 

Fx

Fy
− 2 

3x 2 2 6y

3y 2 2 6x
− 2 

x 2 2 2y

y 2 2 2x
	 ■

Now we suppose that z is given implicitly as a function z − f sx, yd by an equation of 
the form Fsx, y, zd − 0. This means that Fsx, y, f sx, ydd − 0 for all sx, yd in the domain  
of f. If F and f  are differentiable, then we can use the Chain Rule to differentiate the 
equation Fsx, y, zd − 0 as follows:

−F

−x
 
−x

−x
1

−F

−y
 
−y

−x
1

−F

−z
 
−z

−x
− 0

But	
−

−x
 sxd − 1        and      

−

−x
 syd − 0	

so this equation becomes

−F

−x
1

−F

−z
 
−z

−x
− 0

If −Fy−z ± 0, we solve for −zy−x and obtain the first formula in Equations 5. The for­
mula for −zy−y is obtained in a similar manner.

(5)	
−z

−x
− 2 

−F

−x

−F

−z

          
−z

−y
− 2 

−F

−y

−F

−z

	

The solution to Example 5 should be  
compared to the one in Example 3.5.12.
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Again, a version of the Implicit Function Theorem stipulates conditions under which  
our assumption is valid: If F is defined within a sphere containing sa, b, cd, where 
Fsa, b, cd − 0, Fzsa, b, cd ± 0, and Fx, Fy, and Fz are continuous inside the sphere, then 
the equation Fsx, y, zd − 0 defines z as a function of x and y near the point sa, b, cd and 
this function is differentiable, with partial derivatives given by (5).

 Example 6   |  BB   Infectious disease outbreak size  Epidemiologists often 
wish to predict the fraction of the population that will ultimately be infected when a 
disease begins to spread. Mathematical models have been used to do so. The Kermack-
McKendrick model leads to the following equation (see the project on page 354):

�e2qA − 1 2 A

where A is the fraction of the population ultimately infected, q is a measure of disease 
transmissibility, and � is a measure of the fraction of the population that is initially 
susceptible to infection. How does the outbreak size A change with an increase in the 
transmissibility q?

SOLUTION � Let Fs�, q, Ad − �e2qA 2 1 1 A. Then, from Equations 5, the rate of 
change of A with respect to q is

−A

−q
− 2

Fq

FA
− 2

2�Ae2qA

2�qe2qA 1 1
−

�A

eqA 2 �q

This is the rate of increase of the outbreak size as the transmissibility increases while � 
remains constant.	 ■

	� 1–6 � Use the Chain Rule to find dzydt or dwydt.

	 1.	�� z − x 2 1 y 2 1 xy,    x − sin t,    y − e t

	 2.	�� z − cossx 1 4yd,    x − 5t 4,    y − 1yt

	 3.	�� z − s1 1 x 2 1 y 2 ,    x − ln t,    y − cos t

	 4.	�� z − tan21syyxd,    x − e t,    y − 1 2 e2t

	 5.	�� w − xe yyz,    x − t 2,    y − 1 2 t,    z − 1 1 2t

	 6.	�� w − lnsx 2 1 y 2 1 z2 ,    x − sin t,    y − cos t,    z − tan t

	 7.	�� �Suppose z − f sx, yd, where x − tss, td and y − hss, td are 
differentiable functions of s and t. Use Theorem 2 to show 
that

 
−z

−s
−

−z

−x
 
−x

−s
1

−z

−y
 
−y

−s

 
−z

−t
−

−z

−x
 
−x

−t
1

−z

−y
 
−y

−t

	� 8–10 � Use Exercise 7 to find −zy−s and −zy−t.

	 8.	 z − e x sin y, x − st 2, y − s 2t

	 9.	�� z − x 2y 3,    x − s cos t,    y − s sin t

	 10.	��� z − e x12y,    x − syt,    y − tys

	 11.	��� �If z − f sx, yd, where f  is differentiable, and

 x − tstd       y − hstd

 ts3d − 2        hs3d − 7

 t9s3d − 5        h9s3d − 24

 fxs2, 7d − 6        fys2, 7d − 28

		��  find dzydt when t − 3.

	 12.	��� Let Wss, td − Fsuss, td, vss, tdd, where F, u, and v are 
differentiable, and

 us1, 0d − 2        vs1, 0d − 3

 uss1, 0d − 22       vss1, 0d − 5

uts1, 0d − 6        vts1, 0d − 4

 Fus2, 3d − 21       Fvs2, 3d − 10

		��  Find Wss1, 0d and Wts1, 0d.

EXERCISES 9.4
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		��  �where m is the person’s mass (in kilograms) and h is the 
height (in meters). Both m and h depend on the person’s age 
a. Use the Chain Rule to find an expression for the rate of 
change of the BMI with respect to age.

	 24.	�I nfectious disease control �� In Example 9.1.12 we looked 
at the following model for the spread of SARS:

R0sd, vd − 5s1 2 vd 
d

1 1 d

		���  where R0 is the basic reproduction number, v is the fraction 
of the population that is vaccinated, and d is the average 
number of days that an infected individual remains in the 
population before being quarantined. The quantities d and  
v depend on the investment I that the government makes  
to contain the disease. Use the Chain Rule to obtain an 
expression for the rate of change of R0 with respect to 
investment.

	 25.	�I nfectious disease outbreak size �� In Example 6 we used 
the equation �e2qA − 1 2 A to model the relationship 
among A (the fraction of the population ultimately infected 
by the disease), q (a measure of disease transmissibility), 
and � (a measure of the fraction of the population that is 
initially susceptible to infection). How does the outbreak 
size A change with an increase in �?

	 26.	��� The speed of sound traveling through ocean water with 
salinity 35 parts per thousand has been modeled by the 
equation

C − 1449.2 1 4.6T 2 0.055T 2 1 0.00029T 3 1 0.016D

		���  where C is the speed of sound (in meters per second), T is 
the temperature (in degrees Celsius), and D is the depth 
below the ocean surface (in meters). A scuba diver began a 
leisurely dive into the ocean water; the diver’s depth and the 
surrounding water temperature over time are recorded in the 
following graphs. Estimate the rate of change (with respect 
to time) of the speed of sound through the ocean water 
experienced by the diver 20 minutes into the dive. What are 
the units?

t
(min)

T

10
12

10 20 30 40

14
16

8

t
(min)

D

5
10

10 20 30 40

15
20

	 27.	��� The pressure of 1 mole of an ideal gas is increasing at a rate  
of 0.05 kPays and the temperature is increasing at a rate of  
0.15 Kys. Use the equation in Example 3 to find the rate of 
change of the volume when the pressure is 20 kPa and the  
temperature is 320 K.

	 28.	���� If a sound with frequency fs is produced by a source 
traveling along a line with speed vs and an observer is 

	� 13–16 � Use Equation 4 to find dyydx.

	 13.	 y cos x − x 2 1 y 2	 14.	 y 5 1 x 2y 3 − 1 1 ye x 2

	 15.	 cossx 2 yd − xe y

	 16.	 sin x 1 cos y − sin x cos y

	� 17–20 � Use Equations 5 to find −zy−x and −zy−y.

	 17.	 x 2 1 y 2 1 z 2 − 3xyz	 18.	 xyz − cossx 1 y 1 zd

	 19.	 x 2 z − arctansyzd	 20.	 yz − lnsx 1 zd

	 21.	� Gray wolves ��range over Canada, the northern United States, 
Europe, and Asia. They feed on animals such as moose, 
deer, elk, and caribou and smaller animals such as hare and 
lynx. Their competitors are principally coyotes and bears. 
They have few predators, aside from humans. If W denotes 
the size of the gray wolf population, we can write

W − f sF, Cd

		���  where F is the size of the food supply and C is the number 
of competitors.

		  (a)	� The variables W, F, and C are all functions of time t. 
Write out the Chain Rule for this situation.

		  (b)	� Are the partial derivatives −Wy−F and −Wy−C positive 
or negative?

		  (c)	� What happens if the food supply increases while the 
competition decreases?

		  (d)	� What can you say if both F and C increase?

	 22.	� Wheat production ��W in a given year depends on the 
average temperature T and the annual rainfall R. Scientists 
estimate that the average temperature is rising at a rate  
of 0.15°Cyyear and rainfall is decreasing at a rate of 
0.1 cmyyear. They also estimate that, at current production 
levels, −Wy−T − 22 and −Wy−R − 8.

		  (a)	� What is the significance of the signs of these partial 
derivatives?

		  (b)	� Estimate the current rate of change of wheat production, 
dWydt.

	 23.	� Body mass index �� Recall from Example 9.1.2 that the 
BMI of a person is

Bsm, hd −
m

h 2
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	 29.	��� �Suppose that the equation Fsx, y, zd − 0 implicitly defines 
each of the three variables x, y, and z as functions of the 
other two: z − f sx, yd, y − tsx, zd, x − hsy, zd. If F is 
differentiable and Fx, Fy, and Fz are all nonzero, show that

−z

−x
 
−x

−y
 
−y

−z
− 21

	 30.	��� Equation 4 is a formula for the derivative dyydx of a func- 
tion defined implicitly by an equation F sx, yd − 0, pro- 
vided that F is differentiable and Fy ± 0. Prove that if F has 
continuous second derivatives, then a formula for the 
second derivative of y is

d 2y

dx 2 − 2
Fxx Fy

2 2 2Fxy Fx Fy 1 Fyy Fx
2

Fy
3  

		���  traveling with speed vo along the same line from the 
opposite direction toward the source, then the frequency of 
the sound heard by the observer is

fo − S c 1 vo

c 2 vs
D fs

		��  �where c is the speed of sound, about 332 mys. (This is the 
Doppler effect.) Suppose that, at a particular moment, you  
are in a train traveling at 34 mys and accelerating at 
1.2 mys2. A train is approaching you from the opposite 
direction on the other track at 40 mys, accelerating at 
1.4 mys2, and sounds its whistle, which has a frequency of 
460 Hz. At that instant, what is the perceived frequency that 
you hear and how fast is it changing?

9.5 Directional Derivatives and the Gradient Vector

The weather map in Figure 1 shows a contour map of the temperature function Tsx, yd 
for the states of California and Nevada at 3:00 pm on a day in October. The level curves, 
or isothermals, join locations with the same temperature. The partial derivative Tx at a 
location such as Reno is the rate of change of temperature with respect to distance if we 
travel east from Reno; Ty is the rate of change of temperature if we travel north. But what 
if we want to know the rate of change of temperature when we travel southeast (toward 
Las Vegas), or in some other direction? In this section we introduce a type of derivative, 
called a directional derivative, that enables us to find the rate of change of a function of 
two variables in any direction.

5060
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Vegas 
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70
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0
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50 100 150 200

■ Directional Derivatives
Recall that if z − f sx, yd, then the partial derivatives fx and fy are defined as

(1)
	  fxsx0, y0 d − lim

h l 0
 
 f sx0 1 h, y0 d 2 f sx0, y0 d

h
	

 fysx0, y0 d − lim
h l 0

 
 f sx0, y0 1 hd 2 f sx0, y0 d

h

Figure �1
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and represent the rates of change of z in the x- and y-directions, that is, in the directions 
of the unit vectors i − f1, 0g and j − f0, 1g.

Suppose that we now wish to find the rate of change of z at sx0, y0 d in the direction of  
an arbitrary unit vector u − fa, bg. (See Figure 2.) To do this we consider the surface S 
with the equation z − f sx, yd (the graph of f ) and we let z0 − f sx0, y0 d. Then the point 
Psx0, y0, z0 d lies on S. The vertical plane that passes through P in the direction of u inter-
sects S in a curve C. (See Figure 3.) The slope of the tangent line T  to C at the point P is 
the rate of change of z in the direction of u.

Q(x, y,  z)

P(x¸, y¸, z¸)

P ª(x¸, y¸, 0)

Qª(x, y, 0)
hb

ha
h

u

C

T

S

y

x

z

If Qsx, y, zd is another point on C and P9, Q9 are the projections of P, Q onto the 

xy-plane, then the vector P9Q9B is parallel to u and so

P9Q9B − hu − fha, hb g

for some scalar h. Therefore x 2 x0 − ha, y 2 y0 − hb, so x − x0 1 ha, y − y0 1 hb, 
and

Dz

h
−

z 2 z0

h
−

 f sx0 1 ha, y0 1 hbd 2 f sx0, y0 d
h

If we take the limit as h l 0, we obtain the rate of change of z (with respect to dis-
tance) in the direction of u, which is called the directional derivative of f  in the direc-
tion of u.

(2) Definition � The directional derivative of f  at sx0, y0 d in the direction of a 
unit vector u − fa, b g is

Du f sx0, y0 d − lim
h l 0

 
 f sx0 1 ha, y0 1 hbd 2 f sx0, y0 d

h

if this limit exists.

y

0 x

(x¸, y¸)
cos ¨

sin ¨

¨

u

Figure �2
A unit vector 
u − fa, bg − fcos �, sin �g

Figure �3

 TEC   Visual 9.5A animates Figure 3 by 
rotating u and therefore T.
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612    Chapter 9  |  Multivariable Calculus

By comparing Definition 2 with Equations 1 we see that if u − i − f1, 0 g, then 
Di f − fx and if u − j − f0, 1 g, then Dj f − fy. In other words, the partial derivatives of 
f  with respect to x and y are just special cases of the directional derivative.

 Example 1   |  Use the weather map in Figure 1 to estimate the value of the direc­
tional derivative of the temperature function at Reno in the southeasterly direction.

SOLUTION � The unit vector directed toward the southeast is u − f1ys2 , 21ys2 g, 
but we won’t need to use this expression. We start by drawing a line through Reno 
toward the southeast (see Figure 4).
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We approximate the directional derivative Du T  by the average rate of change of the 
temperature between the points where this line intersects the isothermals T − 50 and 
T − 60. The temperature at the point southeast of Reno is T − 60°F and the temperature 
at the point northwest of Reno is T − 50°F. The distance between these points looks to 
be about 75 miles. So the rate of change of the temperature in the southeasterly direction 
is

	 Du T <
60 2 50

75
−

10

75
< 0.13°Fymi� ■

When we compute the directional derivative of a function defined by a formula, 
we generally use the following theorem.

(3) Theorem � If f  is a differentiable function of x and y, then f  has a direc-
tional derivative in the direction of any unit vector u − fa, b g and

Du f sx, yd − fxsx, yd a 1 fysx, yd b

Proof � If we define a function t of the single variable h by

tshd − f sx0 1 ha, y0 1 hbd

�then, by the definition of a derivative, we have

(4)	  t9s0d − lim
h l 0

 
tshd 2 ts0d

h
− lim

h l 0
 
 f sx0 1 ha, y0 1 hbd 2 f sx0, y0 d

h
	

 − Du f sx0, y0 d

Figure �4
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�On the other hand, we can write tshd − f sx, yd, where x − x0 1 ha, y − y0 1 hb, so 
the Chain Rule (Theorem 9.4.2) gives

 t9shd −
−f

−x
 
dx

dh
1

−f

−y
 
dy

dh
− fxsx, yd a 1 fysx, yd b

�If we now put h − 0, then x − x0, y − y0, and

(5)	 t9s0d − fxsx0, y0 d a 1 fysx0, y0 d b	

�Comparing Equations 4 and 5, we see that

	 Du f sx0, y0 d − fxsx0, y0 d a 1 fysx0, y0 d b	 ■

If the unit vector u makes an angle � with the positive x-axis (as in Figure 2), then we 
can write u − fcos �, sin � g  and the formula in Theorem 3 becomes

(6)	 Du f sx, yd − fxsx, yd cos � 1 fysx, yd sin �	

 Example 2   |  Find the directional derivative Du f sx, yd if

f sx, yd − x 3 2 3xy 1 4y 2

and u is the unit vector given by angle � − �y6. What is Du f s1, 2d?

SOLUTION � Formula 6 gives

 Du f sx, yd − fxsx, yd cos 
�

6
1 fysx, yd sin 

�

6

 − s3x 2 2 3yd 
s3 

2
1 s23x 1 8yd 

1

2

 − 1
2 f3s3 x 2 2 3x 1 (8 2 3s3 )yg

Therefore

	 Du f s1, 2d − 1
2 f3s3 s1d2 2 3s1d 1 s8 2 3s3 ds2dg −

13 2 3s3 

2
	 ■

■ The Gradient Vector
Notice from Theorem 3 that the directional derivative of a differentiable function can be 
written as the dot product of two vectors:

(7)	  Du f sx, yd − fxsx, yd a 1 fysx, yd b 	

 − f fxsx, yd, fysx, yd g ? fa, b g

 − f fxsx, yd, fysx, yd g ? u

The first vector in this dot product occurs not only in computing directional derivatives 
but in many other contexts as well. So we give it a special name (the gradient of f ) and 
a special notation (grad f  or = f , which is read “del f ”).

The directional derivative Du f s1, 2d 
in Example 2 represents the rate of 
change of z in the direction of u. This 
is the slope of the tangent line to the 
curve of intersection of the surface 
z − x 3 2 3xy 1 4y2 and the vertical 
plane through s1, 2, 0d in the direction 
of u shown in Figure 5.

(1, 2, 0)
π
6

z

x

y0

u

Figure �5
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(8) Definition � If f  is a function of two variables x and y, then the gradient of f  
is the vector function = f  defined by

= f sx, yd − f fxsx, yd, fysx, yd g

 Example 3   |  If f sx, yd − sin x 1 ex y, then

 = f sx, yd − f fx , fy g − fcos x 1 yex y, xex y g

and	  = f s0, 1d − f2, 0 g 	 ■

With this notation for the gradient vector, we can rewrite the expression (7) for the 
directional derivative of a differentiable function as

(9)	 Du f sx, yd − = f sx, yd ? u	

This expresses the directional derivative in the direction of u as the scalar projection of 
the gradient vector onto u.

 Example 4   |  Find the directional derivative of the function f sx, yd − x 2 y 3 2 4y at 
the point s2, 21d in the direction of the vector v − f2, 5g.

SOLUTION � We first compute the gradient vector at s2, 21d:

 = f sx, yd − f2xy 3, 3x 2y 2 2 4g

 = f s2, 21d − f24, 8g

Note that v is not a unit vector, but since | v | − s29 , the unit vector in the direction  
of v is

u −
v

| v | − F 2

s29 
, 

5

s29 G
Therefore, by Equation 9, we have

 Du f s2, 21d − = f s2, 21d ? u − f24, 8g ? F 2

s29 
, 

5

s29 G
	  −

24 ? 2 1 8 ? 5

s29 
−

32

s29 
	 ■

 Example 5   |  BB   Snake reversals and stripes  In a study of the survivor­
ship of juvenile garter snakes, a researcher1 arrived at the model

F − 4.2 1 0.008R 1 0.102S 1 0.017R 2 2 0.034S 2 2 0.268RS

where F is a measure of the fitness of the snake, R measures the number of reversals of 
direction during flight from a predator, and S measures the degree of stripedness in the 

The gradient vector =f s2, 21d in 
Example 4 is shown in Figure 6 with 
initial point s2, 21d. Also shown is the 
vector v that gives the direction of the 
directional derivative. Both of these 
vectors are superimposed on a contour 
plot of the graph of f.

v

(2, _1)

±f(2, _1)

x

y

Figure �6

1.� E. Brodie III, “Correlational Selection for Color Pattern and Antipredator Behavior in the Garter Snake 
Thamnophis ordinoides,” Evolution 46 (1992): 1284–98.
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color pattern of the snake. We have previously considered how F changes as R or S 
changes by computing the partial derivatives with respect to R and S (Exercise 9.2.48). 
How does F change when R − 3 and S − 2 if the phenotype changes so that R and S 
increase by equal amounts?

SOLUTION � The gradient vector of F is

=FsR, Sd − fFR, FSg − f0.008 1 0.034R 2 0.268S, 0.102 2 0.068S 2 0.268Rg

and when R − 3 and S − 2 this becomes

=Fs3, 2d − f20.426, 20.838g

We want the derivative in the direction halfway between i and j, that is, in the direction 
v − f1, 1g. The unit vector in this direction is u − (1ys2 ) f1, 1g, so the directional 
derivative is

 DuFs3, 2d − =Fs3, 2d ? u − f20.426, 20.838g ? F 1

s2 , 
1

s2 G
 − 2

1.264

s2 
< 20.894

This means that the fitness function at s3, 2d decreases at a rate of 0.894 units when R 
and S increase by equal amounts.	 ■

■ Maximizing the Directional Derivative
Suppose we have a function f  of two or three variables and we consider all possible direc­
tional derivatives of f  at a given point. These give the rates of change of f  in all possible 
directions. We can then ask the questions: In which of these directions does f  change  
fastest and what is the maximum rate of change? The answers are provided by the fol­
lowing theorem.

(10) Theorem � If f  is a differentiable function and sa, bd is in the domain of f, 
then the maximum value of the directional derivative Du f sa, bd is | = f sa, bd | and 
it occurs when u has the same direction as the gradient vector = f sa, bd.

Proof � From Equation 9 we have

Du f − = f ? u − | = f || u | cos � − | = f | cos �

�where � is the angle between = f  and u. The maximum value of cos � is 1 and this 
occurs when � − 0. Therefore the maximum value of Du f  is | = f | and it occurs when 
� − 0, that is, when u has the same direction as = f .	 ■

 Example 6 
(a)	 If f sx, yd − xey, find the rate of change of f  at the point Ps2, 0d in the direction 
from P to Qs1

2, 2d.
(b)	 In what direction does f  have the maximum rate of change? What is this maxi­
mum rate of change?

 TEC   Visual 9.5B provides visual  
confirmation of Theorem 10.

Section 9.5  |  Directional Derivatives and the Gradient Vector    615
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616    Chapter 9  |  Multivariable Calculus

SOLUTION

(a)  We first compute the gradient vector:

 = f sx, yd − f fx, fy g − fey, xey g

 = f s2, 0d − f1, 2g

The unit vector in the direction of PQ
l

− f21.5, 2g is u − f23
5 , 45g, so the rate of 

change of f  in the direction from P to Q is

 Du f s2, 0d − = f s2, 0d ? u − f1, 2g ? f23
5 , 45g

 − 1(23
5 ) 1 2(4

5 ) − 1

(b)  According to Theorem 10, f  increases fastest in the direction of the gradient vector 
= f s2, 0d − f1, 2g. The maximum rate of change is

	 | = f s2, 0d | − | f1, 2g | − s5 	 ■

Another geometric aspect of the gradient vector is illustrated in Figure 9:

The gradient vector =f sa, bd is perpendicular to the level curve f sx, yd − k that 
passes through the point sa, bd.

Although we won’t prove this fact, it is intuitively plausible because the values of f  
remain constant as we move along the level curve and so it seems reasonable that the 
values of f  should change most quickly in the perpendicular direction, which we know 
is the direction of =f sa, bd by Theorem 10.

y

0 x

P(a, b)

level curve
f(x, y)=k

±f(a, b)

300
200

100

curve of
steepest
ascent

Figure �9	 Figure �10

If we consider a topographical map of a hill and let f sx, yd represent the height above 
sea level at a point with coordinates sx, yd, then a curve of steepest ascent can be drawn 
as in Figure 10 by making it perpendicular to all of the contour lines. This phenomenon 
can also be noticed in Figure 9.1.10, where Lonesome Creek follows a curve of steepest 
descent.

At s2, 0d the function in Example 6 
increases fastest in the direction of the 
gradient vector = f s2, 0d − f1, 2g.  
Notice from Figure 7 that this vector 
appears to be perpendicular to the level 
curve through s2, 0d. Figure 8 shows the 
graph of f  and the gradient vector.

Q

±f(2, 0)

0 1 3

1

2

P x

y

Figure �7
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EXERCISES 9.5

	 1.	�� �Level curves for barometric pressure (in millibars) are 
shown for 6:00 am on November 10, 1998. A deep low with 
pressure 972 mb is moving over northeast Iowa. The dis- 
tance along the red line from K (Kearney, Nebraska) to  
S (Sioux City, Iowa) is 300 km. Estimate the value of the 
directional derivative of the pressure function at Kearney in 
the direction of Sioux City. What are the units of the direc- 
tional derivative?

1012

1012
1008

1008

1004
1000

996
992
988

980
976

984

1016 1020
1024

972

K

S

	 2.	��� The contour map shows the average maximum temperature 
for November 2004 (in °C). Estimate the value of the 
directional derivative of this temperature function at Dubbo, 
New South Wales, in the direction of Sydney. What are the 
units?

Sydney

Dubbo

30

27 24

24

21
18

0 100 200 300
(Distance in kilometers)

	 3.	��� A table of values for the wind-chill index W − f sT, vd is 
given in Exercise 9.2.3. Use the table to estimate the value

		��  of Du f s220, 30d, where u − f1ys2 , 1ys2 g.

	� 4–6 � Find the directional derivative of f  at the given point in 
the direction indicated by the angle �.

	 4.	 f sx, yd − x 2y 3 2 y 4, s2, 1d, � − �y4

	 5.	�� f sx, yd − ye2x,    s0, 4d,    � − 2�y3

	 6.	 f sx, yd − x sinsxyd, s2, 0d, � − �y3

	� 7–10 �
	 (a)  Find the gradient of f .
	� (b)  Evaluate the gradient at the point P.
	� (c) � Find the rate of change of f  at P in the direction of the  

vector u.

	 7.	 f sx, yd − 5xy 2 2 4x 3y, Ps1, 2d, u − f 5
13, 12

13g
	 8.	 f sx, yd − y ln x, Ps1, 23d, u − f24

5, 35g
	 9.	 f sx, yd − sins2x 1 3yd, Ps26, 4d, u − f 1

2 s3 , 21
2 g

	 10.	 f sx, yd − y 2yx, Ps1, 2d, u − f 2
3, 13 s5 g

	� 11–15 � Find the directional derivative of the function at the given 
point in the direction of the vector v.

	 11.	 f sx, yd − 1 1 2xsy , s3, 4d, v − f4, 23g

	 12.	 f sx, yd − lnsx 2 1 y 2d, s2, 1d, v − f21, 2g

	 13.	�� tsp, qd − p4 2 p2q3,    s2, 1d,    v − f1, 3g

	 14.	�� tsr, sd − tan21srsd,    s1, 2d,    v − f5, 10g

	 15.	 Vsu, td − e2ut, s0, 3d, v − f2, 21g

	 16.	��� Use the figure to estimate Du f s2, 2d.

y

x0

(2, 2)

±f(2, 2)

u

	 17.	�� �Find the directional derivative of f sx, yd − sxy  at Ps2, 8d 
in the direction of Qs5, 4d.

	 18.	��� Find the directional derivative of tsr, �d − e2r sin � at 
Ps0, �y3d in the direction of Qs1, �y2d.

	� 19–22 � Find the maximum rate of change of f  at the given point 
and the direction in which it occurs.

	 19.	 f sx, yd − y 2yx, s2, 4d

	 20.	 tsx, yd − x 2 2 xy 1 y 2, s2, 1d

	 21.	�� f sx, yd − sinsxyd,    s1, 0d

	 22.	 f sp, qd − qe2p 1 pe2q, s0, 0d

	 23.	�� (a)	� Show that a differentiable function f  decreases most 
rapidly at sa, bd in the direction opposite to the gradient 
vector, that is, in the direction of 2=f sa, bd.

©
 2

01
5 

Ce
ng

ag
e 

Le
ar

ni
ng

©
 2

01
5 

Ce
ng

ag
e 

Le
ar

ni
ng

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.
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	 30.	��� Shown is a topographic map of Blue River Pine Provincial 
Park in British Columbia. Draw curves of steepest descent 
from point A (descending to Mud Lake) and from point B.

2000 m
2200 m

2200 m

2200 m

Blue RiverBlue River

Smoke CreekSmoke Creek

North Thompson RiverNorth Thompson River

Mud LakeMud Lake

Mud CreekMud Creek

Blue River

Blue River Pine Provincial Park

A

B
1000 m

	 31.	� Controlling SARS �� Example 9.1.12 used the equation

R0sd, vd − 5s1 2 vd 
d

1 1 d

		���  to model the effect of quarantine and vaccination on the 
spread of SARS, where v is the fraction of the population 
that is vaccinated and d is the average number of days an 
infectious individual remains in the population (recall that 
R0 is the average number of new infections generated by 
each infected individual). Suppose that d − 2, v − 0.1, and 
public health authorities are considering a reallocation of 
resources that will increase  v (which decreases R0) but that 
comes at the cost of also increasing d (which increases R0). 
The net effect of this reallocation on R0 will therefore 
depend on how much the reallocation increases each of v 
and d. Suppose any reallocation results in d increasing twice 
as much as v.

		  (a)	� Use directional derivatives to determine whether a small 
reallocation of resources will be beneficial (that is, 
whether it will decrease R0).

		  (b)	� Illustrate your answer to part (a) with a sketch of the 
directional derivative on a plot of the level curves of R0.

	 32.	� Growth and blood flow �� The resistance of blood flowing 
through an artery is

R − C 
L

r 4

		���  �where L and r are the length and radius of the artery and C 
is a positive constant. Both L and r increase during growth. 
Suppose r − 0.1 mm, L − 1 mm, and C − 1.

		  (a)	� Suppose the length increases 10 mm for every mm 
increase in radius during growth. Use a directional 
derivative to determine the rate at which the resistance 
of blood flow changes with respect to a unit of growth 
in the rL-plane.

		  (b)	� Use a directional derivative to determine how much 
faster the length of the artery can change relative to that 

		  (b)	�� Use the result of part (a) to find the direction in which 
the function f sx, yd − x 4y 2 x 2 y 3 decreases fastest at 
the point s2, 23d.

	 24.	� Snake reversals and stripes �� In Example 5 we calculated 
=Fs3, 2d, the gradient vector of the snake fitness function F 
when R − 3 and S − 2. In which direction u is the direc- 
tional derivative of F at s3, 2d a maximum? Calculate and 
interpret the maximum value.

	 25.	��� �Find all points at which the direction of fastest change of 
the function f sx, yd − x 2 1 y 2 2 2x 2 4y is f1, 1g.

	 26.	��� Sketch the gradient vector = f s4, 6d for the function f  whose 
level curves are shown. Explain how you chose the direction 
and length of this vector.

20

2

4

6

4 6 x

y

_1
0

1 3 5

_3

_5
(4, 6)

	 27.	��� Near a buoy, the depth of a lake at the point with coordi
nates sx, yd is z − 200 1 0.02x 2 2 0.001y 3, where x, y, and 
z are measured in meters. A fisherman in a small boat starts 
at the point s80, 60d and moves toward the buoy, which is 
located at s0, 0d. Is the water under the boat getting deeper 
or shallower when he departs? Explain.

	 28.	��� Suppose you are climbing a hill whose shape is given by the 
equation z − 1000 2 0.005x 2 2 0.01y 2, where x, y, and z 
are measured in meters, and you are standing at a point with 
coordinates s60, 40, 966d. The positive x-axis points east 
and the positive y-axis points north.

		  (a)	� If you walk due south, will you start to ascend or 
descend? At what rate?

		  (b)	� If you walk northwest, will you start to ascend or 
descend? At what rate?

		  (c)	� In which direction is the slope largest? What is the rate 
of ascent in that direction? At what angle above the 
horizontal does the path in that direction begin?

	 29.	� Chemotaxis ��is the phenomenon in which organisms move 
toward or away from certain chemicals. Suppose that a 
bacterium finds food by always moving toward the highest 
concentration of glucose. If it starts at the point s1, 2d in the 
xy-plane and the concentration of glucose, in certain units, 
is

f sx, yd −
1

1 1 x 2 1 y 2

		���  find the direction in which the bacterium will move initially.
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9.6 Maximum and Minimum Values

As we saw in Chapter 4, one of the main uses of ordinary derivatives is in finding maxi- 
mum and minimum values (extreme values). In this section we see how to use partial  
derivatives to locate maxima and minima of functions of two variables. In particular, in 
Example 6 we use Brodie’s model to determine whether the survivorship function for 
snakes has a maximum value.

Look at the hills and valleys in the graph of f  shown in Figure 1. There are two points 
sa, bd where f  has a local maximum, that is, where f sa, bd is larger than nearby values 
of f sx, yd. The larger of these two values is the absolute maximum. Likewise, f  has two 
local minima, where f sa, bd is smaller than nearby values. The smaller of these two 
values is the absolute minimum.

(1) Definition � A function of two variables has a local maximum at sa, bd if 
f sx, yd < f sa, bd when sx, yd is near sa, bd. [This means that f sx, yd < f sa, bd for 
all points sx, yd in some disk with center sa, bd.] The number f sa, bd is called a 
local maximum value. If f sx, yd > f sa, bd when sx, yd is near sa, bd, then f  has a 
local minimum at sa, bd and f sa, bd is a local minimum value.

If the inequalities in Definition 1 hold for all points sx, yd in the domain of f , then f  
has an absolute maximum (or absolute minimum) at sa, bd. An absolute maximum or 
minimum is sometimes called a global maximum or minimum.

(2) Fermat’s Theorem for Functions of Two Variables � If f  has a local 
maximum or minimum at sa, bd and the first-order partial derivatives of f  exist 
there, then fxsa, bd − 0 and fysa, bd − 0.

Proof � Let tsxd − f sx, bd. If f  has a local maximum (or minimum) at sa, bd, then t 
has a local maximum (or minimum) at a, so t9sad − 0 by Fermat’s Theorem for 
functions of one variable (see Theorem 4.1.4). But t9sad − fxsa, bd (see Equation 9.2.1) 
and so fxsa, bd − 0. Similarly, by applying Fermat’s Theorem to the function 
Gsyd − f sa, yd, we obtain fysa, bd − 0.	 ■

x

z

y

absolute
maximum

absolute
minimum

local
minimum

local
maximum

Figure �1

Notice that the conclusion of Theorem 
2 can be stated in the notation of gradi-
ent vectors as =f sa, bd − 0.

	 35.	��� The second directional derivative of f sx, yd is

Du
2 f sx, yd − DufDu f sx, ydg

		��  �If f sx, yd − x 3 1 5x 2y 1 y 3 and u − f 3
5, 45g, calculate 

Du
2 f s2, 1d.

	 36.	�� (a)	� If u − fa, bg is a unit vector and f  has continuous 
second partial derivatives, show that

Du
2 f − fxx a 2 1 2 fxy ab 1 fyy b2

		  (b)	� Find the second directional derivative of f sx, yd − xe 2y 
in the direction of v − f4, 6g.

			�   of its radius before the rate of change of resistance with 
respect to growth will be positive.

		  (c)	� Illustrate your answers to parts (a) and (b) with a sketch 
of the directional derivatives on a plot of the level 
curves of R.

	 33.	��� If f sx, yd − xy, find the gradient vector = f s3, 2d and use it  
to find the tangent line to the level curve f sx, yd − 6 at the 
point s3, 2d. Sketch the level curve, the tangent line, and the 
gradient vector.

	 34.	��� If tsx, yd − x 2 1 y 2 2 4x, find the gradient vector =ts1, 2d 
and use it to find the tangent line to the level curve 
tsx, yd − 1 at the point s1, 2d. Sketch the level curve, the 
tangent line, and the gradient vector.
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If we put fxsa, bd − 0 and fysa, bd − 0 in the equation of a tangent plane (Equation 
9.3.2), we get z − z0. Thus the geometric interpretation of Theorem 2 is that if the graph 
of f  has a tangent plane at a local maximum or minimum, then the tangent plane must 
be horizontal.

A point sa, bd is called a critical point (or stationary point) of f  if fxsa, bd − 0 and 
fysa, bd − 0, or if one of these partial derivatives does not exist. Theorem 2 says that if f  
has a local maximum or minimum at sa, bd, then sa, bd is a critical point of f . However, 
as in single-variable calculus, not all critical points give rise to maxima or minima. At 
a critical point, a function could have a local maximum or a local minimum or neither.

 Example 1   |  Let f sx, yd − x 2 1 y 2 2 2x 2 6y 1 14. Then

fxsx, yd − 2x 2 2            fysx, yd − 2y 2 6

These partial derivatives are equal to 0 when x − 1 and y − 3, so the only critical 
point is s1, 3d. By completing the square, we find that

f sx, yd − 4 1 sx 2 1d2 1 sy 2 3d2

Since sx 2 1d2 > 0 and sy 2 3d2 > 0, we have f sx, yd > 4 for all values of x and y. 
Therefore f s1, 3d − 4 is a local minimum, and in fact it is the absolute minimum of f. 
This can be confirmed geometrically from the graph of f, which is the paraboloid with 
vertex s1, 3, 4d shown in Figure 2.	 ■

 Example 2   |  Find the extreme values of f sx, yd − y 2 2 x 2.

SOLUTION � Since fx − 22x and fy − 2y, the only critical point is s0, 0d. Notice that  
for points on the x-axis we have y − 0, so f sx, yd − 2x 2 , 0 (if x ± 0). However, for 
points on the y-axis we have x − 0, so f sx, yd − y 2 . 0 (if y ± 0). Thus every disk  
with center s0, 0d contains points where f  takes positive values as well as points where  
f  takes negative values. Therefore f s0, 0d − 0 can’t be an extreme value for f , so f  has 
no extreme value.	 ■

Example 2 illustrates the fact that a function need not have a maximum or minimum 
value at a critical point. Figure 3 shows how this is possible. The graph of f  is the hyper-
bolic paraboloid z − y 2 2 x 2, which has a horizontal tangent plane (z − 0) at the origin. 
You can see that f s0, 0d − 0 is a maximum in the direction of the x-axis but a minimum 
in the direction of the y-axis. Near the origin the graph has the shape of a saddle and so 
s0, 0d is called a saddle point of f.

z

y
x

We need to be able to determine whether or not a function has an extreme value at 
a critical point. The following test, which is proved in Appendix E, is analogous to the 
Second Derivative Test for functions of one variable.

y
x

z

0

(1, 3, 4)

Figure �2
z − x 2 1 y 2 2 2x 2 6y 1 14

Figure �3
z − y 2 2 x 2
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(3) Second Derivatives Test � Suppose the second partial derivatives of f  
are continuous on a disk with center sa, bd, and suppose that fxsa, bd − 0 and 
fysa, bd − 0 [that is, sa, bd is a critical point of f ]. Let

D − Dsa, bd − fxxsa, bd fyy sa, bd 2 f fx y sa, bdg2

(a)	 If D . 0 and fxxsa, bd . 0, then f sa, bd is a local minimum.

(b)	 If D . 0 and fxxsa, bd , 0, then f sa, bd is a local maximum.

(c)	 If D , 0, then f sa, bd is not a local maximum or minimum.

Note 1 � In case (c) the point sa, bd is called a saddle point of f  and the graph of f   
crosses its tangent plane at sa, bd.

Note 2 � If D − 0, the test gives no information: f  could have a local maximum or 
local minimum at sa, bd, or sa, bd could be a saddle point of f.

Note 3 � To remember the formula for D, it’s helpful to write it as a determinant:

D − Z fxx

fyx

fx y

fyy
Z − fxx fyy 2 s fx y d2

 Example 3   |  Find the local maximum and minimum values and saddle points of 
f sx, yd − x 4 1 y 4 2 4xy 1 1.

SOLUTION � We first locate the critical points:

fx − 4x 3 2 4y            fy − 4y 3 2 4x

Setting these partial derivatives equal to 0, we obtain the equations

x 3 2 y − 0        and        y 3 2 x − 0

To solve these equations we substitute y − x 3 from the first equation into the second 
one. This gives

0 − x 9 2 x − xsx 8 2 1d − xsx 4 2 1dsx 4 1 1d − xsx 2 2 1dsx 2 1 1dsx 4 1 1d

so there are three real roots: x − 0, 1, 21. The three critical points are s0, 0d, s1, 1d,  
and s21, 21d.

Next we calculate the second partial derivatives and Dsx, yd:

fxx − 12x 2            fx y − 24            fyy − 12y 2

Dsx, yd − fxx fyy 2 s fx yd2 − 144x 2 y 2 2 16

Since Ds0, 0d − 216 , 0, it follows from case (c) of the Second Derivatives Test that 
the origin is a saddle point; that is, f  has no local maximum or minimum at s0, 0d.  
Since Ds1, 1d − 128 . 0 and fxx s1, 1d − 12 . 0, we see from case (a) of the test that 
f s1, 1d − 21 is a local minimum. Similarly, we have Ds21, 21d − 128 . 0 and 
fxx s21, 21d − 12 . 0, so f s21, 21d − 21 is also a local minimum.

The graph of f  is shown in Figure 4.	 ■

x
y

z

Figure �4
z − x 4 1 y 4 2 4xy 1 1
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(_1, _1)

(1, 1)

 Example 4   |  Find the shortest distance from the point s1, 0, 22d to the plane 
x 1 2y 1 z − 4.

SOLUTION � The distance from any point sx, y, zd to the point s1, 0, 22d is

d − ssx 2 1d2 1 y 2 1 sz 1 2d2 

but if sx, y, zd lies on the plane x 1 2y 1 z − 4, then z − 4 2 x 2 2y and so we have
d − ssx 2 1d2 1 y 2 1 s6 2 x 2 2yd2 . We can minimize d by minimizing the 
simpler expression

d 2 − f sx, yd − sx 2 1d2 1 y 2 1 s6 2 x 2 2yd2

By solving the equations

 fx − 2sx 2 1d 2 2s6 2 x 2 2yd − 4x 1 4y 2 14 − 0

 fy − 2y 2 4s6 2 x 2 2yd − 4x 1 10y 2 24 − 0

we find that the only critical point is s11
6 , 53 d. Since fxx − 4, fx y − 4, and fyy − 10, we 

have Dsx, yd − fxx fy y 2 s fx yd2 − 24 . 0 and fxx . 0, so by the Second Derivatives 
Test f  has a local minimum at s11

6 , 53 d. Intuitively, we can see that this local minimum 
is actually an absolute minimum because there must be a point on the given plane that 
is closest to s1, 0, 22d. If x − 11

6  and y − 5
3, then

d − ssx 2 1d2 1 y 2 1 s6 2 x 2 2yd2 − s(5
6)2 1 (5

3)2 1 (5
6)2 − 5

6 s6 

The shortest distance from s1, 0, 22d to the plane x 1 2y 1 z − 4 is 5
6 s6 .	 ■

 Example 5   |  A rectangular box without a lid is to be made from 12 m2 of card-
board. Find the maximum volume of such a box.

SOLUTION � Let the length, width, and height of the box (in meters) be x, y, and z, as 
shown in Figure 6. Then the volume of the box is

V − xyz

A contour map of the function f  in 
Example 3 is shown in Figure 5. The 
level curves near s1, 1d and s21, 21d 
are oval in shape and indicate that as 
we move away from s1, 1d or s21, 21d 
in any direction the values of f  are 
increasing. The level curves near s0, 0d, 
on the other hand, resemble hyperbolas. 
They reveal that as we move away 
from the origin (where the value of f  
is 1), the values of f  decrease in some 
directions but increase in other direc-
tions. Thus the contour map suggests 
the presence of the minima and saddle 
point that we found in Example 3.

Figure �5

 TEC   In Module 9.6 you can use 
contour maps to estimate the locations  
of critical points.

y
x

z

Figure �6
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We can express V  as a function of just two variables x and y by using the fact that the 
area of the four sides and the bottom of the box is

2xz 1 2yz 1 xy − 12

Solving this equation for z, we get z − s12 2 xydyf2sx 1 ydg, so the expression for V  
becomes

V − xy 
12 2 xy

2sx 1 yd
−

12xy 2 x 2 y 2

2sx 1 yd

We compute the partial derivatives:

−V

−x
−

y 2s12 2 2xy 2 x 2 d
2sx 1 yd2           

−V

−y
−

x 2s12 2 2xy 2 y 2 d
2sx 1 yd2

If V  is a maximum, then −Vy−x − −Vy−y − 0, but x − 0 or y − 0 gives V − 0, so we 
must solve the equations

12 2 2xy 2 x 2 − 0            12 2 2xy 2 y 2 − 0

These imply that x 2 − y 2 and so x − y. (Note that x and y must both be positive in this 
problem.) If we put x − y in either equation, we get 12 2 3x 2 − 0, which gives x − 2, 
y − 2, and z − s12 2 2 ? 2dyf2s2 1 2dg − 1.

We could use the Second Derivatives Test to show that this gives a local maximum  
of V, or we could simply argue from the physical nature of this problem that there must 
be an absolute maximum volume, which has to occur at a critical point of V, so it must 
occur when x − 2, y − 2, z − 1. Then V − 2 ? 2 ? 1 − 4, so the maximum volume of 
the box is 4 m3.	 ■

 Example 6   |  BB   Snake reversals and stripes  In Example 9.5.5 we 
investigated Brodie’s model for the survivorship of young garter snakes:

F − 4.2 1 0.008R 1 0.102S 1 0.017R 2 2 0.034S 2 2 0.268RS

where F is a measure of the fitness of the snake, R measures the number of reversals of 
direction during flight from a predator, and S measures the degree of stripedness in the 
color pattern of the snake. Is there a maximum value of the fitness?

SOLUTION � The partial derivatives of F are

FR − 0.008 1 0.034R 2 0.268S      FS − 0.102 2 0.068S 2 0.268R

To determine the critical point we need to solve the system of linear equations

 0.034R 2 0.268S − 20.008

 0.268R 1 0.068S − 0.102

Solving this system, we get R < 0.361, S < 0.076. The second-order derivatives are

FRR − 0.034  FRS − 20.268  FSS − 20.068

So	 D − FRRFSS 2 FRS
2 − 20.074136	
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Because D is negative, the Second Derivatives Test tells us that the fitness function has 
no maximum or minimum value. This fact is illustrated by the graph and contour map 
of F in Figure 7. The function F has a saddle point at approximately Ps0.361, 0.076d.

	

F

5

2 3R S

(a)

0

S

R

P

4

3

2

(b) 	 ■

■ Absolute Maximum and Minimum Values
For a function f  of one variable, the Extreme Value Theorem says that if f  is continuous  
on a closed interval fa, bg, then f  has an absolute minimum value and an absolute maxi- 
mum value. According to the Closed Interval Method in Section 4.1, we found these by 
evaluating f  not only at the critical numbers but also at the endpoints a and b.

There is a similar situation for functions of two variables. Just as a closed interval 
contains its endpoints, a closed set in R 2 is one that contains all its boundary points. 
[A boundary point of D is a point sa, bd such that every disk with center sa, bd contains 
points in D and also points not in D.] For instance, the disk

D − hsx, yd | x 2 1 y 2 < 1j

which consists of all points on and inside the circle x 2 1 y 2 − 1, is a closed set because 
it contains all of its boundary points (which are the points on the circle x 2 1 y 2 − 1). 
But if even one point on the boundary curve were omitted, the set would not be closed. 
(See Figure 8.)

A bounded set in R 2 is one that is contained within some disk. In other words, it is 
finite in extent. Then, in terms of closed and bounded sets, we can state the following 
counterpart of the Extreme Value Theorem in two dimensions.

(4) Extreme Value Theorem for Functions of Two Variables � If f  is 
continuous on a closed, bounded set D in R 2, then f  attains an absolute maximum 
value f sx1, y1d and an absolute minimum value f sx2, y2 d at some points sx1, y1d 
and sx2, y2d in D.

To find the extreme values guaranteed by Theorem 4, we note that, by Theorem 2, if 
f  has an extreme value at sx1, y1d, then sx1, y1d is either a critical point of f  or a boundary 
point of D. Thus we have the following extension of the Closed Interval Method.

(5) � To find the absolute maximum and minimum values of a continuous func-
tion f  on a closed, bounded set D:

1.  Find the values of f  at the critical points of f  in D.

2.  Find the extreme values of f  on the boundary of D.

3. � The largest of the values from steps 1 and 2 is the absolute maximum value;  
the smallest of these values is the absolute minimum value.

Figure �7
Fitness function for garter snakes

(a) Closed sets

(b) Sets that are not closed

Figure �8
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 Example 7   |  Find the absolute maximum and minimum values of the function 
f sx, yd − x 2 2 2xy 1 2y on the rectangle D − hsx, yd | 0 < x < 3, 0 < y < 2j.

SOLUTION � Since f  is a polynomial, it is continuous on the closed, bounded rectangle 
D, so Theorem 4 tells us there is both an absolute maximum and an absolute minimum. 
According to step 1 in (5), we first find the critical points. These occur when

fx − 2x 2 2y − 0            fy − 22x 1 2 − 0

so the only critical point is s1, 1d, and the value of f  there is f s1, 1d − 1.
In step 2 we look at the values of f  on the boundary of D, which consists of the four 

line segments L1, L 2, L3, L 4 shown in Figure 9. On L1 we have y − 0 and

f sx, 0d − x 2            0 < x < 3

This is an increasing function of x, so its minimum value is f s0, 0d − 0 and its 
maximum value is f s3, 0d − 9. On L 2 we have x − 3 and

f s3, yd − 9 2 4y            0 < y < 2

This is a decreasing function of y, so its maximum value is f s3, 0d − 9 and its mini-
mum value is f s3, 2d − 1. On L3 we have y − 2 and

f sx, 2d − x 2 2 4x 1 4            0 < x < 3

By the methods of Chapter 4, or simply by observing that f sx, 2d − sx 2 2d2, we see 
that the minimum value of this function is f s2, 2d − 0 and the maximum value is 
f s0, 2d − 4. Finally, on L4 we have x − 0 and

f s0, yd − 2y            0 < y < 2

with maximum value f s0, 2d − 4 and minimum value f s0, 0d − 0. Thus, on the 
boundary, the minimum value of f  is 0 and the maximum is 9.

In step 3 we compare these values with the value f s1, 1d − 1 at the critical point 
and conclude that the absolute maximum value of f  on D is f s3, 0d − 9 and the 
absolute minimum value is f s0, 0d − f s2, 2d − 0. Figure 10 shows the graph of f .
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Figure �10
f sx, yd − x 2 2 2xy 1 2y
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EXERCISES 9.6

	 1.	��� Suppose s1, 1d is a critical point of a function f  with con- 
tinuous second derivatives. In each case, what can you say 
about f ?

		  (a)	 fxxs1, 1d − 4,     fx ys1, 1d − 1,     fyys1, 1d − 2
		  (b)	 fxxs1, 1d − 4,     fx ys1, 1d − 3,     fyys1, 1d − 2

	 2.	��� Suppose s0, 2d is a critical point of a function t with con- 
tinuous second derivatives. In each case, what can you say 
about t?

		  (a)	 txxs0, 2d − 21,     tx ys0, 2d − 6,     tyys0, 2d − 1
		  (b)	 txxs0, 2d − 21,     tx ys0, 2d − 2,     tyys0, 2d − 28
		  (c)	 txxs0, 2d − 4,        tx ys0, 2d − 6,     tyys0, 2d − 9

	� 3–4 � Use the level curves in the figure to predict the location 
of the critical points of f  and whether f  has a saddle point or a 
local maximum or minimum at each critical point. Explain your 
reasoning. Then use the Second Derivatives Test to confirm your 
predictions.

	 3.	 f sx, yd − 4 1 x 3 1 y 3 2 3xy

x

y

4
4.2

5
6

1

1

3.7

3.7

3.2

3.2
2

1
0

_1

_1

	 4.	 f sx, yd − 3x 2 x 3 2 2y 2 1 y 4

y

x

_2.5

_2.9
_2.7

_1_1
.5

1.9
1.7
1.5

1.5

10.50

_2

1

1

_1

_1

	� 5–16 � Find the local maximum and minimum values and saddle 
point(s) of the function. If you have three-dimensional graphing 

software, graph the function with a domain and viewpoint that 
reveal all the important aspects of the function.

	 5.	 f sx, yd − x 2 1 xy 1 y 2 1 y

	 6.	 f sx, yd − x 3y 1 12x 2 2 8y

	 7.	 f sx, yd − x 4 1 y 4 2 4xy 1 2

	 8.	 f sx, yd − xe22 x 222y2

	 9.	 f sx, yd − x 3 2 12xy 1 8y 3

	 10.	 f sx, yd − xy 1
1

x
1

1

y

	 11.	 f sx, yd − e x cos y

	 12.	 f sx, yd − y cos x

	 13.	 f sx, yd − sx 2 1 y 2de y22x2

	 14.	 f sx, yd − e ysy 2 2 x 2d

	 15.	�� f sx, yd − y 2 2 2y cos x,    21 < x < 7

	 16.	�� f sx, yd − sin x sin y,    2� , x , �,    2� , y , �

	� 17–20 � Find the absolute maximum and minimum values of f  
on the set D.

	 17.	�� �f sx, yd − 1 1 4x 2 5y,  D is the closed triangular region 
with vertices s0, 0d, s2, 0d, and s3, 0d

	 18.	��� f sx, yd − 3 1 xy 2 x 2 2y,  D is the closed triangular 
region with vertices s1, 0d, s5, 0d, and s1, 4d

	 19.	��� f sx, yd − x 2 1 y 2 1 x 2 y 1 4, 
D − hsx, yd | | x | < 1, | y | < 1j

	 20.	�� �f sx, yd − 4x 1 6y 2 x 2 2 y 2, 
D − hsx, yd | 0 < x < 4, 0 < y < 5j

	 ;	 21.	��� For functions of one variable it is impossible for a con
tinuous function to have two local maxima and no local 
minimum. But for functions of two variables such functions 
exist. Show that the function

f sx, yd − 2sx 2 2 1d2 2 sx 2 y 2 x 2 1d2

		��  �has only two critical points, but has local maxima at both of 
them. Then use a graphing device to produce a graph with a 
carefully chosen domain and viewpoint to see how this is 
possible.

	 ;	 22.	��� �If a function of one variable is continuous on an interval and 
has only one critical number, then a local maximum has to 
be an absolute maximum. But this is not true for functions 
of two variables. Show that the function

f sx, yd − 3xe y 2 x 3 2 e 3y

		��  �has exactly one critical point, and that f  has a local maximum 
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	 37.	� The Shannon index ��(sometimes called the Shannon-Wiener 
index or Shannon-Weaver index) is a measure of diversity in 
an ecosystem. For the case of three species, it is defined as

H − 2p1 ln p1 2 p2 ln p2 2 p3 ln p3

		���  where pi is the proportion of the ecosystem made up of 
species i.

		  (a)	� Express H as a function of two variables using the fact 
that p1 1 p2 1 p3 − 1.

		  (b)	� What is the domain of H?
		  (c)	� Find the maximum value of H. For what values of p1, 

p2, p3 does it occur?

	 38.	��� A rectangular building is being designed to minimize  
heat loss. The east and west walls lose heat at a rate of 
10 unitsym2 per day, the north and south walls at a rate of 
8 unitsym2 per day, the floor at a rate of 1 unitym2 per day, 
and the roof at a rate of 5 unitsym2 per day. Each wall must 
be at least 30 m long, the height must be at least 4 m, and 
the volume must be exactly 4000 m3.

		  (a)	� Find and sketch the domain of the heat loss as a func-
tion of the lengths of the sides.

		  (b)	� Find the dimensions that minimize heat loss. (Check 
both the critical points and the points on the boundary 
of the domain.)

		  (c)	� Could you design a building with even less heat loss  
if the restrictions on the lengths of the walls were 
removed?

	 39.	�I nfectious disease control �� In Example 9.1.12 we con- 
sidered a model for the spread of SARS:

R0sd, vd − 5s1 2 vd 
d

1 1 d

		���  where R0 is the basic reproduction number, v is the fraction 
of the population that is vaccinated, and d is the average 
number of days that an infected individual remains in the 
population before being quarantined. If we restrict our 
attention to the case where 0 < d < 20, what is the maxi- 
mum value of R0?

	 40.	�H ardy-Weinberg Law �� Three alleles (alternative versions 
of a gene) A, B, and O determine the four blood types A 
(AA or AO), B (BB or BO), O (OO), and AB. The Hardy-
Weinberg Law states that the proportion of individuals in a 
population who carry two different alleles is

P − 2pq 1 2pr 1 2rq

		��  �where p, q, and r are the proportions of A, B, and O in the  
population. Use the fact that p 1 q 1 r − 1 to show that P 
is at most 23.

there that is not an absolute maximum. Then use a graphing 
device to produce a graph with a carefully chosen domain 
and viewpoint to see how this is possible.

	 23.	��� Find the shortest distance from the point s2, 1, 21d to the 
plane x 1 y 2 z − 1.

	 24.	��� Find the point on the plane x 2 y 1 z − 4 that is closest to 
the point s1, 2, 3d.

	 25.	��� Find the points on the cone z 2 − x 2 1 y 2 that are closest to 
the point s4, 2, 0d.

	 26.	��� Find the points on the surface y 2 − 9 1 xz that are closest 
to the origin.

	 27.	��� Find three positive numbers whose sum is 100 and whose 
product is a maximum.

	 28.	��� Find three positive numbers whose sum is 12 and the sum 
of whose squares is as small as possible.

	 29.	�� �Find the maximum volume of a rectangular box that is 
inscribed in a sphere of radius r.

	 30.	��� Find the dimensions of the box with volume 1000 cm3 that 
has minimal surface area.

	 31.	�� �Find the volume of the largest rectangular box in the first 
octant with three faces in the coordinate planes and one  
vertex in the plane x 1 2y 1 3z − 6.

	 32.	�� �Find the dimensions of the rectangular box with largest  
volume if the total surface area is given as 64 cm2.

	 33.	�� �Find the dimensions of a rectangular box of maximum 
volume such that the sum of the lengths of its 12 edges is a 
constant c.

	 34.	�� �The base of an aquarium with given volume V is made 
of slate and the sides are made of glass. If slate costs five 
times as much (per unit area) as glass, find the dimensions 
of the aquarium that minimize the cost of the materials.

	 35.	�� �A cardboard box without a lid is to have a volume of 
32,000 cm3. Find the dimensions that minimize the amount  
of cardboard used.

	 36.	� Crop yield �� A model for the yield Y of an agricultural crop 
as a function of the nitrogen level N and phosphorus level P 
in the soil (measured in appropriate units) is

YsN, Pd − kNPe2N2P

		��  �where k is a positive constant. What levels of nitrogen and 
phosphorus result in the best yield?
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CONCEPT CHECK

Chapter 9 Review

	� Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

	 1.	 fysa, bd − lim
y l b

 
 f sa, yd 2 f sa, bd

y 2 b

	 2.	��� There exists a function f  with continuous second-order  
partial derivatives such that fxsx, yd − x 1 y 2 and 
fysx, yd − x 2 y 2.

	 3.	 fxy −
−2f

−x −y

	 4.	 Du f sx, y, zd − fzsx, y, zd, �� where u − f0, 0, 1g

	 5.	�� �If f sx, yd l L as sx, yd l sa, bd along every straight line 
through sa, bd, then limsx, yd l sa, bd f sx, yd − L.

	 6.	��� If fxsa, bd and fysa, bd both exist, then f  is differentiable  
at sa, bd.

	 7.	�� �If f  has a local minimum at sa, bd and f  is differentiable at 
sa, bd, then = f sa, bd − 0.

	 8.	�� If f  is a function, then

lim 
sx, yd l s2, 5d

 f sx, yd − f s2, 5d 

	 9.	�� If f sx, yd − ln y, then = f sx, yd − 1yy.

TRUE-FALSE QUIZ

	 1.	�� (a)	 What is a function of two variables?
		  (b)	� Describe two methods for visualizing a function of two 

variables.

	 2.	�� What does
lim

sx, yd l sa, bd
 
 f sx, yd − L

		��  mean? How can you show that such a limit does not exist?

	 3.	�� (a)	 What does it mean to say that f  is continuous at sa, bd?
		  (b)	� If f  is continuous on R2, what can you say about its 

graph?

	 4.	�� (a)	� Write expressions for the partial derivatives fxsa, bd and 
fysa, bd as limits.

		  (b)	� How do you interpret fxsa, bd and fysa, bd geometrically? 
How do you interpret them as rates of change?

		  (c)	� If f sx, yd is given by a formula, how do you calculate fx 
and fy ?

	 5.	�� What does Clairaut’s Theorem say?

	 6.	��� How do you find an equation for the tangent plane to a  
surface z − f sx, yd?

	 7.	��� Define the linearization of f  at sa, bd. What is the correspond-
ing linear approximation? What is the geometric interpretation 
of the linear approximation?

	 8.	�� (a)	� What does it mean to say that f  is differentiable at sa, bd?
		  (b)	 How do you usually verify that f  is differentiable?

	 9.	��� State the Chain Rule for the case where z − f sx, yd and x and 
y are functions of a variable t.

	 10.	��� If z is defined implicitly as a function of x and y by an 
equation of the form Fsx, y, zd − 0, how do you find −zy−x 
and −zy−y?

	 11.	�� (a)	� Write an expression as a limit for the directional derivative 
of f  at sx0, y0 d in the direction of a unit vector u − fa, b g. 
How do you interpret it as a rate? How do you interpret it 
geometrically?

		  (b)	� If f  is differentiable, write an expression for Du f sx0, y0 d 
in terms of fx and fy.

	 12.	�� (a)	� Define the gradient vector = f  for a function f  of two 
variables.

		  (b)	 Express Du f  in terms of = f .
		  (c)	 Explain the geometric significance of the gradient.

	 13.	�� What do the following statements mean?
		  (a)	 f  has a local maximum at sa, bd.
		  (b)	 f  has an absolute maximum at sa, bd.
		  (c)	 f  has a local minimum at sa, bd.
		  (d)	 f  has an absolute minimum at sa, bd.
		  (e)	 f  has a saddle point at sa, bd.

	 14.	�� (a)	� If f  has a local maximum at sa, bd, what can you say about 
its partial derivatives at sa, bd?

		  (b)	 What is a critical point of f ?

	 15.	�� State the Second Derivatives Test.

	 16.	�� (a)	 What is a closed set in R 2? What is a bounded set?
		  (b)	� State the Extreme Value Theorem for functions of two  

variables.
		  (c)	� How do you find the values that the Extreme Value  

Theorem guarantees?

Answers to the Concept Check can be found on the back  
endpapers.
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	 11.	�� If f sx, yd − sin x 1 sin y, then 2s2 < Du f sx, yd < s2 .

	 12.	��� If f sx, yd has two local maxima, then f  must have a local  
minimum.

	 10.	�� �If s2, 1d is a critical point of f  and 

fxxs2, 1d fyys2, 1d , f fx ys2, 1dg 2

		��  then f  has a saddle point at s2, 1d.

	� 1–2 � Find and sketch the domain of the function.

	 1.	 f sx, yd − lnsx 1 y 1 1d

	 2.	 f sx, yd − s4 2 x 2 2 y 2 1 s1 2 x 2
 

	� 3–4 � Sketch the graph of the function.

	 3.	 f sx, yd − 1 2 y 2

	 4.	 f sx, yd − 1 2 1
5 x 2 1

3 y

	� 5–6 � Sketch several level curves of the function.

	 5.	 f sx, yd − lns1 1 x 2 1 y 2d	 6.	 f sx, yd − e x 1 y

	� 7–8 � Evaluate the limit or show that it does not exist.

	 7.	 lim
sx, yd l s1, 1d

 
 

2xy

x 2 1 2y 2 	 8.	 lim
sx, yd l s0, 0d

 
 

2xy

x 2 1 2y 2

	 9.	��� A metal plate is situated in the xy-plane and occupies the  
rectangle 0 < x < 10, 0 < y < 8, where x and y are mea- 
sured in meters. The temperature at the point sx, yd in the 
plate is T sx, yd, where T is measured in degrees Celsius. 
Temperatures at equally spaced points were measured and 
recorded in the table.

		  (a)	� Estimate the values of the partial derivatives Txs6, 4d  
and Tys6, 4d. What are the units?

		  (b)	� Estimate the value of Du T s6, 4d, where 
			   u − f1ys2 , 1ys2 g. Interpret your result.
		  (c)	 Estimate the value of Txys6, 4d.
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	 10.	��� Find a linear approximation to the temperature function 
T sx, yd in Exercise 9 near the point (6, 4). Then use it to 
estimate the temperature at the point (5, 3.8).

	� 11–15 � Find the first partial derivatives.

	 11.	 f sx, yd − s2x 1 y 2 	 12.	 u − e2r sin 2�

	 13.	 tsu, vd − u tan21 v	 14.	 w −
x

y 2 z

	 15.	 T sp, q, rd − p lnsq 1 erd

	 16.	�P redators handling prey �� C. S. Holling proposed the 
following model for the number of prey Pe eaten by a 
predator during a fixed time period:

PesN, Thd −
aN

1 1 aThN

		���  where a is a positive constant called the attack rate, N is the 
prey density, and Th is the handling time. (Handling refers  
to catching the prey, moving it, eating it, and digesting it.) 
Calculate the partial derivatives −Pey−N and −Pey−Th and 
interpret them. Are they positive or negative? What do you 
conclude? Are your conclusions reasonable?

Source: Adapted from C. Holling, “Some Characteristics of Simple Types of 

Predation and Parasitism,” The Canadian Entomologist 91 (1959): 385–98.

	 17.	�T adpole predation �� In an experiment, the probability that  
a tadpole with mass m (in grams) will escape capture by 
predators is modeled as

Psm, T d −
1

1 1 e 3.222231.669m10.083T

		���  where T is the temperature of the water (in degrees Celsius).
		  (a)	� Calculate −Py−m and −Py−T when m − 0.2 g and 

T − 20°C.
		  (b)	� Will increasing the water temperature improve or worsen 

the tadpoles’ chance of escape?
		  (c)	� As the tadpoles grow bigger, do they have a better 

chance of escape?

Source: Adapted from M. Anderson et al., “The Direct and Indirect Effects  

of Temperature on a Predator-Prey Relationship,” Canadian Journal of Zool-

ogy 79 (2001): 1834–41.

EXERCISES
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	 33.	��� �If z − f su, vd, where u − xy, v − yyx, and f  has continuous 
second partial derivatives, show that

x 2 
−2z

−x 2 2 y 2 
−2z

−y 2 − 24uv 
−2z

−u −v
1 2v 

−z

−v

	 34.	�� If cossxyzd − 1 1 x 2y 2 1 z 2, find 
−z

−x
 and 

−z

−y
.

	 35.	��� Find the gradient of the function tsp, qd − pq 2e2pq.

	 36.	�� (a)	 When is the directional derivative of f  a maximum?
		  (b)	 When is it a minimum?
		  (c)	 When is it 0?
		  (d)	 When is it half of its maximum value?

	 37.	��� Find the directional derivative of f sx, yd − x 2e2y at the point 
s22, 0d in the direction toward the point s2, 23d.

	 38.	��� Find the maximum rate of change of f sx, yd − x 2 y 1 sy   
at the point s2, 1d. In which direction does it occur?

	 39.	��� The contour map shows wind speed in knots during Hurri- 
cane Andrew on August 24, 1992. Use it to estimate the value 
of the directional derivative of the wind speed at Homestead, 
Florida, in the direction of the eye of the hurricane.

Key West
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Homestead

	� 40–42 � Find the local maximum and minimum values and 
saddle points of the function. If you have three-dimensional 
graphing software, graph the function with a domain and view-
point that reveal all the important aspects of the function.

	 40.	 f sx, yd − x 3 2 6xy 1 8y 3

	 41.	 f sx, yd − 3xy 2 x 2 y 2 xy 2	 42.	 f sx, yd − sx 2 1 yde yy2

	� 43–44 � Find the absolute maximum and minimum values of f  
on the set D.

	 43.	�� �f sx, yd − 4xy 2 2 x 2 y 2 2 xy 3;    D is the closed triangular 
region in the xy-plane with vertices s0, 0d, s0, 6d, and s6, 0d

	 44.	��� f sx, yd − e2x22y2sx 2 1 2y 2 d;    D is the disk x 2 1 y 2 < 4

	 18.	��� The speed of sound traveling through ocean water is a 
function of temperature, salinity, and pressure. It has been 
modeled by the function

 C − 1449.2 1 4.6T 2 0.055T 2 1 0.00029T 3

     1 s1.34 2 0.01T dsS 2 35d 1 0.016D

		���  where C is the speed of sound (in meters per second), T is 
the temperature (in degrees Celsius), S is the salinity (the 
concentration of salts in parts per thousand, which means the 
number of grams of dissolved solids per 1000 g of water), 
and D is the depth below the ocean surface (in meters). 
Compute −Cy−T, −Cy−S, and −Cy−D when T − 108C, 
S − 35 parts per thousand, and D − 100 m. Explain the 
physical significance of these partial derivatives.

	� 19–22 � Find all second partial derivatives of f .

	 19.	 f sx, yd − 4x 3 2 xy 2	 20.	 z − xe22y

	 21.	 f sx, y, zd − x k y lz m	 22.	 v − r cosss 1 2td

	 23.	��� If z − xy 1 xe yyx, show that x 
−z

−x
1 y 

−z

−y
− xy 1 z.

	 24.	�� If z − sinsx 1 sin td, show that

−z

−x
 

−2z

−x −t
−

−z

−t
 
−2z

−x 2

	� 25–28 � Find an equation of the tangent plane to the given surface 
at the specified point.

	 25.	 z − 4x 2 2 y 2 1 2y, s21, 2, 4d

	 26.	 z − 9x 2 1 y 2 1 6x 2 3y 1 5, s1, 2, 18d

	 27.	 z − s4 2 x 2 2 2y 2 , s1, 21, 1d

	 28.	 z − y ln x, s1, 4, 0d

	 29.	��� Explain why the function f sx, yd − xy 1 y 3 is differentiable. 
Then find the linearization of f  at the point s2, 1d.

	 30.	��� Find the linear approximation of the function
		���  f sx, y, zd − x 3sy 2 1 z 2  at the point (2, 3, 4) and use it
		��  to estimate the number s1.98d3ss3.01d 2 1 s3.97d 2 .

	 31.	��� If u − x 2y3 1 z4, where x − p 1 3p2, y − pe p, and  
z − p sin p, use the Chain Rule to find duydp.

	 32.	� Body surface area �� A model for the surface area of a 
human body is given by the function

S − f sw, hd − 0.1091w 0.425h 0.725

		���  where w is the weight (in pounds), h is the height (in inches), 
and S is measured in square feet. Both w and h depend on the 
age a of the person. Use the Chain Rule to find an expression 
for the rate of change of S with respect to a.
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10.1  Qualitative Analysis of Linear Systems

10.2  Solving Systems of Linear Differential Equations

10.3  �Applications
Project: Pharmacokinetics of Antimicrobial Dosing

10.4  Systems of Nonlinear Differential Equations

CASE STUDY 2d: Hosts, Parasites, and Time-Travel

Systems of Linear 
Differential Equations

Jellyfish, like those shown  

here, move by contracting part  

of their body to create a  

high-pressure water jet. We 

model this phenomenon in  

Exercises 10.1.34 and 10.3.1.
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In sections 7.5 and 7.6 we introduced systems of differential equations. In this 

chapter we deal with a special kind of system called a system of linear differential 

equations. Such systems deserve special attention because they arise in a number of 

areas in the life sciences and because it is possible to develop a complete understanding 

of their behavior. As we will see in Section 10.4, they also form the foundation for ana-

lyzing systems of nonlinear differential equations.
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10.1 Qualitative Analysis of Linear Systems

In this section we introduce systems of linear differential equations and give some 
examples of the kinds of behavior they can exhibit. Our focus is on two-dimensional 
systems.

■ Terminology
A two-dimensional system of linear differential equations has the form

 
dx1

dt
− a11stdx1 1 a12stdx2 1 t1std

 
dx2

dt
− a21stdx1 1 a22stdx2 1 t2std

where x1std and x2std are unknown functions, aijstd are coefficients, and tistd are func-
tions of time (sometimes called forcing, or input, functions). In matrix notation the sys-
tem can be written 

(1)	
dx
dt

− Astdx 1 gstd	

where xstd is a column vector whose components are the unknown functions x1std and 
x2std, dxydt is a column vector whose components are dx1ydt and dx2ydt, Astd is a matrix 
whose entries are the coefficients, and gstd is a column vector whose components are the 
forcing functions.

Using the terminology introduced in Section 7.1, we say that Equation 1 is a system 
of linear first-order nonautonomous differential equations. If A and g are independent of 
time, then Equation 1 is a system of linear first-order autonomous differential equations.

In this chapter we will study only autonomous differential equations. In fact, most of 
our considerations will also assume g − 0. Such systems are called homogeneous. As 
shown in Exercise 23, any autonomous system of equations for which g ± 0 (which is 
called a nonhomogeneous system) can be reduced to a homogeneous system in which 
g − 0 through a change of variables. Thus we consider systems of the form 

 
dx1

dt
− a11x1 1 a12x2

 
dx2

dt
− a21x1 1 a22 x2

or, in matrix notation,

(2)	
dx
dt

− Ax	
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 Example 1   |  Radioimmunotherapy is a cancer treatment in which radioactive 
atoms are attached to tumor-specific antibody molecules and then injected into the 
bloodstream. The antibody molecules then attach only to tumor cells, where they 
deliver the cell-killing radioactivity. Mathematical models have been used to optimize 
this treatment. Let’s use x1std and x2std to denote the amount of antibody (in mg) in the 
blood and the tumor, respectively, at time t (in minutes after the start of treatment). If a 
denotes the per unit rate of clearance from the blood, b the per unit rate of movement 
from the blood into the tumor, and c the per unit rate of clearance from the tumor, a 
simple model is1

 
dx1

dt
− 2ax1 2 bx1

 
dx2

dt
− bx1 2 cx2

What is the matrix A for this model when it is written in the form of Equation 2?

Solution � Using x to denote the vector with components x1 and x2, we can write this 
system as Equation 2 with

	 A − c2sa 1 bd 0

b 2c
d 	 ■

 Example 2   |  Metapopulation dynamics  A population of deer mice is split 
into two patches through habitat fragmentation. The population in patch A reproduces 
at a per capita rate of 2, while that in patch B reproduces at a per capita rate of 21 
(where time is measured in years). The reproductive rate in patch 2 is negative because 
the mortality rate in this patch is larger than the birth rate. The per capita movement 
rate from patch A to B is 3, and from patch B to A is 2. Write a system of two linear 
differential equations that describes the two patches.

Solution � Let’s use xAstd and xBstd to denote the number of individuals in patches A 
and B, respectively. Individuals in patch A reproduce at a per capita rate of 2, and they 
leave the patch at a per capita rate of 3. At the same time, individuals migrate into the 
patch from patch B at a per capita rate of 2. Therefore, 

 
dxA

dt
− 2xA 2 3xA 1 2xB

 − 2xA 1 2xB

Similarly, individuals in patch B reproduce at a per capita rate of 21, they leave the 
patch at per capita rate 2, and individuals from patch A enter the patch at per capita 
rate 3. We obtain

 
dxB

dt
− 2xB 2 2xB 1 3xA

 − 3xA 2 3xB

Using x to denote the vector with components xA and xB, we can write this system in 
matrix notation in the form of Equation 2 with

	 A − c21 2

3 23
d 	 ■

1.� A. Flynn et al., “Effectiveness of Radiolabelled Antibodies for Radio-Immunotherapy in a Colorectal 
Xenograft Model: A Comparative Study using the Linear-Quadratic Formulation,” International Journal of 
Radiation Biology 77 (2001): 507–17.
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We can employ some of the techniques of phase-plane analysis introduced in Sec-
tion 7.6 to systems of linear differential equations. This includes plotting the nullclines, 
finding equilibria, and assessing the stability of any equilibria.

We recall the definition of an equilibrium given in 7.6.2, but we make it specific to 
systems of two linear differential equations. 

(3)  Definition � An equilibrium of the system of differential equations given 
by (2) is a pair of values sx̂1, x̂2d such that both dx1ydt − 0 and dx2ydt − 0 when 
x1 − x̂1 and x2 − x̂2. Equivalently, from Equation 2, the vector of equilibrium 
values x̂ satisfies the equation Ax̂ − 0.

Theorem 8.6.5 tells us that the equation Ax̂ − 0 always has the solution x̂ − 0. Thus 
the origin sx̂1, x̂2d − s0, 0d is always an equilibrium of Equation 2. This theorem also 
says that, in the event that det A ± 0, the origin is the only equilibrium. This is referred 
to as the generic case. The case where det A − 0 is referred to as nongeneric. In most 
of this chapter we will concentrate on the generic case because it is most common in life 
science applications.

Recall also the definition of a nullcline from Section 7.6. In the context of Equation 2, 
we have the following definition.

Definition � The x1-nullcline of differential equation (2) is the set of points in the 
x1 x2-plane satisfying the equation dx1ydt − 0. From Equation 2, this is the line 
defined by the equation a11x1 1 a12 x2 − 0. The x2-nullcline of differential equa-
tion (2) is the set of points in the x1 x2-plane satisfying the equation dx2ydt − 0. 
From Equation 2, this is the line defined by the equation a21x1 1 a22 x2 − 0.

Thus a system of two linear differential equations has two nullclines, one for each 
variable. Both nullclines are straight lines and they intersect at the origin because both 
dx1ydt − 0 and dx2ydt − 0 at the point sx1, x2d − s0, 0d. (See Figure 1.) This is consis-
tent with our earlier observation that the origin is an equilibrium.

 Example 3   |  Metapopulation dynamics (continued)  Determine the 
equilibrium of the model in Example 2 and interpret it biologically.

Solution � From the definition on page 531 for the determinant of a 2 3 2 matrix, 
we calculate det A to be 

det A − s21ds23d 2 s2ds3d − 23

Since det A ± 0, the only equilibrium is the origin x̂ − 0. This represents the situation 
in which the subpopulations in patches A and B are both extinct.	 ■

 Example 4   |  Radioimmunotherapy (continued)  Suppose that a 1 b ± 0 
and c ± 0 in the model of Example 1. Provide a biological interpretation of these 
assumptions and determine the equilibrium of the model.

Solution � The assumptions mean that there is a nonzero loss rate of antibody from 
both the bloodstream (a 1 b ± 0) and from the tumor (c ± 0). We calculate det A to 
be

det A − 2sa 1 bds2cd 2 sbds0d − csa 1 bd

Figure �1

0

x™

x¡

dx™
dt =0

dx¡
dt =0

Throughout this chapter we use a single 
color (purple) for the nullclines of both 
variables.

det A − a11a22 2 a12a21
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This is nonzero given our assumptions about the constants. Therefore the only equilib-
rium is the origin, x̂ − 0. This represents the situation in which there is no antibody in 
the bloodstream or in the tumor.	 ■

In Section 7.2 we introduced the concept of local stability in the context of single-
variable differential equations. An analogous concept applies to systems of differential 
equations.

Definition � An equilibrium x̂ of differential equation (2) is locally stable if x 
approaches the value x̂ as t l ` for all initial values of x sufficiently close to x̂.

For systems of differential equations, stability of an equilibrium requires that all 
components of the vector x approach their equilibrium values as t l `. As we will see 
in Section 10.2, for generic systems, if x̂ is locally stable, then it is stable for all initial 
conditions (not just those sufficiently close to x̂). This is referred to as global stabil-
ity. Consequently, in this chapter we will use the terms locally stable and stable inter-
changeably. An equilibrium that is not stable is called unstable.

The remainder of this section presents three qualitatively different kinds of behavior 
that the system of differential equations (2) can exhibit. These are classified in terms 
of the nature of the equilibrium x̂ − 0 and are called saddles, nodes, and spirals. Their 
qualitative features are introduced here and they are defined more precisely in Sec-
tion 10.2.

■ Saddles
The equilibrium at the origin, x̂ − 0, is called a saddle if, roughly speaking, the motion 
in the x1 x2-plane is toward the origin in some directions and away from it in others. As 
an example, consider Equation 2 with the matrix of coefficients

A − c0 1

2 21
d

Figure 2(a) displays the nullclines along with several solution curves in the x1 x2-plane. 
By definition, all solution curves that cross the x1-nullcline do so vertically because x1 
is not changing on this nullcline. Likewise, solution curves that cross the x2-nullcline do 
so horizontally. Figure 2(b) plots the components of the red solution curve in Figure 2(a) 
against time.

x™

x¡1
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(t=0)

(t=0.8)

(t=1.4)

t

1

0
1

_1

x™(t)

x¡(t)

(a) (b)

 dx™/dt=0

dx¡/dt=0

Figure �2
Part (a) plots the phase plane, with 

nullclines in purple and solution curves 
in blue. The red curve is a particular 

solution whose components are plotted 
against time in part (b).
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When the equilibrium at the origin is a saddle, it is always unstable because there is 
always some initial condition for which the system moves away from the origin.

■ Nodes
The equilibrium at the origin, x̂ − 0, is called a node if, roughly speaking, the motion in 
the phase plane is either toward the origin from all directions or away from the origin in 
all directions. As two examples, consider Equation 2 with the coefficients given by the 
matrices

B − c23 21

22 22
d     or    C − c3 1

2 2
d

Figure 3(a) displays the nullclines for matrix B, along with several solution curves of the 
system in the x1 x2-plane. Part (b) plots the components of the red solution curve in part 
(a) against time. Figure 4 displays the corresponding information for matrix C. Notice 
in Figure 3(a) and Figure 4(a) that solution curves cross the nullclines either vertically or 
horizontally, depending on whether the nullcline is for x1 or x2, respectively. 
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The equilibrium at the origin can be a stable node, as in Figure 3(a), or an unstable 
node, as in Figure 4(a), depending on whether movement is toward or away from this 
equilibrium.

Figure �3
Part (a) plots the phase plane for matrix
B with nullclines in purple and solution 

curves in blue. The red curve is a par-
ticular solution whose components are 

plotted against time in part (b).

Figure �4
Part (a) plots the phase plane for matrix 
C with nullclines in purple and solution 

curves in blue. The red curve is a par-
ticular solution whose components are 

plotted against time in part (b).
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■ Spirals
The equilibrium at the origin, x̂ − 0, is called a spiral if the motion in the phase plane 
is either toward the origin or away from the origin, and occurs in a spiraling fashion. As 
two examples, consider Equation 2 with the coefficients given by the matrices

D − c1 21

1 1
d     or    E − c21 1

21 21
d

Figure 5 displays the nullclines for matrix D, along with several solution curves of the 
system in the x1 x2-plane. Part (b) plots the components of the red solution curve against 
time. Figure 6 displays the corresponding information for matrix E. Again you should 
make note of the orientation of solution curves where they cross a nullcline. 
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The equilibrium at the origin can be an unstable spiral, as in Figure 5(a), or a stable 
spiral, as in Figure 6(a), depending on whether movement is away from or toward this 
equilibrium.

It turns out that, except for one special case called a center, the three qualitative 
types of behavior (saddle, nodes, and spirals) are the only possibilities for generic linear 
systems of differential equations whose matrix of coefficients is not defective. This will 
be demonstrated in the next section by deriving an explicit formula for the solutions of 
such systems.

Figure �5
Part (a) plots the phase plane for matrix 
D with nullclines in purple and solution 

curves in blue. The red curve is a par-
ticular solution whose components are 

plotted against time in part (b).

Figure �6
Part (a) plots the phase plane for matrix 
E with nullclines in purple and solution 

curves in blue. The red curve is a par-
ticular solution whose components are 

plotted against time in part (b).
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EXERCISES 10.1

	� 1–6 � Specify whether each system is autonomous or nonautono-
mous, and whether it is linear or nonlinear. If it is linear, specify 
whether it is homogeneous or nonhomogeneous.

	 1.��	 dxydt − x 2 y,  dyydt − 23ty 1 x

	 2.��	 dyydx − 2y,  dzydx − x 2 z 1 3

	 3.	�� dyydt − 3yz 2 2z,  dzydt − 2z 1 5y

	 4.	�� dyydx − 3y 2 2,  dzydx − 7z 1 y

	 5.	�� dxydz − 3x 2 2y,  dyydz − 2z 1 3y

	 6.	�� dxydt − xy 2 y,  dyydt − 4tx 2 xy

	� 7–14 � Write each system of linear differential equations in 
matrix notation.

	 7.	�� dxydt − 5x 2 3y,  dyydt − 2y 2 x

	 8.	�� dxydt − x 2 2,  dyydt − 2y 1 3x 2 1

	 9.	�� dxydt − 3ty 2 7,  dyydt − 2x 2 3y

	 10.	�� dxydt − 5y,  dyydt − 2x 2 y

	 11.	�� dxydt − 2x 2 5,  dyydt − 3x 1 7y

	 12.	�� dxydt − 2x 2 ysin t,  dyydt − y 2 x

	 13.	�� dxydt − x 1 4y 2 3t,  dyydt − y 2 x

	 14.	�� dxydt − y 2 2xst 1 7,  dyydt − 3x 1 2

	� 15–22 � Given the system of differential equations dxydt − Ax,  
construct the phase plane, including the nullclines. Does the 
equilibrium look like a saddle, a node, or a spiral?

	 15.	 A − c23 1

2 22
d 	 16.	 A − c22 1

21 21
d

	 17.	 A − c 1 2

22 1
d 	 18.	 A − c1 2

2 21
d

	 19.	 A − c21 2

23 0
d 	 20.	 A − c1 1

0 1
d

	 21.	 A − c 2 21

21 2
d 	 22.	 A − c0 1

1 0
d

	 23.	�� �Consider the system of linear differential equations
dxydt − Ax 1 g, where g is a vector of constants. Suppose 
that A is nonsingular.

		  (a)	 What is the equilibrium of this system of equations?
		  (b)	� Using x̂ to denote the equilibrium found in part (a), 

define a new vector of variables y − x 2 x̂. What do 
the components of y represent?

		  (c)	� Show that y satisfies the differential equation 
dyydt − Ay. This demonstrates how we can reduce a 
nonhomogeneous system of linear differential equations 

to a system that is homogenous by using a change of 
variables.

	 24.��	 Consider the system of linear differential equations

dx
dt

− c22 21

2 1
d x

		��  �The system is nongeneric, that is, the determinant of the 
matrix of coefficients is zero.

		  (a)	� There are an infinite number of equilibria, all lying on 
a line in the phase plane. What is the equation of this 
line?

		  (b)	� Construct the phase plane for this system.

	 25.��	� Consider an autonomous homogeneous system of linear 
differential equations with coefficient matrix

A − ca b

c d
d

		��  �Suppose that det A − 0. Show that there are an infinite 
number of equilibria.

	 26.��	� Consider the following homogeneous system of three linear 
differential equations:

 dxydt − 3x 1 2y 2 z

 dyydt − x 2 y 2 z

 dzydt − y 1 3z

		��  �Suppose that x 1 y − 5 at all times. Show that this system 
can be reduced to two nonhomogenous linear differential 
equations given by

 dxydt − x 2 z 1 10

 dzydt − 2x 1 3z 1 5

	 27.��	� Consider the following homogeneous system of four linear 
differential equations:

 dwydt − 2x 1 y 2 z

 dxydt − 3x 1 z

 dyydt − 2y 1 2z

 dzydt − 3x 2 5y

		��  �Suppose that x 1 z − 2 and y 1 w − 3 at all times. Show 
that this system can be reduced to two nonhomogeneous 
linear differential equations given by

 dwydt − 3x 2 w 1 1

 dxydt − 2x 1 2

	 28.	�� �Consider any homogeneous, autonomous system of three 
linear differential equations for which the variables satisfy 
ax1 1 bx2 1 cx3 − d, where a, b, c, and d are constants, not 
all of which are zero. Show that the system can be reduced 
to a nonhomogeneous system of two linear differential 
equations.
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	 33.	�� Radioimmunotherapy�  Example 1 presents a model of 
radioimmunotherapy. The model is

dx1

dt
− 2ax1 2 bx1    

dx2

dt
− bx1 2 cx2

		�  where x1 and x2 denote the amount of antibody (in mg) in 
the bloodstream and tumor, respectively, at time t (in min-
utes), and all constants are positive.

		  (a)	� Construct the phase plane, including the nullclines, to 
determine the qualitative behavior of the system.

		  (b)	� Describe what happens to the amount of antibody in 
each part of the body as t l `.

Source: Adapted from A. Flynn et al., “Effectiveness of Radiolabelled 

Antibodies for Radio-Immunotherapy in a Colorectal Xenograft Model: A 

Comparative Study using the Linear-Quadratic Formulation,” International 

Journal of Radiation Biology 77 (2001): 507–17.

	 34.	�� Jellyfish locomotion�  Jellyfish move by contracting an 
elastic part of their body, called a bell, that creates a 
high-pressure jet of water. When the contractive force stops, 
the bell then springs back to its natural shape. Jellyfish 
locomotion has been modeled using a second-order linear 
differential equation having the form

mx 0std 1 bx9std 1 kxstd − 0

		�  where xstd is the displacement of the bell at time t, m is the 
mass of the bell (in grams), b is a measure of the friction 
between the bell and the water (in units of Nym?sd, and k 
is a measure of the stiffness of the bell (in units of Nymd. 
Suppose that m − 100 g, b − 0.1 Nym?s, and k − 1 Nym.

		  (a)	� Define the new variables z1std − xstd and z2std − x9std,  
and show that the model can be expressed as a system 
of two first-order linear differential equations.

		  (b)	� Construct the phase plane, including the nullclines, for 
the equations from part (a).

Source: Adapted from M. DeMont et al., “Mechanics of Jet Propulsion in the 

Hydromedusan Jellyfish, Polyorchis Penicillatus: III. A Natural Resonating 

Bell—The Presence and Importance of a Resonant Phenomenon in the Loco-

motor Structure,” Journal of Experimental Biology 134 (1988): 347–61.

	 29.	�� �Second-order linear differential equations take the form

y 0std 1 pstd y9std 1 qstd ystd − tstd

		��  �where p, q, and t are continuous functions of t. Suppose we 
have initial conditions ys0d − a and y9s0d − b. Show that 
this equation can be rewritten as a system of two first-order 
linear differential equations having the form

dx
dt

− c 0 1

2qstd 2pstd
d x 1 c 0

tstd
d

with	 xs0d − ca
b
d 	

		��  where x1std − ystd and x2std − y9std.

	 30.	�� Metapopulation dynamics�   Example 2 presents a model 
for a population of deer mice that is split into two patches 
through habitat fragmentation. The model is

dxA

dt
− 2xA 1 2xB    

dxB

dt
− 3xA 2 3xB

		�  where xA and xB are the population sizes in patches A and 
B, respectively.

		  (a)	 Construct the phase plane, including the nullclines.
		  (b)	� Describe what happens to the population in each patch 

as t l ` if both start with nonzero sizes.

	 31.	�� Gene regulation�  Genes produce molecules called mRNA 
that then produce proteins. High levels of protein can inhibit 
the production of mRNA, resulting in a feedback that 
regulates gene expression. Using m and p to denote the 
amounts of mRNA and protein in a cell s3 102 copiesycelld, 
a simple model of gene regulation is

 dmydt − 1 2 p 2 m

 dpydt − m 2 p

		  Construct the phase plane, including the nullclines.
		  [Hint: This system is nonhomogeneous.]

	 32.	�� Prostate cancer�  During treatment, tumor cells in the 
prostate can become resistant through a variety of biochem-
ical mechanisms. Some of these are reversible—the cells 
revert to being sensitive once treatment stops—and some 
are not. Using x1, x2, and x3 to denote the fraction of cells 
that are sensitive, temporarily resistant, and permanently 
resistant, respectively, a simple model for their dynamics 
during treatment is

 dx1ydt − 2ax1 2 cx1 1 bx2

 dx2ydt − ax1 2 bx2 2 dx2

 dx3ydt − cx1 1 dx2

		�  Use the fact that x1 1 x2 1 x3 − 1 to reduce this to a non-
homogeneous system of two linear differential equations for 
x1 and x3.

Source: Adapted from Y. Hirata et al., “Development of a Mathematical 

Model that Predicts the Outcome of Hormone Therapy for Prostate Cancer,” 

Journal of Theoretical Biology 264 (2010): 517–27. ©
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10.2 Solving Systems of Linear Differential Equations

Most systems of linear differential equations that arise in the life sciences take the form 
of an initial-value problem. Suppose A is a 2 3 2 matrix of coefficients and x is a two-
dimensional vector whose components are variables.

(1)  Definition � The system of linear differential equations

dx
dt

− Ax

together with an initial condition xst0d − x0 is called an initial-value problem.

The initial condition xst0d − x0 specifies the values that each of the component vari-
ables in xstd must take at t − t0.

A solution to the initial-value problem (1) is a vector xstd whose two components are 
each functions of t and that together satisfy the differential equation and initial condi-
tion. More specifically, we say that a function wstd is a solution of the differential equa-
tion in (1) if, when substituted into the left and right sides of the differential equation, it 
produces an equality. Further, if wst0d − x0 as well, then we say wstd solves the initial-
value problem (1).

Just as there were many solutions to the differential equations we examined in Chap-
ter 7, there are typically many solutions to a system of linear differential equations. 
Only one of these, however, will satisfy the initial condition. The following result can 
be proved.

(2)  Theorem: Existence and Uniqueness of Solutions � The initial-value 
problem (1) has one and only one solution xstd, and this solution is defined for all 
t [ R.

Theorem 2 tells us two things: First, it tells us that there will always be a solution to 
the initial-value problem. Second, it tells us that there will be only one solution. There-
fore, if we can manage to find a solution, no matter how we do it, then we are guaranteed 
that it will be the only one.

How can we find a solution to the initial-value problem? Consider a simple example: 

(3)	
dx1

dt
− 2x1    

dx2

dt
− 23x2	

with initial condition x1s0d − 2 and x2s0d − 5. In matrix form this is 

(4)	
dx
dt

− Ax	

where	 A − c21 0

0 23
d     and    xs0d − c2

5
d 	

In Equations 3 the differential equation for x1 does not involve x2, and vice versa. 
Their solutions are therefore readily found to be 

x1std − c1e2t      x2std − c2e23t
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where c1 and c2 are constants to be determined from the initial conditions (for example, 
see Section 3.6). Writing these solutions in vector form, we have 

(5)	 xstd − cx1std
x2std

d − cc1e2t

0
d 1 c 0

c2e23t d − c1e2t c1
0
d 1 c2e23t c0

1
d 	

Solution (5) is composed of the sum of two parts, each being an exponential function 
multiplied by a vector. Defining

x1std − e2t c1
0
d     and    x2std − e23t c0

1
d

we can write solution (5) as

xstd − c1x1std 1 c2x2std

In fact, x1std and x2std are each, individually, solutions to the system of differential 
equations (4). To see this, substitute x1std into the left and right sides of Equation 4. The 
left side gives

dx1

dt
− 2e2t c1

0
d

and the right side gives

Ae2t c1
0
d − e2t c21 0

0 23
d c1

0
d − e2t c21

0
d − 2e2t c1

0
d

The two sides are identical, which means that x1std is a solution. It is plotted in the phase 
plane in Figure 1(a). Likewise, substituting x2std into the left side results in

dx2

dt
− 23e23t c0

1
d

and the right side gives

Ae23t c0
1
d − e23t c21 0

0 23
d c0

1
d − e23t c 0

23
d − 23e23t c0

1
d

Again these sides are identical and so x2std is a solution as well. It is plotted in Fig-
ure 1(b).

x™

x¡

x™

x¡

x™

x¡

(a) (b) (c)

2

2

Figure �1  Blue curves are solutions to the system of differential equations. Part (a) shows 
solutions c1x1std for different values of c1. Part (b) shows solutions c2 x2std for different values of 
c2. Part (c) shows solutions c1x1std 1 c2 x2std for different values of c1 and c2. The red curve is the 
solution to the initial-value problem.
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Equation 5 is a family of solutions to the system of differential equations (4). Theo-
rem 2 tells us, however, that there is a unique solution to this system of equations once 
we take the initial condition into account. If solution (5) is to satisfy the initial condition, 
then we require that

xs0d − c1 c1
0
d 1 c2 c0

1
d − c2

5
d

Therefore we must choose c1 − 2 and c2 − 5, and the unique solution to the initial-value 
problem (4) is

xstd − 2e2t c1
0
d 1 5e23t c0

1
d

This solution is plotted in the phase plane in Figure 1(c). 

■ The General Solution
The preceding calculations illustrate some general principles that apply to the initial-
value problem (1): First, as we will see, solutions to the differential equation in (1) are 
always functions of the form e�tv, where � is a scalar and v is a vector. Second, the sum 
of any two solutions to the differential equation is itself a solution. This latter fact is sum-
marized as follows. (See also Exercise 9.)

(6)  The Superposition Principle � Suppose x1std and x2std are solutions 
of the system of differential equations in (1). Then any function of the form 
xstd − c1x1std 1 c2 x2std, where c1 and c2 are scalar quantities, is also a solution.

Typically, a family of solutions to the differential equation in (1) is obtained by find-
ing the values of � and v for which e�tv is a solution, and then combining these solutions 
using the Superposition Principle (6). The unique solution to the initial-value problem is 
then obtained by choosing appropriate constants c1 and c2.

Let’s put these ideas into practice for the initial-value problem (1) with

A − ca11 a12

a21 a22
d     and    xs0d − cx1s0d

x2s0d
d

We begin by looking for solutions having the form e�tv for some � and v. Substituting 
this function into the differential equation in (1) gives

d

dt
se�tvd − Ae�tv

or	 �e�tv − Ae�tv	

Because e�t is never zero, we can divide both sides by e�t, giving

(7)	 �v − Av	

From Definition 8.7.2 we see that the values of v and � that satisfy Equation 7 are the 
eigenvector-eigenvalue pairs of the matrix A. This shows that a function of the form e�tv 
is a solution to the differential equation in (1) provided that v and � are an eigenvector-
eigenvalue pair of A.

Our focus in the remainder of this chapter will be on coefficient matrices that are not 
defective and therefore that have distinct eigenvalues (advanced courses in differential 
equations treat the general case). Recall from page 538 that such matrices are guaranteed 

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



to have distinct eigenvector-eigenvalue pairs. Denoting these by vi and �i, we can then 
use the Superposition Principle (6) to obtain the family of solutions

(8)	 xstd − c1e�1t £
u

v1

u

§ 1 c2e�2t £
u

v2

u

§ 	

where £
u

vi

u

§  is the ith eigenvector. Equation 8 is called the general solution of the dif-

ferential equation in (1). It is valid for any two-dimensional system whose coefficient 
matrix has distinct eigenvalues (even the nongeneric case where det A − 0).

Finally, we can use the initial condition to find the values of c1 and c2 that provide the 
unique solution to the initial-value problem guaranteed by Theorem 2. We have

xs0d − c1 £
u

v1

u

§ 1 c2 £
u

v2

u

§ − cx1s0d
x2s0d

d

or

(9)	 £
u u

v1 v2

u u

§ cc1

c2
d − cx1s0d

x2s0d
d 	

Since the eigenvalues of A are distinct, a theorem from linear algebra says that the matrix 
whose columns are the associated eigenvectors is nonsingular (see Exercise 10). There-
fore Theorem 8.6.4 tells us that Equation 9 has a unique solution for c1 and c2.

■ Nullclines versus Eigenvectors
The general solution (8) shows that the eigenvectors of the matrix A in the initial-value 
problem (1) play an important role in the behavior of the variable xstd. Section 10.1 
revealed that the nullclines of the differential equation in (1) also play an important role. 
What is the relationship between the two?

Recall that the nullclines for two-variable systems of linear differential equations are 
straight lines in the plane along which the rate of change of one of the variables is zero 
(see Section 10.1). This means that the motion in the plane is either vertical or horizontal 
along nullclines [see Figure 2(a)].

Figure �2  Purple lines are nullclines. Orange lines indicate all scalar multiples of the eigenvectors. Blue curves are solutions.

x¡

x™

(c) Nullclines and eigenvectors(b) Eigenvectors(a) Nullclines

1

1x¡

x™

1

1x¡

x™

1

1

dx™/dt=0

dx¡/dt=0
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The eigenvectors of the matrix A appear in the general solution (8) in two terms, each 
having the form

(10)	 ce�tv	

and each of these two terms is itself a solution to differential equation (1). What is the 
geometric interpretation of (10)? The factor c is a scalar, as is the factor e�t. Therefore 
ce�t is a scalar quantity and it varies in magnitude with t. The remaining factor v is the 
eigenvector associated with �. Thus (10) is a scalar multiple of the vector v, where ce�t 
is the scalar. Section 8.2 demonstrated that, geometrically, scalar multiplication simply 
scales the length of a vector. Therefore the plot of (10) in the phase plane traces out a 
straight line, moving in the direction of eigenvector v as t increases.

Exercise 39 demonstrates that solution curves in the phase plane cannot cross. Since 
(10) defines a solution curve that is a scalar multiple of the eigenvector v, the lines cor-
responding to all scalar multiples of the eigenvectors therefore constrain the direction of 
the solution curves in the phase plane [see Figure 2(b)]. Figure 2(c) shows how, together, 
the nullclines and the eigenvectors dictate the shape of the solution curves in the phase 
plane.

We now return to the three qualitative kinds of behavior documented in Section 10.1: 
saddles, nodes, and spirals. Throughout the remainder of this section we assume that 
det A ± 0 and therefore the origin is the only equilibrium. We also assume that the eigen- 
values of A are distinct.

■ Saddles
The origin is called a saddle if the eigenvalues of the coefficient matrix are real and have 
opposite signs. The form of solution (8) immediately shows that the origin is unstable  
in this case because one of the exponential terms will always increase without bound. As 
a result, there is always some initial condition for which xstd does not approach the ori-
gin as t l `.

The saddle explored on page 635 used the matrix

A − c0 1

2 21
d

The eigenvalues of A are �1 − 22 and �2 − 1. The associated eigenvectors are 

v1 − c21

2
d     and    v2 − c1

1
d

The general solution (8) is therefore

xstd − c1e22 t c21

2
d 1 c2et c1

1
d

To obtain a unique solution we need to specify an initial condition. Suppose that

xs0d − c22

2
d . Equation 9 then becomes

c21 1

2 1
d cc1

c2
d − c22

2
d

The solution to this equation is c1 − 4
3 and c2 − 22

3. Figure 3 displays several solution 
curves, along with the nullclines, the eigenvectors, and the solution to the initial-value 
problem.
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x™

x¡1

1

(t=0)

(t=0.8)
t

1

0
1

_1

x™(t)

x¡(t)

(b)(a)

■ Nodes
The origin is called a node if the eigenvalues of A are real and have the same sign. The 
form of solution (8) reveals that the origin is unstable if the eigenvalues are positive (an 
unstable node) and stable if the eigenvalues are negative (a stable node).

For the nodes explored on page 636 the coefficient matrices were

B − c23 21

22 22
d     and    C − c3 1

2 2
d

The eigenvalues of B are �1 − 21 and �2 − 24, with eigenvectors

v1 − c21

2
d     and    v2 − c1

1
d

The eigenvalues of C are �1 − 1 and �2 − 4, with eigenvectors again being

v1 − c21

2
d     and    v2 − c1

1
d

The general solutions are therefore

 xstd − c1e2t c21

2
d 1 c2e24 t c1

1
d  for matrix B

and	  xstd − c1et c21

2
d 1 c2e4 t c1

1
d  for matrix C 	

To obtain unique solutions in each case we need to specify an initial condition. Sup-
pose that, in both cases,

xs0d − c 2

21
d

Equation 9 then becomes

c21 1

2 1
d cc1

c2
d − c 2

21
d

in both cases. The solution to this equation is c1 − 21 and c2 − 1. Figures 4 and 5 dis-

Figure �3
Part (a) plots the phase plane, with 

nullclines in purple, all scalar multiples 
of the eigenvectors in orange, and solu-
tion curves in blue. The red curve is the 

solution to the initial-value problem, 
and its components are plotted against 

time in part (b).
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play several solution curves, along with the nullclines, the eigenvectors, and the solutions 
to each of these initial-value problems.
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■ Spirals
The remaining possibility is that the eigenvalues of the coefficient matrix are complex 
conjugates, taking the form � − a 6 bi for some real numbers a and b. In this case the 
origin is a spiral.

To see how complex eigenvalues lead to such behavior, we first note that the eigenvec-
tors associated with complex conjugate eigenvalues are themselves complex conjugates 
(see Exercises 8.8.26 and 8.8.27). Therefore the eigenvectors associated with the eigen-
values � − a 6 bi can be written v − u 6 iw, where u and w are real-valued vectors. 
We take each eignvector-eigenvalue pair in turn.

To evaluate the first term of solution (8) we substitute � − a 1 ib and v − u 1 iw 
into e�tv to obtain

(11)	 esa1bidtsu 1 iwd	

Euler’s formula allows us to simply this further. If x 1 iy is a complex number, then  
ex1iy can be rewritten as

 ex1iy − exeiy

 − exscos y 1 isin yd

Figure �4
Part (a) plots the phase plane for matrix 

B, with nullclines in purple, all scalar 
multiples of the eigenvectors in orange, 

and solution curves in blue. The red 
curve is the solution to the initial-value 

problem, and its components are  
plotted against time in part (b).

Figure �5
Part (a) plots the phase plane for matrix 

C, with nullclines in purple, all scalar 
multiples of the eigenvectors in orange, 

and solution curves in blue. The red 
curve is the solution to the initial-value 

problem, and its components are  
plotted against time in part (b).

See Appendix G for a review of com-
plex numbers.

Euler’s formula 

eiy − cos y 1 i sin y

is discussed in Appendix G.
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Applying this result with x − at and y − bt, we can write (11) as

 esa1bidtsu 1 iwd − eatscos bt 1 isin btdsu 1 iwd
 − eatsu cos bt 2 w sin bt 1 iw cos bt 1 iu sin btd
 − gstd 1 ihstd

where, to simplify notation, we have defined 

 gstd − eatsu cos bt 2 w sin btd

and	  hstd − eatsw cos bt 1 u sin btd	

To calculate the second term of solution (8) we can follow the same steps for the complex 
conjugate eigenvector-eigenvalue pair, obtaining

esa2bidtsu 2 iwd − gstd 2 ihstd

Therefore solution (8) can be written as

(12)	 xstd − c1fgstd 1 ihstdg 1 c2fgstd 2 ihstdg	

Although (12) is the general solution in the case of complex eigenvalues, this family 
of solutions is complex-valued and we are interested only in real-valued solutions. We 
can restrict our attention to a family of real-valued solutions by choosing the constants 
c1 − sk1 2 ik2dy2 and c2 − sk1 1 ik2dy2, where k1 and k2 are arbitrary, real constants. 
Although we have not formally justified the use of complex values of c1 and c2 in solu-
tion (8), this does, in fact, turn out to be valid. With these choices, the imaginary part of 
Equation 12 then disappears:

 xstd −
k1 2 ik2

2
 fgstd 1 ihstdg 1

k1 1 ik2

2
 fgstd 2 ihstdg

 − 1
2

 f2k1gstd 1 ik1hstd 2 ik1hstd 2 ik2gstd 1 ik2gstd 1 2k2hstdg

 − k1gstd 1 k2hstd

Therefore, from the definitions of gstd and hstd, the family of real solutions is

(13)	 xstd − k1eatsu cos bt 2 w sin btd 1 k2eatsw cos bt 1 u sin btd	

Equation 13 is the (real-valued) general solution when the eigenvalues are complex.
To obtain the unique solution to the initial-value problem, we need to make use of an 

initial condition. In particular, supposing that

xs0d − cx1s0d
x2s0d

d
then, from Equation 13, we have

xs0d − k1u 1 k2w
or

(14)	 £
u u

u w
u u

§ ck1

k2
d − cx1s0d

x2s0d
d 	

Although we won’t prove it, a matrix whose columns are u and w (that is, whose columns 
are the real and imaginary parts of the eigenvectors) is nonsingular. Therefore Theo-
rem 8.6.4 says that Equation 14 has a unique solution for k1 and k2. This then gives the 
unique solution to the initial-value problem. 
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The form of Equation 13 also reveals that the origin will be an unstable spiral if the 
real part a of the eigenvalues is positive, and a stable spiral if the real part a is negative. 
The case where a − 0 is called a center and the solutions in this case form closed curves 
in the phase plane (see Exercise 30).

Let’s consider the two coefficient matrices we explored in Section 10.1:

D − c1 21

1 1
d     and    E − c21 1

21 21
d

The eigenvalues of D are � − 1 6 i with eigenvectors

v − c0
1
d 6 i c1

0
d

Therefore

a − 1,  b − 1,  u − c0
1
d ,  and  w − c1

0
d

Equation 13 then simplifies to

 xstd − k1etS c01 d cos t 2 c1
0
d sin tD 1 k2etS c10 d cos t 1 c0

1
d sin tD

 − et c2k1 sin t 1 k2 cos t

k1 cos t 1 k2 sin t
d

The eigenvalues of E are � − 21 6 i, with eigenvectors

v − c0
1
d 6 i c21

0
d

Therefore

a − 21,  b − 1,  u − c0
1
d ,  and  w − c21

0
d

Equation 13 in this case becomes

xstd − e2t ck1 sin t 2 k2 cos t

k1 cos t 1 k2 sin t
d

Finally, to obtain unique solutions in each case we need to specify an initial condi-
tion. Suppose that, in both cases,

xs0d − c0
2
d

Equation 14 then becomes

c0 1

1 0
d ck1

k2
d − c0

2
d     for matrix D

or	 c0 21

1 0
d ck1

k2
d − c0

2
d     for matrix E	

In both cases the solution is k1 − 2 and k2 − 0. Figures 6 and 7 display several solution 
curves, along with the nullclines and the solutions to each of these initial-value prob-
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lems. Note that the eigenvectors cannot be plotted in the phase plane because they are 
complex-valued.

(a)

x™(t)

x¡(t)

(b)

1

0
0.2

0.6 t
_1

(t=0)

(t=0.4)(t=0.8) x™

x¡1

1

x™

x¡1

1

(a) (b)

1.0

2.0

0 t1

(t=0)

(t=2.5)

(t=5)

x™(t)

x¡(t)

■ Long-Term Behavior
Equation 8 for the solution to two-dimensional systems can be used to prove the follow-
ing theorem about long-term behavior.

(15)  Theorem � The origin of the initial-value problem (1) is a stable equilib-
rium if and only if the real parts of both eigenvalues of A are negative.

Although we have focused only on the case where the coefficient matrix has distinct 
eigenvalues, Theorem 15 holds in general.

Another useful result relates the determinant and the trace of A to the stability of the 
origin (recall that the trace of a matrix is the sum of its diagonal elements).

(16)  Theorem � The origin of initial-value problem (1) is a stable equilibrium if 
and only if det A . 0 and trace A , 0.

Theorems 15 and 16 are proved in Exercises 36 and 37. The stability properties of the 
equilibrium at the origin can be summarized graphically in terms of the determinant and 

Figure �6
Part (a) plots the phase plane for matrix 

D, with nullclines in purple and solu-
tion curves in blue. The red curve is the 

solution to the initial-value problem, 
and its components are plotted against 

time in part (b).

Figure �7
Part (a) plots the phase plane for matrix 

E, with nullclines in purple and solu-
tion curves in blue. The red curve is the 

solution to the initial-value problem, 
and its components are plotted against 

time in part (b).
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	� 1–4 � Show that x1std and x2std are solutions to the system of dif-
ferential equations dxydt − Ax.

	 1.	�� A − c3 22

2 22
d

		  x1std − 1
3

 s4e2 t 2 e2td,  x2std − 2
3 se2 t 2 e2td

	 2.	 A − c22 1

1 22
d

		  x1std − 1
2

 se23t 1 e2td,  x2std − 1
2 s2e23 t 1 e2td

	 3.	 A − c21 24

1 21
d

		  x1std − e2t cos 2t,  x2std − 1
2 e2t sin 2t

	 4.	 A − c 1 2

24 1
d

		  x1std − et cos(2s2 t),  x2std − 2s2 et sin(2s2 t)

	� 5–8�  Show that x1std and x2std are solutions to the initial-value 
problem dxydt − Ax with xs0d − x0.

	 5.	� A − c3 22

6 24
d     x0 − c1

2
d

		  x1std − e2t,  x2std − 2e2t

	 6.	� A − c22 1

25 4
d     x0 − c1

5
d

		  x1std − e3t,  x2std − 5e3t

	 7.	� A − c1 21

1 1
d     x0 − c2

1
d

		  x1std − et s2 cos t 2 sin td,  x2std − et scos t 1 2 sin td

	 8.	� A − c23 2

21 21
d     x0 − c22

1
d

		�  x1std − e22 t s22 cos t 1 4 sin td, 

		  x2std − e22 t scos t 1 3 sin td

EXERCISES 10.2

trace of A. In particular, Exercises 37 and 38 show that the stability of the origin can be 
described as in Figure 8.

det A

Unstable spirals

Unstable nodes

Centers

Stable spirals

Stable nodes

Saddle points

trace A

det A=1 (trace A)@4

Figure �8
The stability properties of the  

equilibrium at the origin in terms of  
the determinant and trace of A.
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	 28.	� A − c3 24

1 23
d 	 x0 − c2

3
d

	 29.	�� �In Exercise 10.1.24 we considered the nongeneric system of 
differential equations

dx
dt

− c22 21

2 1
d x

		�  Theorem 2 applies to this system, and we can obtain the 
general solution (8) in the usual way. Do so.

	 30.	�� �When the eigenvalues of the coefficient matrix are complex, 
the origin is a spiral. If the eigenvalues are purely imaginary 
(that is, the real parts are zero), then the origin is called a 
center. For example, this is true of the following system:

dx
dt

− c21 2

23 1
d x

		�  Theorem 2 still applies to this system, and we can obtain the 
general solution (13) in the usual way.

		  (a)	 Find the general solution.
		  (b)	� Use the general solution in part (a) to prove that the 

solutions form closed curves in the phase plane.

	 ■  Repeated Eigenvalues

	 31.	�� �Our focus has been on systems whose coefficient matrices 
have distinct eigenvalues. A simple example of a system 
with repeated eigenvalues is

dx
dt

− c21 0

0 21
d x

		  (a)	� Show that x1std − c1e2t and x2std − c2e2t is a solution. 
The origin in this case is called a proper node.

		  (b)	� Try obtaining this general solution by calculating the 
eigenvectors and eigenvalues of the coefficient matrix. 
Comment on anything unusual that occurs.

	 32.	��� A slightly more complicated system with repeated 
eigenvalues is 

dx
dt

− c21 1

0 21
d x

		  (a)	� Show that x1std − c1e2t 1 c2te2t and x2std − c2e2t is a 
solution. The origin in this case is called an improper 
node.

		  (b)	� Try obtaining this general solution by calculating the 
eigenvectors and eigenvalues of the coefficient matrix. 
Comment on anything unusual that occurs.

	� 33–35 � The system of differential equations dxydt − Ax 
depends on a real-valued constant a. Use the eigenvalues to 
determine the stability properties of the equilibrium at the origin 
for all values of a.

	 33.	 A − c21 1

a 21
d 	 34.	 A − c21 a

1 1
d

	 9.	�� Prove the Superposition Principle.

	 10.	�� �Show that if the eigenvalues of a 2 3 2 matrix are real and 
distinct, then the matrix P whose columns are the corre-
sponding eigenvectors is nonsingular.

	� 11–16 � Sketch several solution curves in the phase plane of the 
system of differential equations dxydt − Ax using the given 
eigenvalues and eigenvectors of A.

	 11.��	 �1 − 21,  �2 − 22;	 v1 − c1
1
d   v2 − c21

1
d

	 12.��	 �1 − 2,  �2 − 4;	 v1 − c1
2
d   v2 − c0

1
d

	 13.��	 �1 − 2,  �2 − 22;	 v1 − c3
1
d   v2 − c1

1
d

	 14.��	 �1 − 23,  �2 − 22;	 v1 − c1
0
d   v2 − c0

1
d

	 15.��	 �1 − 5,  �2 − 1;	 v1 − c2
2
d   v2 − c22

1
d

	 16.��	 �1 − 1,  �2 − 21;	 v1 − c3
2
d   v2 − c24

1
d

	� 17–28 � Solve the initial value problem dxydt − Ax with 
xs0d − x0.

	 17.	� A − c2
3
2

1
2

1
2 23

2
d 	 x0 − c1

2
d

	 18.	� A − c
1
2 23

2

23
2

1
2
d 	 x0 − c1

2
d

	 19.	� A − c1 0

4 21
d 	 x0 − c3

2
d

	 20.	� A − c21 22

2 22
d 	 x0 − c1

5
d

	 21.	� A − c23 4

26 7
d 	 x0 − c21

3
d

	 22.	� A − c 0 1

26 25
d 	 x0 − c21

22
d

	 23.	� A − c21 2

23 21
d 	 x0 − c2

0
d

	 24.	� A − c3 0

0 1
d 	 x0 − c22

4
d

	 25.	� A − c 0 21

21 0
d 	 x0 − c2

1
d

	 26.	� A − c4 22

3 1
d 	 x0 − c0

1
d

	 27.	� A − c2 25

2 1
d 	 x0 − c1

1
d
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10.3 Applications

We now illustrate how the results from the preceding sections can be applied to a variety 
of areas in the life sciences.

■ Metapopulations
Many biological populations are subdivided into smaller subpopulations, each living in 
its own patch, with limited movement between them. The entire collection of such sub-
populations is called a metapopulation. Consider the following model of two subpopu-
lations, where xA and xB are the number of individuals in each: 

 
dxA

dt
− rA xA 2 mA xA 1 mB xB

 
dxB

dt
− rB xB 2 mB xB 1 mA xA

Here ri is the per capita growth rate of subpopulation i, and mi is the per capita movement 
rate from patch i into the other patch. A specific example of the model is shown in Fig-
ure 1, where rA − 1, rB − 22, mA − 2, and mB − 0.

xA xB

mA=2

rA=1

rB=_2

Subpopulation A Subpopulation B

With these choices the equations become

 
dxA

dt
− xA 2 2xA

 
dxB

dt
− 22xB 1 2xA

Individuals in subpopulation A have a net per capita growth rate of rA − 1, while those 
in subpopulation B die off, having a net per capita growth rate of rB − 22. Individuals 
in subpopulation A also move to subpopulation B at per capita rate mA − 2, whereas 
individuals in subpopulation B never move (see Figure 1). We suppose the initial size of 
each subpopulation is xAs0d − 100 and xBs0d − 50.

Figure �1

in terms of the trace and determinant, and then use 
Theorem 15].

	 38.	�� �Justify the summary of the qualitative behavior depicted in 
Figure 8. Be sure to explain where the curve defined by 
det A − 1

4 strace Ad2 comes from.

	 39.	�� �Provide an argument, based on Theorem 2, for why 
solution curves in the phase plane of a two-dimensional, 
autonomous system of linear differential equations cannot 
cross.

	 35.	 A − ca 1

1 a
d

	 36.	��� Use the general solution (Equation 8) and Euler’s formula 
to prove Theorem 15 for the case where the eigenvalues of 
the coefficient matrix A are distinct.

	 37.	��� Use Theorem 15 to prove the trace and determinant 
condition for stability given by Theorem 16. [Hint: 
Express the equations for the eigenvalues of a 2 3 2 matrix 
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What is the size of each subpopulation as a function of time? Answering this question 
requires that we solve an initial-value problem. In matrix notation we have 

(1)	
dx
dt

− Ax	

with

(2)	 A − c21 0

2 22
d     and    xs0d − c100

50
d 	

The eigenvalues of matrix A are readily found to be �1 − 22 and �2 − 21. (Recall 
from Exercise 8.7.17 that the eigenvalues of a lower triangular matrix lie on the diago-
nal.) Therefore, from the results of Section 10.2, the origin in this model is a stable node. 
The metapopulation therefore goes extinct as t l `.

The eigenvectors are found to be

v1 − c0
1
d     and    v2 − c1

2
d

Therefore the general solution to the differential equation (1) is

(3)	 xstd − c1e22 t c0
1
d 1 c2e2t c1

2
d 	

To find the constants c1 and c2 we make use of the initial condition. At t − 0, Equation 3 
is

xs0d − c1 c0
1
d 1 c2 c1

2
d − c0 1

1 2
d cc1

c2
d

Therefore we must choose c1 and c2 to satisfy the equation

c0 1

1 2
d cc1

c2
d − c100

50
d

We obtain c1 − 2150 and c2 − 100. The solution to the initial-value problem is therefore

(4)	 xstd − 2150e22 t c0
1
d 1 100e2t c1

2
d 	

Figure 2 shows the phase plane for this model, along with the nullclines, the eigenvec-
tors, and the solution (4). Biologically, we are interested in only the positive quadrant of 
the phase plane.

xB

xA20 40 60 80 100 120

20

40

60

80

100

120

Figure �2
Purple lines are nullclines. Orange lines 

are all scalar multiples of the eigen-
vectors. Blue curves show a family of 

solutions. The red curve is the solution 
to the initial-value problem.
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To better understand the fate of each individual subpopulation, we can look at each 
component of Equation 4 individually. They are 

 xAstd − 100e2t

 xBstd − 200e2t 2 150e22 t

Figure 3 plots each component of the solution as a function of time. Both Figure 2 and 
Figure 3 reveal that the metapopulation ultimately goes extinct. Subpopulation A imme-
diately declines to extinction, whereas subpopulation B initially increases in size before 
eventually going extinct.

■ Natural Killer Cells and Immunity
Natural killer cells (often abbreviated NK cells) are components of the human immune 
system that defend the body against a variety of diseases, including cancers and patho-
gens (see Figure 4). NK cells are typically found in one of two states: latent or actively 
dividing. Suppose that latent cells die at a per capita rate d and are recruited to the divid-
ing state at per capita rate r. Dividing cells replicate at a per capita rate k and die at a per 
capita rate h. All constants are positive.

These assumptions lead to the following system of differential equations describing 
each kind of NK cell, where Lstd and Dstd are the numbers of latent and dividing cells:1

 
dL

dt
− 2rL 2 dL

 
dD

dt
− rL 1 sk 2 hdD

At t − 0 all NK cells are in the latent state and therefore the initial condition is Ls0d − L0

and Ds0d − 0. We want to determine the number of each NK cell type as a function of 
time.

Estimates exist for each of the constants in this model, but these values change under 
different conditions. We could substitute any given constant values into the model and 
then solve the initial-value problem, but it would be better to have a solution in terms of 
arbitrary constants so that we could apply our results under different conditions without 
repeatedly having to solve the initial-value problem. This approach is illustrated here.

If xstd denotes the vector whose components are Lstd and Dstd, the model can be 
written in matrix notation as

dx
dt

− Ax

with

A − c2sr 1 dd 0

r k 2 h
d     and    xs0d − cL0

0
d

Matrix A is lower triangular and therefore its eigenvalues lie on the diagonal. They 
are �1 − 2sr 1 dd and �2 − k 2 h. All constants are positive and therefore �1 , 0,  
whereas �2 is positive if k . h and negative if the reverse inequality holds. Therefore, 
from the results of Section 10.2, the origin is a stable node if k , h and it is a saddle if 
k . h.

t
(time)

1 2 3

20

0

60

100

4 5

xA(t)

xB(t)

Figure �3

Figure �4
NK cells attacking a pathogen

1.� Y. Zhao et al., “Two-Compartment Model of NK Cell Proliferation: Insights from Population Response to 
IL-15 Stimulation,” Journal of Immunology 188 (2012): 2981–90.
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The eigenvectors are found to be

v1 − ch 2 d 2 k 2 r

r
d     and    v2 − c0

1
d

Therefore the general solution is

(5)	 xstd − c1e2sr1ddt ch 2 d 2 k 2 r

r
d 1 c2esk2hdt c0

1
d 	

To obtain the unique member of this family that solves the initial-value problem, we use 
the initial condition. At t − 0, Equation 5 is

xs0d − c1 ch 2 d 2 k 2 r

r
d 1 c2 c0

1
d − ch 2 d 2 k 2 r 0

r 1
d cc1

c2
d

Therefore c1 and c2 must satisfy the equation

ch 2 d 2 k 2 r 0

r 1
d cc1

c2
d − cL0

0
d

Solving, we obtain 

 c1 −
L0

h 2 d 2 k 2 r
    and     c2 −

2rL0

h 2 d 2 k 2 r

Therefore the solution to the initial-value problem is

(6)	 xstd − L0e2sr1ddt £
1
r

h 2 d 2 k 2 r

§ 2 L0esk2hdt £
0
r

h 2 d 2 k 2 r

§ 	

The phase plane for Equation 6 can now be constructed for any constants of interest. 
Figure 5 shows two examples, one in which the origin is a stable node and another in 
which it is a saddle.

D

L1.0 2.0 3.00

1.0

2.0

3.0
D

L1.0 2.0 3.00

1.0

2.0

3.0

(a) Stable node (b) Saddle

In this example it is of primary interest to examine the total number of cells L 1 D  
as a function of time. Writing each component of Equation 6 individually gives 

 Lstd − L0e2sr1ddt

 Dstd − L0 r 
e2sr1ddt 2 e sk2hdt

h 2 d 2 k 2 r

Figure �5
Purple lines are nullclines. Orange lines 

are all scalar multiples of the eigen-
vectors. Blue curves show a family of 

solutions. The red curve is the solution 
to the initial-value problem.
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Figure 6 plots the sum Lstd 1 Dstd for two different sets of values for the constants, 
along with experimental data for each.2 In both cases the constants are such that the 
origin is a saddle.

0

L+D

t 
(hours)

2

4

6

40 80 120 0

L+D

t 
(hours)

20

10

30

40

40 80 120

(a) (b)

(310$ cells) (310$ cells)

■ Gene Regulation
A gene produces protein by first creating an intermediate molecule called mRNA. High 
gene expression leads to a lot of mRNA molecules which, in turn, leads to a lot of pro-
tein. High levels of protein can suppress the production of mRNA, however, thereby 
regulating gene expression, as depicted in Figure 7.

Suppose mstd and pstd are the amounts of mRNA and protein in a cell (in hundreds 
of copies) at time t (in hours). A simple model of gene regulation is 

 
dm

dt
− f s pd 2 dm       

dp

dt
− am 2 hp

where d is the rate at which mRNA molecules are degraded, a is the rate at which each 
mRNA molecule produces protein, and h is the rate at which protein molecules are 
degraded. The function f s pd specifies the rate of production of mRNA (in hundreds of 
copies per hour) as a function of the amount of protein in the cell.

In this example we suppose that f s pd − 1 2 p, meaning that the maximal rate of 
mRNA production is 100 copies per hour, and it decreases to 0 as the amount of protein 
increases to 100 copies. Further, for simplicity we use the values d − 1, a − 1, and 
h − 1. The model then reduces to 

 
dm

dt
− 1 2 p 2 m       

dp

dt
− m 2 p

or, in matrix notation,

(7)	 £
dm

dt

dp

dt

§ − c21 21

1 21
d cm

p
d 1 c1

0
d 	

Suppose that, initially, there is no mRNA or protein; that is, ms0d − 0 and ps0d − 0.
Equation 7 is different from most models we have studied so far in that it is non-

homogeneous. As Exercise 10.1.23 shows, however, equations like (7) can be reduced 
to a system of homogeneous linear differential equations with a change of variables. 
We first find the equilibrium sm̂, p̂d of Equation 7 and then define the new variables 
x1std − mstd 2 m̂ and x2std − pstd 2 p̂.

Figure �6

Gene mRNA Protein

S U P P R E S S I O N

Figure �7

2.� Y. Zhao et al., “Two-Compartment Model of NK Cell Proliferation: Insights from Population Response to 
IL-15 Stimulation,” Journal of Immunology 188 (2012): 2981–90.
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Setting both dmydt − 0 and dpydt − 0 gives the equation

c21 21

1 21
d c m̂

p̂
d − 2 c1

0
d

We find that the equilibrium is m̂ − 1
2 and p̂ − 1

2. Therefore the new variables are 
x1std − mstd 2 1

2 and x2std − pstd 2 1
2 . These represent the difference in the amounts 

from their equilibrium values.
With this change of variables we now proceed to model x1 and x2. Following the 

approach of Exercise 10.1.23, we see that the variables x1 and x2 satisfy the initial-value 
problem:

(8)	
dx
dt

− Ax	

with

A − c21 21

1 21
d     and    xs0d − c0

0
d 2 c

1
2
1
2
d − c2

1
2

21
2
d

The eigenvalues of A are the complex conjugates �1 − 21 1 i and �2 − 21 2 i. 
Therefore, from the results of Section 10.2, the origin is a stable spiral. In other words, 
both x1 and x2 approach zero as t l `. This means that the variables m and p approach 
their equilibrium values as t l `.

The eigenvectors associated with each eigenvalue are

v1 − c i

1
d     and    v2 − c2i

1
d

Using the notation in Expression 10.2.11, we have

u − c0
1
d     and    w − c1

0
d

Therefore, using Equation 10.2.13, we obtain the general solution

(9)	 xstd − k1e2tsu cos t 2 w sin td 1 k2e2tsw cos t 1 u sin td	

To find the constants k1 and k2 we make use of the initial condition. At t − 0, Equa-
tion 9 is

xs0d − k1u 1 k2w − k1 c0
1
d 1 k2 c1

0
d − c0 1

1 0
d ck1

k2
d

Therefore k1 and k2 must satisfy the equation

c0 1

1 0
d ck1

k2
d − c2

1
2

21
2
d

This equation requires that k1 − 21
2 and k2 − 21

2. Thus the solution to the initial-value 
problem for xstd is

(10)	 xstd − 21
2 e2tsu cos t 2 w sin td 2 1

2 e2tsw cos t 1 u sin td	

Substituting in the definitions of u and w gives the components of the solution (10) as

 x1std − 1
2 e2tssin t 2 cos td

 x2std − 21
2 e2tssin t 1 cos td
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The final step is to obtain the solution to the initial-value problem for the original 
variables m and p. From the definitions of x1 and x2 we simply need to add 1

2 to each 
component of the solutions for x1 and x2, giving

 mstd − 1
2 e2tssin t 2 cos td 1 1

2

 pstd − 21
2 e2tssin t 1 cos td 1 1

2

Figure 8 shows the phase plane for this model, along with the nullclines and the solu-
tion. Figure 9 plots m and p as functions of time. Figures 8 and 9 together show that the 
amounts of mRNA and protein in the cell oscillate slightly and both approach a nonzero 
equilibrium value.

p

m0.5 1.51.0

1.5

0.5

0

1.0

      t2 4 6

0.2

0

0.4

0.6

0.8

m(t)

p(t)

Figure �8
Purple lines are nullclines. Blue curves show a fam-
ily of solutions. The red curve is the solution to the 
initial-value problem.

Figure �9
The components mstd and pstd of the red solution 
curve in Figure 8 are plotted against time.

■ Transport of Environmental Pollutants
This final example illustrates how we must sometimes manipulate a model before 
attempting to solve it. Suppose three lakes of equal volume are interconnected, as in 
Figure 10, with a net flow of water in the directions shown. A shipping accident releases 
300,000 kg of a chemical pollutant into Lake 1. We would like to predict the amount of 
pollutant in each lake as a function of time.

Let’s construct a simplified model in which each lake is assumed to be well mixed 
and none of the pollutant settles out. The variables l1std, l2std, and l3std denote the mass 
of pollutant in each lake at time t. Each lake is viewed as a container with volume V, and 

Figure �10
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we suppose that the rate of flow of water between any pair of lakes is r, as illustrated in 
Figure 11.

r
l¡
Vr

l£
V

Volume=V

l¡

Volume=V

l™

Volume=V

l£

r
l™
V

Each lake has an outflow and an inflow of pollutant. The outflow is the rate of flow of 
water r (in Lyday) multiplied by the concentration of pollutant in the lake (in kgyL). The 
inflow is similarly the rate of flow r multiplied by the concentration of pollutant within 
the inflow (see Figure 11). This gives the following system of differential equations 

 
dl1

dt
− 2r 

l1

V
1 r 

l3

V

 
dl2

dt
− 2r 

l2

V
1 r 

l1

V

 
dl3

dt
− 2r 

l3

V
1 r 

l2

V

The initial condition is l1s0d − 300,000 kg, l2s0d − 0, and l3s0d − 0.
Our model is a homogeneous system of linear differential equations, but it is three-

dimensional, and our techniques so far have focused on systems of two equations. A bit 
of insight, however, allows us to reduce the system to two equations.

Since none of the pollutant ever settles out of the lakes, we would expect the total 
amount of pollutant in all three lakes to remain constant (at 300,000 kg). That is, we 
would expect the sum l1std 1 l2std 1 l3std to remain constant through time. To see that 
this is so, we differentiate this sum, obtaining

 
d

dt
 sl1 1 l2 1 l3d −

dl1

dt
1

dl2

dt
1

dl3

dt

 − 2r 
l1

V
1 r 

l3

V
2 r 

l2

V
1 r 

l1

V
2 r 

l3

V
1 r 

l2

V
 − 0

This reveals that we need only two differential equations to track the pollu-
tant. Let’s track the amount in Lakes 1 and 2, with the amount in Lake 3 being 
l3std − 300,000 2 l1std 2 l2std. Making this substitution in the first two differential 
equations of our model then gives the system 

 
dl1

dt
− 2r 

l1

V
1 r 

300,000 2 l1 2 l2

V

 
dl2

dt
− 2r 

l2

V
1 r 

l1

V

where the third, redundant equation has been dropped.

Our model is a mixing model similar to 
those of Exercises 13–18 in the Review 
Section of this chapter.

Figure �11
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Before proceeding, let’s simplify the notation by defining the constant � − ryV. In 
matrix notation the model is then

d l
dt

− c22� 2�

� 2�
d l 1 c300,000�

0
d

where l is the vector whose components are l1 and l2.
We have reduced the system of equations from three to two, but it is no longer homo-

geneous. Therefore the next step is to change variables as we did in the preceding exam-
ple. We must first find the equilibrium values, l̂1 and l̂2, and then define the new vari-
ables x1std − l1std 2 l̂1 and x2std − l2std 2 l̂2.

Setting both dl1ydt − 0 and dl2ydt − 0 gives the equation

c22� 2�

� 2�
d c l̂1

l̂2
d − 2 c300,000�

0
d

from which we obtain the values l̂1 − 105 and l̂2 − 105. Therefore the new variables are 
x1std − l1std 2 105 and x2std − l2std 2 105.

With this change of variables we then obtain the following initial-value problem for 
x1 and x2:

(11)	
dx
dt

− Ax	

with

A − c22� 2�

� 2�
d     and    xs0d − c3 3 105

0
d 2 c105

105 d − c2 3 105

2105 d

The eigenvalues of A are the complex conjugates

�1 − 2
3

2
 � 1 i 

s3 

2
 �      �2 − 2

3

2
 � 2 i 

s3 

2
 �

Therefore the origin is a stable spiral because the real parts of the eigenvalues are nega-
tive. In other words, both x1 and x2 approach zero as t l `. This means that the original 
variables l1 and l2 approach their equilibrium values as t l `.

The eigenvectors associated with each eigenvalue are

v1 − £ 2
1

2
1

s3 

2
 i

1

§     and    v2 − £ 2
1

2
2

s3 

2
 i

1

§

Using the notation in Expression 10.2.11, we have

u − £ 2
1

2

1

§     and    w − £
s3 

2

0

§

Therefore, using Equation 10.2.13, we obtain the general solution

(12)	  xstd − k1e2s3y2d�tSu cos 
s3 

2
 �t 2 w sin 

s3 

2
 �tD 	

	      1 k2e2s3y2d�tSw cos 
s3 

2
 �t 1 u sin 

s3 

2
 �tD
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EXERCISES 10.3

	 1.	�� Jellyfish locomotion�  In Exercise 10.1.34 we introduced a 
model of jellyfish locomotion. It can be written as the fol- 
lowing system of two linear differential equations

z91 − z2      z92 − 2
k

m
 z1 2

b

m
 z2

		�  where z1 is the displacement of the bell at time t and z2 is 
its velocity. Find the general solution when m − 100 g, 
b − 0.1 Nym?s, and k − 1 Nym.

	 2.�	� Hemodialysis� is a process by which a machine is used to 
filter urea and other waste products from a patient’s blood if 

the kidneys fail. The amount of urea within a patient during 
dialysis is sometimes modeled by supposing there are two 
compartments within the patient: the blood, which is 
directly filtered by the dialysis machine, and another com- 
partment that cannot be directly filtered but that is con-
nected to the blood. A system of two differential equations 
describing this is

dc

dt
− 2

K

V
 c 1 ap 2 bc    

dp

dt
− 2ap 1 bc

		�  where c and p are the urea concentrations in the blood and

At t − 0, Equation 12 reduces to

xs0d − k1u 1 k2w − k1 £ 2
1

2

1

§ 1 k2 £
s3 

2

0

§ − £ 2
1

2
s3 

2

1 0

§ ck1

k2
d

Therefore k1 and k2 must satisfy the equation

£ 2
1

2
s3 

2

1 0

§ ck1

k2
d − c2 3 105

2105 d

Using Theorem 8.6.4, we therefore obtain k1 − 2105 and k2 − s3 3 105.
The final step is to obtain the solution to the initial-value problem for the original 

variables l1 and l2 using (12). From the definitions of x1 and x2 we simply need to add 105 
to each component of the vector given in (12). Figure 12 shows the phase plane for this 
model, along with the nullclines and the solution when � − 0.2. Figure 13 plots l1, l2, and 
l3 as functions of time. Figure 12 and Figure 13 both show that the amount of pollutant 
in each lake displays a slight oscillatory behavior. All lakes eventually contain the same 
amount of pollutant as t gets large.
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Figure �12
Purple lines are nullclines. Blue curves show a fam-
ily of solutions. The red curve is the solution to the 
initial-value problem.

Figure �13
The components l1 and l2 of the red solution curve 
in Figure 12 are plotted against time, along with 
l3 − 300,000 2 l1 2 l2.
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the capillary, � is the rate at which cancer cells in the organ 
die, and � is their growth rate.

		  (a)	� Find the general solution.
		  (b)	� Classify the equilibrium at the origin when � . � and 

when � , �.
		  (c)	� What is the solution to the initial-value problem if 

Cs0d − C0 and Is0d − 0?
		  (d)	� Use your result from part (c) to show that the tumor will 

grow in the long term if and only if � . �.

Source: Adapted from D. Kaplan et al., Understanding Nonlinear Dynamics 

(New York: Springer-Verlag, 1995).

	 6.	��R adioimmunotherapy� is a cancer treatment in which 
radioactive atoms are attached to tumor-specific antibody 
molecules and then injected into the blood. The antibody 
molecules then attach only to tumor cells, where they then 
deliver the cell-killing radioactivity. The following model 
for this process was introduced in Example 10.1.1:

 
dx1

dt
− 2ax1 2 bx1       

dx2

dt
− bx1 2 cx2

		�  where x1 denotes the amount of antibody in the blood and x2 
the amount of antibody taken up by the tumor (both in mg). 
All constants are positive.

		  (a)	 Find the general solution.
		  (b)	� Suppose that x1s0d − x0 and x2s0d − 0. What is the 

solution to this initial-value problem?

Source: Adapted from A. Flynn et al., “Effectiveness of Radiolabelled 

Antibodies for Radio-Immunotherapy in a Colorectal Xenograft Model: A 

Comparative Study Using the Linear-Quadratic Formulation,” International 

Journal of Radiation Biology 77 (2001): 507–17.

	 7.	�� Cancer progression�  The development of many cancers, 
such as colorectal cancer, proceed through a series of pre- 
cancerous stages. Suppose there are n 2 1 precancerous 
stages before developing into cancer at stage n. A simple 
system of differential equations modeling this is

 x90 − 2u0 x0

 x9i − ui21xi21 2 ui xi

 x9n − un21 xn21

		�  where xi is the fraction of the population in state i, the ui’s 
are positive constants, and i − 1, . . . , n 2 1.

		  (a)	� Suppose n − 2. What is the system of differential equa-
tions for the three stages?

		  (b)	� Note that the variable x2 does not appear in the equa-
tions for the rate of change of x0 or x1. Consequently, 
we can solve the two-dimensional system for x0 and 
x1 separately. Do so, assuming that x0s0d − k and 
x1s0d − 0.

		  (c)	� Use your solution for x1std obtained in part (b) to write 
a differential equation for x2std.

		  (d)	� Solve the differential equation from part (c), assuming 
x2s0d − 0.

	 8.	�� Metapopulations�  Consider a simple metapopulation in 
which subpopulation A grows at a per capita rate of rA − 1 

		�  the inaccessible pool (in mgymL) and all constants are 
positive (see also Exercise 14 in the Review Section of this 
chapter). Suppose that KyV − 1, a − b − 1

2, and the initial 
urea concentration is cs0d − c0 and ps0d − c0 mgymL.

		  (a)	 Classify the equilibrium of this system.
		  (b)	 Solve this initial-value problem.

	 3.	��  Prostate cancer treatment�  During the treatment of 
prostate cancer some tumor cells become resistant to medi- 
cation through a variety of biochemical changes. Some of 
these changes are reversible and some are irreversible. In 
Exercise 10.1.32 we introduced a three-variable model for 
the different cell types. Under certain assumptions this can 
be reduced to the following two differential equations:

y91 − 24y1      y92 − y1 2 2y2 1 d

		�  where y1 and y2 are the fractions of cells that are sensitive 
and irreversibly resistant to treatment, respectively.

		  (a)	� Use a change of variable to reduce this system to a 
homogeneous system of linear differential equations.

		  (b)	� Find the general solution to the system from part (a).
		  (c)	� Suppose that, at the beginning of treatment, all cells are 

sensitive [that is, y1s0d − 1 and y2s0d − 0]. What is the 
solution to this initial-value problem?

		  (d)	� What is the function specifying the fraction of cells that 
are irreversibly resistant as a function of time?

		  (e)	� How long after the start of treatment will 50% of the 
cells be irreversibly resistant? (Assume that d . 1.)

Source: Adapted from Y. Hirata et al., “Development of a Mathematical 

Model that Predicts the Outcome of Hormone Therapy for Prostate Cancer,” 

Journal of Theoretical Biology 264 (2010): 517–27.

	 4.	�� Soil contamination�  A crop is planted in soil that is 
contaminated with a pollutant. The pollutant gradually 
leaches out of the soil but is also absorbed by the growing 
crop. A simple model of this process is

ds

dt
− 2�s 2 �s    

dc

dt
− �s

		�  where s and c are the amounts of pollutant in the soil  
and crop (in mg), respectively, and � and � are positive 
constants.

		  (a)	� Suppose that ss0d − s0 and cs0d − 0. What is the solu-
tion to the initial-value problem?

		  (b)	� In the long term (that is, as t l `), what is the amount 
of pollutant in the crop?

	 5.	�� Metastasis of malignant tumors�  Metastasis is the 
process by which cancer cells spread throughout the body 
and initiate tumors in various organs. This sometimes 
happens via the bloodstream, where cancer cells become 
lodged in capillaries of organs and then move across the 
capillary wall into the organ. Using C to denote the number 
of cells lodged in a capillary and I for the number that have 
invaded the organ, we can model this as

C9 − 2�C 2 �C      I9 − �C 2 �I 1 �I

		�  where all constants are positive, � is the rate of movement 
across the capillary wall, � is the rate of dislodgment from 
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model of this process involves two lung compartments: a 
deep and a shallow compartment, each of which removes 
CO2 from the blood.

		�  Using a for the rate of absorption of gas into each compart-
ment from the blood, c as the concentration of CO2 in this 
gas, and V as the volume of each compartment, we can 
model gas exchange during normal lung functioning as

 
dx1

dt
− ac 1 a 

x2

V
2 2a 

x1

V
       

dx2

dt
− ac 2 a 

x2

V

		�  where x1 and x2 are the amounts of CO2 in the shallow and 
deep compartments, respectively. The concentration of CO2 
in the exhaled air at any time is given by x1yV (see also 
Exercise 15 in the Review Section of this chapter).

		  (a)	� What is the equilibrium amount of CO2 in the two com-
partments during normal lung functioning?

		  (b)	� If an embolism occurs in the deep lung, the equation for 
x2 becomes dx2ydt − 2ax2yV because CO2 is no longer 
entering this compartment. Use a change of variables to 
obtain a homogeneous system of differential equations 
for gas exchange during an embolism.

		  (c)	� The equilibrium values of x1 and x2 from part (a) can 
be used as the initial condition for the system of dif-
ferential equations in part (b) to obtain an initial-value 
problem for the gas exchange once an embolism occurs. 
What is its solution?

		  (d)	� Use the solution found in part (c) to obtain a solution in 
term of the original variables x1 and x2.

Source: Adapted from S. Cruickshank, Mathematics and Statistics in Anaes-

thesia. (New York: Oxford University Press, USA, 2004).

	 12.	�� Systemic lupus erythematosus� is an autoimmune disease 
in which some immune molecules, called antibodies, target 
DNA instead of pathogens. This can be treated by injecting 
drugs that absorb the offending antibodies. The antibodies 
are found in both the bloodstream and in organs, and this 
can be modeled using a two-compartment model:

Bloodstream
x¡

Organs
x™

k¡™

k™¡

G

k

and subpopulation B declines at a per capita rate of 
rB − 21. Suppose the per capita rate of movement between 
subpopulation patches is m in both directions. This gives

 
dxA

dt
− s1 2 mdxA 1 mxB

 
dxB

dt
− 2s1 1 mdxB 1 mxA

		�  where xA and xB are the numbers of individuals in patches A 
and B, respectively.

		  (a)	 Classify the equilibrium at the origin.
		  (b)	 Find the general solution.
		  (c)	� What is the solution to the initial-value problem if 

xAs0d − 1 and xBs0d − 0?

	 9.	�� �Suppose a glass of cold water is sitting in a warm room and 
you place a coin at room temperature R into the glass. The 
coin gradually cools down while, at the same time, the glass 
of water warms up. Newton’s law of cooling suggests the 
following system of differential equations to describe the 
process

dw
dt

− 2kw sw 2 Rd    
dp

dt
− 2kps p 2 wd

		�  where w and p are the temperatures of the water and coin 
(in °C), respectively, and the k’s are positive constants.

		  (a)	� Explain the form of the system of differential equations 
and the assumptions that underlie them.

		  (b)	� Use a change of variables to obtain a homogeneous 
system.

		  (c)	� What is the general solution to the system you found in 
part (b)?

		  (d)	� What is the solution to the original initial-value problem 
if ws0d − w0 and ps0d − p0?

	 10.	�� Vaccine coverage�  The project on page 479 explores an 
epidemiological model of vaccine coverage. For certain 
values of the constants the system of differential equations 
is

 
dN

dt
− 2s1 2 pdN 1 2s1 2 pdV 2 N

 
dV

dt
− 2pV 1 2pN 2 3V

		�  where N and V are the numbers of nonvaccinated and vac-
cinated infected people, respectively, and p is the fraction of 
the population that is vaccinated.

		  (a)	� Classify the equilibrium at the origin for all values of 
the vaccination coverage p.

		  (b)	� What is the critical vaccination coverage above which 
the infection dies out?

		  (c)	� What is the general solution?
		  (d)	� What is the solution to the initial-value problem where 

Ns0d − k and Vs0d − 0?

	 11.	�� Pulmonary air embolism� is a type of blood clot, which can 
occur during surgery, whereby part of the lung is no longer 
able to exchange CO2 for O2. It is detected by a marked 
drop in the CO2 concentration in exhaled air. A simple 
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■ Project  Pharmacokinetics of Antimicrobial Dosing	

The term pharmacokinetics refers to the change in drug concentration within the body 
during treatment. Figure 1 gives an example of the serum concentration (in mgymL) of 
the antimicrobial drug panobacumab in a patient during three consecutive infusions. The 
concentration increases nearly instantaneously during an infusion and it then declines 
through metabolism until the next infusion occurs.
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Mathematical models are routinely used to determine the drug dose and time between 
infusions required to achieve a desired peak serum level. A common model is a two-
compartment mixing model. One compartment is the blood serum, and the other is the 
remainder of the body. The drug is infused directly into the serum and is metabolized 
from there. It also flows back and forth between the serum and the rest of the body (see 
Figure 2). Following the approach used in Exercises 7.4.45–48, we can obtain the fol-
lowing system of linear differential equations:

(1)

	  
dx1

dt
−

k21

V2
 x2 2

k12

V1
 x1 2

k10

V1
 x1	

	  
dx2

dt
−

k12

V1
 x1 2

k21

V2
 x2 	

where x1 and x2 are the amounts in the serum and body, respectively (in mgymL), kij are 
rate constants, and Vi is the effective volume of compartment i (in mL). The initial condi-
tion for the model is x1s0d − d and x2s0d − 0, where d is the drug dose that is infused. 
Models like (1) often provide an excellent fit to data, as shown in Figure 3.

Figure �1

Serum

Figure �2

measured in mg. (See also Exercise 16 in the Review Sec-
tion of this chapter.)

		  (a)	� Use a change of variables to obtain a homogene- 
ous system of differential equations describing the 
situation.

		  (b)	� What is the general solution to the differential equa-
tions in part (a)?

		  (c)	� What is the general solution obtained in part (b) in 
terms of the original variables x1 and x2?

Source: Adapted from K. Suzuki et al., “Anti-DNA Antibody Kinetics Fol-

lowing Selective Removal by Adsorption using Dextran Sulphate Cellulose 

Columns in Patients with Systemic Lupus Erythematosus,” Journal of Clini-

cal Apheresis 11 (1996): 16–22.

		�  A system of differential equations describing the amount of 
antibody in each compartment is

 
dx1

dt
− G 1 k21 x2 2 k12 x1 2 kx1

 
dx2

dt
− k12 x1 2 k21 x2

		�  where G is the rate of generation of antibodies, k is the rate 
at which the drug treatment removes antibody from the 
bloodstream, and kij is the rate of flow of antibody from 
compartment i to j. The variables x1 and x2 are the amounts 
of antibody in the bloodstream and organs, respectively, 
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	 1.	� �Explain the terms in Equations 1 and the assumptions that underlie them.

	 2.	� �As an example, suppose that k10yV1 − 2, k12yV1 − 1, and k21yV2 − 2. Find the 
general solution to Equations 1.

	 3.	� �Show that the general solution we obtained in Problem 2 can be written as  
wstd ? c, where

wstd − £
u u

v1 v2

u u

§ ce
�1t 0

0 e�2t
d       c − cc1

c2
d

		  with �i and vi being the eigenvalues and eigenvectors of the coefficient matrix.

	 4.	� �Using our result from Problem 3, show that the solution to the initial-value 
problem can be written as xstd − Bstdx0, where Bstd − wstdw21s0d and x0 is the 
vector of initial values (that is, its components are d and 0).

	 5.	� �If drug infusions continue repeatedly at fixed intervals, the level of drug in the 
serum eventually displays periodic behavior, as shown in Figure 4. Suppose 
� is the time between infusions. If the amount of drug in the serum and body 
immediately after an infusion is denoted by the vector y, then from Problem 4 
the amounts immediately before the next infusion are Bs�dy. Immediately after 
the next infusion the amounts are Bs�dy 1 x0. (Why?) Further, if the amounts 
in each compartment are displaying periodic behavior, then immediately after 
infusion they must be at the same level as they were immediately after the previ-
ous infusion; that is, Bs�dy 1 x0 − y. Use this last equation to find the function 
relating peak serum level to the dose and infusion constants d and �.

Figure �3
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10.4 Systems of Nonlinear Differential Equations

Systems of linear differential equations form the basis for analyzing the stability proper-
ties of equilibria of systems of nonlinear differential equations. The approach is illus-
trated in this section. As with the rest of this chapter, we focus on two-dimensional 
systems.

■ Linear and Nonlinear Differential Equations
In the preceding sections we studied autonomous systems of differential equations hav-
ing the form

(1)	  
dx1

dt
− a11 x1 1 a12 x2 1 t1       

dx2

dt
− a21 x1 1 a22 x2 1 t2	
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In the development of the general techniques we saw that it was sufficient to analyze 
systems in which t1 − 0 and t2 − 0.

The equations in (1) are referred to as a system of linear differential equations 
because the right side of each differential equation is a linear function of the dependent 
variables. Many of the systems introduced in Sections 7.5 and 7.6 do not have this form. 
For example, the predator-prey equations on page 469 involve the product of the two 
dependent variables. Similarly, the Fitzhugh-Nagumo equations on page 475 involve the 
third power of one of the dependent variables.

Systems of autonomous differential equations that are not linear functions of the 
dependent variables are referred to as systems of autonomous nonlinear differential 
equations. They have the more general form

(2)
	  

dx1

dt
− f1sx1, x2d	

	  
dx2

dt
− f2sx1, x2d	

where f1 and f2 are arbitrary functions of the dependent variables. We will assume that 
both f1 and f2 have continuous first partial derivatives.

The nullclines of linear systems of differential equations are straight lines and there-
fore such systems typically have a single equilibrium. As we saw in Chapter 7, nonlinear 
systems often have several nonlinear nullclines and therefore they often have several 
equilibria as well. In general, it is not possible to solve systems of equations like (2) and 
so we focus on finding equilibria and determining their stability properties.

(3)  Definition � An equilibrium of Equations 2 is a pair of values sx̂1, x̂2d such 
that both dx1ydt − 0 and dx2ydt − 0 when x1 − x̂1 and x2 − x̂2. The functions 
x1std and x2std are sometimes written in vector notation as xstd and the equilibria 
as x̂.

Stability of equilibria in systems of nonlinear differential equations is defined in a 
way analogous to that for single nonlinear differential equations (see Section 7.2).

Definition � An equilibrium x̂ of the system of differential equations (2) is 
locally stable if x approaches the value x̂ as t l ` for all initial conditions suf-
ficiently close to x̂.

■ Local Stability Analyses
Recall the Fitzhugh-Nagumo equations for the electrical potential of a neuron from 
page 475. Using vstd for the neuron’s electrical potential at time t and wstd to denote the 
magnitude of ion exchange, we had

(4)

	  
dv

dt
− sv 2 ads1 2 vdv 2 w	

	  
dw
dt

− bv 2 cw 	
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Both v and w can be positive or negative. In the example on page 474 we used the values 
a − 0.2, b − 0.01, and c − 0.04. Figure 1 displays the nullclines, along with two solu-
tion curves in the phase plane.

√

w

0.2 1

√(0)=0.55

√(0)=0.18

Notice that the w-nullcline is linear, with a slope of byc − 1
4, because the differential 

equation for w is linear. The v-nullcline is nonlinear because the differential equation 
for v is nonlinear—it is the graph of a cubic polynomial in v. The origin, sv, wd − s0, 0d,   
is the only equilibrium because it is the only place at which these nullclines intersect.

The two solution curves plotted on Figure 1 both ultimately move toward the origin 
but it is not possible to determine from the phase plane if this is also true for other initial 
conditions. Consequently, we need a more precise approach.

To begin, suppose the initial condition is very close to the origin. By zooming in on 
the origin in Figure 1 and removing the solution curves, we get Figure 2. Locally (that is, 
near the origin) the cubic nullcline now looks approximately linear. In fact, as we know 
from Section 3.8, we can approximate this cubic polynomial near the origin with a line. 
If we define tsvd − sv 2 ads1 2 vdv, then the cubic nullcline is defined by the equation 
w − tsvd. Now, near the origin we can approximate tsvd as

(5)	 tsvd < ts0d 1 t9s0dv − 2av	

Therefore the nullcline is approximately given by w < 2av, as shown in Figure 3.
We can also use approximation (5) in Equations 4 to obtain the following system of 

linear differential equations:

(6)
	  

dv

dt
− 2av 2 w	

	  
dw
dt

− bv 2 cw 	

The lines drawn in Figure 3 are precisely the nullclines of Equations 6. Equations 6 are re-
ferred to as the linear approximation to Equations 4 near the equilibrium sv, wd − s0, 0d 
or, equivalently, the linearization of Equations 4 near this point.

Using the values a − 0.2, b − 0.01, and c − 0.04, we can write system (6) in matrix 
notation as

(7)	
dx
dt

− Ax    with    A − c20.2 21

0.01 20.04
d 	

The eigenvalues of A are � − 20.12 6 0.06i, indicating that the origin in system (7) is 
a stable spiral. But what does this mean in terms of the local stability of the origin for 
system (4)? Provided that the initial condition of system (4) is close enough to the origin, 
the linearization given by system (7) should be a reasonable approximation. Moreover, 
the origin in this linear system is a stable spiral. Therefore we might expect all solutions 

Figure �1
The v-nullcline is shown in blue,  

w-nullcline in red, and solution  
curves in green.

√

0.02

0.05

_0.02

w=_a√
dw
dt =0

w

w

√

0.02

0.05

_0.02

d√
dt =0 dw

dt =0

Figure �2

Figure �3
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of system (4) to approach the origin in a spiraling fashion as well, provided they start 
sufficiently close to the origin (see Figure 4).

√

0.02

0.05

_0.02

w=_a√

d√
dt =0

dw
dt =0

w

■ Linearization
The preceding calculations can be extended to the following general system of autono-
mous nonlinear differential equations:

(8)

	  
dx1

dt
− f1sx1, x2d	

	  
dx2

dt
− f2sx1, x2d	

Let’s consider an arbitrary equilibrium of Equations 8, denoted sx̂1, x̂2d. Our derivation 
will follow that of Section 7.2 for one-variable, nonlinear differential equations.

The equilibrium of interest need no longer be the origin and therefore we first change 
variables so that we can again focus attention on the origin. Defining «1 − x1 2 x̂1 and 
«2 − x2 2 x̂2, and noting that

d«i

dt
−

d

dt
 fxi 2 x̂ig −

dxi

dt

we have, from system (8),

(9)

	  
d«1

dt
− f1s«1 1 x̂1, «2 1 x̂2d	

	  
d«2

dt
− f2s«1 1 x̂1, «2 1 x̂2d	

The variables «1 and «2 are the deviations of x1 and x2 from their equilibrium values, and 
therefore they have an equilibrium at s«1, «2d − s0, 0d. Furthermore, this equilibrium is 
locally stable if and only if the equilibrium sx̂1, x̂2d of system (8) is locally stable. 

The next step is to obtain the linear approximation of the right side of each differen-
tial equation in (9), near the origin s«1, «2d − s0, 0d. To do so, we need to use the two-
variable tangent plane approximation in Equation 4 on page 599. We have

(10)	 f1s«1 1 x̂1, «2 1 x̂2d < f1sx̂1, x̂2d 1
−f1sx̂1, x̂2d

−x1
 «1 1

−f1sx̂1, x̂2d
−x2

 «2	

and

(11)	 f2s«1 1 x̂1, «2 1 x̂2d < f2sx̂1, x̂2d 1
−f2sx̂1, x̂2d

−x1
 «1 1

−f2sx̂1, x̂2d
−x2

 «2	

Figure �4
Solution curves for the linear system in 
Equations 7, along with its nullclines in 

purple. The v-nullcline of the original 
nonlinear model is blue.
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Equations 10 and 11 can be further simplified by noting that f1sx̂1, x̂2d − 0 and 
f2sx̂1, x̂2d − 0 because the point sx̂1, x̂2d is an equilibrium of system (8). Substituting the 
resulting expressions into the right side of system (9) gives

 
d«1

dt
<

−f1sx̂1, x̂2d
−x1

 «1 1
−f1sx̂1, x̂2d

−x2
 «2 

 
d«2

dt
<

−f2sx̂1, x̂2d
−x1

 «1 1
−f2sx̂1, x̂2d

−x2
 «2 

or, in matrix notation,

(12)	
d«

dt
< £

−f1sx̂1, x̂2d
−x1

−f1sx̂1, x̂2d
−x2

−f2sx̂1, x̂2d
−x1

−f2sx̂1, x̂2d
−x2

§ «	

where « is the vector whose components are «1 and «2. Equation 12 is the linearization 
of Equations 8 near the equilibrium point sx̂1, x̂2d.

Finally, the key observation is that the entries of the matrix of coefficients in Equa-
tion 12 are evaluated at the equilibrium sx̂1, x̂2d. As a result, they do not involve the 
variables. Consequently, Equation 12 is an autonomous, homogeneous system of linear 
differential equations for «std. Although Equation 12 is an approximation, we might 
expect the eigenvalues of its coefficient matrix to determine the local stability of the 
equilibrium s«1, «2d − s0, 0d, and therefore the local stability of sx̂1, x̂2d. This is borne 
out by the following definition and theorem.

(13)  Definition � Consider the autonomous system of differential equations

 
dx1

dt
− f1sx1, x2d       

dx2

dt
− f2sx1, x2d

The matrix

Jsx1, x2d − £
−f1sx1, x2d

−x1

−f1sx1, x2d
−x2

−f2sx1, x2d
−x1

−f2sx1, x2d
−x2

§

is called the Jacobian matrix. Note that J is a function of x1 and x2 because its 
entries are functions of x1 and x2.

We then have the following theorem:

(14)  Theorem (Local Stability) � Suppose sx̂1, x̂2d is an equilibrium of the 
system of differential equations in Definition 13. Let r be the largest eigenvalue of 
Jsx̂1, x̂2d, or the largest real part of the eigenvalues if they are complex. If r , 0, 
then the equilibrium is locally stable. If r . 0, then the equilibrium is unstable. If 
r − 0, then the analysis is inconclusive.
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■ Examples

 Example 1   |  Lotka-Volterra competition equations  In Example 7.6.1 we 
studied a pair of equations that describe competition between two species. These 
equations were obtained by extending the logistic equation for population growth in a 
single species. The equations are

(15)	
dN1

dt
− S1 2

N1 1 2N2

1000 DN1    
dN2

dt
− S1 2

N2 1 N1

600 DN2	

where N1 and N2 are the population sizes of species 1 and 2. We identified four 
equilibria:

(a)	 N̂1 − 0,	 N̂2 − 0

(b)	 N̂1 − 0,	 N̂2 − 600

(c)	 N̂1 − 1000,	 N̂2 − 0

(d)	 N̂1 − 200,	 N̂2 − 400

Determine the local stability properties of each equilibrium.

Solution � The first step is to calculate the Jacobian matrix. Defining

f1sN1, N2d − S1 2
N1 1 2N2

1000 DN1      f2sN1, N2d − S1 2
N2 1 N1

600 DN2

we obtain

J − £
−f1sN1, N2d

−N1

−f1sN1, N2d
−N2

−f2sN1, N2d
−N1

−f2sN1, N2d
−N2

§ − £
1 2

N1 1 N2

500
2

N1

500

2
N2

600
1 2

N1 1 2N2

600

§

(a)	 Evaluating the Jacobian at N̂1 − 0, N̂2 − 0 gives

J − c1 0

0 1
d

The eigenvalues of J are �1 − 1 and �2 − 1. Thus r − 1 in Theorem 14 and the 
equilibrium is unstable.
(b)	 Evaluating the Jacobian at N̂1 − 0, N̂2 − 600 gives 

J − c 21
5 0

21 21
d

The eigenvalues of J are �1 − 21
5 and �2 − 21. Thus r − 21

5 in Theorem 14 and the 
equilibrium is locally stable.
(c)	 Evaluating the Jacobian at N̂1 − 1000, N̂2 − 0 gives

J − c21 22

0 22
3
d

The eigenvalues of J are �1 − 21 and �2 − 22
3. Thus r − 22

3 in Theorem 14 and the 
equilibrium is locally stable.
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(d)	 Evaluating the Jacobian at N̂1 − 200, N̂2 − 400 gives

J − c2
1
5 22

5

22
3 22

3
d

The eigenvalues of J are �1 − 21 and �2 − 2
15. Thus r − 2

15 in Theorem 14 and the 
equilibrium is unstable.

The preceding analysis matches the phase plane analysis in Figure 7.6.5 by showing 
that the only stable equilibria are those where a single species is present. This is 
referred to as competitive exclusion. In this example, the species that ultimately sur- 
vives is determined by the initial size of each population.	 ■

The following theorem is often useful when evaluating local stability. It follows 
directly from a combination of Theorem 10.2.15 and Theorem 10.2.16.

(16)  Theorem � Suppose sx̂1, x̂2d is an equilibrium of the system of differential 
equations in Definition 13. If

	(i)	 det Jsx̂1, x̂2d . 0, and

	(ii)	 trace Jsx̂1, x̂2d , 0

then the equilibrium is locally stable. If the inequalities in either (i), (ii), or both 
are reversed, then the equilibrium is unstable. (Recall that the trace of a matrix is 
the sum of its diagonal entries.)

Example 2   |  Kermack-McKendrick infectious disease model  In 
Exercise 7.6.24 we studied a pair of equations that describe the spread of an infectious 
disease in the human population. The equations are

(17)	
dS

dt
− � 2 �S 2 �SI    

dI

dt
− �SI 2 �I	

where S and I are the numbers of susceptible and infected people, respectively. The 
constant � is the rate of arrival of susceptible people, � is their per capita mortality 
rate, � is the transmission rate of the disease from infected to susceptible people, and  
� is the per capita mortality rate of infected people. All constants are positive.

Definition 3 can be used to verify that the following are both equilibria:

(a)	 Ŝ − �y�, Î − 0

(b)	 Ŝ − �y�, Î − s�� 2 ��dy��

Note that the second equilibrium is of biological interest only if �� 2 �� . 0. 
Assuming �� 2 �� . 0, determine the local stability properties of both equilibria.

Solution � The first step is to calculate the Jacobian matrix. Defining

f1sS, Id − � 2 �S 2 �SI      f2sS, Id − �SI 2 �I

we obtain

J − £
−f1sS, Id

−S

−f1sS, Id
−I

−f2sS, Id
−S

−f2sS, Id
−I

§ − c2� 2 �I 2�S

�I �S 2 �
d
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(a)	 Evaluating the Jacobian at Ŝ − �y� and Î − 0 gives

J − £
2� 2

��

�

0
��

�
2 �

§

The eigenvalues are therefore �1 − 2� and �2 − ��y� 2 �. The assumption that 
�� 2 �� . 0 means that �2 . 0 and therefore this equilibrium is unstable. This 
illustrates that the disease will spread in the population. 

(b)	 Evaluating the Jacobian at Ŝ − �y� and Î − s�� 2 ��dy�� gives

J − £
2� 2

�� 2 ��

�
2�

�� 2 ��

�
0

§

The eigenvalues of J can be readily calculated, but their signs are difficult to deter-
mine. Instead we make use of Theorem 16. We have

det J − �� 2 ��

and	 trace J − 2� 2
�� 2 ��

�
	

The assumption that �� 2 �� . 0 means that det J . 0 and trace J , 0. Therefore, 
from Theorem 16, this equilibrium is locally stable. At this stable equilibrium, part of 
the population will be infected and the remainder will be susceptible to infection.	 ■

Example 3   |  Lotka-Volterra predator-prey equations  In Section 7.5 we 
studied a pair of equations that describe a predator and its prey. The equations are

(18)	  
dR

dt
− rR 2 aRW        

dW

dt
− 2kW 1 bRW 	

where R and W  are the population sizes of prey and predator, respectively. The 
constant r is the per capita reproductive rate of prey, k is the per capita death rate of the 
predator, a is the rate of consumption of prey by predators, and b is the rate at which 
this consumption is converted into predator offspring. We identified two equilibria of 
these equations in Section 7.6, one of which was sR̂, Ŵd − skyb, ryad. Evaluate the 
stability of this equilibrium.

Solution � Defining

f1sR, Wd − rR 2 aRW       f2sR, Wd − 2kW 1 bRW

the Jacobian is

J − £
−f1sR, Wd

−R

−f1sR, Wd
−W

−f2sR, Wd
−R

−f2sR, Wd
−W

§ − cr 2 aW 2aR

bW 2k 1 bR
d
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	� 1–6  �Each of the nonlinear systems has an equilibrium at 
sx̂1, x̂2d − s0, 0d. Find the linearization near this point.

	 1.	��
dx1

dt
− 4x1 2 2x1x2

		
dx2

dt
− 22x2 1 8x1x2

	 2.	��
dx1

dt
− 4x1s1 2 5x1d 2 2x1x2

		
dx2

dt
− 22x2 1 8x1x2

	 3.	��
dx1

dt
− sin x1 1 x1x2 1 3x 2

2

		
dx2

dt
− cos x2 2 1 1 x1sx1 2 1d 1 7x2

	 4.	��
dx1

dt
− 5s1 1 cos x1d 1 ax1 2 bx2 2 10

		
dx2

dt
− 3x2 1 bx1x2

	 5.	��
dx1

dt
− 1 1 x 3

1 2
1 1 x1

1 1 x2

		
dx2

dt
− 2x2 1 x 2

1

	 6.	��
dx1

dt
− x2 2

2 1 ax1

2 1 bx2
1 cos x2

		
dx2

dt
−

2x1

1 1 x2
2 ax1

	� 7–12 � Find all equilibria. Then find the linearization near each 
equilibrium.

	 7.	
dx1

dt
− 25x1 1 x1x2

		
dx2

dt
− x2 2 5x1x2

	 8.	
dx1

dt
− x2 2 5x1x2

		
dx2

dt
− 2x1 2 6x1x2

	 9.	
dx1

dt
− x1 2 6x 2

2 1 x1x2

		
dx2

dt
− 8x1 1 4x1x2

	 10.	
dx1

dt
− x1 2 2x 2

1 2 6x1x2

		
dx2

dt
− 2x2 2 8x 2

2 2 2x1x2

	 11.	
dx1

dt
− e2x1sx1 2 x2d

		
dx2

dt
− x1 2 x 2

2 1 2x1x2

	 12.	
dx1

dt
− ln x1 2 x2

		
dx2

dt
− x1s1 2 x1 2 x2d

EXERCISES 10.4

Evaluating this at the equilibrium gives

J − £
0 2

ak

b

rb

a
0

§

The eigenvalues of J are the complex conjugates �1 − isrk  and �2 − 2isrk . The 
real part of these eigenvalues is 0 and therefore r − 0 in Theorem 14. As a result, the 
local stability analysis is inconclusive. Figure 7.5.4 on page 462 suggests that, in this 
case, the equilibrium is neutrally stable, that is, solution curves move neither toward 
the equilibrium nor away from it as t l `. This can, in fact, be proven, and you should 
consider how you might do this. Thus the predator and prey populations are predicted 
to undergo neverending oscillations.	 ■
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	 23.	 p9 − 2p2 1 q 2 1,  q9 − qs2 2 p 2 qd

	� 24–25 � Find all equilibria and determine their stability proper-
ties. Your answer might be a function of the constant a.

	 24.	 x9 − 2xy 1 y 1 ax,  y9 − 2y 2 xy

	 25.	 x9 − ax2 1 ay 2 x,  y9 − x 2 y,  a ± 0

	 26.	�� Cell cycle�  In Exercise 7.Review.25 a model for the cell 
cycle was introduced. It modeled the concentrations of a 
molecule called MPF (maturation promoting factor) and 
another molecule called cyclin. MPF production is stimu- 
lated by cyclin, but the presence of MPF also inhibits its 
own production. Using M and C to denote the concentra-
tions of these two biomolecules (in mgymL), the model for 
their interaction is

 
dM

dt
− �C 1 �CM 2 2

�M

1 1 M

 
dC

dt
− � 2 M

		  (a)	� Suppose that � − 2, � − 1, � − 10, and � − 1. Find 
the only equilibrium.

		  (b)	� Calculate the Jacobian matrix.
		  (c)	� Determine the local stability properties of the equilib-

rium found in part (a) using the Jacobian from part (b).
		  (d)	� Describe how M and C change near the equilibrium 

point.

Source: Adapted from R. Norel et al., “A Model for the Adjustment of the 

Mitotic Clock by Cyclin and MPF Levels,” Science 251 (1991): 1076 –78.

	 27.�	� Competition-colonization models�  In Exercise 
7.Review.23 a metapopulation model for two species was 
introduced. The equations were

 
dp1

dt
− c1 p1s1 2 p1d 2 m1 p1

 
dp2

dt
− c2 p2s1 2 p1 2 p2d 2 m2 p2 2 c1 p1 p2

		�  where pi is the fraction of patches occupied by species i, 
and ci and mi are the species-specific rates of colonization 
and extinction of patches, respectively. These equations  
assume that any patch has at most one species, and spe- 
cies 2 patches can be taken over by species 1, but not vice 
versa.

		  (a)	� Suppose that m1 − m2 − 3, c1 − 5, and c2 − 30. Find 
all equilibria.

		  (b)	 Calculate the Jacobian matrix.
		  (c)	� Determine the local stability properties of each equilib-

rium found in part (a) using the Jacobian from part (b).
		  (d)	� Are the species predicted to be able to coexist at a stable 

equilibrium?

	� 13–18 � A Jacobian matrix and two equlibria are given. Deter-
mine if each is locally stable, unstable, or if the analysis is 
inconclusive.

	 13.	 J − c sx1 2 2dx2 1 x1x2 x1sx1 2 2d
0 21 1 2x2

d

		  (i)	 x̂1 − 0,  x̂2 − 2

		  (ii)	 x̂1 − 2,  x̂2 − 21

	 14.	 J − c21 1 2x1 0

0 21
3 1 2x2

d

		  (i)	 x̂1 − 21,  x̂2 − 0

		  (ii)	 x̂1 − 2,  x̂2 − 1
3

	 15.	 J − c1 2 cos x2 sx1 2 1dsin x2

cos x1 2sin 1
d

		  (i)	 x̂1 − 0,  x̂2 − 0

		  (ii)	 x̂1 − 1,  x̂2 − 1

	 16.	 J − c 2x1 2sin x2

cos x1 0
d

		  (i)	 x̂1 − 1,  x̂2 − 2�

		  (ii)	 x̂1 − 1,  x̂2 − �

	 17.	 J − £
2

1

2 1 x2
21 1

x1

s2 1 x2d2

x2

s1 1 x1d2 21 2
1

1 1 x1

§

		  (i)	 x̂1 − 0,  x̂2 − 0

		  (ii)	 x̂1 − 22,  x̂2 − 21 2 s3 

	 18.	 J − £
2

1

1 1 x2

x1

s1 1 x2d2

21 1
x2

s1 1 x1d2 2
1

1 1 x1

§

		  (i)	 x̂1 − 22,  x̂2 − 22

		  (ii)	 x̂1 − 1
2,  x̂2 − 23

4

	� 19–23 � Find all equilibria and determine their local stability 
properties.

	 19.	 x9 − xs3 2 x 2 yd,  y9 − ys2 2 x 2 yd

	 20.	 p9 − ps1 2 p 2 qd,  q9 − qs2 2 3p 2 qd

	 21.	 n9 − ns1 2 2md,  m9 − ms2 2 2n 2 md

	 22.	 x9 − xs2 2 xd,  y9 − ys3 2 yd
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	 33.	��� The Michaelis-Menten equations describe a biochemical 
reaction in which an enzyme E and substrate S bind to 
form a complex C. This complex can then either dissociate 
back into its original components or undergo a reaction in 
which a product P is produced along with the free enzyme:
E 1 SK C l E 1 P. This can be expressed by the 
differential equations

 
dx

dt
− 2kf xyM 1 krs1 2 ydM

 
dy

dt
− 2kf xyM 1 krs1 2 ydM 1 kcats1 2 ydM

 
dz

dt
− kcats1 2 ydM

		���  where M is the total number of enzymes (both free and 
bound), x and z are the numbers of substrate and product 
molecules, y is the fraction of the enzyme pool that is free, 
and the ki’s are positive constants.

		  (a)	� Although this is a system of three differential equa-
tions, x and y can be analyzed separately. Explain 
why.

		  (b)	 Find the only equilibrium.
		  (c)	 Calculate the Jacobian matrix.
		  (d)	� Determine the local stability properties of the  

equilibrium.

	 34.	�� Stability of Caribbean reefs�  Coral and macroalgae 
compete for space when colonizing Caribbean reefs. A 
modification of the model in Exercise 27 has been used to 
describe this process. The equations are

 
dM

dt
− �Ms1 2 Md 2

tM

1 2 C

 
dC

dt
− rCs1 2 M 2 C d 2 �CM 2 dC

		���  where M is the fraction of the reef occupied by macro-
algae, C is the fraction occupied by coral, r is the coloniza-
tion rate of empty space by coral, d is the death rate of 
coral, � is the rate of colonization by macroalgae (in both 
empty space and space occupied by coral), and t is a 
constant governing the death rate of macroalgae. Notice 
that the per capita death rate of macroalgae decreases as 
coral cover increases.

		  (a)	� Suppose that r − 3, d − 1, � − 2, and t − 1. Find 
all equilibria. There are five, but only four of them are 
biologically relevant.

		  (b)	 Calculate the Jacobian matrix.
		  (c)	� Determine the local stability properties of the four 

relevant equilibria found in part (a).
		  (d)	� In part (c) you should find two equilibria that are 

locally stable. What do they represent in terms of the 
structure of the reef?

Source: Adapted from P. Mumby et al., “Thresholds and the Resilience of 

Caribbean Coral Reefs,” Nature 450 (2007): 98–101.

	  28.	�� Gene regulation�  The model of gene regulation from 
Section 10.3 is often extended to nonlinear gene regulation 
by specifying a nonlinear function for how the concentra-
tion of protein in a cell affects mRNA production. One 
such example, called an auto-repression model, is

dm

dt
−

1

1 1 p
2 m    

dp

dt
− m 2 p

		  (a)	 Find all equilibria.
		  (b)	 Calculate the Jacobian matrix.
		  (c)	� Only one equilibrium found in part (a) is of biological 

interest. Determine its local stability properties using 
the Jacobian from part (b).

		  (d)	� Describe how m and p change near the equilibrium 
point.

	� 29–31 � Consumer resource models often have the following 
general form

R9 − f sRd 2 tsR, Cd    C9 − «tsR, Cd 2 hsCd

	�� �where R is the number of individuals of the resource and C is 
the number of consumers. The function f sRd gives the rate of 
replenishment of the resource, tsR, Cd describes the rate of 
consumption of the resource, and hsCd is the rate of loss of the 
consumer. The constant «, where 0 , « , 1, is the conversion 
efficiency of resources into consumers. Find all equilibria of the 
following examples and determine their stability properties.

	 29.	�� A chemostat ��is an experimental consumer-resource 
system. If the resource is not self-reproducing, then it can 
be modeled by choosing f sRd − �, tsR, Cd − bRC, and 
hsCd − �C. Suppose � − 2, b − 1, « − 1, and � − 1.

	 30.	��� A model for self-reproducing resources is obtained by 
choosing f sRd − rR, tsR, Cd − bRC, and hsCd − �C. 
Suppose r − 2, b − 1, « − 1, and � − 1.

	 31.	��� A model for self-reproducing resources with limited  
growth is obtained by choosing f sRd − rRs1 2 RyKd, 
tsR, Cd − bRC, and hsCd − �C. Suppose r − 2, K − 5, 
b − 1, « − 1, and � − 1.

	 32.	� The Kermack-McKendrick equations�� describe the out- 
break of an infectious disease. Using S and I to denote the 
number of susceptible and infected people in a population, 
respectively, the equations are

S9 − 2�SI    I9 − �SI 2 �I

		�  where � and � are positive constants representing the 
transmission rate and rate of recovery.

		  (a)	� Verify that Î − 0, along with any value of S, is an 
equilibrium.

		  (b)	� Calculate the Jacobian matrix.
		  (c)	� Using your answer to part (b), determine how large S 

must be to guarantee that the disease will spread when 
rare.
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CONCEPT CHECK

	 1.	��� What is the difference between an autonomous and a 
nonautonomous system of differential equations?

	 2.��	� What is an equilibrium of a system of differential  
equations?

	 3.��	� Explain the difference between local and global stability in 
systems of differential equations.

	 4.��	� What is the difference between the solution of an initial-
value problem and the general solution of a system of 
differential equations?

	 5.��	� What does the Existence and Uniqueness Theorem tell us 
about homogeneous systems of linear, autonomous dif- 
ferential equations?

	 6.��	 Explain the Superposition Principle.

	 7.��	� Explain the difference between nullclines and eigenvectors 
in systems of linear autonomous differential equations.

	 8.��	� What is the linearization of a system of nonlinear differen-
tial equations?

	 9.��	� Explain what a Jacobian matrix is.

	 10.��	� What do the eigenvalues of a Jacobian matrix from a system 
of nonlinear differential equations tell us?

Answers to the Concept Check can be found on the back 
endpapers.

Chapter 10 Review

		  (a)	� Verify that the origin is an equilibrium.
		  (b)	� Calculate the Jacobian matrix.
		  (c)	� Determine the local stability properties of the origin as 

a function of the constants.

	 35.	�� Fitzhugh-Nagumo equations�  Consider the following 
alternative form of the Fitzhugh-Nagumo equations:

dv

dt
− sv 2 ads1 2 vdv 2 w    

dw
dt

− «sv 2 wd

		��  where « . 0 and 0 , a , 1.

	� Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

	 1.��	 The following system of differential equations is linear:

 
dx

dt
− 3x 1 y 1 3

 
dy

dt
− 2xy 2 x 1 5

	 2.��	� The following system of differential equations is  
homogeneous:

 
dx1

dt
− astdx1 1 bstdx2

 
dx2

dt
− cstdx1 1 dstdx2

	 3.��	� The nullclines of a two-variable system of linear differential 
equations must be straight lines.

	 4.��	� If an equilibrium of an autonomous system of linear, homo- 
geneous differential equations is locally stable, then it is 
gobally stable as well.

	 5.��	� A saddle equilibrium of an autonomous system of linear, 
homogeneous differential equations is always unstable.

	 6.��	� A stable node must have two eigenvalues of the same sign.

	 7.��	� Spirals have complex eigenvalues.

	 8.��	� Stable equilibria of systems of linear autonomous differen-
tial equations must have eigenvalues with negative real 
parts.

	 9.��	� Nonlinear systems of differential equations have at most 
one equilibrium.

	 10.��	� If the Jacobian matrix for a nonlinear system of differential 
equations has eigenvalues with negative real parts at an 
equilibrium, then this equilibrium is globally stable.

TRUE-FALSE QUIZ
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EXERCISES

	� 1–4 � Is the system linear or nonlinear?

	 1.	 p9 − 2q 2 1,  q9 − q 2 2 q 2 p

	 2.	 x9 − 5 2 2x 2 y,  y9 − 2x 2 y

	 3.	 z9 − tz 2 2w,  w9 − z 2 w 2 1

	 4.	 x9 − 2sx 2 2d lnsxyd,  y9 − exsx 2 yd

	� 5–8 � Show that x1std and x2std are solutions to the initial-value 
problem dxydt − Ax with xs0d − x0.

	 5.	 A − c1 22

1 21
d     x0 − c1

2
d

		  x1std − cos t 2 3sin t,  x2std − 2cos t 2 sin t

	 6.	 A − c0 1

2 1
d     x0 − c1

5
d

		  x1std − 2e 2 t 2 e2t,  x2std − 4e 2 t 1 e2t

	 7.	 A − c1 21

0 1
d     x0 − c2

1
d

		  x1std − 2et 2 tet,  x2std − et

	 8.	 A − c1 1

1 1
d     x0 − c2

1
d

		  x1std − 1
2 1 3

2 e 2 t,  x2std − 21
2 1 3

2 e 2 t

	� 9–12 � Solve the initial-value problem dxydt − Ax with 
xs0d − x0.

	 9.	 A − c 0 1

21 0
d     x0 − c1

1
d

	 10.	 A − c2 1

1 0
d     x0 − c21

1
d

	 11.	 A − c1 1

0 22
d     x0 − c 1

22
d

	 12.	 A − c21 1

21 0
d     x0 − c1

0
d

	� 13–18 � Two-compartment mixing problems are similar to the 
mixing problems in Exercises 7.4.45–48, except there are two 
connected tanks of fixed capacities filled with a well-mixed 
solution of some substance (for example, salt). Solution of a 
given concentration can enter each tank at a fixed rate, and solu-

tion also flows back and forth between the tanks. Solution can 
also leave each tank at a fixed rate.

f™c™f¡c¡

d¡ d™

k¡™

k™¡

V¡

⁄

V™

¤

	� �Using x1std and x2std to denote the amount of substance in each 
tank at time t, we obtain the following system of linear differen-
tial equations:

 
dx1

dt
− f1c1 2 k12 

x1

V1
1 k21 

x2

V2
2 d1 

x1

V1

 
dx2

dt
− f2c2 2 k21 

x2

V2
1 k12 

x1

V1
2 d2 

x2

V2

	 13.��	� Two tanks containing a salt solution are connected as in the 
figure:

r § c

r

V¡

⁄

rV™

¤

		�  Suppose that x1std and x2std denote the amount of salt (in 
grams) in each tank at time t (in minutes), and r − 8 Lymin, 
c − 2 gyL, V1 − 50 L, and V2 − 25 L. The initial amounts 
of salt in each tank are x1s0d − 8 g and x2s0d − 0 g.

		  (a)	� What is the initial-value problem describing this  
system?

		  (b)	� Solve the initial-value problem from part (a).
		  (c)	� What is the maximum amount of salt that is ever in 

tank 2?

	 14.	��H emodialysis�  In Exercise 10.3.2 we modeled the process 
of hemodialysis, in which a machine filters urea from a 
patient’s blood. The system of differential equations was 

dc

dt
− 2

K

V
 c 1 ap 2 bc

dp

dt
− 2ap 1 bc
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	 21.	 J − c3z 2 2 8z 1 3 22

1 21
d     ẑ − 1,  ŵ − 0

	 22.	 J − £
2 2 x

x
2 ln xy

2 2 x

y

ex 1 exsx 2 yd 2ex

§     x̂ − 2,  ŷ − 2

	� 23–26�  Find all equilibria and determine their local stability 
properties.

	 23.	
dx

dt
− 5x 2 xy, 

dy

dt
− 4y 2 y 2 2 2xy

	 24.	
dA

dt
− 2A 2 AL, 

dL

dt
− 25L 1 AL

	 25.	
dR

dt
− 8Rs1 2 2Rd 2 RW, 

dW

dt
− 22W 1 2RW

	 26.	
dA

dt
− 2As1 2 Ad 2 AL, 

dL

dt
− 25L 1 AL

	 27.	 The Lotka-Volterra competition equations�� are

dN1

dt
− S1 2

N1 1 �N2

K1
DN1

dN2

dt
− S1 2

N2 1 �N1

K2
DN2

		���  where all constants �, �, K1, and K2 are postive.
		  (a)	 What are the equilibria?
		  (b)	 Calculate the Jacobian matrix.
		  (c)	� Determine the local stability properties of all biologi-

cally feasible equilibria when K1 . �K2 and K2 , �K1.
		  (d)	� Determine the local stability properties of all biologi-

cally feasible equilibria when K1 , �K2 and K2 . �K1.
		  (e)	� Determine the local stability properties of all biologi-

cally feasible equilibria when K1 , �K2 and K2 , �K1.
		  (f)	� Determine the local stability properties of all biologi-

cally feasible equilibria when K1 . �K2 and K2 . �K1.

	 28.�	� The Rosenzweig-MacArthur model� is a consumer-
resource model. A simplified version is

R9 − RsK 2 Rd 2
R

a 1 R
 C    C9 −

R

a 1 R
 C 2 bC

		���  where R is the number of resource individuals and C is  
the number of consumers. Suppose that all constants are 
positive.

		  (a)	 What are the equilibria?
		  (b)	 Calculate the Jacobian matrix.
		  (c)	� Determine the values of the constants for which the 

extinction equilibrium is unstable.
		  (d)	� Determine the values of the constants for which the 

equilibrium with only the resource present is unstable.

		���  where c and p are the urea concentrations in the blood and 
in other parts of the body, respectively (in mgymL). Explain 
how these equations can be viewed as a special case of a 
general two-compartment mixing problem.

	 15.�	�P ulmonary air embolism�  In Exercise 10.3.11 we 
modeled a pulmonary air embolism during surgery by 
viewing the lung as having two compartments: a deep and a 
shallow compartment, each of which removes CO2 from the 
blood. The system of differential equations was

 
dx1

dt
− ac 1 a 

x2

V
2 2a 

x1

V

 
dx2

dt
− ac 2 a 

x2

V

		���  where x1 and x2 are the amounts of CO2 in the shallow and 
deep compartments, respectively, a is the rate of absorption 
of gas into each compartment from the blood, c is the 
concentration of CO2 in this gas, and V is the volume of 
each compartment. Explain how these equations can be 
viewed as a special case of a general two-compartment 
mixing problem.

	 16.�	� Systemic lupus erythematosus�  In Exercise 10.3.12 we 
modeled the amount of antibodies in the bloodstream and in 
other organs. The system of differential equations describ-
ing the amount of antibody in each compartment is

 
dx1

dt
− G 1 k21 x2 2 k12 x1 2 kx1

 
dx2

dt
− k12 x1 2 k21 x2

		��  �where x1 and x2 are the amounts in the blood and organs, 
respectively (in mg), G is the rate of generation of antibod-
ies, k is the rate at which the drug treatment removes anti- 
body from the bloodstream, and kij is the rate of flow of 
antibody from compartment i to j. Explain how these equa- 
tions can be viewed as a special case of a general two- 
compartment mixing problem.

	 17.��	� Explain how the equations in the Project on page 458 can be 
viewed as a special case of a general two-compartment 
mixing problem.

	 18.��	� Explain how the equations in the Project on page 664 can be 
viewed as a special case of a general two-compartment 
mixing problem.

	� 19–22�  A Jacobian matrix and equilibrium are given. Is the 
equilibrium locally stable, unstable, or can you not tell?

	 19.	 J − c 0 2

21 2q 2 1
d     p̂ − 21

4,  q̂ − 1
2

	 20.	 J − c22 2 y 2x

y x 2 1
d     x̂ − 5

2,  ŷ − 0
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case study 2d  Hosts, Parasites, and Time-Travel

In this part of the case study we will take the formulation of the math-
ematical model for the antagonistic interactions between Daphnia and its 
parasite from Case Study 2c on page 484 and simplify it by linearization near 
one of its equilibrium points. We will then obtain an explicit solution for the frequency 
of the host and parasite genotypes as functions of time.

The analysis starts with equations

(1)

	  
dq

dt
− sqqs1 2 qds1 2 2pd	

 
dp

dt
− sp ps1 2 pds2q 2 1d

that were obtained in Case Study 2c. Recall that there are two possible host genotypes (A 
and a) and two possible parasite genotypes (B and b). Parasites of type B can infect only 
hosts of type A, while parasites of type b can infect only hosts of type a. In Equations 1, 
q is the frequency of the type A host and p is the frequency of the type B parasite. The 
constant sq represents the reduction in reproductive output of a host due to infection, and 
sp is the reduction in reproductive output of a parasite if it is unable to infect a host. In 
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		  (a)	 Find all equilibria.
		  (b)	 Calculate the Jacobian matrix.
		  (c)	 Determine the local stability properties of all equilibria.

	 31.	��S terile insect technique�  Sterile insects are sometimes 
released as a means of controlling insect populations. 
Fertile insects mate with the sterile individuals and 
therefore fail to produce offspring. The following differen-
tial equations model this idea:

 
df

dt
− af  

f

f 1 s
2 t f s f 1 sd

 
ds

dt
− r 2 tss f 1 sd

		�  where f std and sstd are the numbers of fertile and ster-
ile individuals at time t, r is the rate of release of sterile 
insects, a is a positive birth rate constant, and t is a positive 
death rate constant.

		  (a)	� Show that, when no sterile insects are being released 
(that is, where r − 0), there is a locally stable equilib-
rium where f̂ − ayt and ŝ − 0.

		  (b)	� Show that, when sterile insects are being released (that 
is, where r . 0), there is a locally stable equilibrium 
where f̂ − 0 and ŝ − sryt .

Source: Adapted from H. Barclay et al., “Effects of Sterile Insect Releases 

on a Population under Predation or Parasitism,” Researches on Population 

Ecology 22 (1980): 136–146.

	 29.	�� Habitat destruction�  The model of Exercise 10.4.27 can 
be extended to include the effects of habitat destruction. 
Suppose that only a fraction, h, of the patches are habitable 
(0 , h , 1). The equations become

 
dp1

dt
− c1p1sh 2 p1d 2 m1p1

 
dp2

dt
− c2 p2sh 2 p1 2 p2d 2 m2 p2 2 c1p1p2

		  (a)	 What are the equilibria?
		  (b)	 Calculate the Jacobian matrix.
		  (c)	� Determine the values of h for which the extinction 

equilibrium is stable.

Source: Adapted from S. Nee et al., “Dynamics of Metapopulations: Habitat 

Destruction and Competitive Coexistence,” Journal of Animal Ecology 61 

(1992): 37– 40.

	 30.	�� Gene regulation	�  The model of gene regulation from 
Section 10.3 is often extended to nonlinear gene regulation 
by specifying a nonlinear function for how the concentra-
tion of protein in a cell affects mRNA production. One such 
example, called an auto-activation model, is

dm

dt
−

2p

1 1 2p
2 m

dp

dt
− m 2 p
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Case Study 2c we found that q − 1
2 and p − 1

2 is an equilibrium of this system of dif-
ferential equations.

Let’s define «qstd − qstd 2 1
2 and «pstd − pstd 2 1

2 to be the deviations of q and p 
from these equilibrium values, respectively.

	 1.	� �Linearize Equations 1 near the equilibrium q − 1
2, p − 1

2 to show that «q and «p 
satisfy the differential equations

(2)
	  

d«q

dt
− 2

sq

2
 «p	

 
d«p

dt
−

sp

2
 «q

	 2.	�� Show that the solution to system (2), with initial conditions «qs0d and «ps0d, is 

 «qstd − «qs0d cos(1
2 ssqsp t) 2 «ps0dÎ sq

sp

       sin(1
2 ssqsp t)

 «pstd − «ps0d cos(1
2 ssqsp t) 1 «qs0dÎ sp

sq

       sin(1
2 ssqsp t)

	 3.	�� A useful trigonometric identity is 

a cossctd 1 b sinsctd − M cossct 2 �d

		��  where M − sa 2 1 b 2  and � is the angle between 0 and 2� whose cosine and 
sine satisfy the equations cos � − ayM and sin � − byM (see Figure 1).  
Note that if a . 0 and b . 0 (so that we are in the first quadrant), then 
� − tan21sbyad. More generally, however, � is not given by the principal branch 
of tan21. Instead, if a , 0 (second or third quadrant), then � − � 1 tan21sbyad,  
whereas if a , 0 and b , 0 (fourth quadrant), then � − 2� 1 tan21sbyad. Use 
the identity to show that the solutions in Problem 2 can be written as 

 «qstd − Mq cossct 2 �qd

 «pstd − Mp cossct 2 �pd

		��  where c − 1
2 ssq sp , 

 Mq − Î«qs0d2 1 «ps0d2 
sq

sp
 

 Mp − Î«ps0d2 1 «qs0d2 
sp

sq
 

M

a

b
M

˙

Figure �1
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		�  and �q and �p are given by

�q −  

tan21S2
«ps0dssq 

«qs0dssp 
D

� 1 tan21S2
«ps0dssq 

«qs0dssp 
D

2� 1 tan21S2
«ps0dssq 

«qs0dssp 
D
  

if «qs0d . 0, «ps0d , 0

if «qs0d , 0

if

 

«qs0d . 0, «ps0d . 0

		�  and

�q −  

tan21S2
«qs0dssp 

«ps0dssq 
D

� 1 tan21S «qs0dssp 

«ps0dssq 
D

2� 1 tan21S «qs0dssp 

«ps0dssq 
D
  

if «ps0d . 0, «qs0d . 0

if «ps0d , 0

if

 

«ps0d . 0, «qs0d , 0

		��  Using the definitions of «qstd and «pstd, we can see that the frequencies qstd and 
pstd, as functions of time, are given by the equations

(3)
	  qstd − 1

2 1 Mq cossct 2 �qd	

	  pstd − 1
2 1 Mp cossct 2 �pd	

	 4.	�� Describe, qualitatively, the predicted behavior of q and p from Equations 3.

	 5.	�� How do the constants Mq and Mp affect the behavior? How do the constants �q 
and �p affect the behavior? How does the constant c affect the behavior?

	 6.	�� Use your answers to Problem 5 to explain how the constants sq and sp affect the 
frequency of type A hosts and type B parasites over time. Can you provide a 
biological explanation for your answer?

The properties of Equations 3, and the predictions that can be obtained from them in 
terms of experimental data, are explored in Case Study 2a and 2b.
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A Intervals, Inequalities, and Absolute Values

Certain sets of real numbers, called intervals, occur frequently in calculus and corre-
spond geometrically to line segments. For example, if a , b, the open interval from a 
to b consists of all numbers between a and b and is denoted by the symbol sa, bd. Using 
set-builder notation, we can write

sa, bd − hx | a , x , bj

Notice that the endpoints of the interval—namely, a and b—are excluded. This is indi-
cated by the round brackets s d and by the open dots in Figure 1. The closed interval 
from a to b is the set

fa, bg − hx | a < x < bj

Here the endpoints of the interval are included. This is indicated by the square brackets 
f g and by the solid dots in Figure 2. It is also possible to include only one endpoint in an 
interval, as shown in Table 1.

Notation Set description Picture

sa, bd hx | a , x , bj
a b

a b

a b

a b

a

a

b

b

fa, bg hx | a < x < bj

fa, bd hx | a < x , bj

sa, bg hx | a , x < bj

sa, `d hx | x . aj

fa, `d hx | x > aj

s2`, bd hx | x , bj

s2`, bg hx | x < bj

s2`, `d R (set of all real numbers)

We also need to consider infinite intervals such as

sa, `d − hx | x . aj

This does not mean that ` (“infinity”) is a number. The notation sa, `d stands for the 
set of all numbers that are greater than a, so the symbol ` simply indicates that the inter-
val extends indefinitely far in the positive direction.

■ Inequalities
When working with inequalities, note the following rules.

Rules for Inequalities

	1.	 If a , b, then a 1 c , b 1 c.

	2.	 If a , b and c , d, then a 1 c , b 1 d.

	3.	 If a , b and c . 0, then ac , bc.

	4.	 If a , b and c , 0, then ac . bc.

	5.	 If 0 , a , b, then 1ya . 1yb.

(1) Table of Intervals

a b

a b

Figure �1
Open interval sa, bd

Figure �2
Closed interval [a, b]

Table 1 lists the nine possible types of 
intervals. When these intervals are dis-
cussed, it is always assumed that a , b.
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Rule 1 says that we can add any number to both sides of an inequality, and Rule 2 says 
that two inequalities can be added. However, we have to be careful with multiplication. 
Rule 3 says that we can multiply both sides of an inequality by a positive number, but 
Rule 4 says that if we multiply both sides of an inequality by a negative number, then 
we reverse the direction of the inequality. For example, if we take the inequality 3 , 5 
and multiply by 2, we get 6 , 10, but if we multiply by 22, we get 26 . 210. Finally, 
Rule 5 says that if we take reciprocals, then we reverse the direction of an inequality 
(provided the numbers are positive).

 Example 1   |  Solve the inequality 1 1 x , 7x 1 5.

SOLUTION�  The given inequality is satisfied by some values of x but not by others. To 
solve an inequality means to determine the set of numbers x for which the inequality is 
true. This is called the solution set.

First we subtract 1 from each side of the inequality (using Rule 1 with c − 21):

x , 7x 1 4

Then we subtract 7x from both sides (Rule 1 with c − 27x):

26x , 4

Now we divide both sides by 26 (Rule 4 with c − 21
6 ):

x . 24
6 − 22

3

These steps can all be reversed, so the solution set consists of all numbers greater than 
22

3. In other words, the solution of the inequality is the interval (22
3, `).	 ■

 Example 2   |  Solve the inequality x 2 2 5x 1 6 < 0.

SOLUTION�  First we factor the left side:

sx 2 2dsx 2 3d < 0

We know that the corresponding equation sx 2 2dsx 2 3d − 0 has the solutions 2 and 
3. The numbers 2 and 3 divide the real line into three intervals:

s2`, 2d            s2, 3d            s3, `d

On each of these intervals we determine the signs of the factors. For instance,

x [ s2`, 2d     ?     x , 2     ?     x 2 2 , 0

Then we record these signs in the following chart:

Interval x 2 2 x 2 3 sx 2 2dsx 2 3d
 x , 2 2 2 1

 2 , x , 3 1 2 2

 x . 3 1 1 1

Another method for obtaining the information in the chart is to use test values. For 
instance, if we use the test value x − 1 for the interval s2`, 2d, then substitution in 
x 2 2 5x 1 6 gives

12 2 5s1d 1 6 − 2

x0

y
y=≈-5x+6

1 2 3 4

Figure �3

A visual method for solving Example 2 
is to use a graphing device to graph the 
parabola y − x 2 2 5x 1 6 (as in Fig-
ure 3) and observe that the curve lies on 
or below the x-axis when 2 < x < 3.
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The polynomial x 2 2 5x 1 6 doesn’t change sign inside any of the three intervals, so 
we conclude that it is positive on s2`, 2d.

Then we read from the chart that sx 2 2dsx 2 3d is negative when 2 , x , 3. Thus 
the solution of the inequality sx 2 2dsx 2 3d < 0 is

hx | 2 < x < 3j − f2, 3g

Notice that we have included the endpoints 2 and 3 because we are looking for values 
of x such that the product is either negative or zero. The solution is illustrated in 
Figure 4.	 ■

 Example 3   |  Solve x 3 1 3x 2 . 4x.

SOLUTION�  First we take all nonzero terms to one side of the inequality sign and 
factor the resulting expression:

x 3 1 3x 2 2 4x . 0        or        xsx 2 1dsx 1 4d . 0 

As in Example 2 we solve the corresponding equation xsx 2 1dsx 1 4d − 0 and use 
the solutions x − 24, x − 0, and x − 1 to divide the real line into four intervals 
s2`, 24d, s24, 0d, s0, 1d, and s1, `d. On each interval the product keeps a constant 
sign as shown in the following chart:

Interval x x 2 1 x 1 4 x sx 2 1dsx 1 4d

 x , 24 2 2 2 2

 24 , x , 0 2 2 1 1

 0 , x , 1 1 2 1 2

 x . 1 1 1 1 1

Then we read from the chart that the solution set is

hx | 24 , x , 0 or x . 1j − s24, 0d ø s1, `d

The solution is illustrated in Figure 5.	 ■

■ Absolute Value
The absolute value of a number a, denoted by | a |, is the distance from a to 0 on the real 
number line. Distances are always positive or 0, so we have

| a | > 0        for every number a

For example,

| 3 | − 3        | 23 | − 3        | 0 | − 0        | s2 2 1 | − s2 2 1        | 3 2 � | − � 2 3

In general, we have

 (2)	 | a | − a	 if  a > 0

	 | a | − 2a	 if  a , 0

0 2 3

1 2 1

x

Figure �4

0 1_4

Figure �5

Remember that if a is negative, then 
2a is positive.
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 Example 4   |  Express | 3x 2 2 | without using the absolute-value symbol.

SOLUTION

 | 3x 2 2 | − H3x 2 2

2s3x 2 2d
if 3x 2 2 > 0

if 3x 2 2 , 0

	  − H3x 2 2

2 2 3x

if x > 2
3

if x , 2
3

	 ■

Recall that the symbol s  means “the positive square root of.” Thus sr − s means
�s 2 − r and s > 0. Therefore the equation sa 2 − a is not always true. It is true only 
when a > 0. If a , 0, then 2a . 0, so we have sa 2 − 2a. In view of (2), we then have 
the equation

(3)	 sa 2 − | a |	

which is true for all values of a.
Hints for the proofs of the following properties are given in the exercises.

Properties of Absolute Values �  Suppose a and b are any real numbers and 
n is an integer. Then

1.  | ab | − | a | | b |                2.  Z a

b Z − | a |
| b |       sb ± 0d                3.  | an | − | a |n

For solving equations or inequalities involving absolute values, it’s often very helpful 
to use the following statements.

Suppose a . 0. Then

	4.	 | x | − a    if and only if    x − 6a

	5.	 | x | , a    if and only if    2a , x , a

	6.	 | x | . a    if and only if    x . a  or  x , 2a

For instance, the inequality | x | , a says that the distance from x to the origin is less 
than a, and you can see from Figure 6 that this is true if and only if x lies between 2a 
and a.

If a and b are any real numbers, then the distance between a and b is the absolute 
value of the difference, namely, | a 2 b |, which is also equal to | b 2 a |. (See Figure 7.)

 Example 5   |  Solve | 2x 2 5 | − 3.

SOLUTION�  By Property 4 of absolute values, | 2x 2 5 | − 3 is equivalent to

2x 2 5 − 3        or        2x 2 5 − 23

So 2x − 8 or 2x − 2. Thus x − 4 or x − 1.	 ■	

0 a_a x

a a

| x |

Figure �6

| a-b |

ab

| a-b |

ba

Figure �7
Length of a line segment − |a 2 b|
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EXERCISES A

	 27.��	� The relationship between the Celsius and Fahrenheit tem- 
perature scales is given by C − 5

9 sF 2 32d, where C is the 
temperature in degrees Celsius and F is the temperature in 
degrees Fahrenheit. What interval on the Celsius scale corre- 
sponds to the temperature range 50 < F < 95?

	 28.��	� Use the relationship between C and F given in Exercise 27 to 
find the interval on the Fahrenheit scale corresponding to the 
temperature range 20 < C < 30.

	 29.��	� As dry air moves upward, it expands and in so doing cools at 
a rate of about 1°C for each 100-m rise, up to about 12 km.

		  (a)	� If the ground temperature is 20°C, write a formula for 
the temperature at height h.

		  (b)	� What range of temperature can be expected if a plane 
takes off and reaches a maximum height of 5 km?

	 30.��	� If a ball is thrown upward from the top of a building 128 ft 
high with an initial velocity of 16 ftys, then the height h 
above the ground t seconds later will be

h − 128 1 16t 2 16t 2

		�  During what time interval will the ball be at least 32 ft above 
the ground?

	 31–32�  Solve the equation for x.

	 31.	 | x 1 3 | − | 2x 1 1 |	 32.	 | 3x 1 5 | − 1

	� 1–10 � Rewrite the expression without using the absolute-value 
symbol.

	 1.	 | 5 2 23 |	 2.	 | � 2 2 |
	 3.	 | s5 2 5 |	 4.	 || 22 | 2 | 23 ||
	 5.	�� | x 2 2 |    if  x , 2	 6.	 | x 2 2 |    if x . 2

	 7.	 | x 1 1 |	 8.	 | 2x 2 1 |
	 9.	 | x 2 1 1 |	 10.	 | 1 2 2x 2 |
	� 11–26�  Solve the inequality in terms of intervals and illustrate the 

solution set on the real number line.

	 11.	 2x 1 7 . 3	 12.	 4 2 3x > 6

	 13.	 1 2 x < 2	 14.	 1 1 5x . 5 2 3x

	 15.	 0 < 1 2 x , 1	 16.	 1 , 3x 1 4 < 16

	 17.	 sx 2 1dsx 2 2d . 0	 18.	 x 2 , 2x 1 8

	 19.	 x 2 , 3	 20.	 x 2 > 5

	 21.	 x 3 2 x 2 < 0	

	 22.	 sx 1 1dsx 2 2dsx 1 3d > 0

	 23.	 x 3 . x	 24.	 x 3 1 3x , 4x 2

	 25.	
1

x
, 4	 26.	 23 ,

1

x
< 1

 Example 6   |  Solve | x 2 5 | , 2.

SOLUTION 1�  By Property 5 of absolute values, | x 2 5 | , 2 is equivalent to

22 , x 2 5 , 2

Therefore, adding 5 to each side, we have

3 , x , 7

and the solution set is the open interval s3, 7d.

SOLUTION 2�  Geometrically, the solution set consists of all numbers x whose distance 
from 5 is less than 2. From Figure 8 we see that this is the interval s3, 7d.	 ■

 Example 7   |  Solve | 3x 1 2 | > 4.

SOLUTION�  By Properties 4 and 6 of absolute values, | 3x 1 2 | > 4 is equivalent to

3x 1 2 > 4        or        3x 1 2 < 24

In the first case 3x > 2, which gives x > 2
3. In the second case 3x < 26, which gives 

x < 22. So the solution set is

	 hx | x < 22 or x > 2
3j − s2`, 22g ø f2

3 , `d	 ■

3 5 7

22

Figure �8
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B Coordinate Geometry

The points in a plane can be identified with ordered pairs of real numbers. We start by 
drawing two perpendicular coordinate lines that intersect at the origin O on each line. 
Usually one line is horizontal with positive direction to the right and is called the x-axis; 
the other line is vertical with positive direction upward and is called the y-axis.

Any point P in the plane can be located by a unique ordered pair of numbers as fol-
lows: Draw lines through P perpendicular to the x- and y-axes. These lines intersect 
the axes in points with coordinates a and b as shown in Figure 1. Then the point P is 
assigned the ordered pair sa, bd. The first number a is called the x-coordinate of P; the 
second number b is called the y-coordinate of P. We say that P is the point with coor-
dinates sa, bd, and we denote the point by the symbol Psa, bd. Several points are labeled 
with their coordinates in Figure 2.

0 x1 2 3 4 5_1_2_3

1

2

3

4

_2

_3

_1

y

_4

(5, 0)

(1, 3)
(_2, 2)

(_3, _2)

(2, _4)

x1 2 3 4 5_1_2_3
a

O

2

4

_2
_1

b

y

1

3

P(a, b)

III

IVIII
_3

_4

	 Figure �1	 Figure �2 	

By reversing the preceding process we can start with an ordered pair sa, bd and arrive  
at the corresponding point P. Often we identify the point P with the ordered pair sa, bd 
and refer to “the point sa, bd.” [Although the notation used for an open interval sa, bd is 
the same as the notation used for a point sa, bd, you will be able to tell from the context 
which meaning is intended.]

This coordinate system is called the rectangular coordinate system or the Carte-
sian coordinate system in honor of the French mathematician René Descartes (1596–
1650), even though another Frenchman, Pierre Fermat (1601–1665), invented the prin-
ciples of analytic geometry at about the same time as Descartes. The plane supplied 
with this coordinate system is called the coordinate plane or the Cartesian plane and 
is denoted by R 2.

The x- and y-axes are called the coordinate axes and divide the Cartesian plane into 
four quadrants, which are labeled I, II, III, and IV in Figure 1. Notice that the first quad-
rant consists of those points whose x- and y-coordinates are both positive.

	 41.��	� Solve the inequality asbx 2 cd > bc for x, assuming that a, 
b, and c are positive constants.

	 42.	�� � Solve the inequality ax 1 b , c for x, assuming that a, b, 
and c are negative constants.

	 43.��	 Prove that | ab | − | a | | b |.  [Hint: Use Equation 3.]

	 44.��	 Show that if 0 , a , b, then a 2 , b 2. 

	 33–40�  Solve the inequality.

	 33.	 | x | , 3	 34.	 | x | > 3

	 35.	 | x 2 4 | , 1	 36.	 | x 2 6 | , 0.1

	 37.	 | x 1 5 | > 2	 38.	 | x 1 1 | > 3

	 39.	 | 2x 2 3 | < 0.4	 40.	 | 5x 2 2 | , 6
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 Example 1   |  Describe and sketch the regions given by the following sets.

(a)  hsx, yd | x > 0j            (b)  hsx, yd | y − 1j            (c)  hsx, yd | | y | , 1j

SOLUTION
(a) � The points whose x-coordinates are 0 or positive lie on the y-axis or to the right of 
it as indicated by the shaded region in Figure 3(a).

x0

y

x0

y

y=1

x0

y

y=1

y=_1

(a) x � 0 (b) y=1 (c) | y |<1

(b) �� The set of all points with y-coordinate 1 is a horizontal line one unit above the  
x-axis [see Figure 3(b)].

(c)  Recall from Appendix A that

| y | , 1        if and only if        21 , y , 1

The given region consists of those points in the plane whose y-coordinates lie between 
21 and 1. Thus the region consists of all points that lie between (but not on) the hori- 
zontal lines y − 1 and y − 21. [These lines are shown as dashed lines in Figure 3(c) 
to indicate that the points on these lines don’t lie in the set.]	 ■

Recall from Appendix A that the distance between points a and b on a number line 
is | a 2 b | − | b 2 a |. Thus the distance between points P1sx1, y1d and P3sx2, y1d on a 
horizontal line must be | x2 2 x1 | and the distance between P2sx2, y2 d and P3sx2, y1d on 
a vertical line must be | y2 2 y1 |. (See Figure 4.)

To find the distance | P1P2 | between any two points P1sx1, y1d and P2sx2, y2 d, we note 
that triangle P1P2 P3 in Figure 4 is a right triangle, and so by the Pythagorean Theorem  
we have

 | P1P2 | − s| P1P3 |2 1 | P2P3 |2 − s| x2 2 x1 |2 1 | y2 2 y1 |2 

 − ssx2 2 x1d2 1 sy2 2 y1d2 

Distance Formula  The distance between the points P1sx1, y1d and P2sx2, y2 d is

| P1P2 | − ssx2 2 x1d2 1 sy2 2 y1d2 

For instance, the distance between s1, 22d and s5, 3d

ss5 2 1d 2 1 f3 2 s22dg 2 − s42 1 52 − s41

Figure �3

P¡(⁄, ›)

x⁄ x2
0

›

fi

y

P™(x2, fi)

P£(x2, ›)|x2-⁄|

|fi-›|

Figure �4

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Appendix B  |  Coordinate Geometry    691

■ Circles
An equation of a curve is an equation satisfied by the coordinates of the points on the 
curve and by no other points. Let’s use the distance formula to find the equation of a 
circle with radius r and center sh, kd. By definition, the circle is the set of all points 
Psx, yd whose distance from the center Csh, kd is r. (See Figure 5.) Thus P is on the circle 
if and only if |PC| − r. From the distance formula, we have 

ssx 2 hd2 1 sy 2 kd2 − r

or equivalently, squaring both sides, we get

sx 2 hd2 1 sy 2 kd2 − r 2

This is the desired equation.

Equation of a Circle  An equation of the circle with center sh, kd and radius r 
is 

sx 2 hd2 1 sy 2 kd2 − r 2

In particular, if the center is the origin s0, 0d, the equation is

x 2 1 y 2 − r 2

For instance an equation of the circle with radius 3 and center s2, 25d is

sx 2 2d2 1 sy 1 5d2 − 9

 Example 2   |  Sketch the graph of the equation x 2 1 y 2 1 2x 2 6y 1 7 − 0 by first 
showing that it represents a circle and then finding its center and radius.

SOLUTION�  We first group the x-terms and y-terms as follows:

sx 2 1 2xd 1 sy 2 2 6yd − 27

Then we complete the square within each grouping, adding the appropriate constants 
(the squares of half the coefficients of x and y) to both sides of the equation:

sx 2 1 2x 1 1d 1 sy 2 2 6y 1 9d − 27 1 1 1 9

or	 sx 1 1d2 1 sy 2 3d2 − 3	

Comparing this equation with the standard equation of a circle, we see that h − 21,

k − 3, and r − s3 , so the given equation represents a circle with center s21, 3d and 
radius s3 . It is sketched in Figure 6.

	 x0

y

1

(_1, 3)

	 ■

C(h, k)

x0

y

r
P(x, y)

Figure �5

Figure �6
x 2 1 y 2 1 2x 2 6y 1 7 − 0
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■ Lines
To find the equation of a line L we use its slope, which is a measure of the steepness of 
the line.

Definition � The slope of a nonvertical line that passes through the points 
P1sx1, y1d and P2sx2, y2 d is

m −
Dy

Dx
−

y2 2 y1

x2 2 x1

The slope of a vertical line is not defined.

Thus the slope of a line is the ratio of the change in y, Dy, to the change in x, Dx. (See 
Figure 7.) The slope is therefore the rate of change of y with respect to x. The fact that 
the line is straight means that the rate of change is constant.

Figure 8 shows several lines labeled with their slopes. Notice that lines with positive 
slope slant upward to the right, whereas lines with negative slope slant downward to the 
right. Notice also that the steepest lines are the ones for which the absolute value of the 
slope is largest, and a horizontal line has slope 0.

Now let’s find an equation of the line that passes through a given point P1sx1, y1d 
and has slope m. A point Psx, yd with x ± x1 lies on this line if and only if the slope of 
the line through P1 and P is equal to m; that is,

y 2 y1

x 2 x1
− m

This equation can be rewritten in the form

y 2 y1 − msx 2 x1d

and we observe that this equation is also satisfied when x − x1 and y − y1. Therefore it 
is an equation of the given line.

Point-Slope Form of the Equation of a Line  An equation of the line pass-
ing through the point P1sx1, y1d and having slope m is

y 2 y1 − msx 2 x1d

 Example 3   |  Find an equation of the line through the points s21, 2d and s3, 24d.

SOLUTION�  The slope of the line is

m −
24 2 2

3 2 s21d
− 2

3

2

Using the point-slope form with x1 − 21 and y1 − 2, we obtain

y 2 2 − 23
2 sx 1 1d

which simplifies to	 3x 1 2y − 1	 ■

P™(x™, y™)

P¡(x¡, y¡)

L

Îy=fi-›
=rise

Îx=x2-⁄
=run

x0

y

Figure �7

x0

y

m=1

m=0

m=_1
m=_2

m=_5

m=2
m=5

m= 1
2

m=_ 1
2

Figure �8
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Suppose a nonvertical line has slope m and y-intercept b. (See Figure 9.) This means 
it intersects the y-axis at the point s0, bd, so the point-slope form of the equation of the 
line, with x1 − 0 and y1 − b, becomes

y 2 b − msx 2 0d
This simplifies as follows.

Slope-Intercept Form of the Equation of a Line  An equation of the line 
with slope m and y-intercept b is

y − mx 1 b

In particular, if a line is horizontal, its slope is m − 0, so its equation is y − b, where 
b is the y-intercept (see Figure 10). A vertical line does not have a slope, but we can write 
its equation as x − a, where a is the x-intercept, because the x-coordinate of every point 
on the line is a.

 Example 4   |  Graph the inequality x 1 2y . 5.

SOLUTION�  We are asked to sketch the graph of the set hsx, yd | x 1 2y . 5j and we 
begin by solving the inequality for y:

 x 1 2y . 5

 2y . 2x 1 5

 y . 21
2 x 1 5

2

Compare this inequality with the equation y − 21
2 x 1 5

2, which represents a line with 
slope 21

2 and y-intercept 52. We see that the given graph consists of points whose  
y-coordinates are larger than those on the line y − 21

2 x 1 5
2. Thus the graph is the 

region that lies above the line, as illustrated in Figure 11.	 ■

■ Parallel and Perpendicular Lines
Slopes can be used to show that lines are parallel or perpendicular. The following facts 
are proved, for instance, in Precalculus: Mathematics for Calculus, Sixth Edition, by 
Stewart, Redlin, and Watson (Belmont, CA, 2012).

Parallel and Perpendicular Lines

	1.	 Two nonvertical lines are parallel if and only if they have the same slope.

	2.	� Two lines with slopes m1 and m2 are perpendicular if and only if m1m2 − 21; 
that is, their slopes are negative reciprocals:

m2 − 2
1

m1

 Example 5   |  Find an equation of the line through the point s5, 2d that is parallel to 
the line 4x 1 6y 1 5 − 0.

SOLUTION�  The given line can be written in the form

y − 22
3 x 2 5

6

x0

y

b
y=mx+b

Figure �9

0

y

b

xa

x=a

y=b

Figure �10

0

y

2.5

x5

y=_   x+
1

2 5
2

Figure �11
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which is in slope-intercept form with m − 22
3. Parallel lines have the same slope, so 

the required line has slope 22
3 and its equation in point-slope form is

y 2 2 − 22
3 sx 2 5d

We can write this equation as 2x 1 3y − 16.	 ■

 Example 6   |  Show that the lines 2x 1 3y − 1 and 6x 2 4y 2 1 − 0 are  
perpendicular.

SOLUTION�  The equations can be written as

y − 22
3 x 1 1

3        and        y − 3
2 x 2 1

4

from which we see that the slopes are

m1 − 22
3        and        m2 − 3

2

Since m1m2 − 21, the lines are perpendicular.	 ■

■ Conic Sections
Here we review the geometric definitions of parabolas, ellipses, and hyperbolas and their 
standard equations. They are called conic sections, or conics, because they result from 
intersecting a cone with a plane as shown in Figure 12.

ellipse hyperbolaparabola

■ Parabolas
A parabola is the set of points in a plane that are equidistant from a fixed point F (called 
the focus) and a fixed line (called the directrix). This definition is illustrated by Fig-
ure 13. Notice that the point halfway between the focus and the directrix lies on the 
parabola; it is called the vertex. The line through the focus perpendicular to the directrix 
is called the axis of the parabola.

In the 16th century Galileo showed that the path of a projectile that is shot into the air 
at an angle to the ground is a parabola. Since then, parabolic shapes have been used in 
designing automobile headlights, reflecting telescopes, and suspension bridges.

We obtain a particularly simple equation for a parabola if we place its vertex at the 
origin O and its directrix parallel to the x-axis as in Figure 14. If the focus is the point 

Figure �12
Conics

axis

F
focus

parabola

vertex directrix

Figure �13
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s0, pd, then the directrix has the equation y − 2p and the parabola has the equation

x 2 − 4py

(See Exercise 47.)
If we write a − 1ys4pd, then the equation of a parabola becomes

y − ax 2

Figure 15 shows the graphs of several parabolas with equations of the form y − ax 2  
for various values of the number a. We see that the parabola y − ax 2 opens upward if 
a . 0 and downward if a , 0 (as in Figure 16). The graph is symmetric with respect to 
the y-axis because its equation is unchanged when x is replaced by 2x. This corresponds 
to the fact that the function f sxd − ax 2 is an even function.

x0

y

(_x, y) (x, y) x
0

y

(a)  y=a≈,  a>0 (b)  y=a≈,  a<0

y

x

y=2≈

y=≈

y=_≈
y=_2≈

y=  ≈1
2

y=_   ≈1
2

If we interchange x and y in the equation y − ax 2, the result is x − ay 2, which also 
represents a parabola. (Interchanging x and y amounts to reflecting about the diagonal 
line y − x.) The parabola x − ay 2 opens to the right if a . 0 and to the left if a , 0. 
(See Figure 17.) This time the parabola is symmetric with respect to the x-axis because 
the equation is unchanged when y is replaced by 2y.

x0

y

x0

y

(a)  x=a¥,  a>0 (b)  x=a¥,  a<0

 Example 7   |  Sketch the region bounded by the parabola x − 1 2 y 2 and the line 
x 1 y 1 1 − 0.

Solution�  First we find the points of intersection by solving the two equations. 
Substituting x − 2y 2 1 into the equation x − 1 2 y 2, we get 2y 2 1 − 1 2 y 2, 
which gives 

0 − y 2 2 y 2 2 − sy 2 2dsy 1 1d

x

y

O

F(0, p)

y=_p

P(x, y)

y

p

Figure �14
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y

(_x, y) (x, y) x
0

y
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y

x

y=2≈

y=≈

y=_≈
y=_2≈

y=  ≈1
2

y=_   ≈1
2

Figure �15

Figure �16

Figure �17
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so y − 2 or 21. Thus the points of intersection are s23, 2d and s0, 21d and we draw 
the line x 1 y 1 1 − 0 passing through these points.

To sketch the parabola x − 1 2 y 2 we start with the parabola x − 2y 2 in Fig-
ure 17(b) and shift one unit to the right. We also make sure it passes through the points 
s23, 2d and s0, 21d. The region bounded by x − 1 2 y 2 and x 1 y 1 1 − 0 means the 
finite region whose boundaries are these curves. It is sketched in Figure 18.	 ■

■ Ellipses
An ellipse is the set of points in a plane the sum of whose distances from two fixed 
points F1 and F2 is a constant (see Figure 19). These two fixed points are called the foci 
(plural of focus). One of Kepler’s laws is that the orbits of the planets in the solar system 
are ellipses with the sun at one focus.

F¡ F™

P

F¡(_c, 0) F™(c, 0)0 x

y
P(x, y)

Figure �19	 Figure �20

In order to obtain the simplest equation for an ellipse, we place the foci on the x-axis 
at the points s2c, 0d and sc, 0d as in Figure 20 so that the origin is halfway between the 
foci. If we let the sum of the distances from a point on the ellipse to the foci be 2a, then 
we can write an equation of the ellipse as

(1)	
x 2

a 2 1
 y 2

b 2 − 1	

where c 2 − a 2 2 b 2. (See Exercise 49 and Figure 21.) Notice that the x-intercepts are 
6a, the y-intercepts are 6b, the foci are s6c, 0d, and the ellipse is symmetric with 
respect to both axes. If the foci of an ellipse are located on the y-axis at s0, 6cd, then we 
can find its equation by interchanging x and y in (1).

 Example 8   |  Sketch the graph of 9x 2 1 16y 2 − 144 and locate the foci.

Solution�  Divide both sides of the equation by 144: 

x 2

16
1

 y 2

9
− 1

The equation is now in the standard form for an ellipse, so we have a 2 − 16, b 2 − 9, 
a − 4, and b − 3. The x-intercepts are 64 and the y-intercepts are 63. Also, 
c 2 − a 2 2 b 2 − 7, so c − s7  and the foci are s6s7 , 0d. The graph is sketched in 
Figure 22.	 ■

Like parabolas, ellipses have an interesting reflection property that has practical con-
sequences. If a source of light or sound is placed at one focus of a surface with elliptical 
cross-sections, then all the light or sound is reflected off the surface to the other focus. 
This principle is used in lithotripsy, a treatment for kidney stones. A reflector with ellip-
tical cross-section is placed in such a way that the kidney stone is at one focus. High-

x=1-¥

x+y+1=0

y

2

1

(_3, 2)

(0, _1)

10 x

Figure �18
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c
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intensity sound waves generated at the other focus are reflected to the stone and destroy 
it without damaging surrounding tissue. The patient is spared the trauma of surgery and 
recovers within a few days.

■ Hyperbolas
A hyperbola is the set of all points in a plane the difference of whose distances from two 
fixed points F1 and F2 (the foci) is a constant. This definition is illustrated in Figure 23.

Notice that the definition of a hyperbola is similar to that of an ellipse; the only 
change is that the sum of distances has become a difference of distances. It is left as 
Exercise 51 to show that when the foci are on the x-axis at s6c, 0d and the difference of 
distances is |PF1| 2 |PF2| − 62a, then the equation of the hyperbola is

(2)	
x 2

a 2 2
 y 2

b 2 − 1	

where  c 2 − a 2 1 b 2. Notice that the x-intercepts are again 6a. But if we put x − 0 in 
Equation 2 we get y 2 − 2b 2, which is impossible, so there is no y-intercept. The hyper-
bola is symmetric with respect to both axes.

To analyze the hyperbola further, we look at Equation 2 and obtain 

x 2

a 2 − 1 1
 y 2

b 2 > 1

This shows that x 2 > a 2, so | x | − sx 2 > a. Therefore we have x > a or x < 2a. This 
means that the hyperbola consists of two parts, called its branches.

When we draw a hyperbola it is useful to first draw its asymptotes, which are the 
lines y − sbyadx and y − 2sbyadx shown in Figure 24. Both branches of the hyperbola 
approach the asymptotes; that is, they come arbitrarily close to the asymptotes. If the 
foci of a hyperbola are on the y-axis, we find its equation by reversing the roles of x  
and y.

 Example 9   |  Find the foci and asymptotes of the hyperbola 9x 2 2 16y 2 − 144 and 
sketch its graph.

Solution�  If we divide both sides of the equation by 144, it becomes 

x 2

16
2

 y 2

9
− 1

which is of the form given in (2) with a − 4 and b − 3. Since c 2 − 16 1 9 − 25, the 
foci are s65, 0d. The asymptotes are the lines y − 3

4 x and y − 23
4 x. The graph is 

shown in Figure 25.
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	 1–2�  Find the distance between the points.

	   1.	 s1, 1d,    s4, 5d	 2.	 s1, 23d,    s5, 7d

	 3–4�  Find the slope of the line through P and Q.

	   3.	 Ps23, 3d,    Qs21, 26d	 4.	 Ps21, 24d,    Qs6, 0d

	 5.��	� Show that the points s22, 9d, s4, 6d, s1, 0d, and s25, 3d are 
the vertices of a square.

	 6.	�� (a)	� Show that the points As21, 3d, Bs3, 11d, and Cs5, 15d  
are collinear (lie on the same line) by showing that 

| AB | 1 | BC | − | AC |.
		  (b)	 Use slopes to show that A, B, and C are collinear.

	 7–10�  Sketch the graph of the equation.

	 7.	 x − 3	 8.	 y − 22

	 9.	 xy − 0	 10.	 | y | − 1

	� 11–24�  Find an equation of the line that satisfies the given  
conditions.

	 11.��	 Through s2, 23d,    slope 6

	 12.��	 Through s23, 25d,    slope 27
2

	 13.��	 Through s2, 1d and s1, 6d

	 14.��	 Through s21, 22d and s4, 3d

	 15.��	 Slope 3,    y-intercept 22

	 16.��	 Slope 25,    y-intercept 4

	 17.��	 x-intercept 1,    y-intercept 23

	 18.��	 x-intercept 28,    y-intercept 6

	 19.��	 Through s4, 5d,    parallel to the x-axis

	 20.��	 Through s4, 5d,    parallel to the y-axis

	 21.��	 Through s1, 26d,    parallel to the line x 1 2y − 6

	 22.��	 y-intercept 6,    parallel to the line 2x 1 3y 1 4 − 0

	 23.��	� Through s21, 22d,    perpendicular to the line 
2x 1 5y 1 8 − 0

	 24.��	 Through (1
2, 22

3),    perpendicular to the line 4x 2 8y − 1

	� 25–28�  Find the slope and y-intercept of the line and draw  
its graph.

	 25.	 x 1 3y − 0	 26.	 2x 2 3y 1 6 − 0

	 27.	 3x 2 4y − 12	 28.	 4x 1 5y − 10

	 29–36�  Sketch the region in the xy-plane.

	 29.	 hsx, yd | x , 0j	 30.	 hsx, yd | x > 1 and y , 3j

	 31.	 hsx, yd | | x | < 2j

	 32.	 hsx, yd | | x | , 3 and | y | , 2j

	 33.	 hsx, yd | 0 < y < 4 and x < 2j

	 34.	 hsx, yd | y . 2x 2 1j

	 35.	 hsx, yd | 1 1 x < y < 1 2 2xj

	 36.	 hsx, yd | 2x < y , 1
2 sx 1 3dj

	� 37–38� � Find an equation of a circle that satisfies the given  
conditions.

	 37.�	� Center s3, 21d, radius 5

	 38.��	 Center s21, 5d, passes through s24, 26d

	� 39–40�  Show that the equation represents a circle and find the 
center and radius.

	 39.��	 x 2 1 y 2 2 4x 1 10y 1 13 − 0

	 40.��	 x 2 1 y 2 1 6y 1 2 − 0

	 41.��	� Show that the lines 2x 2 y − 4 and 6x 2 2y − 10 are not  
parallel and find their point of intersection.

	 42.��	� Show that the lines 3x 2 5y 1 19 − 0 and 
10x 1 6y 2 50 − 0 are perpendicular and find their point of 
intersection.

	 43.��	� Show that the midpoint of the line segment from P1sx1, y1d to 
P2sx2, y2 d is

S x1 1 x2

2
, 

 y1 1 y2

2 D
	 44.��	� Find the midpoint of the line segment joining the points 

s1, 3d and s7, 15d.

	 45.��	� Find an equation of the perpendicular bisector of the line 
segment joining the points As1, 4d and Bs7, 22d.

	 46.	�� (a)	� Show that if the x- and y-intercepts of a line are nonzero 
numbers a and b, then the equation of the line can be put 
in the form

x

a
1

y

b
− 1

			�   This equation is called the two-intercept form of an 
equation of a line.

		  (b)	� Use part (a) to find an equation of the line whose  
x-intercept is 6 and whose y-intercept is 28.

Exercises B

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Appendix C  |  Trigonometry    699

C Trigonometry

Here we review the aspects of trigonometry that are used in calculus: radian measure, 
trigonometric functions, trigonometric identities, and inverse trigonometric functions.

■  Angles
Angles can be measured in degrees or in radians (abbreviated as rad). The angle given 
by a complete revolution contains 3608, which is the same as 2� rad. Therefore

(1)	 � rad − 1808	

and

(2)	 1 rad − S 180

�
D8

< 57.38            18 −
�

180
 rad < 0.017 rad	

 Example 1 

(a)  Find the radian measure of 60°.    (b)  Express 5�y4 rad in degrees.

SOLUTION
(a)  From Equation 1 or 2 we see that to convert from degrees to radians we multiply  
by �y180. Therefore

608 − 60S �

180D −
�

3
 rad

(b)  To convert from radians to degrees we multiply by 180y�. Thus

	
5�

4
 rad −

5�

4 S 180

�
D − 2258	 ■

	 51.��	� Use the definition of a hyperbola to derive Equation 2 for a 
hyperbola with foci s6c, 0d.

	 52.	�� �(a)	� Find the foci and asymptotes of the hyperbola 
x 2 2 y 2 − 1 and sketch its graph.

		  (b)	 Sketch the graph of y 2 2 x 2 − 1.

	 53–54�  Sketch the region bounded by the curves.

	 53.	 x 1 4y − 8 and x − 2y 2 2 8	

	 54.	� y − 4 2 x 2  and  x 2 2y − 2

	 47.	�� �Suppose that Psx, yd is any point on the parabola with focus
s0, pd and directrix y − 2p. (See Figure 14.) Use the defi- 
nition of a parabola to show that x 2 − 4py.

	 48.	��  �Find the focus and directrix of the parabola y − x 2. 
Illustrate with a diagram.

	 49.��	� Suppose an ellipse has foci s6c, 0d and the sum of the 
distances from any point Psx, yd on the ellipse to the foci is 
2a. Show that the coordinates of P satisfy Equation 1.

	 50.	�� �Find the foci of the ellipse x 2 1 4y 2 − 4 and sketch its 
graph.
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In calculus we use radians to measure angles except when otherwise indicated. 
The following table gives the correspondence between degree and radian measures of 
some common angles.

Degrees 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360°

Radians 0
�

6

�

4

�

3

�

2
2�

3

3�

4
5�

6
�

3�

2
2�

Figure 1 shows a sector of a circle with central angle � and radius r subtending an 
arc with length a. Since the length of the arc is proportional to the size of the angle, and 
since the entire circle has circumference 2�r and central angle 2�, we have

�

2�
−

a

2�r

Solving this equation for � and for a, we obtain

(3)	 � −
a

r
                a − r�	

Remember that Equations 3 are valid only when � is measured in radians.
In particular, putting a − r in Equation 3, we see that an angle of 1 rad is the angle 

subtended at the center of a circle by an arc equal in length to the radius of the circle 
(see Figure 2).

 Example 2 

(a)  If the radius of a circle is 5 cm, what angle is subtended by an arc of 6 cm?
(b)  If a circle has radius 3 cm, what is the length of an arc subtended by a central angle 
of 3�y8 rad?

SOLUTION
(a)  Using Equation 3 with a − 6 and r − 5, we see that the angle is

� − 6
5 − 1.2 rad

(b)  With r − 3 cm and � − 3�y8 rad, the arc length is

	 a − r� − 3S 3�

8 D −
9�

8
 cm	 ■

The standard position of an angle occurs when we place its vertex at the origin of 
a coordinate system and its initial side on the positive x-axis as in Figure 3. A positive 
angle is obtained by rotating the initial side counterclockwise until it coincides with 
the terminal side. Likewise, negative angles are obtained by clockwise rotation as in 
Figure 4.

Figure 5 shows several examples of angles in standard position. Notice that differ-
ent angles can have the same terminal side. For instance, the angles 3�y4, 25�y4, and 

r

r

a

¨

Figure �1

r

r

r

1 rad

Figure �2

0

y

x

¨ initial side

terminal
side

0

y

x¨

initial side

terminal side

Figure �3 � � > 0

0

y

x

¨ initial side

terminal
side

0

y

x¨

initial side

terminal side

Figure �4  � , 0
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11�y4 have the same initial and terminal sides because

3�

4
2 2� − 2

5�

4
          

3�

4
1 2� −

11�

4

and 2� rad represents a complete revolution.

y

x
0

¨=_ 5π
4

0

y

x

¨=11π
4

0

y

x

¨=3π
4

0

y

x

¨=_ π
2

0

y

x
¨=1

■ The Trigonometric Functions
For an acute angle � the six trigonometric functions are defined as ratios of lengths of 
sides of a right triangle as follows (see Figure 6).

(4)	  sin � −
opp

hyp
             csc � −

hyp

opp
	

 cos � −
adj

hyp
             sec � −

hyp

adj

 tan � −
opp

adj
             cot � −

adj

opp

This definition doesn’t apply to obtuse or negative angles, so for a general angle � 
in standard position we let Psx, yd be any point on the terminal side of � and we let r be 
the distance | OP | as in Figure 7. Then we define

(5)	  sin � −
 y

r
             csc � −

r

y
	

 cos � −
x

r
              sec � −

r

x

 tan � −
 y

x
             cot � −

x

y

Since division by 0 is not defined, tan � and sec � are undefined when x − 0 and csc � 
and cot � are undefined when y − 0. Notice that the definitions in (4) and (5) are consis
tent when � is an acute angle.

If � is a number, the convention is that sin � means the sine of the angle whose radian 
measure is �. For example, the expression sin 3 implies that we are dealing with an angle 
of 3 rad. When finding a calculator approximation to this number, we must remember 
to set our calculator in radian mode, and then we obtain

sin 3 < 0.14112

Figure �5
Angles in standard position

opposite
hypotenuse

adjacent

¨

Figure �6

P(x, y)

O

y

x

r
¨

Figure �7
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If we want to know the sine of the angle 38 we would write sin 38 and, with our calculator 
in degree mode, we find that

sin 38 < 0.05234

The exact trigonometric ratios for certain angles can be read from the triangles in 
Figure 8. For instance,

 sin 
�

4
−

1

s2 
 sin 

�

6
−

1

2
 sin 

�

3
−

s3 

2

 cos 
�

4
−

1

s2 
 cos 

�

6
−

s3 

2
 cos 

�

3
−

1

2

 tan 
�

4
− 1  tan 

�

6
−

1

s3 
 tan 

�

3
− s3 

The signs of the trigonometric functions for angles in each of the four quadrants can 
be remembered by means of the rule “All Students Take Calculus” shown in Figure 9.

 Example 3   |  Find the exact trigonometric ratios for � − 2�y3.

SOLUTION�  From Figure 10 we see that a point on the terminal line for � − 2�y3 is 
P(21, s3 ). Therefore, taking

x − 21            y − s3             r − 2 

in the definitions of the trigonometric ratios, we have

 sin 
2�

3
−

s3 

2
 cos 

2�

3
− 2

1

2
 tan 

2�

3
− 2s3 

	  csc 
2�

3
−

2

s3 
 sec 

2�

3
− 22  cot 

2�

3
− 2

1

s3 
	 ■

The following table gives some values of sin � and cos � found by the method of  
Example 3.

� 0
�

6

�

4

�

3

�

2
2�

3

3�

4
5�

6
�

3�

2
2�

sin � 0
1

2

1

s2 

s3 

2
1 s3 

2

1

s2 

1

2
0 21 0

cos � 1 s3 

2

1

s2 

1

2
0 2

1

2
2

1

s2 2
s3 

2
21 0 1

 Example 4   |  If cos � − 2
5 and 0 , � , �y2, find the other five trigonometric 

functions of �.

SOLUTION�  Since cos � − 2
5, we can label the hypotenuse as having length 5 and the 

adjacent side as having length 2 in Figure 11. If the opposite side has length x, then the 

1

1

2œ„

π
4

π
4 1

2 π
3

œ„3

π
6

Figure �8

0

y

x

sin ¨>0

tan ¨>0

all ratios>0

cos ¨>0

y

0 x

2π
3π

3

2
œ„3

1

P {_1, œ„3}

Figure �9

Figure �10

16

40°

x

5

2
¨

x=œ„„    21

Figure �11
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Pythagorean Theorem gives x 2 1 4 − 25 and so x 2 − 21, x − s21. We can now use 
the diagram to write the other five trigonometric functions:

sin � −
s21

5
            tan � −

s21

2

	 csc � −
5

s21
            sec � −

5

2
            cot � −

2

s21
	 ■

 Example 5   |  Use a calculator to approximate the value of x in Figure 12.

SOLUTION�  From the diagram we see that

tan 408 −
16

x

Therefore	 x −
16

tan 408
< 19.07	 ■

■ Trigonometric Identities
A trigonometric identity is a relationship among the trigonometric functions. The most 
elementary are the following, which are immediate consequences of the definitions of 
the trigonometric functions.

(6)	 csc � −
1

sin �
            sec � −

1

cos �
            cot � −

1

tan �
	

tan � −
sin �

cos �
            cot � −

cos �

sin �

For the next identity we refer back to Figure 7. The distance formula (or, equivalently, 
the Pythagorean Theorem) tells us that x 2 1 y 2 − r 2. Therefore

sin2� 1 cos2� −
 y 2

r 2 1
x 2

r 2 −
x 2 1 y 2

r 2 −
r 2

r 2 − 1

We have therefore proved one of the most useful of all trigonometric identities:

(7)	 sin2� 1 cos2� − 1	

If we now divide both sides of Equation 7 by cos2� and use Equations 6, we get

(8)	 tan2� 1 1 − sec2�	

Similarly, if we divide both sides of Equation 7 by sin2�, we get

(9)	 1 1 cot2� − csc2�	

16

40°

x

5

2
¨

x=œ„„    21

Figure �12
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The identities

(10a)	  sins2�d − 2sin �	

(10b)	  coss2�d − cos � 	

show that sine is an odd function and cosine is an even function. They are easily proved 
by drawing a diagram showing � and 2� in standard position (see Exercise 19).

Since the angles � and � 1 2� have the same terminal side, we have

(11)	 sins� 1 2�d − sin �            coss� 1 2�d − cos �	

These identities show that the sine and cosine functions are periodic with period 2�.
The remaining trigonometric identities are all consequences of two basic identities 

called the addition formulas:

(12a)	  sinsx 1 yd − sin x cos y 1 cos x sin y	

(12b)	  cossx 1 yd − cos x cos y 2 sin x sin y	

The proofs of these addition formulas are outlined in Exercises 45, 46, and 47.
By substituting 2y for y in Equations 12a and 12b and using Equations 10a and 10b, 

we obtain the following subtraction formulas:

(13a)	  sinsx 2 yd − sin x cos y 2 cos x sin y	

(13b)	  cossx 2 yd − cos x cos y 1 sin x sin y	

Then, by dividing the formulas in Equations 12 or Equations 13, we obtain the cor-
responding formulas for tansx 6 yd:

(14a)	  tansx 1 yd −
tan x 1 tan y

1 2 tan x tan y
	

(14b)	  tansx 2 yd −
tan x 2 tan y

1 1 tan x tan y
	

If we put y − x in the addition formulas (12), we get the double-angle formulas:

(15a)	  sin 2x − 2 sin x cos x 	

(15b)	  cos 2x − cos2x 2 sin2x	

Then, by using the identity sin2x 1 cos2x − 1, we obtain the following alternate forms 
of the double-angle formulas for cos 2x:

Odd functions and even functions are 
discussed in Section 1.1.

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Appendix C  |  Trigonometry    705

(16a)	  cos 2x − 2 cos2x 2 1	

(16b)	  cos 2x − 1 2 2 sin2x	

If we now solve these equations for cos2x and sin2x, we get the following half-angle 
formulas, which are useful in integral calculus:

(17a)	  cos2x −
1 1 cos 2x

2
	

(17b)	  sin2x −
1 2 cos 2x

2
	

Finally, we state the product formulas, which can be deduced from Equations 12  
and 13:

(18a)	  sin x cos y − 1
2 fsinsx 1 yd 1 sinsx 2 ydg 	

(18b)	  cos x cos y − 1
2 fcossx 1 yd 1 cossx 2 ydg	

(18c)	  sin x sin y − 1
2 fcossx 2 yd 2 cossx 1 ydg	

There are many other trigonometric identities, but those we have stated are the ones 
used most often in calculus. If you forget any of them, remember that they can all be 
deduced from Equations 12a and 12b.

 Example 6   |  Find all values of x in the interval f0, 2�g such that sin x − sin 2x.

SOLUTION�  Using the double-angle formula (15a), we rewrite the given equation as

sin x − 2 sin x cos x        or        sin x s1 2 2 cos xd − 0

Therefore there are two possibilities:

 sin x − 0  or 1 2 2 cos x − 0

 x − 0, �, 2�  cos x − 1
2

  x −
�

3
, 

5�

3

The given equation has five solutions: 0, �y3, �, 5�y3, and 2�.	 ■

■ Graphs of the Trigonometric Functions
The graph of the function f sxd − sin x, shown in Figure 13(a) on page 706, is obtained 
by plotting points for 0 < x < 2� and then using the periodic nature of the function 
(from Equation 11) to complete the graph. Notice that the zeros of the sine function occur 
at the integer multiples of �, that is,

sin x − 0       whenever x − n�, n an integer
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y
1

_1
x

x

π_π

2π

3π
0

_π
2

π
2

3π
2

5π
2

(b) ©=cos x

y

1

_1
0 π_π 2π 3π

_π
2

π
2

3π
2

5π
2

(a) ƒ=sin x

Because of the identity

cos x − sinSx 1
�

2 D
(which can be verified using Equation 12a), the graph of cosine is obtained by shifting 
the graph of sine by an amount �y2 to the left [see Figure 13(b)]. Note that for both the 
sine and cosine functions the domain is s2`, `d and the range is the closed interval 
f21, 1g. Thus, for all values of x, we have

21 < sin x < 1            21 < cos x < 1

The graphs of the remaining four trigonometric functions are shown in Figure 14 and 
their domains are indicated there. Notice that tangent and cotangent have range s2`, `d, 
whereas cosecant and secant have range s2`, 21g ø f1, `d. All four functions are peri-
odic: tangent and cotangent have period �, whereas cosecant and secant have period 2�.

(c) y=csc x

y

1

_1

0
xπ

y=sin x

_ π
2

π
2

3π
2

(d) y=sec x

y

0
xπ

_π

_1

1

y=cos x

_ π
2

π
2

3π
2

(a) y=tan x (b) y=cot x

y

0 xπ_π _ π
2

π
2

3π
2
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1
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2

π
2
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2
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2
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2
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y

1
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2

π
2
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2
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2

(a) ƒ=sin x

Figure �14
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	 1–2�  Convert from degrees to radians.

	 1.��	 (a)	 2108	 (b)	 98

	 2.��	 (a)	 23158	 (b)	 368

	 3–4�  Convert from radians to degrees.

	 3.	�� (a)	 4�	 (b)	 2
3�

8

		  4.	�� (a)	 2
7�

2
	 (b)	

8�

3

	 5.��	� Find the length of a circular arc subtended by an angle of  
�y12 rad if the radius of the circle is 36 cm.

	 6.��	� If a circle has radius 10 cm, find the length of the arc sub- 
tended by a central angle of 72°.

	 7.��	� A circle has radius 1.5 m. What angle is subtended at the 
center of the circle by an arc 1 m long?

	 8.��	� Find the radius of a circular sector with angle 3�y4 and arc 
length 6 cm.

	� 9–10�  Draw, in standard position, the angle whose measure is 
given.

	 9.��	 (a)	 3158	 (b)	 2
3�

4
 rad

	 10.��	 (a)	
7�

3
 rad	 (b)	 23 rad

	� 11–12�  Find the exact trigonometric ratios for the angle whose 
radian measure is given.

	 11.	
3�

4
		 12.	

4�

3
	

	 13–14�  Find the remaining trigonometric ratios.

	 13.��	 sin � −
3

5
,    0 , � ,

�

2

	 14.��	 tan � − 2,    0 , � ,
�

2

	� 15–18��  Find, correct to five decimal places, the length of the side 
labeled x.

	 15.	

25 cm
10 cm

x

35°

x
40°	 16.	

25 cm
10 cm

x

35°

x
40°

	 17.	

8 cm

x
2π
5

22 cm x
3π
8

	 18.	

8 cm

x
2π
5

22 cm x
3π
8

	 19–21�  Prove each equation.

	 19.��	 (a)	 Equation 10a	 (b)	 Equation 10b

	 20.��	 (a)	 Equation 14a	 (b)	 Equation 14b

	 21.	�� (a)	 Equation 18a	 (b)	 Equation 18b
		  (c)	 Equation 18c

	22 –28�  Prove the identity.

	 22.	 cosS�

2
2 xD − sin x

	 23.	 sinS�

2
1 xD − cos x	 24.	 sins� 2 xd − sin x

	 25.	 sin � cot � − cos �	 26.	 ssin x 1 cos xd2 − 1 1 sin 2x

	 27.	 tan 2� −
2 tan �

1 2 tan2�
	 28.	 cos 3� − 4 cos3� 2 3 cos �

	�2 9–30�  If sin x − 1
3 and sec y − 5

4, where x and y lie between 0 
and �y2, evaluate the expression.

	 29.	 sinsx 1 yd	 30.	 cos 2y

	� 31–34�  Find all values of x in the interval f0, 2�g that satisfy the 
equation.

	 31.	 2 cos x 2 1 − 0	 32.	 2 sin2x − 1

	 33.	 sin 2x − cos x	 34.	 | tan x | − 1

	� 35–38�  Find all values of x in the interval f0, 2�g that satisfy the 
inequality.

	 35.	 sin x < 1
2	 36.	 2 cos x 1 1 . 0

	 37.	 21 , tan x , 1	 38.	 sin x . cos x

	� 39–42�  Graph the function by starting with the graphs in Fig
ures 13 and 14 and applying the transformations of Section 1.3 
where appropriate.

	 39.	 y − cosSx 2
�

3 D	 40.	 y − tan 2x

	 41.	 y −
1

3
 tanSx 2

�

2 D	 42.	 y − | sin x |
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D Precise Definitions of Limits

The definitions of limits that have been given in this book are appropriate for intuitive 
understanding of the basic concepts of calculus. For the purposes of deeper understand-
ing and rigorous proofs, however, the precise definitions of this appendix are necessary. 
In particular, the definition of a limit given here is used in Appendix E to prove some of 
the properties of limits.

■ Sequences
In Section 2.1 we used the notation lim n l ` an − L to mean that the terms of the sequence 
hanj approach the number L as n becomes large. Here we want to express, in quantitative 
form, that an can be made arbitrarily close to L by making n sufficiently large. This 
means that an can be made to lie within a prescribed distance from L (traditionally 
denoted by «, the Greek letter epsilon) by requiring that n be made larger than a specified 
number N. The resulting precise definition of a limit is as follows.

	 45.��	 Use the figure to prove the subtraction formula 

coss� 2 �d − cos � cos � 1 sin � sin �

		�  [Hint: Compute c 2 in two ways (using the Law of Cosines 
from Exercise 43 and also using the distance formula) and 
compare the two expressions.]

0

y

B(cos ∫, sin ∫)

∫

1

A(cos å, sin å)

1

å

c

x

	 46.	�� �Use the formula in Exercise 45 to prove the addition formula 
for cosine (12b).

	 47.��	 Use the addition formula for cosine and the identities 

cosS�

2
2 �D − sin �            sinS�

2
2 �D − cos �

		  to prove the subtraction formula for the sine function.

	 48.��	� (a)	 Show that the area of a triangle with sides of lengths a 
and b and with included angle � is

A − 1
2 ab sin �

		  (b)	� Find the area of triangle ABC, correct to five decimal 
places, if

| AB | − 10 cm            | BC | − 3 cm            /ABC − 1078

	 43.	�� �Prove the Law of Cosines: If a triangle has sides with 
lengths a, b, and c, and � is the angle between the sides with 
lengths a and b, then

c 2 − a 2 1 b 2 2 2ab cos �

0

y
P(x, y)

¨

cb

(a, 0) x

		��  [Hint: Introduce a coordinate system so that � is in standard 
position, as in the figure. Express x and y in terms of � and 
then use the distance formula to compute c.]

	 44.��	� In order to find the distance | AB | across a small inlet, a 
point C is located as in the figure and the following measure-
ments were recorded:

/C − 1038        | AC | − 820 m          | BC | − 910 m 

		�  Use the Law of Cosines from Exercise 43 to find the re-
quired distance.

A

C

B
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(1)  Definition � A sequence hanj has the limit L and we write

lim
nl`

 an − L    or    an l L  as  n l `

if for every « . 0 there is a corresponding number N such that

if  n . N    then    |an 2 L| , «

Definition 1 is illustrated by Figure 1, in which the terms a1, a2, a3, . . . are plotted on 
a number line. No matter how small an interval sL 2 «, L 1 «d is chosen, there exists an 
N such that all terms of the sequence from aN11 onward must lie in that interval.

0 L-∑ L L+∑

a¡ a£ a¢a™ a∞aß a¶aˆ a˜aN+1 aN+2

Another illustration of Definition 1 is given in Figure 2. The points on the graph of 
hanj must lie between the horizontal lines y − L 1 « and y − L 2 « if n . N. This 
picture must be valid no matter how small « is chosen, but usually a smaller « requires 
a larger N.

20 n

y

1 3 4

L

y=L+∑

N

y=L-∑

 Example 1   |  Prove that lim
nl`

 
1

n
− 0.

Solution � Given « . 0, we want to find a number N such that 

if  n . N    then    Z 1

n
2 0 Z , «

But 1yn , «  &?  n . 1y«. Let’s choose N − 1y«. So

if  n . N −
1

«
    then    Z 1

n
2 0 Z −

1

n
, «

Therefore, by Definition 1,

	 lim
nl`

 
1

n
− 0	 ■

■ Functions
The precise definition of the limit of a function at infinity, lim x l ` f sxd − L, is very 
similar to the definition of the limit of a sequence, lim n l ` an − L, given in Definition 1. 
So let’s turn our attention to the definition of the limit of f sxd as x approaches a finite 
number.

For a precise definition of lim x la f sxd − L we want to express that f sxd can be made 
arbitrarily close to L by making x sufficiently close to a (but x ± a). This means that 
f sxd can be made to lie within any preassigned distance « from L by requiring that x be 
within a specified distance � (the Greek letter delta) from a. That is, | f sxd 2 L| , « when 

Figure �1

Figure �2
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| x 2 a | , � and x ± a. Notice that we can stipulate that x ± a by writing 0 , | x 2 a |.  
The resulting precise definition of a limit is as follows.

(2)  Definition � Let f  be a function defined on some open interval that contains 
the number a, except possibly at a itself. Then we say that the limit of f (x) as x 
approaches a is L, and we write

lim
x l a

  f sxd − L

if for every number « . 0 there is a number � . 0 such that

if    0 , | x 2 a | , �        then        | f sxd 2 L | , «

Definition 2 is illustrated in Figures 3–5. If a number « . 0 is given, then we draw 
the horizontal lines y 5 L 1 « and y 5 L 2 « and the graph of f. (See Figure 3.) If 
lim x l a f sxd 5 L, then we can find a number � . 0 such that if we restrict x to lie in the 
interval sa 2 �, a 1 �d and take x ± a, then the curve y − f sxd lies between the lines 
y 5 L 2 « and y 5 L 1 «. (See Figure 4.) You can see that if such a � has been found, 
then any smaller � will also work.

0 x

y

a

y=L+∑

y=L-∑

a-∂ a+∂

∑

∑
L

when x is in here
(x≠a)

ƒ
is in
here

0 x

y

a

y=L+∑

y=L-∑

∑

∑
L

y=ƒ

L+∑

L-∑

0 x

y

a

y=L+∑

y=L-∑

a-∂ a+∂

Figure 3	 Figure 4	 Figure 5

It’s important to realize that the process illustrated in Figures 3 and 4 must work for 
every positive number « no matter how small it is chosen. Figure 5 shows that if a smaller 
« is chosen, then a smaller � may be required.

 Example 2   |  Use the «, � definition to prove that lim
x l 0

 x 2 − 0.

Solution � Let « be a given positive number. According to Definition 2 with a − 0 
and L − 0, we need to find a number � such that

if  0 , | x 2 0| , �    then    | x 2 2 0| , «

that is,	 if	 0 , | x | , �	 then    x 2 , «	

But, since the square root function is an increasing function, we know that

x 2 , « &? sx 2 , s«  &? | x | , s« 

So if we choose � − s« , then x 2 , « &? | x | , �. (See Figure 6.) This shows 
that lim x l 0 x 2 − 0.	 ■

 TEC   In Module D you can explore the 
precise definition of a limit both graphi-
cally and numerically.

x

y=∑ ∑

y

x0

y=≈

∂=œ„∑

Figure �6
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In proving limit statements it may be helpful to think of the definition of a limit as a 
challenge. First it challenges you with a number «. Then you must be able to produce a 
suitable �. You have to be able to do this for every « . 0, not just a particular «.

 Example 3   |  Prove that lim
x l3

s4x 2 5d − 7.

SOLUTION � Let « be a given positive number. According to Definition 2 with a − 3 
and L − 7, we need to find a number � such that

if        0 , | x 2 3 | , �        then        | s4x 2 5d 2 7 | , «

But | s4x 2 5d 2 7 | 5 | 4x 2 12 | 5 | 4sx 2 3d | 5 4| x 2 3 |. Therefore we want � 
such that

if        0 , | x 2 3 | , �        then        4| x 2 3 | , «

Note that 4| x 2 3| , « &? | x 2 3| , «y4. So let’s choose � − «y4. We can then 
write the following:

If        0 , | x 2 3 | , �        then        4| x 2 3| , «    so    | s4x 2 5d 2 7 | , «

Therefore, by the definition of a limit,

lim
x l3

 s4x 2 5d − 7 

This example is illustrated by Figure 7.	 ■

It’s not always easy to prove that limit statements are true using the «, � definition. 
For a more complicated function such as f sxd − s6x 2 2 8x 1 9dys2x 2 2 1d, a proof 
would require a great deal of ingenuity. Fortunately, this is not necessary because the 
Limit Laws stated in Section 2.4 can be proved using Definition 2, and then the limits 
of complicated functions can be found rigorously from the Limit Laws without resorting 
to the definition directly.

■ Definite Integrals
In Section 5.2 we defined the definite integral of a function f  on an interval fa, bg as 

yb

a
 f sxd dx − lim

n l `
 o

n

i−1
 f sxi*d Dx

where, at the nth stage, we have divided fa, bg into n subintervals of equal width, 
Dx − sb 2 adyn, and xi* is any sample point in the ith subinterval. The precise meaning 
of this limit that defines the integral is as follows:

For every number « . 0 there is an integer N such that

u yb

a
 f sxd dx 2 o

n

i−1
 f sxi*d Dx u , «

for every integer n . N and for every choice of x*
i  in the ith subinterval.

This means that a definite integral can be approximated to within any desired degree 
of accuracy by a Riemann sum.

Figure 7 shows the geometry behind 
Example 3.

y

0 x

7+∑

7

7-∑

3-∂ 3+∂

3

y=4x-5

Figure �7
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■ Functions of Two Variables

Here is a precise version of Definition 9.1.1:

(3)  Definition  Let f  be a function of two variables whose domain D includes 
points arbitrarily close to sa, bd. Then we say that the limit of f sx, yd as sx, yd 
approaches sa, bd is L and we write

lim 
sx, yd l sa, bd

 f sx, yd − L

if for every number « . 0 there is a corresponding number � . 0 such that

if	 sx, yd [ D    and    0 , ssx 2 ad2 1 sy 2 bd2 , �	

then	 | f sx, yd 2 L | , «	

Notice that | f sx, yd 2 L | is the distance between the numbers f sx, yd and L, and 

ssx 2 ad 2 1 sy 2 bd 2  is the distance between the point sx, yd and the point sa, bd. Thus 
Definition 3 says that the distance between f sx, yd and L can be made arbitrarily small 
by making the distance from sx, yd to sa, bd sufficiently small (but not 0). An illustration 
of Definition 3 is given in Figure 8 where the surface S is the graph of f. If « . 0 is 
given, we can find � . 0 such that if sx, yd is restricted to lie in the disk D� with center 
sa, bd and radius �, and if sx, yd ± sa, bd, then the corresponding part of S lies between 
the horizontal planes z − L 2 « and z − L 1 «.

 Example 4   |  Prove that lim
sx, yd l s0, 0d

 
3x 2y

x 2 1 y 2 − 0.

SOLUTION�  Let « . 0. We want to find � . 0 such that

if      0 , sx 2 1 y 2 , �    then    Z 3x 2 y

x 2 1 y 2 2 0 Z , «

that is,	 if	 0 , sx 2 1 y 2 , �	 then	
3x 2| y |
x 2 1 y 2 , «	

But x 2 < x 2 1 y 2 since y 2 > 0, so x 2ysx 2 1 y 2 d < 1 and therefore

3x 2| y |
x 2 1 y 2 < 3 | y | − 3sy 2 < 3sx 2 1 y 2 

Thus if we choose � − «y3 and let 0 , sx 2 1 y 2 , �, then

Z 3x 2 y

x 2 1 y 2 2 0 Z < 3sx 2 1 y 2 , 3� − 3S «

3D − «

Hence, by Definition 3,

	 lim
sx, yd l s0, 0d

 
3x 2y

x 2 1 y 2 − 0� ■

x
y

z

0

L+∑
L

L-∑

(a, b)
D∂

S

Figure �8
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	 1.��	 (a) Determine how large we have to take n so that

1

n2 , 0.0001

		  (b) Use Definition 1 to prove that

lim
nl`

 
1

n2 − 0

	 2.��	 Use Definition 1 to prove that lim
nl`

 
1

sn 
− 0.

	 3.��	� Use the given graph of f sxd − 1yx to find a number � such 
that

if    | x 2 2 | , �    then    Z 1

x
2 0.5 Z , 0.2

10
3

10
7

y= 1
x

x

y

20

1

0.5
0.7

0.3

	 4.��	� Use the given graph of f  to find a number � such that

if    0 , | x 2 5| , �    then    | f sxd 2 3| , 0.6

4 5.7 x

y

50

3
3.6

2.4

	 5.��	� Use the given graph of f sxd − sx  to find a number � such 
that

if        | x 2 4 | , �        then        | sx 2 2 | , 0.4

??

y=œ„x

x

y

40

2
2.4

1.6

	   6.��	� Use the given graph of f sxd 5 x 2 to find a number � such 
that

if        | x 2 1 | , �        then        | x 2 2 1 | , 1
2

x

y

? 1 ?0

1.5

1

0.5

y=≈

	 ;	 7.��	� Use a graph to find a number � such that

if        Z x 2
�

4 Z , �        then        | tan x 2 1| , 0.2

	 ;	 8.��	� Use a graph to find a number � such that

if        | x 2 1| , �        then        Z 2x

x 2 1 4
2 0.4 Z , 0.1

	 ;	 9.��	� For the limit

lim
x l1 

s4 1 x 2 3x3d − 2

		�  illustrate Definition 2 by finding values of � that correspond 
to « − 1 and « − 0.1.

	 ;	 10.��	� For the limit

lim
x l 0

 
ex 2 1

x
− 1

		�  illustrate Definition 2 by finding values of � that correspond 
to « − 0.5 and « − 0.1.

	 11.��	 Use Definition 2 to prove that limx l 0 x 3 − 0.

	 12.��	� (a)	� How would you formulate an «, � definition of the 
one-sided limit limx l a1 f sxd − L?

		  (b)	� Use your definition in part (a) to prove that 
limx l 01 sx − 0.

	 13.��	� A machinist is required to manufacture a circular metal disk 
with area 1000 cm2. 

		  (a)	� What radius produces such a disk?
		  (b)	� If the machinist is allowed an error tolerance of 65 cm2  

in the area of the disk, how close to the ideal radius in 
part (a) must the machinist control the radius?

		  (c)	� In terms of the «, � definition of limx l a f sxd 5 L, what  
is x? What is f sxd? What is a? What is L? What value of 
« is given? What is the corresponding value of �?

	 ;	 14.��	� A crystal growth furnace is used in research to determine 
how best to manufacture crystals used in electronic compo-

EXERCISES D
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E A Few Proofs

In this appendix we present proofs of some theorems that were stated in the main body 
of the text. We start by proving the Triangle Inequality, which is an important property 
of absolute value.

The Triangle Inequality � If a and b are any real numbers, then

| a 1 b | < | a | 1 | b |

Observe that if the numbers a and b are both positive or both negative, then the two 
sides in the Triangle Inequality are actually equal. But if a and b have opposite signs, 
the left side involves a subtraction and the right side does not. This makes the Triangle 
Inequality seem reasonable, but we can prove it as follows.

Notice that
2| a | < a < | a |

is always true because a equals either | a | or 2| a |. The corresponding statement for b is

2| b | < b < | b |
Adding these inequalities, we get

2s| a | 1 | b |d < a 1 b < | a | 1 | b |
If we now apply Properties 4 and 5 of absolute value from appendix A (with x replaced 
by a 1 b and a by | a | 1 | b |), we obtain

| a 1 b | < | a | 1 | b |
which is what we wanted to show.

When combined, Properties 4 and 5 of 
absolute value (see Appendix A) say 
that

| x | < a &? 2a < x < a

	� 17–18��  Prove the statement using the «, � definition of a limit and 
illustrate with a diagram like Figure 7.

	 17.	�  lim
x l

 

23
 s1 2 4xd − 13	 18.	 lim

x l22
 ( 1

2 x 1 3) − 2

	 19.��	 Use Definition 1 to prove that

		  (a)	 lim
nl`

 
1

2n − 0

		  (b)	 lim
nl`

 r n − 0 if |r | , 1

	 20.��	 (a)	 For what values of x is it true that

1

x 2 . 1,000,000

		�  (b)	� The precise definition of limx l a f sxd − ` states that 
for every positive number M (no matter how large) 
there is a corresponding positive number � such that if 
0 , | x 2 a | , �, then f sxd . M. Use this definition to 
prove that limx l 0 s1yx 2d − `. 

	 21.��	 Use Definition 3 to prove that lim
sx, ydl s0, 0d

xy

sx 2 1 y 2 
− 0.

nents for the space shuttle. For proper growth of the crystal, 
the temperature must be controlled accurately by adjusting 
the input power. Suppose the relationship is given by 

T swd − 0.1w 2 1 2.155w 1 20

		�  where T is the temperature in degrees Celsius and w is the 
power input in watts.

		  (a)	� How much power is needed to maintain the temperature  
at 200°C?

		  (b)	� If the temperature is allowed to vary from 200°C by up  
to 61°C, what range of wattage is allowed for the input 
power?

		  (c)	� In terms of the «, � definition of limx l a f sxd 5 L, what 
is x? What is f sxd? What is a? What is L? What value of  
« is given? What is the corresponding value of �?

	 15.��	 (a)	� Find a number � such that if | x 2 2| , �, then 

| 4x 2 8| , «, where « 5 0.1.
		  (b)	 Repeat part (a) with « 5 0.01.

	 16.��	� Given that limx l 2 s5x 2 7d 5 3, illustrate Definition 2 by 
finding values of � that correspond to « 5 0.1, « 5 0.05,  
and « 5 0.01.
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Next we use the Triangle Inequality to prove the Sum Law for limits.

Sum Law � If lim x l a f sxd 5 L and lim x l a tsxd 5 M both exist, then

lim
x l a

 f f sxd 1 tsxdg − L 1 M

Proof�  Let « . 0 be given. According to Definition 2 in Appendix D, we must find 
� . 0 such that

if        0 , | x 2 a | , �        then        | f sxd 1 tsxd 2 sL 1 Md | , «

Using the Triangle Inequality we can write

(1)	  | f sxd 1 tsxd 2 sL 1 Md | 5 | s f sxd 2 Ld 1 stsxd 2 Md |	
 < | f sxd 2 L | 1 | tsxd 2 M |

We will make | f sxd 1 tsxd 2 sL 1 Md | less than « by making each of the terms 

| f sxd 2 L | and | tsxd 2 M | less than «y2.
Since «y2 . 0 and lim x l a f sxd 5 L, there exists a number �1 . 0 such that

if        0 , | x 2 a | , �1        then        | f sxd 2 L | ,
«

2

Similarly, since lim x l a tsxd 5 M, there exists a number � 2 . 0 such that

if        0 , | x 2 a | , � 2        then        | tsxd 2 M | ,
«

2

Let � 5 minh�1, � 2 j, the smaller of the numbers �1 and � 2. Notice that

if        0 , | x 2 a | , �    then    0 , | x 2 a | , �1    and    0 , | x 2 a | , � 2

and so	 | f sxd 2 L | ,
«

2
        and        | tsxd 2 M | ,

«

2
	

Therefore, by (1),

 | f sxd 1 tsxd 2 sL 1 Md | < | f sxd 2 L | 1 | tsxd 2 M |
 ,

«

2
1

«

2
5 «

To summarize,

if        0 , | x 2 a | , �        then        | f sxd 1 tsxd 2 sL 1 Md | , «

Thus, by the definition of a limit,

	 lim
x l a

 f f sxd 1 tsxdg − L 1 M 	 ■

Fermat’s Theorem  If f  has a local maximum or minimum at c, and if f 9scd 
exists, then f 9scd − 0.

Proof��  Suppose, for the sake of definiteness, that f  has a local maximum at c. Then,  
f scd > f sxd if x is sufficiently close to c. This implies that if h is sufficiently close to 0, 

The Sum Law was first stated in  
Section 2.4.

Fermat’s Theorem was discussed in 
Section 4.1.
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 with h being positive or negative, then

f scd > f sc 1 hd

and therefore

(2)	 f sc 1 hd 2 f scd < 0	

We can divide both sides of an inequality by a positive number. Thus, if h . 0 and h is 
sufficiently small, we have

 f sc 1 hd 2 f scd
h

< 0

Taking the right-hand limit of both sides of this inequality (using Theorem 2.4.2), we 
get

lim
hl

 

01
 
 f sc 1 hd 2 f scd

h
< lim

h l
 

01 
0 − 0

But since f 9scd exists, we have

f 9scd − lim
h l 0

 
 f sc 1 hd 2 f scd

h
− lim

h l
 

01
 
 f sc 1 hd 2 f scd

h

and so we have shown that f 9scd < 0.
If h , 0, then the direction of the inequality (2) is reversed when we divide by h:

 f sc 1 hd 2 f scd
h

> 0        h , 0

So, taking the left-hand limit, we have

f 9scd − lim
h l 0

 
 f sc 1 hd 2 f scd

h
− lim

h l
 

02
 
 f sc 1 hd 2 f scd

h
> 0

We have shown that f 9scd > 0 and also that f 9scd < 0. Since both of these inequalities 
must be true, the only possibility is that f 9scd − 0.

We have proved Fermat’s Theorem for the case of a local maximum. The case of a 
local minimum can be proved in a similar manner.	 ■

(3)  The Stability Criterion for Recursive Sequences � Suppose that x̂ is 
an equilibrium of the recursive sequence xt11 − f sxtd, where f 9 is continuous.

(a) If | f 9sx̂d| , 1, the equilibrium is stable.

(b) If | f 9sx̂d| . 1, the equilibrium is unstable.

Proof of part (a)�  We want to show that if the sequence hxtj starts with x0 suffi- 
ciently close to the equilibrium x̂, then xt l x̂ as t l `.

By the Mean Value Theorem there is a number c between x0 and x̂ such that

f sx0d 2 f sx̂d − f 9scdsx0 2 x̂d

But f sx̂d − x̂, so we can write

x1 2 x̂ − f 9scdsx0 2 x̂d

This theorem was stated and used in 
Section 4.5. Part (b) has a similar proof.
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Because f 9 is continuous and | f 9sx̂d| , 1, we can guarantee that | f 9sxd| , 1 when x is 
sufficiently close to x̂. In fact there is a positive number � such that

| f 9sxd| < � , 1    when x is sufficiently close to x̂, say | x 2 x̂ | , �

So if | x0 2 x̂ | , �, then

| x1 2 x̂ | − | f 9scd|| x0 2 x̂ | < �| x0 2 x̂ |
Using this argument t times, we get

| xt 2 x̂ | < �t | x0 2 x̂ |
Because 0 , � , 1, we know that �t l 0 as t l `. Therefore | xt 2 x̂ | l 0  as 
t l `. This means that xt l x̂ as t l ` and so x̂ is a stable equilibrium.	 ■

Clairaut’s Theorem � Suppose f  is defined on a disk D that contains the point 
sa, bd. If the functions fxy and fyx are both continuous on D, then

fxysa, bd − fyxsa, bd

Proof�  For small values of h, h ± 0, consider the difference

Dshd − f f sa 1 h, b 1 hd 2 f sa 1 h, bdg 2 f f sa, b 1 hd 2 f sa, bdg

Notice that if we let tsxd − f sx, b 1 hd 2 f sx, bd, then

Dshd − tsa 1 hd 2 tsad

By the Mean Value Theorem, there is a number c between a and a 1 h such that

tsa 1 hd 2 tsad − t9scdh − hf fxsc, b 1 hd 2 fxsc, bdg

Applying the Mean Value Theorem again, this time to fx , we get a number d between b 
and b 1 h such that

fxsc, b 1 hd 2 fxsc, bd − fxysc, ddh

Combining these equations, we obtain

Dshd − h 2fxysc, dd

If h l 0, then sc, dd l sa, bd, so the continuity of fxy at sa, bd gives

lim
h l 0

 
Dshd
h 2 − lim 

sc, dd l sa, bd
 fxysc, dd − fxysa, bd

Similarly, by writing

Dshd − f f sa 1 h, b 1 hd 2 f sa, b 1 hdg 2 f f sa 1 h, bd 2 f sa, bdg

and using the Mean Value Theorem twice and the continuity of fyx at sa, bd, we obtain

lim
h l 0

 
Dshd
h 2 − fyxsa, bd

It follows that fxysa, bd − fyxsa, bd.	 ■
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Clairaut’s Theorem was discussed in 
Section 9.2.
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F Sigma Notation

A convenient way of writing sums uses the Greek letter o  (capital sigma, corresponding 
to our letter S) and is called sigma notation.

(1)  Definition � If am, am11, . . . , an are real numbers and m and n are integers 
such that m < n,  then

o
n

i−m
 ai − am 1 am11 1 am12 1 ∙ ∙ ∙ 1 an21 1 an

This tells us to
end with i=n.

This tells us
to add.

This tells us to
start with i=m.

µ ai

n

i�m

Second Derivatives Test � Suppose the second partial derivatives of f  
are continuous on a disk with center sa, bd, and suppose that fxsa, bd − 0 and 
fysa, bd − 0 [that is, sa, bd is a critical point of f ]. Let

D − Dsa, bd − fxxsa, bd fyy sa, bd 2 f fx y sa, bdg2

(a)	 If D . 0 and fxxsa, bd . 0, then f sa, bd is a local minimum.

(b)	 If D . 0 and fxxsa, bd , 0, then f sa, bd is a local maximum.

(c)	 If D , 0, then f sa, bd is not a local maximum or minimum.

Proof of Part (a)�  We compute the second-order directional derivative of f  in the 
direction of u − fh, k g. The first-order derivative is given by Theorem 9.5.3:

Du f − fx h 1 fy k

Applying this theorem a second time, we have

	  D 2
u  f − DusDu f d −

−

−x
 sDu f dh 1

−

−y
 sDu f dk

	  − s fxx h 1 fyx kdh 1 s fxy h 1 fyy kdk

 − fxx h2 1 2 fxy hk 1 fyy k 2         (by Clairaut’s Theorem)

If we complete the square in this expression, we obtain

(4)	 D2
u f − fxxSh 1

 fxy

fxx
 kD2

1
k2

fxx
 s fxx fyy 2 f 2

xyd	

We are given that fxxsa, bd . 0 and Dsa, bd . 0. But fxx and D − fxx fyy 2 fx y
2 are con- 

tinuous functions, so there is a disk B with center sa, bd and radius � . 0 such that 
fxxsx, yd . 0 and Dsx, yd . 0 whenever sx, yd is in B. Therefore, by looking at Equa-
tion 4, we see that Du

2 fsx, yd . 0 whenever sx, yd is in B. This means that if C is the 
curve obtained by intersecting the graph of f  with the vertical plane through 
Psa, b, f sa, bdd in the direction of u, then C is concave upward on an interval of length 
2�. This is true in the direction of every vector u, so if we restrict sx, yd to lie in B, the 
graph of f  lies above its horizontal tangent plane at P. Thus f sx, yd > f sa, bd whenever 
sx, yd is in B. This shows that f sa, bd is a local minimum.	 ■

The Second Derivatives Test was dis-
cussed in Section 9.6. Parts (b) and (c) 
have similar proofs.
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With function notation, Definition 1 can be written as

o
n

i−m
 f sid − f smd 1 f sm 1 1d 1 f sm 1 2d 1 ∙ ∙ ∙ 1 f sn 2 1d 1 f snd

Thus the symbol o n
i−m  indicates a summation in which the letter i (called the index of  

summation) takes on consecutive integer values beginning with m and ending with n, 
that is, m, m 1 1, . . . , n. Other letters can also be used as the index of summation.

 Example 1 

(a)  o
4

i−1
 i 2 − 12 1 22 1 32 1 42 − 30

(b)  o
n

i−3
 i − 3 1 4 1 5 1 ∙ ∙ ∙ 1 sn 2 1d 1 n

(c)  o
5

j−0
 2 j − 20 1 21 1 22 1 23 1 24 1 25 − 63

(d)  o
n

k−1
 
1

k
− 1 1

1

2
1

1

3
1 ∙ ∙ ∙ 1

1

n

(e)  o
3

i−1
 

i 2 1

i 2 1 3
−

1 2 1

12 1 3
1

2 2 1

22 1 3
1

3 2 1

32 1 3
− 0 1

1

7
1

1

6
−

13

42

(f)  o
4

i−1
 2 − 2 1 2 1 2 1 2 − 8	 ■

 Example 2   |  Write the sum 23 1 33 1 ∙ ∙ ∙ 1 n 3 in sigma notation.

SOLUTION�  There is no unique way of writing a sum in sigma notation. We could 
write

 23 1 33 1 ∙ ∙ ∙ 1 n 3 − o
n

i−2
 i 3

or	  23 1 33 1 ∙ ∙ ∙ 1 n 3 − o
n21

j−1
 s j 1 1d3	

or	  23 1 33 1 ∙ ∙ ∙ 1 n 3 − o
n22

k−0
 sk 1 2d3	 ■

The following theorem gives three simple rules for working with sigma notation.

(2)  Theorem  If c is any constant (that is, it does not depend on i), then

(a)  o
n

i−m
 cai − c o

n

i−m
 ai	 (b)  o

n

i−m
 sai 1 bid − o

n

i−m
 ai 1 o

n

i−m
 bi

(c)  o
n

i−m
 sai 2 bid − o

n

i−m
 ai 2 o

n

i−m
 bi

Proof�  To see why these rules are true, all we have to do is write both sides in 
expanded form. Rule (a) is just the distributive property of real numbers:

cam 1 cam11 1 ∙ ∙ ∙ 1 can − csam 1 am11 1 ∙ ∙ ∙ 1 an d
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Rule (b) follows from the associative and commutative properties:

 sam 1 bm d 1 sam11 1 bm11d 1 ∙ ∙ ∙ 1 san 1 bn d

 − sam 1 am11 1 ∙ ∙ ∙ 1 an d 1 sbm 1 bm11 1 ∙ ∙ ∙ 1 bn d

Rule (c) is proved similarly.	 ■

 Example 3   |  Find o
n

i−1
 1.

SOLUTION	 o
n

i−1
 1 − 1 1 1 1 ∙ ∙ ∙ 1 1 − n	 ■

 Example 4   |  Prove the formula for the sum of the first n positive integers:

o
n

i−1
 i − 1 1 2 1 3 1 ∙ ∙ ∙ 1 n −

nsn 1 1d
2

SOLUTION�  This formula can be proved by mathematical induction or by the follow-
ing method used by the German mathematician Karl Friedrich Gauss (1777–1855) 
when he was ten years old.

Write the sum S twice, once in the usual order and once in reverse order:

 S − 1 1  2  1  3  1 ∙ ∙ ∙ 1  sn 2 1d 1  n

 S − n 1  sn 2 1d 1  sn 2 2d 1 ∙ ∙ ∙ 1  2  1  1

Adding all columns vertically, we get

2S − sn 1 1d 1 sn 1 1d 1 sn 1 1d 1 ∙ ∙ ∙ 1 sn 1 1d 1 sn 1 1d

On the right side there are n terms, each of which is n 1 1, so

	 2S − nsn 1 1d        or        S −
nsn 1 1d

2
	 ■

 Example 5   |  Prove the formula for the sum of the squares of the first n positive 
integers:

o
n

i−1
 i 2 − 12 1 22 1 32 1 ∙ ∙ ∙ 1 n 2 −

nsn 1 1ds2n 1 1d
6

SOLUTION 1�  Let S be the desired sum. We start with the telescoping sum (or 
collapsing sum):

 o
n

i−1
 fs1 1 id3 2 i 3 g − s23 2 13 d 1 s33 2 23 d 1 s43 2 33 d 1 ∙ ∙ ∙ 1 fsn 1 1d3 2 n 3 g

 − sn 1 1d3 2 13 − n 3 1 3n 2 1 3n

On the other hand, using Theorem 2 and Examples 3 and 4, we have

 o
n

i−1
 fs1 1 i d3 2 i 3 g − o

n

i−1
 f3i 2 1 3i 1 1g − 3 o

n

i−1
 i 2 1 3 o

n

i−1
 i 1 o

n

i−1
 1

 − 3S 1 3 
nsn 1 1d

2
1 n − 3S 1 3

2 n 2 1 5
2 n

n terms

Most terms cancel in pairs.
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Thus we have

n 3 1 3n 2 1 3n − 3S 1 3
2 n 2 1 5

2 n

Solving this equation for S, we obtain

 3S − n 3 1 3
2 n 2 1 1

2 n

or	  S −
2n 3 1 3n 2 1 n

6
−

nsn 1 1ds2n 1 1d
6

	

SOLUTION 2�  Let Sn be the given formula.

1.�	 S1 is true because	 12 −
1s1 1 1ds2 ? 1 1 1d

6

2.�	 Assume that Sk is true; that is,

12 1 22 1 32 1 ∙ ∙ ∙ 1 k 2 −
ksk 1 1ds2k 1 1d

6

Then

 12 1 22 1 32 1 ∙ ∙ ∙ 1 sk 1 1d2 − s12 1 22 1 32 1 ∙ ∙ ∙ 1 k 2 d 1 sk 1 1d2

 −
ksk 1 1ds2k 1 1d

6
1 sk 1 1d2

 − sk 1 1d 
ks2k 1 1d 1 6sk 1 1d

6

 − sk 1 1d 
2k 2 1 7k 1 6

6

 −
sk 1 1dsk 1 2ds2k 1 3d

6

 −
sk 1 1dfsk 1 1d 1 1gf2sk 1 1d 1 1g

6

So Sk11 is true.
By the Principle of Mathematical Induction, Sn is true for all n.	 ■

We list the results of Examples 3, 4, and 5 together with a similar result for cubes (see 
Exercises 37–40) as Theorem 3. These formulas are needed for finding areas and evalu-
ating integrals in Chapter 5.

(3)  Theorem � Let c be a constant and n a positive integer. Then

(a)	 o
n

i−1
 1 − n	 (b)	 o

n

i−1
 c − nc

(c)	 o
n

i−1
 i −

nsn 1 1d
2

	 (d)	 o
n

i−1
 i 2 −

nsn 1 1ds2n 1 1d
6

(e)	 o
n

i−1
 i 3 − F nsn 1 1d

2 G2

Principle of Mathematical  
Induction
Let Sn be a statement involving the 
positive integer n. Suppose that
	 1.	 S1 is true.
	 2.	 If Sk is true, then Sk11 is true.
Then Sn is true for all positive integers 
n.
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	 1–10�  Write the sum in expanded form.

	 1.	 o
5

i−1
 si 	 2.	 o

6

i−1

1

i 1 1

	 3.	 o
6

i−4
3 i	 4.	 o

6

i−4
 i 3

	 5.	 o
4

k−0
 
2k 2 1

2k 1 1
	 6.	 o

8

k−5
 x k

	 7.	 o
n

i−1
 i 10	 8.	 o

n13

j−n
 j 2

	 9.	 o
n21

j−0
 s21d j	 10.	 o

n

i−1
 f sxi d Dxi

	 11–20�  Write the sum in sigma notation.

	 11.	 1 1 2 1 3 1 4 1 ∙ ∙ ∙ 1 10

EXERCISES f

 Example 6   |  Evaluate o
n

i−1
 is4i 2 2 3d.

SOLUTION�  Using Theorems 2 and 3, we have

 o
n

i−1
 is4i 2 2 3d − o

n

i−1
 s4i 3 2 3id − 4 o

n

i−1
i 3 2 3 o

n

i−1
 i

 − 4F nsn 1 1d
2 G2

2 3 nsn 1 1d
2

 −
nsn 1 1df2nsn 1 1d 2 3g

2

	  −
nsn 1 1ds2n 2 1 2n 2 3d

2
	 ■

 Example 7   |  Find lim
n l `

o
n

i−1

3

n
 FS i

nD
2

1 1G.

SOLUTION

 lim
nl `

 o
n

i−1

3

n
 FS i

nD
2

1 1G − lim
n l `

 o
n

i−1
F 3

n 3
 i 2 1

3

nG
 − lim

n l `
 F 3

n 3 o
n

i−1
 i 2 1

3

n
 o

n

i−1
 1G

 − lim
n l `

 F 3

n 3  
nsn 1 1ds2n 1 1d

6
1

3

n
? nG

 − lim
n l `

 F 1

2
?

n

n
? S n 1 1

n DS 2n 1 1

n D 1 3G
 − lim

n l `
 F 1

2
? 1S1 1

1

nDS2 1
1

nD 1 3G
	  − 1

2 ? 1 ? 1 ? 2 1 3 − 4 	 ■

The type of calculation in Example 7 
arises in Chapter 5 when we compute 
areas.
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the sum of the areas of the n “gnomons” G1, G2, . . . , Gn 
shown in the figure. Show that the area of Gi is i 3 and 
conclude that formula (e) is true.

7etAppEx40
03/05/10
MasterID: 01211

1 2 3 4 5 . . . n BA
1
2
3

4

5

n

D

...

C

Gn

G™
G£

G¢

G∞

    .  ..

	 41.��	 Evaluate each telescoping sum.

		  (a)	 o
n

i−1
 fi 4 2 si 2 1d4 g	 (b)	 o

100

i−1
 s5 i 2 5 i21 d

		  (c)	 o
99

i−3
 S 1

i
2

1

i 1 1D	 (d)	 o
n

i−1
 sai 2 ai21d

	 42.��	 Prove the generalized triangle inequality:

Zon

i−1
 ai Z < o

n

i−1
| ai |

	 43–46��  Find the limit.

	 43.	 lim
nl `

 o
n

i−1
 
1

n
 S i

nD
2

	 44.	 lim
n l`

 o
n

i−1
 
1

n
 FS i

nD
3

1 1G
	 45.	 lim

nl `
 o

n

i−1
 
2

n
 FS 2i

n D
3

1 5S 2i

n DG
	 46.	 lim

nl `
 o

n

i−1
 
3

n
 FS1 1

3i

n D
3

2 2S1 1
3i

n DG
	 47.��	� Prove the formula for the sum of a finite geometric series 

with first term a and common ratio r ± 1:

o
n

i−1
 ar i21 − a 1 ar 1 ar 2 1 ∙ ∙ ∙ 1 ar n21 −

asr n 2 1d
r 2 1

	 48.��	 Evaluate o
n

i−1
 

3

2 i21 .

	 49.��	 Evaluate o
n

i−1
 s2i 1 2 i d.

	 50.��	 Evaluate o
m

i−1
 Fo

n

j−1
 si 1 j dG.

	 12.	 s3 1 s4 1 s5 1 s6 1 s7 

	 13.	 1
2 1 2

3 1 3
4 1 4

5 1 ∙ ∙ ∙ 1 19
20

	 14.	 3
7 1 4

8 1 5
9 1 6

10 1 ∙ ∙ ∙ 1 23
27

	 15.	 2 1 4 1 6 1 8 1 ∙ ∙ ∙ 1 2n

	 16.	 1 1 3 1 5 1 7 1 ∙ ∙ ∙ 1 s2n 2 1d

	 17.	 1 1 2 1 4 1 8 1 16 1 32

	 18.	 1
1 1 1

4 1 1
9 1 1

16 1 1
25 1 1

36

	 19.	 x 1 x 2 1 x 3 1 ∙ ∙ ∙ 1 x n

	 20.	 1 2 x 1 x 2 2 x 3 1 ∙ ∙ ∙ 1 s21dnx n

	 21–35�  Find the value of the sum.

	 21.	 o
8

i−4
s3i 2 2d	 22.	 o

6

i−3
isi 1 2d

	 23.	 o
6

j−1
3 j11	 24.	 o

8

k−0
cos k�

	 25.	 o
20

n−1
 s21dn	 26.	 o

100

i−1
4

	 27.	 o
4

i−0
s2 i 1 i 2d	 28.	 o

4

i−22
232i

	 29.	 o
n

i−1
2i	 30.	 o

n

i−1
s2 2 5i d

	 31.	 o
n

i−1
si 2 1 3i 1 4d	 32.	 o

n

i−1
s3 1 2i d2

	 33.	 o
n

i−1
si 1 1dsi 1 2d	 34.	 o

n

i−1
 isi 1 1dsi 1 2d

	 35.	 o
n

i−1
 si 3 2 i 2 2d

	 36.��	 Find the number n such that o
n

i−1
 i − 78.

	 37.��	 Prove formula (b) of Theorem 3.

	 38.��	� Prove formula (e) of Theorem 3 using mathematical  
induction.

	 39.��	� Prove formula (e) of Theorem 3 using a method similar to 
that of Example 5, Solution 1 [start with s1 1 i d4 2 i 4 g.

	 40.��	� Prove formula (e) of Theorem 3 using the following method 
published by Abu Bekr Mohammed ibn Alhusain Alkarchi in 
about ad 1010. The figure shows a square ABCD in which 
sides AB and AD have been divided into segments of lengths 
1, 2, 3, . . . , n. Thus the side of the square has length 
nsn 1 1dy2 so the area is fnsn 1 1dy2g2. But the area is also 
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G Complex Numbers

A complex number can be represented by an expression of the form a 1 bi, where  
a and b are real numbers and i is a symbol with the property that i 2 − 21. The com- 
plex number a 1 bi can also be represented by the ordered pair sa, bd and plotted as  
a point in a plane (called the Argand plane) as in Figure 1. Thus the complex number  
i − 0 1 1 ? i is identified with the point s0, 1d.

The real part of the complex number a 1 bi is the real number a and the imaginary 
part is the real number b. Thus the real part of 4 2 3i is 4 and the imaginary part is 23. 
Two complex numbers a 1 bi and c 1 di are equal if a − c and b − d, that is, their real 
parts are equal and their imaginary parts are equal. In the Argand plane the horizontal 
axis is called the real axis and the vertical axis is called the imaginary axis.

The sum and difference of two complex numbers are defined by adding or subtracting 
their real parts and their imaginary parts:

 sa 1 bid 1 sc 1 did − sa 1 cd 1 sb 1 ddi

 sa 1 bid 2 sc 1 did − sa 2 cd 1 sb 2 ddi

For instance,

s1 2 id 1 s4 1 7id − s1 1 4d 1 s21 1 7di − 5 1 6i

The product of complex numbers is defined so that the usual commutative and distribu-
tive laws hold:

 sa 1 bidsc 1 did − asc 1 did 1 sbidsc 1 did

 − ac 1 adi 1 bci 1 bdi 2

Since i 2 − 21, this becomes

sa 1 bidsc 1 did − sac 2 bdd 1 sad 1 bcdi

 Example 1 

 s21 1 3ids2 2 5id − s21ds2 2 5id 1 3is2 2 5id

	  − 22 1 5i 1 6i 2 15s21d − 13 1 11i	 ■

Division of complex numbers is much like rationalizing the denominator of a rational 
expression. For the complex number z − a 1 bi, we define its complex conjugate to be 
z − a 2 bi. To find the quotient of two complex numbers we multiply numerator and 
denominator by the complex conjugate of the denominator.

 Example 2   |  Express the number 
21 1 3i

2 1 5i
 in the form a 1 bi.

SOLUTION�  We multiply numerator and denominator by the complex conjugate of 
2 1 5i, namely, 2 2 5i, and we take advantage of the result of Example 1:

	
21 1 3i

2 1 5i
−

21 1 3i

2 1 5i
?

2 2 5i

2 2 5i
−

13 1 11i

22 1 52 −
13

29
1

11

29
 i	 ■

The geometric interpretation of the complex conjugate is shown in Figure 2: z is the 
reflection of z in the real axis. We list some of the properties of the complex conjugate 

Figure �1
Complex numbers as points in the 
Argand plane

Re

Im

0

i

_2-2i
_i

3-2i

2+3i
_4+2i

1

Re

Im

0

bi

b

a

z=a+bi

|z |=
a@+

b@

œ„„„„„

Re

Im

0

i

_i

z=a-bi–

z=a+bi

Figure �2
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in the following box. The proofs follow from the definition and are requested in Exer-
cise 18.

Properties of Conjugates �

z 1 w − z 1 w            zw − z w                z n − z n

The modulus, or absolute value, | z | of a complex number z − a 1 bi is its distance 
from the origin. From Figure 3 we see that if z − a 1 bi, then

| z | − sa 2 1 b 2 

Notice that

zz − sa 1 bidsa 2 bid − a 2 1 abi 2 abi 2 b 2i 2 − a 2 1 b 2

and so	 zz − | z |2	

This explains why the division procedure in Example 2 works in general:

z

w
−

zw
ww

−
zw

| w |2

Since i 2 − 21, we can think of i as a square root of 21. But notice that we also have 
s2id2 − i 2 − 21 and so 2i is also a square root of 21. We say that i is the principal 
square root of 21 and write s21 − i. In general, if c is any positive number, we write

 s2c − sc  i

With this convention, the usual derivation and formula for the roots of the quadratic 
equation ax 2 1 bx 1 c − 0 are valid even when b 2 2 4ac , 0:

x −
2b 6 sb 2 2 4ac 

2a

 Example 3   |  Find the roots of the equation x 2 1 x 1 1 − 0.

SOLUTION�  Using the quadratic formula, we have

	 x −
21 6 s12 2 4 ? 1

2
−

21 6 s23 

2
−

21 6 s3  i

2
	 ■

We observe that the solutions of the equation in Example 3 are complex conjugates of 
each other. In general, the solutions of any quadratic equation ax 2 1 bx 1 c − 0 with 
real coefficients a, b, and c are always complex conjugates. (If z is real, z − z, so z is its 
own conjugate.)

We have seen that if we allow complex numbers as solutions, then every quadratic  
equation has a solution. More generally, it is true that every polynomial equation

an xn 1 an21 xn21 1 ∙ ∙ ∙ 1 a1 x 1 a0 − 0

of degree at least one has a solution among the complex numbers. This fact is known as  
the Fundamental Theorem of Algebra and was proved by Gauss.

Re

Im

0

bi

b

a

z=a+bi

|z |=
a@+

b@

œ„„„„„

Re

Im

0

i

_i

z=a-bi–

z=a+bi

Figure �3
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■ Polar Form
Any complex number z − a 1 bi can be considered as a point sa, bd and any such point 
can be represented by polar coordinates sr, �d with r > 0. In fact,

a − r cos �            b − r sin �

as in Figure 4. Therefore we have

z − a 1 bi − sr cos �d 1 sr sin �di

Thus we can write any complex number z in the form

z − rscos � 1 i sin �d

where	 r − | z | − sa 2 1 b 2         and        tan � −
b

a
	

The angle � is called the argument of z and we write � − argszd. Note that argszd is not 
unique; any two arguments of z differ by an integer multiple of 2�.

 Example 4   |  Write the following numbers in polar form.

(a)  z − 1 1 i	 (b)  w − s3 2 i

SOLUTION
(a)  We have r − | z | − s12 1 12 − s2  and tan � − 1, so we can take � − �y4. 
Therefore the polar form is

z − s2  Scos 
�

4
1 i sin 

�

4 D
(b)  Here we have r − | w | − s3 1 1 − 2 and tan � − 21ys3 . Since w lies in the 
fourth quadrant, we take � − 2�y6 and

w − 2FcosS2
�

6 D 1 i sinS2
�

6 DG
The numbers z and w are shown in Figure 5.	 ■

The polar form of complex numbers gives insight into multiplication and division. Let

z1 − r1scos �1 1 i sin �1d            z2 − r2scos �2 1 i sin �2 d

be two complex numbers written in polar form. Then

 z1z2 − r1r2scos �1 1 i sin �1dscos �2 1 i sin �2 d

 − r1r2fscos �1 cos �2 2 sin �1 sin �2 d 1 issin �1 cos �2 1 cos �1 sin �2 dg

Therefore, using the addition formulas for cosine and sine, we have

(1)	 z1z2 − r1r2fcoss�1 1 �2 d 1 i sins�1 1 �2 dg	

This formula says that to multiply two complex numbers we multiply the moduli and 
add the arguments. (See Figure 6.)

Re

Im

0

a+bi

b
¨

r

aa

Figure �4

Re

Im

0

œ„3-i
2

1+i
œ„2

π
4

_π
6

Figure �5

z¡

Re

Im

z¡z™

¨¡+¨™

z™

¨¡

¨™

Figure �6
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A similar argument using the subtraction formulas for sine and cosine shows that to 
divide two complex numbers we divide the moduli and subtract the arguments.

z1

z2
−

r1

r2
 fcoss�1 2 �2 d 1 i sins�1 2 �2 dg        z2 ± 0

In particular, taking z1 − 1 and z2 − z (and therefore �1 − 0 and � 2 − �), we have the  
following, which is illustrated in Figure 7.

If    z − rscos � 1 i sin �d,    then  
1

z
−

1

r
 scos � 2 i sin �d.

 Example 5   |  Find the product of the complex numbers 1 1 i and s3 2 i in polar 
form.

SOLUTION�  From Example 4 we have

 1 1 i − s2  Scos 
�

4
1 i sin 

�

4 D
and	  s3 2 i − 2FcosS2

�

6 D 1 i sinS2
�

6 DG	

So, by Equation 1,

 s1 1 idss3 2 id − 2s2  FcosS�

4
2

�

6 D 1 i sinS�

4
2

�

6 DG
 − 2s2  Scos 

�

12
1 i sin 

�

12D
This is illustrated in Figure 8.	 ■

Repeated use of Formula 1 shows how to compute powers of a complex number. If

 z − r scos � 1 i sin �d

then	  z 2 − r 2scos 2� 1 i sin 2�d 	

and	  z 3 − zz 2 − r 3scos 3� 1 i sin 3�d	

In general, we obtain the following result, which is named after the French mathemati­
cian Abraham De Moivre (1667–1754).

(2)  De Moivre’s Theorem � If z − r scos � 1 i sin �d and n is a positive inte­
ger, then

z n − fr scos � 1 i sin �dgn − r nscos n� 1 i sin n�d

This says that to take the nth power of a complex number we take the nth power of the 
modulus and multiply the argument by n.

Re

Im

0

r

z

¨
_¨
1
r

1
z

Figure �7

0

2

z=1+i

w=œ„3-i

zw
2œ„2œ„2

Re

Im

π
12

Figure �8
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 Example 6   |  Find s1
2 1 1

2 id10.

SOLUTION�  Since 12 1 1
2 i − 1

2 s1 1 id, it follows from Example 4(a) that 12 1 1
2 i has 

the polar form

1

2
1

1

2
 i −

s2 

2
 Scos 

�

4
1 i sin 

�

4 D
So by De Moivre’s Theorem,

S 1

2
1

1

2
 iD10

− Ss2 

2 D10Scos 
10�

4
1 i sin 

10�

4 D
	  −

25

210  Scos 
5�

2
1 i sin 

5�

2 D −
1

32
 i	 ■

De Moivre’s Theorem can also be used to find the nth roots of complex numbers. An  
nth root of the complex number z is a complex number w such that

w n − z

Writing these two numbers in polar form as

w − sscos � 1 i sin �d        and        z − r scos � 1 i sin �d

and using De Moivre’s Theorem, we get

s nscos n� 1 i sin n�d − r scos � 1 i sin �d

The equality of these two complex numbers shows that

s n − r        or        s − r 1yn

and	 cos n� − cos �        and        sin n� − sin �	

From the fact that sine and cosine have period 2�, it follows that

n� − � 1 2k�        or        � −
� 1 2k�

n

Thus	 w − r 1ynFcosS � 1 2k�

n D 1 i sinS � 1 2k�

n DG	

Since this expression gives a different value of w for k − 0, 1, 2, . . . , n 2 1, we have 
the following.

(3)  Roots of a Complex Number � Let z − r scos � 1 i sin �d and let n be a 
positive integer. Then z has the n distinct nth roots

wk − r 1ynFcosS � 1 2k�

n D 1 i sinS � 1 2k�

n DG
where k − 0, 1, 2, . . . , n 2 1.

Notice that each of the nth roots of z has modulus | wk | − r 1yn. Thus all the nth roots of z 
lie on the circle of radius r 1yn in the complex plane. Also, since the argument of each suc­
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cessive nth root exceeds the argument of the previous root by 2�yn, we see that the  
nth roots of z are equally spaced on this circle.

 Example 7   |  Find the six sixth roots of z − 28 and graph these roots in the com- 
plex plane.

SOLUTION�  In polar form, z − 8scos � 1 i sin �d. Applying Equation 3 with n − 6, 
we get

wk − 81y6Scos 
� 1 2k�

6
1 i sin 

� 1 2k�

6 D
We get the six sixth roots of 28 by taking k − 0, 1, 2, 3, 4, 5 in this formula:

 w0 − 81y6Scos 
�

6
1 i sin 

�

6 D − s2  Ss3 

2
1

1

2
 iD

 w1 − 81y6Scos 
�

2
1 i sin 

�

2 D − s2  i

 w2 − 81y6Scos 
5�

6
1 i sin 

5�

6 D − s2  S2
s3 

2
1

1

2
 iD

 w3 − 81y6Scos 
7�

6
1 i sin 

7�

6 D − s2  S2
s3 

2
2

1

2
 iD

 w4 − 81y6Scos 
3�

2
1 i sin 

3�

2 D − 2s2  i

 w5 − 81y6Scos 
11�

6
1 i sin 

11�

6 D − s2  Ss3 

2
2

1

2
 iD

All these points lie on the circle of radius s2  as shown in Figure 9.	 ■

■ Complex-Valued Functions and Their Derivatives
For a complex-valued function of one real variable t we can write

zstd − xstd 1 iystd

where xstd and ystd are the real and imaginary parts of zstd. We can define its derivative 
z9std by differentiating its real and imaginary parts:

z9std − x9std 1 iy9std

In particular, if we look at a complex number z on the unit circle in Figure 10 we can 
write it in polar form

z − cos � 1  isin �

and consider the corresponding complex-valued function of the real variable �

f s�d − cos � 1 isin �

Then

f 9s�d −
d

d�
 scos �d 1 i 

d

d�
 ssin �d − 2sin � 1 icos �

0

w¡

w¢

w∞

w¸w™

w£

_œ„2 œ„2

_œ„2i

œ„2i

Re

Im

Figure �9
The six sixth roots of z − 28

0 x

y

0 x

y

z=cos ¨+i sin ¨

¨

1

Figure �10
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Because i 2 − 21, we could rewrite this as

 f 9s�d − icos � 1 i 2 sin �

 − iscos � 1 isin �d − i f s�d

The equation f 9s�d − i f s�d shows that the derivative of f  is proportional to the function 
itself, the proportionality constant being the complex number i. In Section 7.4 we showed 
that the only solution of the differential equation dyydt − ky is the exponential function 
ystd − Aekt. Assuming that this is also true for complex functions, we get

f 9s�d − i f s�d  ?  f s�d − Aei�

where A is a constant. Putting � − 0, we get f s0d − Ae0 − A. But

f s0d − cos 0 1 isin 0 − 1

and so A − 1 and therefore f s�d − ei�. We have thus arrived at a famous formula:

(4)  Euler’s Formula �

ei� − cos � 1 isin �

 Example 8   |  Evaluate ei�.

Solution � From Euler’s Formula (4) with � − �, we get

	 ei� − cos � 1 isin � − 21 1 is0d − 21	 ■

We could define the general complex exponential function ez for any complex number 
z − x 1 iy by writing

(5)	 ez − ex1iy − exeiy − exscos y 1 isin yd	

 Example 9   |  Evaluate e211i�y2.

Solution � Using Equation 5 we get

	 e211i�y2 − e21Scos 
�

2
1 isin 

�

2 D −
1

e
 f0 1 is1dg −

i

e
 	 ■

Finally, we note that Euler’s equation provides us with an easier method of proving 
De Moivre’s Theorem: 

frscos � 1 isin �dg n − srei�dn − r nein� − r nscos n� 1 isin n�d

We could write the result of Example 8 
as

ei� 1 1 − 0

This equation relates the five most 
famous numbers in all of mathematics: 
0, 1, e, i, and �.
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	� 1–14�  Evaluate the expression and write your answer in the  
form a 1 bi.

	 1.	 s5 2 6i d 1 s3 1 2i d	 2.	 s4 2 1
2 id 2 s9 1 5

2 id
	 3.	 s2 1 5i ds4 2 id	 4.	 s1 2 2i ds8 2 3i d

	 5.	 12 1 7i	 6.	 2i ( 1
2 2 i)

	 7.	
1 1 4i

3 1 2i
	 8.	

3 1 2i

1 2 4i

	 9.	
1

1 1 i
	 10.	

3

4 2 3i

	 11.	 i 3		  12.	 i 100

	 13.	 s225 	 14.	 s23 s212 

	� 15–17�  Find the complex conjugate and the modulus of the  
number.

	 15.	 12 2 5i	 16.	 21 1 2s2 i

	 17.	 24i

	 18.��	 Prove the following properties of complex numbers.
		  (a)	 z 1 w − z 1 w                   (b)  zw − z w
		  (c)	 z n − z n,  where n is a positive integer

		  [Hint: Write z − a 1 bi, w − c 1 di.]

	 19–24�  Find all solutions of the equation.

	 19.	 4x 2 1 9 − 0	 20.	 x 4 − 1

	 21.	 x 2 1 2x 1 5 − 0	 22.	 2x 2 2 2x 1 1 − 0

	 23.	 z2 1 z 1 2 − 0	 24.	 z2 1 1
2 z 1 1

4 − 0

	� 25–28�  Write the number in polar form with argument between 0 
and 2�.

	 25.	 23 1 3i	 26.	 1 2 s3 i

	 27.	 3 1 4i	 28.	 8i

	� 29–32 � Find polar forms for zw, zyw, and 1yz by first putting z 
and w into polar form.

	 29.	�� z − s3 1 i,    w − 1 1 s3 i

	 30.	�� z − 4s3 2 4i,    w − 8i

	 31.	�� z − 2s3 2 2i,    w − 21 1 i

	 32.	�� z − 4ss3 1 i d,    w − 23 2 3i

	 33–36�  Find the indicated power using De Moivre’s Theorem.

	 33.	 s1 1 i d20	 34.	 s1 2 s3 i d5

	 35.	 s2s3 1 2i d5	 36.	 s1 2 i d8

	� 37–40�  Find the indicated roots. Sketch the roots in the complex 
plane.

	 37.	 The eighth roots of 1	 38.	 The fifth roots of 32

	 39.	 The cube roots of i	 40.	 The cube roots of 1 1 i

	 41–46�  Write the number in the form a 1 bi.

	 41.	 e i�y2	 42.	 e 2� i

	 43.	 e i�y3	 44.	 e 2i�

	 45.	 e 21i�	 46.	 e �1i

	 47.��	� Use De Moivre’s Theorem with n − 3 to express cos 3� and 
sin 3� in terms of cos � and sin �.

	 48.	�� �Use Euler’s formula to prove the following formulas for 
cos x and sin x:

cos x −
eix 1 e2ix

2
            sin x −

e ix 2 e2ix

2i

	 49.	�� �If usxd − f sxd 1 itsxd is a complex-valued function of a real 
variable x and the real and imaginary parts f sxd and tsxd are 
differentiable functions of x, then the derivative of u is 
defined to be u9sxd − f 9sxd 1 it9sxd. Use this together with 
Equation 5 to prove that if Fsxd − e rx, then F9sxd − re rx 
when r − a 1 bi is a complex number.

	 50.��	� (a)	� If u is a complex-valued function of a real variable, its 
indefinite integral y usxd dx is an antiderivative of u.  
Evaluate

y e s11i dx dx

		  (b)	� By considering the real and imaginary parts of the inte­
gral in part (a), evaluate the real integrals

y e x cos x dx        and        y e x sin x dx

		  (c)	� Compare with the method used in Example 5.5.4.
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    733

Glossary of Biological Termses

carrying capacity  the population size at which the per capita 
growth rate of the population is zero

chemotaxis  a phenomenon by which an organism moves in the 
direction of a chemical gradient

codon  a specific sequence of three consecutive nucleotides that 
codes for a particular amino acid during the process of protein 
synthesis

compensatory growth  a phenomenon by which an individual 
exhibits an increase in growth rate after a period of food depri-
vation so as to “catch up” to the size that is typical for their age

cross-feeding  a process by which one species or genotype feeds 
on the waste products of another

diploid  a cell or organism that has two copies of each gene

DNA  acronym for DeoxyriboNucleic Acid; a double-stranded 
nucleic acid molecule that contains the genetic information (that 
is, the genetic code) for many living organisms. 

dose response relationship (curve)  the relationship between 
the concentration or amount of a drug and its effect

dynamics  a broad term referring to the change in a variable of 
interest over time; for example, “the dynamics of N” refers to 
the way that N changes as a function of time

Einthoven’s triangle  an imaginary equilateral triangle super-
imposed on a person’s chest, and used in vectorcardiography

electrocardiogram (ECG)  a recording of the electrical activity 
of the heart over time

embolism  a clot or blockage in a blood vessel 

enzyme  a type of molecule that catalyzes chemical reactions

fitness  a measure of the survivorship and/or reproductive output 
of an organism

gait  a pattern of animal locomotion such as walking, running, or 
galloping

gametocyte  a specific kind of cell that is capable of producing 
either the male (sperm) or female (egg) cells required for sexual 
reproduction

gene  the basic unit of heredity, typically identified as a specific 
location on the DNA; the terms gene and allele are often used 
interchangeably but technically it is not correct to do so

gene regulation  a feedback process by which the expression of 
a gene is regulated by the products it generates

genome  the entire set of genes of an organism

genome expression profile  the measured levels of expression 
of a set of genes

genotype  the collection of specific alleles within an organism

agar  a gelatinous substance made of seaweed used in the cultur-
ing of microbes

Allee effect  a phenomenon by which the per capita growth 
rate of a population is negative for small population sizes (for 
example, because of difficulty finding mates for reproduction)

allele  a particular variant of the DNA that is found at a specific 
gene; the terms gene and allele are often used interchangeably 
but technically it is not correct to do so

allometry  the relationship between the size of one part of an 
organism and the size of the organism itself; allometric growth 
refers to this relationship during the growth of an individual

amino acid  the basic chemical subunit that makes up proteins; 
there are 20 different possible amino acids that are specified by 
codons during the process of protein synthesis

anesthesiology  a branch of medicine dealing with the adminis-
tration of drugs and anesthetics for controlling pain and sensa-
tion, as well as other life sustaining factors, particularly in the 
context of surgery

antibiotic concentration profile  a graph depicting the con-
centration of an antibiotic in the body as a function of the time 
since it was administered

antigen  any foreign substance or molecule that stimulates an 
immune response specific to it; often a surface molecule or cel-
lular component of a pathogen

antigenic cartography  the construction of a plot in which the 
binding strength of a virus (or other pathogen) to each of a set 
of n immunity molecules is depicted as a point in n-dimensional 
space

antigenic evolution  evolution of the antigenic properties of a 
pathogen; it allows the pathogen to escape any previous immune 
response and thereby to reproduce until an immune response 
specific to the new form of its antigen develops

antigenic space  an n-dimensional space whose coordinate axes 
represent the binding strength to each of n different immunity 
molecules

antigenicity  the capacity of a substance or molecule to induce an 
immune response

antiserum  serum containing immune system molecules against 
specific antigens

biomechanics  the study of animal form in terms of mechanical 
structure and physical composition, especially as it relates to 
movement

CT/CAT scan  computerized tomography or computerized axial 
tomography; an X-ray technique used for generating cross-
sectional images of the internal parts of a body
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per capita growth rate (per unit rate)  the rate at which a 
population is growing divided by the size of the population at 
that time

pharmacokinetics  the change in drug concentration within a 
patient during treatment

phenotype  the observable properties of an organism in contrast 
to genotype, which is the collection of specific alleles within 
an organism and cannot be directly observed. An organism’s 
genotype, in part, determines the organism’s phenotype

photosynthesis  the synthesis of organic carbon compounds 
from carbon dioxide, water, and sunlight

population genetics  the study of how allele frequencies in a 
population change

prevalence  in epidemiology, the proportion (or sometimes  
number) of individuals having a disease

renewable resource  a biological resource that is self- 
reproducing, such as a forest or a fish population (as compared 
with nonrenewable resources such as oil)

reproduction number  a term used in the study of infectious 
diseases; it is the number of new infections generated by a 
single infected individual when introduced into a population 
entirely susceptible to infection

RNA  acronym for RiboNucleic Acid; a single-stranded nucleic 
acid molecule that plays an important role in translating the 
genetic code of DNA into proteins and also serves as the mol-
ecule of inheritance for some viruses

serum  the clear portion of blood

sporozoite  in malaria, a specific kind of cell involved in the 
stage of the life cycle when sexual cell division occurs; it is 
the cell type that is introduced into the human bloodstream by 
mosquitoes

substrate  a substance upon which a chemical reaction occurs 
(often as a result of binding with an enzyme)

transcription  an initial step in protein synthesis whereby the 
DNA sequence of a gene is transcribed into mRNA 

translation  a secondary step in protein synthesis whereby 
mRNA is read as a series of codons, each of which specifies an 
amino acid that goes into the synthesis of the protein

urea  a chemical waste product produced by many organisms

vaccination  a form of preventative medicine in which an indi-
vidual is given an inactive form of a pathogen, called a vaccine, 
to stimulate an immune response that protects against subse-
quent infection

vaccine escape  the antigenic evolution of a virus to the point 
where a vaccine no longer provides protection against it

vectorcadiography  a method that records the direction and 
magnitude of electrical impulses generated by the heart

virulence  a term referring to the severity, in terms of an indi-
vidual’s health, of an infectious disease 

zygote  the cell formed by the fusion of a male (sperm) and 
female (egg) cell during sexual reproduction

haploid  a cell or organism that has one copy of each gene

Hardy-Weinberg law  the statement that allele frequencies in a 
population remain constant over time in the absence of evolu-
tionary processes such as natural selection or mutation

homeostatis  the tendency of a biological system to maintain 
itself in a relatively stable state

inbreeding  the interbreeding of genetically similar individuals

incidence  in epidemiology, the rate at which individuals are  
getting a disease

infectious  the state in which an infected individual is able to 
transmit a disease

island biogeography  the study of the geographic distribution 
of organisms, particularly the species richness of isolated areas 
such as caves, islands, or lakes

kill curve  a plot of the size of a bacterial population as a function 
of time after a dose of antibiotic is given

merozoite  in malaria, a specific kind of cell formed during the 
stage of the life cycle when asexual cell division occurs

metamorphosis  a large-scale change in the form and struc- 
ture of an organism’s body (and often its way of life) during  
development

metapopulation  a group of spatially separated but interacting 
subpopulations

methylation (DNA)  the attachment of chemical methyl groups 
to DNA

microarray  a grid of microscopic gene fragments attached to a 
solid surface, and used to quantify the expression level of dif-
ferent genes

morphology  a term referring to the form or structure of an 
organism

mRNA  acronym for messenger RiboNucleic Acid; a type of RNA 
that serves as an intermediate molecule in the process of protein 
synthesis

mutate  to change from one allele to another

mutation  a term used to describe a new type of allele that arises 
when the “normal” allele mutates

neuron  an electrically excitable cell that conducts electrical 
impulses (called nerve impulses) from one location in an organ-
ism to another

nucleotide  a single letter of the genetic code that makes up the 
chemical structure of DNA and RNA

parasite  an organism that obtains resources by living in or on 
another host organism (typically to the detriment of the host); 
the terms parasite and pathogen are sometimes used inter-
changeably

pathogen  an organism that is capable of causing disease or ill-
ness in its host organism; the terms pathogen and parasite are 
sometimes used interchangeably

pathogenesis  the development of a disease within an individual 
over time
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Answers to Odd-Numbered Exerciseses

27.  12, 16, 3a2 2 a 1 2, 3a2 1 a 1 2, 3a2 1 5a 1 4,  
6a2 2 2a 1 4, 12a2 2 2a 1 2, 3a4 2 a2 1 2, 
9a4 2 6a3 1 13a2 2 4a 1 4, 3a2 1 6ah 1 3h2 2 a 2 h 1 2
29.  23 2 h    31.  21ysaxd 
33.  s2`, 23d ø s23, 3d ø s3, `d    35.  s2`, `d
37.  s2`, 0d ø s5, `d    39.  f0, 4g
41.  s2`, `d	 43.  s2`, `d 

y

0 x5

2

	 y

0
t_1_2

1

45.  f5, `d	 47.  s2`, 0d ø s0, `d 
y

x0 5

	

ca010131
6.11.00

x

2

y

0

4

49.  s2`, `d	 51.  s2`, `d 

3cA010141
6.16.04

x

(0, 2)
(0, 1)

_2 1

y

0

	

x

y

1

�1 0

53.  AsLd − 10L 2 L2, 0 , L , 10
55.  Asxd − s3x 2y4, x . 0    57.  Ssxd − x 2 1 s8yxd, x . 0

59.  Tsxd − H75x if 0 , x < 2

150 1 50sx 2 2d if x . 2
61.  �77 hours
63.  f  is odd, t is even  65.  (a)  s25, 3d  (b)  s25, 23d
67.  Odd  69.  Neither  71.  Even
73.  Even; odd; neither (unless f − 0 or t − 0)

■  Exercises 1.2  |  page 28

1.  (a)  Logarithmic  (b)  Root  (c)  Rational   
(d)  Polynomial, degree 2  (e)  Exponential  (f)  Trigonometric
3.  (a)  h  (b)  f  (c)  t

Chapter 1

■  Exercises 1.1  |  page 13

1.  Yes
3.  (a)  3  (b)  20.2  (c)  0, 3  (d)  20.8   
(e)  f22, 4g, f21, 3g  (f)  f22, 1g 
5.  No    7.  Yes, f23, 2g, f23, 22d ø f21, 3g  
9.  (a)  �13.8°C  (b)  �1992  (c)  1910; 2006 
(d)  f13.5, 14.5g
11.  [12:23 am, 12:52 am] 
13.  (a)  �100, 134  (b)  30°N or 30°S  (c)  Even function 
15.  Diet, exercise, or illness
17.  T

0 t

19.  Nutrient consumption; growth; carrying capacity reached; 
death
21.  T

tmidnight noon

23. 

0

amount

price

3cA010115
6.16.04

25.  (a)  (count)

(year)

100

120

80

60

40

20

0
1980 1990 2000 2010

y

x

(b)  �92,000
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(b)  y − 20.000105x 1 14.521	 15

0 61,000

(b)

(c)

(c)  y − 20.00009979x 1 13.951 [See graph in part (b).]
(d)  About 11.5 per 100 population  (e)  About 6%  (f)  No

21.  (a)  185

170

155

140
4035 45 50 55

H
ei

gh
t (

cm
)

Femur length (cm)

(b)  H − 1.8807L 1 82.6497, where H is the height in centimeters 
and L is the femur length in centimeters

185

170

155

140
4035 45 50 55

H
ei

gh
t (

cm
)

Femur length (cm)

(c)  �182.3 cm
23.  Four times as bright
25.  (a)  N − 3.1046A0.308  (b)  18
27.  (a)  L − 0.0155A3 2 0.3725A2 1 3.9461A 1 1.2108

0

10

20

30

5 10 15

L
en

gt
h 

(i
nc

he
s)

Age (years)

(b)  �13.6 in  (c)  �10.88 years

■  Exercises 1.3  |  page 38

1.  (a)  y − f sxd 1 3  (b)  y − f sxd 2 3  (c)  y − f sx 2 3d
(d)  y − f sx 1 3d  (e)  y − 2f sxd  (f)  y − f s2xd
(g)  y − 3f sxd  (h)  y − 1

3 f sxd
3.  (a)  3  (b)  1  (c)  4  (d)  5  (e)  2

5.  (a)  y − 2x 1 b, 	 y

x

b=3 b=0
b=_1

y=2x+b

where b is the y-intercept.

(b)  y − mx 1 1 2 2m, 	 y

x

m=_1

m=1

m=0

y-1=m(x-2)

(2, 1)

where m is the slope. 
(c)  y − 2x 2 3

7.  Their graphs have slope 21.	 y

x

c=_2

c=_1

0 c=2

c=1

c=0

9.  f sxd − 23xsx 1 1dsx 2 2d
11.  (a)  8.34, change in mg for every 1 year change 
(b)  8.34 mg

13.  (a) F

C

(100, 212)

F=   C+329
5

(_40, _40)

32

(b) � 95, change in °F for every 
1°C change; 32, Fahrenheit 
temperature corresponding 
to 0°C

15.  (a)  T − 1
6 N 1 307

6   (b)  1
6, change in °F for every chirp per 

minute change  (c)  76°F
17.  (a)  Cosine  (b)  Linear

19.  (a) 15

0 61,000

U
lc

er
 r

at
e

 (
pe

r 
10

0 
po

pu
la

tio
n)

Income

 � Linear model is  
appropriate.
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25.  f std − 30 sinS 2�

3
tD 1 50

27.  (a)  s f 1 tdsxd − x 3 1 5x 2 2 1, s2`, `d
(b)  s f 2 tdsxd − x 3 2 x 2 1 1, s2`, `d
(c)  s ftdsxd − 3x 5 1 6x 4 2 x 3 2 2x 2, s2`, `d

(d)  s fytdsxd −
x 3 1 2x 2

3x 2 2 1
, hx | x ± 61ys3 j

29.  (a)  s f 8 tdsxd − 4x 2 1 4x, s2`, `d
(b)  st 8 f dsxd − 2x 2 2 1, s2`, `d
(c)  s f 8 f dsxd − x 4 2 2x 2, s2`, `d
(d)  st 8 tdsxd − 4x 1 3, s2`, `d

31.  (a)  s f 8 tdsxd − 1 2 3 cos x, s2`, `d
(b)  st 8 f dsxd − cos s1 2 3xd, s2`, `d
(c)  s f 8 f dsxd − 9x 2 2, s2`, `d
(d)  st 8 tdsxd − cos scos xd, s2`, `d

33.  (a)  s f 8 tdsxd −
2x 2 1 6x 1 5

sx 1 2dsx 1 1d
, hx | x ± 22, 21j

(b)  st 8 f dsxd −
x 2 1 x 1 1

sx 1 1d2 , {x | x ± 21, 0j

(c)  s f 8 f dsxd −
x 4 1 3x 2 1 1

xsx 2 1 1d
, {x | x ± 0j

(d)  st 8 tdsxd −
2x 1 3

3x 1 5
, hx | x ± 22, 25

3 j

35.  s f 8 t 8 hdsxd − 3 sinsx 2d 2 2

37.  s f 8 t 8 hdsxd − sx 6 1 4x 3 1 1

39.  tsxd − 2x 1 x 2, f sxd − x 4

41.  tsxd − s3 x , f sxd − xys1 1 xd

43.  tstd − t 2, f std − sec t tan t

45.  hsxd − sx , tsxd − x 2 1, f sxd − sx 

47.  hsxd − sx , tsxd − sec x, f sxd − x 4

49.  (a)  4  (b)  3  (c)  0  (d)  Does not exist; f s6d − 6 is not in 
the domain of t.  (e)  4  (f)  22
51.  (a)  rstd − 60t  (b)  sA 8 rdstd − 3600�t 2; the area of the  
circle as a function of time

53.  (a)  s − sd 2 1 36  (b)  d − 30t

(c)  s f 8 tdstd − s900t 2 1 36; the distance between the lighthouse 
and the ship as a function of the time elapsed since noon
55.  (a)  dstd − tt sin mmd 
(b)  sP 8 S 8 ddstd − kt 2�t 2; the rate of enzyme production as a 
function of time
57.  Yes; m1m2 
59.  No; h is odd; h is even

■  Exercises 1.4  |  page 50 
1.  (a)  4  (b)  x 24y3    3.  (a)  16b12  (b)  648y7

5.  (a)  f sxd − b x, b . 0  (b)  R  (c)  s0, `d
(d)  See Figures 5(c), 5(b), and 5(a), respectively.

5.  (a)  y

0 x

1

1

	 (b)  y

0 x

1

2

(c)  y

0 x

1

1

	 (d)  y

0 x1

1

7.  	 9. 

11. 

y=œ„„„„ x-2-1

3

(2, _1)

0

y

x

	 13.  y

x0

1 2π

y=sin(x/2)

15.  y

x0

y=_x#

17. 

y=  (1-cos x)1
2

y

x0

  1
π

19. 
y=_(x+1)@+2

0_1

1

2

y

x

21.  Lstd − 12 1 2 sinF 2�

365
 st 2 80dG

23.  Dstd − 5 cosS�

6
st 2 6.75dD 1 7

x=_2
1

x+2y=

0

y

x
0

y=_ Œ„x
y

x
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738    answers to odd-numbered exercises

31.  (a)  25 mg  (b)  200 ? 22ty5  (c)  10.9 mg  (d)  38.2 days
33.  �3.5 days
35.  P − 2614.086s1.01693dt, where t − 0 in 1950; 
1993: P < 5381 million; 2020: P < 8466 million

■  Exercises 1.5  |  page 65 
1.  (a)  See Definition 1. 
(b)  It must pass the Horizontal Line Test.
3.  No  5.  No       7.  Yes  9.  No   
11.  Yes  13.  No 
15.  (a)  6  (b)  3  17.  0
19.  F − 9

5 C 1 32; the Fahrenheit temperature as a function of the 
Celsius temperature; f2273.15, `d
21.  y − 1

3sx 2 1d2 2 2
3, x > 1 

23.  y − 1
2s1 1 ln xd   

25.  y − e x 2 3

27.  f 21sxd − s4 x 2 1

3cA010627
5.30.04

6

60

f–!

f

29. 

3cA010629
6.16.04

x

y

f

f–!

0

31.  (a)  f 21sxd − s1 2 x 2 , 0 < x < 1; f 21 and f  are the same 
function.  (b)  Quarter-circle in the first quadrant

33.  (a)  It’s defined as the inverse of the exponential function with 
base b, that is, logb x − y &? b y − x.
(b)  s0, `d  (c)  R  (d)  See Figure 11.

35.  (a)  3  (b)  23  

37.  (a)  3  (b)  22  39.  ln 1215

41.  ln 
sx 

x 1 1
   43.  About 1,084,588 mi

45.  (a) 

_5 _4 x

y

0

y=log10 (x+5)
  (b) 

1 x

y

0

y=-ln x

7.  y=20® y=5® y=´

y=2®

5

_1 2
0

�All approach 0 as x l 2`,  
all pass through s0, 1d, and 
all are increasing. The larger 
the base, the faster the rate of 
increase.

9. 
5

_2 2

y=3®y=10®

0

y=”   ’®1
3

y=”    ’®1
10

�The functions with base 
greater than 1 are increasing 
and those with base less than 
1 are decreasing. The latter 
are reflections of the former 
about the y-axis.

11. 

_1_2 0

1

y

x

y=10x+2

	 13. 

ca010509
6.11.00

x
_1

y

0

y=_2–®

15. 

3cA010511
6.16.04

x

y

0

y=1-   e–®

y=1

1
2

”0,    ’1
2

17.  (a)  y − e x 2 2  (b)  y − e x22  (c)  y − 2e x

(d)  y − e2x  (e)  y − 2e2x

19.  (a)  s2`, 21d ø s21, 1d ø s1, `d  (b)  s2`, `d
21.  f sxd − 3 ? 2x    27.  At x < 35.8

29.  (a) 

50

0

100

150

200

5 10 15 20 25

B
ac

te
ri

a 
co

un
t (

C
FU

)

Time (hours)

(b)  f std − s36.78d ? s1.07dt

(c) 

50

0

100

150

200

5 10 15 20 25

B
ac

te
ri

a 
co

un
t (

C
FU

)

Time (hours)

�10.8 hours for bacteria count to double
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61.  (a)  4

3.5

3

2.5
1 2 3

y

x

(b)  0.6

0.55

0.5

0.45

0.4
1 2 3

log y

x

0.6

0.55

0.5

0.45

0.4
0 0.2

log y

0.6

0.55

0.5

0.45

0.4
_0.2 0.4

log x

(c)  Linear
(d)  y − 20.618857x 1 4.368000

4

3.5

3

2.5
1 2 3

y

x

63.  (a)  80

60

40

20

4 6 8

y

x

(b) 
1.8

1.6

1.4

1.2

1
4 6 8

log y

x

1.8

1.6

1.4

1.2

1
0.5 0.6 0.7 0.90.8

log y

log x

(c)  Power model is appropriate.

47.  (a)  1
4s7 2 ln 6d  (b)  1

3se2 1 10d

49.  (a)  5 1 log2 3 or 5 1 sln 3dyln 2  (b)  1
2 s1 1 s1 1 4e d

51.  (a)  0 , x , 1  (b)  x . ln 5

53.  (a)  2
32941

340
 lnS 0.60

1.65D < 98.0 minutes

(b)  T − 2
V

K
 lnS csT d

c0
D

55.  (a)  sln 3, `d  (b)  f 21sxd − lnse x 1 3d; R

57.  (a)  t −
logsny500d

log 4
; the inverse function gives the number of

hours that have passed when the population size reaches n

(b) 
log 20

log 4
< 2.16 h

59.  (a) 
0.5

0.4

0.3

0.2

0.1
0 2 4 6 8 10 12

y

x

(b)  -0.2

-0.4

-0.6

_ 0.8

_1

2 4 6 8 10 12

log y

x

-0.2

-0.4

-0.6

_ 0.8

_1

0.4 0.6 0.8 1

log y

log x

(c)  Exponential

(d)  y − 0.056769s1.204651dx

0.5

0.4

0.3

0.2

0.1

2 4 6 8 10 12

y

x
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250
200
150
100
50

0

10005000

S

A

2.5

2

1.5

1

0.5

10005000

log S

log S

A

2.5

2

1.5

1

0.5

321

log A

Power model is appropriate.
(b)  S − 0.881518A0.841701

250
200
150
100
50

0

10005000

S

A

69.  (a) 
0.3

0.2

0.1

0
1 2 3 4

B
A

C

t

_0.5

_1

_1.5

_2

1 2 3 4

lo
g 

(B
A

C
)

t

(b)  BAC − 1.343328s0.338676dt

0.3

0.2

0.1

0
1 2 3 4

B
A

C

tThe exponential function overestimates BAC for small values  
of t.
(c)  After 2.6 h

■  Exercises 1.6  |  page 76

1.  H1, 
4

5
, 

3

5
, 

8

17
, 

5

13
, . . .J 

3.  H 1

5
, 2

1

25
, 

1

125
, 2

1

625
, 

1

3125
, . . .J

(d)  y − 1.260294x 2.002959

80

60

40

20

4 6 8

y

x

65.  (a) 
1100

300

Po
pu

la
tio

n

3.1

2.5
20101940

lo
g(

Po
pu

la
tio

n)

Year

3.1

2.5
3.29 3.302

lo
g(

Po
pu

la
tio

n)

log(Year)

20101940
Year

Exponential model is appropriate.
(b)  P − s2.276131 ? 10215d ? s1.020529dY, where P is the  
population in millions and Y is the year.
(c)  P < 1247 million. Model overestimates actual population by  
74 million. It does not generalize well to future population growth.

67.  (a)  250
200
150
100
50

0

10005000

S

A

2.5

2

1.5

1

0.5

10005000

log S

log S

A

2.5

2

1.5

1

0.5

321

log A
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5. 
n an −

3n

1 1 6n

1 0.4286
2 0.4615
3 0.4737
4 0.4800
5 0.4839
6 0.4865
7 0.4884
8 0.4898
9 0.4909

10 0.4918

  

0

0.5

0.4

an

n2 4 6 8 10

7. 
n an − 1 1 (21

2)n

1 0.5000
2 1.2500
3 0.8750
4 1.0625
5 0.9688
6 1.0156
7 0.9922
8 1.0039
9 0.9980

10 1.0010

  

0

an

n 2

1

4 6 8 10

9.  an − 1ys2n 2 1d  11.  an − 23(22
3)n21

13.  an − s21dn11 n2

n 1 1
  15.  h1, 2, 7, 32, 157, 782, . . .j

17.  H2, 
2

3
, 

2

5
, 

2

7
, 

2

9
, 

2

11
, . . .J 

19.  h1, 31y2, 33y4, 37y8, 315y16, 331y32, . . .j
21.  h2, 1, 21, 22, 21, 1, . . .j
25.  (a)  As t increases, Nt approaches 0.  (b)  Nt − 1 for all t.
(c)  The sequence grows indefinitely as t increases.
27. 

t xt

0 0.5000
1 0.3750
2 0.3516
3 0.3419
4 0.3375
5 0.3354
6 0.3344
7 0.3338
8 0.3336
9 0.3335

10 0.3334

  

0

0.5

0.4

xt

t

0.3

0.2

2 4 6 8 10

 

	 Approaches 1y3

29. 
t xt

0 0.8750
1 0.3741
2 0.8008
3 0.5456
4 0.8479
5 0.4411
6 0.8431
7 0.4523
8 0.8472
9 0.4427

10 0.8438

  

0

0.8

0.6

0.4

0.2

2 4 6 8 10

xt

t

 

	� Cycles between values near  
0.84 and 0.45

31. 
t xt

0 0.5000
1 0.9250
2 0.2567
3 0.7060
4 0.7681
5 0.6591
6 0.8313
7 0.5189
8 0.9237
9 0.2608

10 0.7134

  

0

1

0.8

0.6

0.4

0.2

2 4 6 8 10

xt

t

	� Cycles irregularly among a range  
of values between 0.26 and 0.92

33. 
t xt

0 0.8750
1 1.2475
2 1.2254
3 1.2306
4 1.2294
5 1.2297
6 1.2296
7 1.2296
8 1.2296
9 1.2296

10 1.2296

  

1.4

1.2

1

0.8

0 2 4 6 8 10

xt

t

	� Ricker: approaches 1.2296;  
Logistic: cycles between values

35.  (a)  Nt11 − Nt 1 RKsNt
  ; R and K constants

(b) 

600

400

200

40

0 2 4 6 8 10

Nt

t

R § K =1/2
R § K =1
R § K =2
R § K =4
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29.  (a)  1
16 g  (b)  mstd − 22ty4   

(c)  tsmd − 24 log2 m; the time elapsed when there are m grams  
of 100Pd
(d)  About 26.6 days

31.  _13

_3

_5 5

421
0

_4_2

For c , 0, f  is defined everywhere. As c increases, the dip at x − 0 
becomes deeper. For c > 0, the graph has asymptotes at x − 6sc .

33.  (a)  25

20

15

10

252015105

y

x

(b)  1.4

1.2

1

0.8
252015105

log y

log y

x

1.4

1.2

1

0.8
1.41.210.80.6

log x

(c)  Power
(d)  y − 2.608377x 0.712277

25

20

15

10

252015105

y

x

37.  (a)  nt11 − bs1 2 ddnt 1 m   
(b)  nt11 − s1 2 ddsbnt 1 md
(c)  Part (a) recursion formula

39.  pt11 −
�pt

�pt 1 1 2 pt

■  chapter 1 review  |  page 81

True-False Quiz
1.  False  3.  False  5.  True  7.  False  9.  True  11.  False

Exercises
1.  (a)  2.7  (b)  2.3, 5.6  (c)  f26, 6g  (d)  f24, 4g
(e)  f24, 4g  (f)  No; it fails the Horizontal Line Test.
(g)  Odd; its graph is symmetric about the origin.
3.  (a)  �236 m 
(b)  18,000 years ago; 121,000 years ago
(c)  f2114, 8g
(d)  Sea level drops correspond to periods of glaciation.
5.  2a 1 h 2 2
7.  s2`, 1

3 d ø s 1
3 , `d,  s2`, 0d ø s0, `d   

9.  s26, `d, R
11.  (a)  Shift the graph 8 units upward.
(b)  Shift the graph 8 units to the left.
(c)  Stretch the graph vertically by a factor of 2, then shift it  
1 unit upward.
(d)  Shift the graph 2 units to the right and 2 units downward.
(e)  Reflect the graph about the x-axis.
(f)  Reflect the graph about the line y − x (assuming f  is  
one-to-one).

13. 

ca01r11
7.4.00

y

x0

y=_sin 2x

π

	 15. 

ca01r13
6.11.00

x

y

0

(1+´)
1 y= 1

2

y= 1
2

17. 

ca01r15
6.11.00

y

x0

y= 1
x+2

1
2

x=_2
	 19.  y

x0

y=´-1y=_x

21.  (a)  s f 8 tdsxd − lnsx 2 2 9d, s2`, 23d ø s3, `d
(b)  st 8 f dsxd − sln xd2 2 9, s0, `d
(c)  s f 8 f dsxd − ln ln x, s1, `d
(d)  st 8 tdsxd − sx 2 2 9d2 2 9, s2`, `d
23.  y − 0.2493x 2 423.4818; about 77.6 years
25.  1  27.  (a)  9  (b)  2
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3.  The sequence likely has a nonzero limit as t l ` because  
human physiology will ultimately limit how fast a human can 
sprint 100 meters. This means that there is a certain world record 
time that athletes will never surpass.

5. 
n an

1 0.2000
2 0.2500
3 0.2727
4 0.2857
5 0.2941
6 0.3000
7 0.3043
8 0.3077
9 0.3103

10 0.3125

  

0.3

0.2

10 3 5 7 9 n

an

	� The sequence appears to converge to a 
number between 0.3 and 0.35.

lim
nl`

 an −
1

3
. This agrees with value predicted from the data.

7. 
n an

1 2.3333
2 3.4444
3 2.7037
4 3.1975
5 2.8683
6 3.0878
7 2.9415
8 3.0390
9 2.9740

10 3.0173

  
an

n

3

2

10 3 5 7 9

	� The sequence appears to converge to a 
number near 3.

lim
nl`

 an − 3. This agrees with value predicted from the data.

9.  0    11.  2    13.  5
7  

15.  1    17.  Diverges

19.  Diverges    21.  Diverges  

23.  ln 2    25.  0

27. 
n an

1 1.0000
2 1.5000
3 1.7500
4 1.8750
5 1.9375
6 1.9688
7 1.9844
8 1.9922

    lim
nl`

 an − 2

35.  (a)  160

140

120

100

80
201020001990

Po
pu

la
tio

n

Year

2.2
2.15

2.05
2.1

2
1.95

201020001990

lo
g(

Po
pu

la
tio

n)

Year

2.2
2.15

2.05
2.1

2
1.95

3.3023.33.298

lo
g(

Po
pu

la
tio

n)

log(Year)

Exponential or power model
(b)  P − s6.6326 ? 10221d ? s1.025977dY, where P is the population 
in millions and Y is the year.
(c)  153 million; 209 million
37.  h3, 6, 13, 28, 59, 122, . . .j
39. 

t xt

0 0.9000
1 0.2430
2 0.4967
3 0.6750
4 0.5923
5 0.6520
6 0.6126
7 0.6407
8 0.6215
9 0.6351

10 0.6257

  

0.9

0.7

0.5

0.3

0.1

108642 t

xt

0

	 Approaches 0.63

Chapter 2

■  Exercises 2.1  |  page 99

1.  (a)  A sequence is an ordered list of numbers. It can also be  
defined as a function whose domain is the set of positive integers.
(b)  The terms an approach 8 as n becomes large.
(c)  The terms an become large as n becomes large.
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51. 

0 5 10 15 20 25

0.4

0.8

xt

t

    Diverges

53.

0

0.1

0.2

0.3

5 10 15

xt

t

x¸=0.2

0

0.1
0.2

0.3

5 10 15

xt

t

x¸=0.2001

The plots show that the solutions are nearly identical, converging to 
zero as t increases.
55. 

0

0.2

0.7

2 4 6 8

xt

t

 � Converges to approximately 
0.7;  lim

t l`
 xt − ln 2

57. 
4

1

0 2 4 6 8

xt

t

    Diverges

59.  The removed area of the Sierpinski carpet after the nth step of
construction is An − 1 2 (8

9)n
 so, lim

nl`
 An − 1 implying that the

Sierpinski carpet has zero area.

■  Exercises 2.2  |  page 109

1.  (a)  As x becomes large, f sxd approaches 5.
(b) As x becomes large negative, f sxd approaches 3.

3.  0        5.  0        7.  3
2        9.  21

2        11.  `        13.  21
15.  4        17.  1

6        19.  2        21.  `        23.  2`        25.  1
27.  21

2
29.  c is the concentration at which the growth rate is half that of 
the maximum possible value. This is often referred to as the half-
saturation coefficient.
31.  0. As the mortality rate increases, the number of new infections 
approaches zero.
33.  8 3 10 7. In the long run the biomass of the Pacific halibut will 
tend to 8 3 10 7 kg.
35.  x . 9.21
37.  (a)  v*      (b)  3.52 s

■  Exercises 2.3  |  page 122

1.  As x approaches 2, the value of f sxd approaches 5; yes
3.  (a)  lim x l23 f sxd − ` means that the values of f sxd can be  
made arbitrarily large (as large as we please) by taking x suffi-
ciently close to 23 (but not equal to 23).
(b)  lim x l 41 f sxd − 2` means that the values of f sxd can be made 
arbitrarily large negative by taking x sufficiently close to 4 through 
values larger than 4.

29. 
n an

1 2.0000
2 3.0000
3 5.0000
4 9.0000
5 17.0000
6 33.0000
7 65.0000
8 129.0000

    Divergent

31. 
n an

1 1.0000
2 3.0000
3 1.5000
4 2.4000
5 1.7647
6 2.1702
7 1.8926
8 2.0742

    lim
nl`

 an − 2

33. 
n an

1 1.0000
2 1.7321
3 1.9319
4 1.9829
5 1.9957
6 1.9989
7 1.9997
8 1.9999

    lim
nl`

 an − 2

35.  (a)  120 mg, 124 mg      (b)  Qn11 − 100 1 s0.20dQn 
(c)  Qn − 125s1 2 0.20 nd      (d)  lim

nl`
 Qn − 125 mg

37.  (a)  157.875 mg; 3000
19 s1 2 0.05 nd      (b)  157.895 mg

39.  (a)  x − 1      (b)  1      (c)  2
(d)  All rational numbers with a terminating decimal representa-
tion, except 0.

41.  8
9        43.  838

333        45.  5063y3300

47. 

0

0.5

xt

t2 4 6 8

  �  Converges to 1y2. 
lim
t l`

 xt − 1y2.

49. 

0 2

0.2

0.5

0.8

4 6 8

xt

t

    Diverges
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■  Exercises 2.4  |  page 135

1.  (a)  26      (b)  28      (c)  2      (d)  26       
(e)  Does not exist      (f)  0
3.  59        5.  3

2        7.  �y2      
9.  4        11.  Does not exist

13.  6
5        15.  8        17.  1

12        19.  2 1
16      

21.  1
128      23.  21

2      25.  (a), (b)  2
3      

29.  7        33.  6        35.  Does not exist
37.  (a)  (i)  5    (ii)  25      (b)  Does not exist    
(c) 

_3
_3

0

(2, 5)

(2, _5)

y

x

39.  3        41.  3        43.  1
2        49.  8        51.  15; 21

■  Exercises 2.5  |  page 147

1.  lim x l 4 f sxd − f s4d
3.  (a)  f s24d is not defined and lim

x l a
 f sxd does not exist [for  

a − 22, 2, and 4]
(b)  24, neither; 22, left; 2, right; 4, right
5.  y

0 x2

	 7.  y

0 x53

9.  (a)  Discontinuous at t − 12, 24, 36      (b)  Jump discontinuities
11.  (a)  Cost

(in dollars)

0 Time
(in hours)

1

1

(b)  Discontinuous at t − 1, 2, 3, 4
13.  6
17.  lim

x l 0
 f sxd does not exist.	 19.  lim

x l 0
  f sxd ± f s0d

x

y

0

y=´

y=≈
1

	
y

0 x1_π

21.  f1
2, `)        23.  s2`, `d      

25.  s2`, 21d ø s1, `d

5.  (a)  2      (b)  1      (c)  4      (d)  Does not exist      (e)  3
7.  (a)  260      (b)  254      (c)  Does not exist      (d)  254       
(e)  258      (f)  Does not exist      (g)  258       
(h)  On June 3 (t − 2), the population decreased by 6. This could 
have been a result of deaths, emigration, or a combination of the 
two. On June 5 (t − 4), the population increased by 4. This could 
have been a result of births, immigration, or a combination of the 
two.
9.  (a)  2`      (b)  2`      (c)  `      (d)  2      (e)  21 
(f)  Vertical: x − 0, x − 2; horizontal: y − 21, y − 2

11.  y

0 x1

	 13.  y

0 x

y=5

y=_5

15. 

x

y

0

x=2 	 17. 

x

y

0

y=3

x=4

19.  2
3        21.  5        23.  1

4        25.  3
5      

27.  (a)  21.5      (b) 
x f sxd

60.1 21.493759
60.01 21.499938
60.001 21.499999
60.0001 21.500000

29.  2`        31.  `        33.  2`        35.  2`        37.  `
39.  (a)  lim

x l12
 f sxd − 2` and lim

x l11
 f sxd − `

(c) 

�10

0 2

10

41.  (a) 2.71828    (b)  6

4_4

_2

43.  No matter how many times we zoom in toward the origin, the 
graph appears to consist of almost-vertical lines. This indicates 
more and more frequent oscillations as x l 0.
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9.  (a)  8a 2 6a 2      (b)  y − 2x 1 3, y − 28x 1 19
(c) 

3cA020611
6.16.04

10

_3

4_2

11.  t9s0d, 0, t9s4d, t9s2d, t9s22d
13.  f s2d − 3; f 9s2d − 4

15.  y

0
x1

1

17.  y − 3x 2 1

19.  (a)  23
5 ; y − 23

5 x 1 16
5     

(b) 

3cA020709
6.16.04

4

_2

6_1

21.  6a 2 4        23. 
5

sa 1 3d2       

25.  2
1

s1 2 2a 
        27.  224 ftys      

29.  22ya3 mys; 22 mys; 21
4 mys; 2 2

27 mys
31.  (a)  (i)  3.26 millionyyear      (ii)  3.18 millionyyear
(iii)  2.72 millionyyear      (iv)  2.61 millionyyear
(b)  P9s2000d < 2.95 millionyyear; the US population was growing 
at a rate of 2.95 million people per year in 2000.
33.  (a)  (i)  20.15 smgymLdyh      (ii)  20.12 smgymLdyh
(iii)  20.12 smgymLdyh      (iv)  20.11 smgymLdyh
(b)  C9s2.0d < 20.12 smgymLdyh, meaning that the blood alcohol 
concentration was decreasing at a rate of 0.12 mgymL per hour 
after 2.0 hours.
35.  T 9s12d < 2.75°Fyh; T 9s12d is the rate of change of temperature 
12 hours after midnight on May 7, 2012.
37.  Greater (in magnitude)
39.  (a)  The rate at which the cost is changing per ounce of gold 
produced; dollars per ounce
(b)  When the 800th ounce of gold is produced, the cost of  
production is $17yoz.
(c)  Decrease in the short term; increase in the long term
41.  (a)  The rate at which the oxygen solubility changes with  
respect to the water temperature; smgyLdy°C
(b)  S9s16d < 20.25; as the temperature increases past 16°C,  
the oxygen solubility is decreasing at a rate of 0.25 smgyLdy°C.

27.  x − 0	 3

4_4

_1

29.  7
3        31.  1      

35.  0, right; 1, left	 y

x0

(1, e)

(1, 1)
(0, 1)

(0, 2)

37.  2
3        45  (b)  s0.86, 0.87d        47.  (b)  70.347        49.  Yes

■  chapter 2 review  |  page 150

True-False Quiz
1.  True        3.  False        5.  True        7.  False        9.  True
11.  True        13.  False        15.  True

Exercises
1.  1

2        3.  Diverges        5.  9
2        7.  4111

3330
9.  (a)  (i)  3    (ii)  0    (iii)  Does not exist    (iv)  2     
(v)  `    (vi)  2`    (vii)  4    (viii)  21       
(b)  y − 4, y − 21      (c)  x − 0, x − 2      (d)  23, 0, 2, 4
11.  21

5        13.  1        15.  3
2      17.  3        19.  `        21.  4

7 
23.  2`        25.  1

2        27.  2
29.  0.50. As the concentration grows larger, the enzymatic reaction 
rate will approach 0.50.
31.  (a)  (i)  3    (ii)  0    (iii)  Does not exist    (iv)  0    (v)  0    (vi)  0    
(b)  At 0 and 3      (c) 

x0

y

3

3

Chapter 3

■  Exercises 3.1  |  page 165

1.  (a) 
 f sxd 2 f s3d

x 2 3
      (b)  lim

x l 3
 
 f sxd 2 f s3d

x 2 3
3.  (a)  2      (b)  y − 2x 1 1      (c)

ms80114-1
6et 2.7.03c
5.28.06

6

0
5_1

5.  y − 28x 1 12        7.  y − 1
2 x 1 1

2
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29.  G9std −
4

st 1 1d2 , s2`, 21d ø s21, `d, s2`, 21d ø s21, `d

31.  f 9sxd − 4x 3, R, R      
33.  (a)  f 9sxd − 4x 3 1 2      (b) 

_2

2

5

_2

fª
f

35.  (a)  N9std is the rate of change of the number of malarial  
parasites with respect to time. Its units are  
(number of parasitesymL)yday.
(b) 

37.  24 scornerd; 0 sdiscontinuityd
39.  21 svertical tangentd; 4 scornerd
41.  2

_1

_2 1

	� Differentiable at 21;
	 not differentiable at 0

43.  a − f, b − f 9, c − f 99
45.  6x 1 2; 6        7

_1

4

fª

f ·
f

_4

47.  (a)  Increasing on s0, 1d, s4, 5d; decreasing on s1, 4d
�(b)  y

0 x

f

4 5321

■  Exercises 3.3  |  page 192

1.  (a)  See Definition of the number e (page 189).
�(b)  0.99, 1.03; 2.7 , e , 2.8
3.  f 9sxd − 0        5.  f 9sxd − 5        7.  f 9sxd − 3x 2 2 4
9.  1 2 3 cos x        11.  f 9std − t 3        13.  A9ssd − 60ys 6

15.  t9std − 23
2 t 27y4        17.  y9 − 3e x 2 4

3x24y3      

t N9std

2 	 6,261
3 	 12,152
4 	 179,791
5 	 1,095,390
6 	 3,188,035

■  Exercises 3.2  |  page 178

1.  (a)  20.2      (b)  0      (c)  1      (d)  2       
(e)  1      (f)  0      (g)  20.2

0

1

2

21_1_2

_3

y

x

3

fª

3.  (a)  II      (b)  IV      (c)  I      (d)  III
5. 

ca020805
7.4.00

fª

x

y

0

	 7. 

ca020807
7.4.00

x

y

0

fª

9. 

3cA020809
6.17.04

y

0 x

f ª
	 11. 

x0

y

f ª

13.  (a)  W9std is the rate of change of average body weight with 
respect to time for tadpoles raised in a density of 80 tadpolesyL.
�(b)  W'(t)

0
t

_0.2

2 4 6 8

0.2

15. 

ca020813
7.4.00

0.05

19901980197019601950

_0.03
t

y=Mª(t)0.1

y  � 1963 to 1971

17.  y

x1

1

0

f, f ª

	 f 9sxd − e x

19.  (a)  0, 1, 2, 4      (b)  21, 22, 24      (c)  f 9sxd − 2x
21.  f 9sxd − 1

2, R, R        23.  f 9std − 5 2 18t, R, R
25.  f 9sxd − 2x 2 6x 2, R, R      

27.  t9sxd − 1ys1 1 2x , f21
2, `), (21

2, `)

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



748    ANSWERS TO ODD-NUMBERED EXERCISES

33.  f 9sxd −
2cx

sx 2 1 cd2         35.  y − 1
2 x 1 1

2

37.  y − 2x; y − 21
2 x        39.  sx 4 1 4x 3de x; sx4 1 8x3 1 12x 2de x

41.  � cos � 1 sin �; 2 cos � 2 � sin �
43.  f sndsxd − e xsn 1 xd
49.  (a)  216      (b)  2 20

9       (c)  20

51.  (a)  0      (b)  2 2
3

53.  (a)  y9 − xt9sxd 1 tsxd

�(b)  y9 −
tsxd 2 xt9sxd

ftsxdg 2       (c)  y9 −
xt9sxd 2 tsxd

x 2

55. 
dv

d fSg
−

0.0021

s0.015 1 fSgd2  is the rate of change of the enzymatic 

reaction rate with respect to the concentration of the substrate.

57.  20.2436 Kymin        59.  Two, s22 6 s3, 12 s1 7 s3 dd
61.  (c)  3e 3x        63.  (b)  y9 − 22xs2x 2 1 1dysx 4 1 x 2 1 1d2

■  Exercises 3.5  |  page 212

1. 
4

3s3 s1 1 4xd2         3.  � sec2�x        5. 
esx

2sx 
      

7.  F9sxd − 10xsx4 1 3x 2 2 2d4 s2x 2 1 3d      

9.  F9sxd − 2
1

s1 2 2x 
        11.  f 9szd − 2

2z

sz 2 1 1 d2

13.  y9 − 23x 2 sinsa 3 1 x 3 d        15.  h9std − 3t 2 2 3 t ln 3
17.  y9 − e2kx s2kx 1 1d
19.  y9 − 8s2x 2 5d3s8x 2 2 5d24s24x 2 1 30x 2 5d

21.  y9 − scos x 2 x sin xde x cos x        23.  y9 −
212x sx 2 1 1d2

sx 2 2 1d4

25.  y9 − 4 sec2 x tan x        27.  y9 − sr 2 1 1d23y2

29.  y9 − 2 cosstan 2xd sec2s2xd        31.  y9 − 2sin �xs� ln 2d cos �x
33.  y9 − 22 cos � cotssin �d csc2ssin �d

35.  y9 −
2� cosstan �xd sec2s�xd sinssin stan �xd

2ssin stan �xd
37.  y9 − 22x sinsx 2d; y99 − 24x 2 cossx 2d 2 2 sinsx 2d
39.  e�xs� cos �x 1 � sin �xd; e�x fs� 2 2 � 2d sin �x 1 2�� cos �xg
41.  y − 20x 1 1        43.  y − 2x 1 �
45.  24        47.  (a)  30      (b)  36
49.  (a)  F9sxd − e x f 9se xd      (b)  G9sxd − e f sxd f 9sxd
51.  120        53.  2250 cos 2x
55.  vstd − 5

2� coss10�td; astd − 225� 2 sins10�td
57.  m9std − e2t cos t
59.  (a)  C9s10d < 0.00752 smgymLdymin
�(b)  The BAC is decreasing at a rate of about 
0.00316 smgymLdymin.

61.  (a)  1      (b) 
dp

dt
−

kae2kt

s1 1 ae2ktd2

�(c)   t < 7.4 hours

19.  F9sxd − 5
32 x 4        21.  y9 − 3

2 sx 1
2

sx 
2

3

2xsx 

23.  y9 − 0        25.  t9syd − 210Ayy 11 2 B sin y

27.  f 9sxd − ks2x 2 a 2 bd        29.  u9 − 1
5 t 24y5 1 10t 3y2

31.  G9syd − 210Ayy11 1 Be y        33.  y − 1
4 x 1 3

4

35.  y − 23s3 x 1 3 1 �s3 , y − xy(3s3 ) 1 3 2 �y(9s3 )
37.  Tangent: y − 2x 1 2; normal: y − 21

2 x 1 2

39.  y − 3
2 x 1 1

2	

(1, 2)

3

3

_2

_2

41.  45x 14 2 15x 2      
43.  f 9sxd − 4x 3 2 9x 2 1 16, f 0sxd − 12x 2 2 18x
45.  t9std − 22 sin t 2 3 cos t, t 0std − 22 cos t 1 3 sin t

47. 
dL

dA Z
A−12

− 1.718 means that a 12-year old rock bass grows at a

�rate of 1.718 inchesyyear.
49.  (a)  0.926 cmys; 0.694 cmys; 0
�(b)  0; 292.6 scmysdycm; 2185.2 scmysdycm
�(c)  At the center; at the edge
51.  (a)  vstd − 3t 2 2 9t 2 7; astd − 6t 2 9
�(b)  t − 4 s      (c)  t − 1.5 s; the velocity has an absolute minimum
53.  (a)  30 mm2ymm; the rate at which the area is increasing  
with respect to side length as x reaches 15 mm
�(b)  DA < 2x Dx
55.  (a)  (i)  5�    (ii)  4.5�    (iii)  4.1�
�(b)  4�      (c)  DA < 2�r Dr
57.  2cos x        59.  s2n 1 1d� 6 1

3�, n an integer      
63.  y − 12x 2 15, y − 12x 1 17        65.  y − 1

3 x 2 1
3

67.  s62, 4d        71.  y − 2x 2 2 x      

73.  a − 2 1
2 , b − 2        75.  1000

■  Exercises 3.4  |  page 200

1.  1 2 2x 1 6x 2 2 8x 3        3.  f 9sxd − e xsx 3 1 3x 2 1 2x 1 2d

5.  t9std − 3t 2 cos t 2 t 3 sin t        7.  F9syd − 5 1
14

y 2 1
9

y 4

9.  f 9sxd − cos x 2 1
2 csc2x

11.  h9s�d − csc � 2 � csc � cot � 1 csc 2 �

13.  y9 − sx 2 2de xyx 3        15.  t9sxd − 5ys2x 1 1d2

17.  y9 −
x 2s3 2 x 2d
s1 2 x 2d2         19.  y9 −

2ts2t 4 2 4t 2 1 7d
st 4 2 3t 2 1 1d2

21.  y9 − sr 2 2 2de r        23.  f 9s�d −
sec � tan �

s1 1 sec �d2

25.  y9 − sx cos x 2 2 sin xdyx 3        27.  y9 − 2v 2 1ysv      

29.  f 9std −
4 1 t 1y2

s2 1 st d2
         31.  f 9sxd −

2ACe x

sB 1 Ce xd2 2
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63.  (a)  y9 − 2sy 1 2 1 6xdyx    
�(b)  y − s4yxd 2 2 2 3x, y9 − 2s4yx 2d 2 3

65.  y9 − 2
x 2

y 2         67.  y9 −
2x 1 y

2y 2 x
      

69.  y9 −
3y2 2 5x4 2 4x 3y

x 4 1 3y 2 2 6xy
        71.  y9 − tan x tan y

73.  y9 −
ysy 2 e xyyd
y 2 2 xe xyy         75.  y9 −

e y sin x 1 y cossxyd
e y cos x 2 x cossxyd

77.  y − 2x 1 2        79.  y − x 1 1
2

81. 
dA

d�
−

1

�q 2 e qA         83.  dVydt − 3x 2 dxydt      

85.  48 cm2ys        87.  80 cm3ymin

89.  (a) 
dm

dt
− �r 2Ls1 2 k 2d

d�

dt
    

�(b) 
dm

dt
− 22�r 2Ls� 2 1dk

dk

dt

91. 
dr

da
−

2

s1 1 8s 

ds

da
        93. 

dP

dx
− 2

8�lv

R 3 R9sxd

■  Exercises 3.6  |  page 220

1.  About 235
3.  (a)  100s4.2d t      (b)  <7409      (c)  <10,632 bacteriayh
�(d)  sln 100dysln 4.2d < 3.2 h
5.  (a)  1508 million, 1871 million      (b)  2161 million
�(c)  3972 million; wars in the first half of century, increased life 
expectancy in second half
7.  (a)  100 3 22ty30 mg      (b)  < 9.92 mg    
�(c)  �20.229 mgyyear      (d)  <199.3 years

9.  (a)  2
ln 2

ln 0.945
< 12.25 years      (b)  2

ln 5

ln 0.945
< 28.45 years

11.  �57,104 years
13.  (a)  <137°F      (b)  <116 min
15.  (a)  13.3°C      (b)  <67.74 min
17.  (a)  <64.5 kPa      (b)  <39.9 kPa

■  Exercises 3.7  |  page 229

1.  The differentiation formula is simplest.

3.  f 9sxd −
cossln xd

x
        5.  f 9sxd −

3

s3x 2 1d ln 2

7.  f 9sxd −
1

5xs5 sln xd4 
        9.  f 9sxd −

sin x

x
1 cos x lns5xd

11.  F9std −
6

2t 1 1
2

12

3t 2 1
        13.  t9sxd −

2x 2 2 1

x sx 2 2 1d

15.  y9 −
10x 1 1

5x 2 1 x 2 2
        17.  y9 −

2x

1 1 x

19.  y9 −
1

ln 10
1 log10 x      

21.  y9 − x 1 2x lns2xd; y 99 − 3 1 2 lns2xd

23.  f 9sxd −
2x 2 1 2 sx 2 1d lnsx 2 1d

sx 2 1df1 2 lnsx 2 1dg 2 ; s1, 1 1 ed ø s1 1 e, `d

25.  y − 3x 2 9        27.  1

29. 
dt

dc
−

3 1 s9c 2 4dys9c 2 2 8c 

3c 1 s9c 2 2 8c 
 is the rate of change of 

dialysis duration as the initial urea concentration increases.

31. 
da

dN
− 2

5370

sln 2dN
 is the rate of change of the estimated age 

with respect to an increase in the measured amount of 14C.

33.  y9− s2x 1 1d5sx 4 2 3d6S 10

2x 1 1
1

24x 3

x 4 2 3D
35.  y9 −

sin2 x tan4 x

sx 2 1 1d2 S2 cot x 1
4 sec2 x

tan x
2

4x

x 2 1 1D
37.  y9 − x xsln x 1 1d        39.  y9 − scos xdxs2x tan x 1 ln cos xd

41.  y9 − stan xd1yxS sec2x

x tan x
2

ln tan x

x 2 D        43.  y9 −
2 tan21x

1 1 x 2

45.  y9 − 2
sin �

1 1 cos2 �
        47.  y9 −

1

2s1 1 x 2d
        49.  �y2

51.  y9 −
2x

x 2 1 y 2 2 2y
        53.  f sndsxd −

s21dn21sn 2 1d!
sx 2 1dn

■  Exercises 3.8  |  page 237

1.  Lsxd − 210x 2 6        3.  Lsxd − 2x 1 �y2

5.  s1 2 x < 1 2 1
2 x;        3

3_3

_1

(0, 1)

(1, 0)

y=œ„„„„1-x

y=1-   x1
2	� s0.9 < 0.95,

	 s0.99 < 0.995

7.  21.204 , x , 0.706        9.  20.045 , x , 0.055      
11.  32.08        15.  Lssd − p 1 ps1 2 pds
17.  A 5% increase in the radius corresponds to a 20% increase in 
blood flow.
19.  (a)  x2 < 2.3, x3 < 3      (b)  No
21.  1.1797        23.  20.724492, 1.220744      
25.  1.412391, 3.057104
27.  21.93822883, 21.21997997, 1.13929375, 2.98984102
29.  21.97806681, 20.82646233      
31.  0.21916368, 1.08422462

35.  T3sxd − 1 1 x 1 1
2 x 2 1 1

6 x 3

37.  T3sxd − 1 2 sx 2 1d 1 sx 2 1d2 2 sx 2 1d3 1 sx 2 1d4

39.  Lsxd − 1
4 x 1 7

4

Psxd < 2 1 1
4sx 2 1d 2 1

64sx 2 1d2

�Psxd is a better approximation than Lsxd.
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13.  24 (discontinuity), 21 (corner), 2 (discontinuity),  
5 (vertical tangent)
15.  6xsx 4 2 3x 2 1 5d2s2x 2 2 3d

17. 
1

2sx 
2

4

3s3 x7 
        19. 

2s2x 2 1 1d
sx 2 1 1 

        21.  2 cos 2�e sin 2�

23. 
t 2 1 1

s1 2 t 2d2         25.  2
e1yxs1 1 2xd

x 4         27. 
1 2 y 4 2 2xy

4xy 3 1 x 2 2 3

29. 
2 sec 2�stan 2� 2 1d

s1 1 tan 2�d2         31.  s1 1 c 2de cx sin x

33. 
2

s1 1 2xd ln 5
        35. 

2x 2 y cossxyd
x cossxyd 1 1

      

37.  3x ln xsln 3ds1 1 ln xd        39.  cot x 2 sin x cos x

41. 
4x

1 1 16x 2 1 tan21s4xd        43.  5 sec 5x

45.  2 cos � tanssin �d sec2ssin �d

47.  cosstan s1 1 x 3 dssec2s1 1 x 3 d 3x 2

2s1 1 x 3

49. 
23 sin(estan 3x) estan 3x sec2s3xd

2stan 3x
      

51.  2 4
27        53.  2 xsln 2dn

55.  y − 2s3x 1 1 2 �s3y3      

57.  y − 2x 1 2; y − x 1 2

59.  (a) 
10 2 3x

2s5 2 x
      (b)  y − 7

4 x 1 1
4, y − 2x 1 8

�(c) 

(4, 4)

10

_10

_10 10
(1, 2)

ƒ

61.  (a)  2      (b)  44
63.  2xtsxd 1 x 2t9sxd        65.  2tsxdt9sxd
67.  t9se x de x        69.  t9sxdytsxd        71.  s23, 0d
73.  (62ys6 , 71ys6 )
75.  vstd − 2Ae2ct fc coss�t 1 �d 1 � sins�t 1 �dg,
astd − Ae2ct fsc 2 2 �2 d coss�t 1 �d 1 2c� sins�t 1 �dg
77.  (a)  dVydh − 1

3�r 2      (b)  dVydr − 2
3�rh

79.  1980: E9s10d < $21.56 billionyyear; 
�2000: E9s30d < $125.64 billionyyear
81.  (a)  200s3.24d t      (b)  <22,040
�(c)  <25,910 bacteriayh      (d)  sln 50dysln 3.24d < 3.33 h
83.  (a)  C0 e2kt      (b)  <100 h      

85.  4
3 cm2ymin        87.  1.297383

89.  (a)  Lsxd − 1 1 x; s3 1 1 3x < 1 1 x; s3 1.03 < 1.01
�(b)  20.235 , x , 0.401
91.  (a)  T1scd − ln 2 1 2sc 2 1d
�(b)  T2scd − ln 2 1 2sc 2 1d 2 4sc 2 1d2

93.  scos �d9|�−�y3 − 2s3 y2

41.  T1sxd − x	 2

_2

_4 4

T£(x)=T¢(x) T¡(x)=T™(x)

T∞(x)

f(x)

T2sxd − x

T3sxd − x 2 1
6 x 3

T4sxd − x 2 1
6 x 3

T5sxd − x 2 1
6 x 3 1 1

120 x 5

43.  (a)  T1ssd − 1 1 2s      (b)  T2ssd − 1 1 2s 2 4s 2

■  chapter 3 review  |  page 240

True-False Quiz
1.  False        3.  True        5.  True        7.  False        9.  False
11.  True        13.  True

Exercises
1.  f 0s5d, 0,  f 9s5d,  f 9s2d, 1,  f 9s3d
3.  (a)  The rate at which the cost changes with respect to the  
interest rate; dollarsy(percent per year)
�(b)  As the interest rate increases past 10%, the cost is increasing  
at a rate of $1200y(percent per year).
�(c)  Always positive
5.          7. 

9.  (a)  Rate of change of heart rate with respect to time.
�(b)  H'(t)

0
t

5

_5

1 3 5

11.  �(a)  f 9sxd − 2 5
2 s3 2 5xd21y2      (b)  s2`, 35 g, s2`, 35 d

�(c)  6

1_3

_6

f

f ª
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33.  0, 49        35.  0, 87, 4        37.  n� sn an integerd        39.  0, 23      

41.  f s2d − 16, f s5d − 7        43.  f s21d − 8, f s2d − 219      

45.  f s3d − 66, f s61d − 2        47.  f ss2 d − 2, f s21d − 2s3      

49.  f s2d − 2yse , f s21d − 21ys8 e       

51.  f s1d − ln 3, f s21
2 d − ln 34      

53.  f s�y6d − 3
2s3 , f s�y2d − 0      

55.  fS a

a 1 bD −
a abb

sa 1 bda1b       

57.  Smallest: Ps2.16d < 5.32; largest: Ps0d − Ps9d − 10

59.  (a)  r − 2
3 r0      (b)  v − 4

27 kr 0
3 

(c)  √

0 r

kr#̧4
27

r¸2
3 r¸

61.  <3.96658C

■  Exercises 4.2  |  page 271

Abbreviations:  inc, increasing; dec, decreasing; CD, concave 
downward; CU, concave upward; HA, horizontal asymptote;  
VA, vertical asymptote; IP, inflection point(s)
1.  0.8, 3.2, 4.4, 6.1      
5.  (a)  s1, 3d, s4, 6d      (b)  s0, 1d, s3, 4d      (c)  s0, 2d       
(d)  s2, 4d, s4, 6d      (e)  s2, 3d      
7.  (a) See the First Derivative Test 
(b)  See the Second Derivative Test and the note that precedes 
Example 9.
9.  (a)  3, 5      (b)  2, 4, 6        (c)  1, 7
11.  (a)  Inc on s2`, 23d, s2, `d; dec on s23, 2d       
(b)  Loc max f s23d − 81; loc min f s2d − 244    

(c)  CU on s21
2, `d; CD on s2`, 21

2d; IP s21
2, 37

2 d
13.  (a)  Inc on s21, 0d, s1, `d; dec on s2`, 21d, s0, 1d 
(b)  Loc max f s0d − 3; loc min f s61d − 2

(c)  CU on s2`, 2s3y3d, ss3y3, `d;
CD on s2s3y3, s3y3d; IP s6s3y3, 22

9 d
15.  (a)  Inc on s0, �y4d, s5�y4, 2�d; dec on s�y4, 5�y4d       
(b)  Loc max f s�y4d − s2 ; loc min f s5�y4d − 2s2        
(c)  CU on s3�y4, 7�y4d;  CD on s0, 3�y4d, s7�y4, 2�d;  
IP s3�y4, 0d, s7�y4, 0d
17.  (a)  Inc on s21

3 ln 2, `d; dec on (2`, 21
3 ln 2)    

(b)  Loc min f s21
3 ln 2d − 222y3 1 21y3      (c)  CU on s2`, `d

19.  (a) Inc on s0, e 2d; dec on se 2, `d 
(b)  Loc max f se 2d − 2ye 
(c)  CU on (e 8y3, `); CD on (0, e 8y3); IP (e 8y3, 83e24y3)
21.  Loc max f (3

4) − 5
4

23.  (a)  f  has a local maximum at 2.     
(b)  f  has a horizontal tangent at 6.

Chapter 4

■  Exercises 4.1  |  page 256

Abbreviations: abs, absolute; loc, local; max, maximum;  
min, minimum

1.  Abs min: smallest function value on the entire domain of the 
function; loc min at c: smallest function value when x is near c

3.  Abs max at s, abs min at r, loc max at c, loc min at b and r

5.  Local max: f s0.18d < 0.36 mV, f s0.30d < 1.2 mV, 
f s0.57d < 0.31 mV 
Abs max: f s0.30d < 1.2 mV 
Local min: f s0.29d < 20.01 mV, f s0.32d < 20.76 mV 
Abs Min: f s0.32d < 20.76 mV

7.  Local max: DsOct 23, 1918d < 91, DsJan 22, 1919d < 15 
Abs max: DsOct 23, 1918d < 91 
Local min: DsNov 27, 1918d < 4, DsFeb 13, 1919d < 7 
Abs min: DsSept 11, 1918d < 0

9.  y

x0 51 2 3 4

1

2

3

	 11.  y

x0 54321

3

2

1

13.  (a) y

0 x1

_1

2

1

3

	 (b) y

0 x1

_1

2

1

3

(c)  y

0 x1

_1

2

1

2

3

15.  (a) y

0 x2

_1

	 (b) y

0 x

17.  Abs max f s3d − 4        19.  None
21.  Abs max f s2d − ln 2        23.  Abs max f s0d − 1      
25.  1

3        27.  24, 2      

29.  0, 12(21 6 s5 )        31.  0, 2      
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37.  (a)  HA y − 1, VA x − 21, x − 1	

Stewart / Calculus:  ET 5th Editio n
Solution Ar t
5et040345
5.20.02

x

y

0

x=1x=_1

y=1
(b)  Inc on s2`, 21d, s21, 0d;  
dec on s0, 1d, s1, `d 
(c)  Loc max f s0d − 0
(d)  CU on s2`, 21d, s1, `d 
CD on s21, 1d
(e)  See graph at right.

39.  (a)  HA y − 0			 

x

y

0

1

(b)  Dec on s2`, `d
(c)  None
(d)  CU on s2`, `d
(e)  See graph at right.

41.  (a)  VA x − 0, x − e   	    y

0 x

(1, 0)1

x=ex=0

 
(b)  Dec on s0, ed       
(c)  None 
(d)  CU on s0, 1d; CD on s1, ed;  
IP s1, 0d 
(e)  See graph at right.

43.  (a)  HA y − 1, VA x − 21	

x

y

0x=_1

y=1

 
(b)  Inc on s2`, 21d, s21, `d 
(c)  None 
(d)  CU on s2`, 21d, (21, 21

2);  
CD on (21

2, `);  
IP (21

2, 1ye 2) 
(e)  See graph at right.
45.  s3, `d
47.  (a) Very unhappy      (b) Unhappy       
(c) Happy      (d) Very happy
49.  depth of coffee

t

height
of mug

time to
fill mug

IP

51.  28.57 min, when the rate of increase of drug level in the blood-
stream is greatest; 85.71 min, when rate of decrease is greatest
53.  (a)  c − 1       
(b)  Constant concentration treatment yields a better response.
55.

ms80354-1
6et 4.5.53
8.12.06

m

0 √

(0, m¸) √=c

25.  (a)  Inc on s2`, 21d, s2, `d; 		 y

0 x

(_1, 7)

(2, _20)

”   , _    ’1
2

13
2

dec on s21, 2d
(b)  Loc max f s21d − 7;  
loc min f s2d − 220
(c)  CU on (1

2, `); CD on (2`, 12);  
IP (1

2, 213
2 )

(d)  See graph at right.

27.  (a)  Inc on s2`, 21d, s0, 1d;	

x10

(1, 3)(_1, 3)

”     ,     ’
y

1

23
9

1
œ„3”_     ,     ’23

9
1

œ„3dec on s21, 0d, s1, `d 
(b)  Loc max f s21d − 3, f s1d − 3;
loc min f s0d − 2
(c)  CU on s21ys3, 1ys3 d;  
CD on s2`, 21ys3 d, s1ys3, `d;  
IP  s61ys3, 23

9 d 
(d)  See graph at right.

29.  (a)  Inc on s2`, 22d, s0, `d; 	

ms80622-1
6et 4.3.37
07.30.06

x_1

(_1, 3)

(0, _1)

(_2, 7) y

7

 
dec on s22, 0d 
(b)  Loc max h s22d − 7;  
loc min h s0d − 21 
(c)  CU on s21, `d;   
CD on s2`, 21d; IP s21, 3d 
(d)  See graph at right.

31.  (a)  Inc on s22, `d; dec on s23, 22d	

Stewart / Calculus:  ET 5th Editio n
Solution Ar t
5et040339
5.20.02

x

y

_3

_2

_2

2
(b)  Loc min As22d − 22 
(c)  CU on s23, `d
(d)  See graph at right.

33.  (a)  Inc on s21, `d;	

Stewart / Calculus:  ET 5th Editio n
Solution Ar t
5et040341
5.24.02

x

y

_4 0

{ 2, 6 Œ„2 }

(_1, _3)

dec on s2`, 21d 
(b)  Loc min Cs21d − 23
(c)  CU on s2`, 0d, s2, `d;  
CD on s0, 2d;
IP s0, 0d, s2, 6s3 2 d
(d)  See graph at right.

35.  (a)  Inc on s�, 2�d;		

ms80628-1
3c3 4.3.43
7.31.06

¨
(π, _1)

”   ,    ’

y

π
3

5
4 ”    ,    ’5π

3
5
41

_1
0 π 2π

dec on s0, �d 
(b)  Loc min f s�d − 21
(c)  CU on s�y3, 5�y3d;  
CD on s0, �y3d, s5�y3, 2�d;
IP s�y3, 54d, s5�y3, 54d
(d)  See graph at right.
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49.  (a)  r      (b)  r      (c)  f 9s0d
51.  (a)  62.3%       
(b)  80.1%; Answer is larger due to Stiles-Crawford effect. Light 
entering closer to center of pupil measures brighter. 
(c)  lim

r l 0
 P − 100%; 

Result expected: all light entering at center of pupil is sensed  
at retina.

53.  te2�t        57.  16
9 a

■  Exercises 4.4  |  page 293

1.  (a)  11, 12      (b)  11.5, 11.5      
3.  10, 10        5.  25 m by 25 m      
7.  N − 1      
9.  (a) 

75

120 9000 ft@

250

50 12,500 ft@

125

100 12,500 ft@

(b) 

(c)  A − xy      (d)  5x 1 2y − 750      (e)  Asxd − 375x 2 5
2 x 2

(f)  14,062.5 ft 2

11.  4000 cm3        15.  s26
5, 35d      

17.  (a)  a − e      (b)  a − 1y�

19.  (b)  (i)  $342,491; $342yunit; $390yunit      (ii)  400       
(iii)  $320yunit      

21.  (a)  h − ry2    

(b)  h −
r

2
1

�

2p
; N −

K

2 S1 2
�

rpD
(c)  Part (b) gives a larger harvest and smaller stabilized fish 
population. Extra harvesting results in reduced unit costs making it 
profitable to harvest more.

23.  (a)  Function starts at zero and increases with time;  
concave down implies diminishing returns.

27.  (a)  3
2 s 2 csc � scsc � 2 s3 cot �d    

(b)  cos21s1ys3 d < 558       (c)  6sfh 1 sys2s2 dg
29.  (a)  About 5.1 km from B         
(b)  C is close to B; C is close to D; 
 WyL − s25 1 x 2yx, where x − | BC |    

(c)  <1.07; no such value      (d)  s41y4 < 1.6

y

x

57.  f sxd − 1
9 s2x 3 1 3x 2 2 12x 1 7d      

59.  Inc on s0.92, 2.5d, s2.58, `d; dec on s2`, 0.92d, s2.5, 2.58d; 
loc max f s2.5d − 4; loc min f s0.92d < 25.12, f s2.58d < 3.998; 
CU on s2`, 1.46d, s2.54, `d; CD on s1.46, 2.54d;  
IP s1.46, 21.40d, s2.54, 3.999d

Stewart / Calculus:  ET 5th Editio n
Solution Ar t
5et040601-1
5.20.02

_6

10

0 4

ƒ

2.7
3.96

4.04

2.4

ƒ

61.  Inc on s21.49, 21.07d, s2.89, 4d;  
dec on s24, 21.49d, s21.07, 2.89d; 
loc max f s21.07d < 8.79;  
loc min f s21.49d < 8.75, f s2.89d < 29.99,  
CU on s24, 21.28d, s1.28, 4d; CD on s21.28, 1.28d;  
IP s21.28, 8.77d, s1.28, 21.48d

Stewart / Calculus:  ET 5th Editio n
Solution Ar t
5et040607-1
10.3.02

_4 4

_10

30

ƒ

_2.5 0

10

6

ƒ

■  Exercises 4.3  |  page 282

1.  2        3.  2`        5.  `        7.  0      9.  2`        11.  3        13.  ln 53
15.  1

2        17.  21y� 2        19.  1
2 asa 2 1d        21.  1

24        23.  �      
25.  3        27.  0        29.  1

2        31.  1
2        33.  `      

35.   HA y − 0

21 x

y

0

”1,    ’1
e

37.   HA y − 0, VA x − 0
y

0 x1 2 3 4 e3/2e

”e,    ’1
e

39.  Fastest to slowest: y − e 3x, y − e 2x, y − x 5, y − lnsx 10d
41.  Fastest to slowest: y − sx , y − s3 x , y − sln xd3, y − sln xd2

43.  `

45.  Fastest to slowest: y − e2x, y −
1

x 2 , y −
1

x
, y − x21y2

47.  1      
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754    aNSWERS TO ODD-NUMBERED EXERCISES

19. 

x t

x t+1

10.63

1

0

x t

t0

0.63

5 10

0.1

x̂ − 17
27 − 0.629 is a stable equilibrium; x̂ − 0 is unstable.

21.  N − 0 is a stable equilibrium when r , h.

N − KS1 2
h

rD is a stable equilibrium when

h , r , h 1 2.
23.  d − 1 is a stable equilibrium.

25.  (a)  R −
K

 1 d
 is a stable equilibrium when 0 , d 1  , 2.

(b)  R − 0 is an unstable equilibrium;

R − Î a 2 db

d
 is a stable equilibrium.

■  Exercises 4.6  |  page 311

1.  F sxd − 1
2 x 1 1

4 x3 2 1
5 x4 1 C      

3.  F sxd − 2
3 x 3 1 1

2 x 2 2 x 1 C      

5.  F sxd − 4x 5y4 2 4x7y4 1 C        7.  F sxd − 4x 3y2 2 6
7 x7y6 1 C

9.  F sxd − s2 x 1 C      

11.  C std − 2
3

t
1 K, where K is a constant.

13.  Gsd − sin  1 5 cos  1 C        15.  Vssd − 2s2 1 3e s 1 C

17.  Fsud − 1
3u3 2 6u21y2 1 C        19.  Fstd − 1

3t 3 2 t 2
1

t
1 C

21.  ystd − 1
3t 3 1 t 1 6, t > 0        23.  Pstd − 2

3e 3 t 1 1
3, t > 0

25.  rsd − sin  1 sec  1 2 2
s3 

2
, 0 ,  , y2

27.  ustd − 2
3t 3y2 1 4t 1y2 1 1

3, t . 0        29.  x 3 1 x 4 1 Cx 1 D

31.  3
20 x 8y3 1 Cx 1 D        33.  x 2 3x 2 1 8      

■  Exercises 4.5  |  page 305

1.  Stable: x − 1        3.  Stable: x − 1; Unstable x − 0, 2
5.  Stable: x − 0; Unstable: x − 2
7.  Stable: x − 0.8; Unstable: x − 0      
9.  Unstable: x − 0, 1

2 lns10d
11.  Stable: x − 0, 3; Unstable: x − 1 
lim
tl`

 xt − 0 when x0 − 0.5

lim
tl`

 xt − 3 when x0 − 2

13.  x − 0 is stable equilibrium when | c | , 1. 
x − c 2 1 is stable equilibrium when c , 21 or c . 1.
15.  (a)  Qn11 − 0.1Qn 1 200

(b)  Q − 2000
9 − 222.2 

(c) 

Q100

200

150

250

200 300 t

Q t+1

17. 

x t

x t+1

1

1

0

x t

t0

0.6

5 10

x̂ − 0 is a stable equilibrium.
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13.  (a)  None	

1 x

2

y

0

 
(b)  Inc on (1

4 ln 3, `);  
dec on (2`, 14 ln 3) 
(c)  Loc min f (1

4 ln 3) − 31y4 1 323y4 
(d)  CU on s2`, `d  
(e)  See graph at right.

15.  (a)  Max: Cs2.118d < 0.7567 mgymL

(b)  IP: t − 5
2 lns49y9d < 4.236 h 

Rate of change of concentration begins to increase after 4.236 h.
17.  Population < 900 after five weeks
19.  �        21.  8        23.  0      
25.  1

2        27.  500 and 125      
29.  L − C        31.  Dp is largest when p − 1y2
33.  Stable: x − 3y5; unstable: x − 0
35.  Stable: x − 0, 4; unstable: x − 2
lim
tl`

 xt − 0 when x0 − 1; lim
tl`

 xt − 4 when x0 − 3

37.  Fsxd − 2cos x 1 sec x 1 C, 0 < x < �y2

39.  Qstd − 1
4 t 4 1 1

3 t 3 2 1
2 t 2 1 t 1 C      

41.  ystd − t 2
1

�
e�t 1

1

�

43.  f sxd − 1
2 x 2 2 x 3 1 4x 4 1 2x 1 1

45.  sstd − 2sin t 2 3 cos t 1 3t 1 3 

Chapter 5

■  Exercises 5.1  |  page 327

1.  (a)  L4 − 33, R4 − 41

2

2

4

4 6 8

y

0 x

	

2

2

4

4 6 8

y

0 x

(b)  L8 < 35.2, R8 < 39.2
3.  (a)  0.7908, underestimate    

y

0 x

1

ms80438-1
6et 5.1.3a
8.12.06

π
2

3π
8

π
4

π
8

ƒ=cos x

(b)  1.1835, overestimate
y

0 x

1

ms80532-1
6et 5.1.3b
8.12.06

π
2

3π
8

π
4

π
8

ƒ=cos x

35.  4x 3y2 1 2x 5y2 1 4      

37.  2sin � 2 cos � 1 5� 1 4

39.  x 2 2 2x 3 1 9x 1 9        41.  �44 bacteria

43.  sstd − 1 2 cos t 2 sin t      

45.  (a)  sstd − 450 2 4.9t 2      (b)  s450y4.9 < 9.58 s

(c)  29.8s450y4.9 < 293.9 mys

47.  y

0 x1

_1

2

1

2

3

(1, 1)

(2, 2)

(3, 1)

■  chapter 4 review  |  page 312

True-False Quiz
1.  False        3.  False        5.  True        7.  False        9.  True
11.  True        13.  False        15.  True        17.  True

Exercises
1.  Abs max f s4d − 5, abs and loc min f s3d − 1

3.  Abs max f s2d − 2
5, abs and loc min f s21

3d − 29
2

5.  Abs max f s�d − �; abs min f s0d − 0; 

loc max f s�y3d − s�y3d 1 1
2s3 ; 

loc min f s2�y3d − s2�y3d 2 1
2s3 

7.  (a)  None	 y

x

2

 
(b)  Dec on s2`, `d 
(c)  None 
(d)  CU on s2`, 0d; CD on s0, `d;  
IP s0, 2d 
(e)  See graph at right.

9.  (a)  None		
y

0 x

1

1

(b)  Inc on (2`, 34); dec on (3
4, 1)

(c)  Loc max f (3
4) − 5

4 
(d)  CD on s2`, 1d; 
(e)  See graph at right.

11.  (a)  None	
y

x

2

π
_2

_π
2π_2π

 
(b)  Inc on s2n�, s2n 1 1d�d,  
n an integer;  
dec on ss2n 1 1d�, s2n 1 2d�d 
(c)  Loc max f ss2n 1 1d�d − 2 
loc min f s2n�d − 22
(d)  CU on s2n� 2 s�y3d, 2n� 1 s�y3dd;  
CD on s2n� 1 s�y3d, 2n� 1 s5�y3dd; IPs (2n� 6 s�y3d, 21

4) 
(e)  See graph at right.
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756    ANSWERS TO ODD-NUMBERED EXERCISES

3.  2.322986	 y

0 x

2
3
4
5
6

1

_1
1 2

ƒ=´-2

 
The Riemann sum represents the 
sum of the areas of the three 
rectangles above the x-axis minus 
the area of the rectangle below 
the x-axis.

5.  (a)  4      (b)  6      (c)  10
7.  Lower, L5 − 264; upper, R5 − 16
9.  124.1644        11.  0.3084        13.  198 (mgymL) ? min

15.  y6
2  x lns1 1 x 2d dx        17.  y8

1  s2x 1 x 2  dx        19.  42

21.  4
3        23.  3.75        25.  lim

n l `
 o

n

i−1
 

2 1 4iyn

1 1 s2 1 4iynd5 ?
4

n

27.  (a)  4      (b)  10      (c)  23      (d)  2      

29.  23
4        31.  3 1 9y4        33.  2.5        35.  0      

37.  y5

21 f sxd dx        39.  122      

41.  B , E , A , D , C        43.  15        47.  y1

0 x
4 dx

■  Exercises 5.3  |  page 350

1.  210
3         3.  56

15        5.  5
9        7.  22 1 1ye        9.  49

3         11.  40
3

13.  55
63        15.  1        17.  ln 3        19. 

1

e 1 1
1 e 2 1      

21.  e 2 2 1        23.  ln 2 1 7        25.  1 1 y4        27.  y6      
29.  The function f sxd − 1yx 2 is not continuous on the interval 
[21, 3], so the Evaluation Theorem cannot be applied.
31.  2      
33.  3.75			   37.  sin x 1 1

4 x 2 1 C

ca050339
10.3.00

x

y

0 2

�1

y=˛

	

ms80493-1
6et 5.4.19
8.12.06

20
10

_5
05

_6

10_10

39.  2t 2 t 2 1 1
3t 3 2 1

4t 4 1 C        41.  tan  1 C      
43.  sec x 1 C        45.  7848 (number of cells per mL) ? days
47.  The increase in the child’s weight (in pounds) between the  
ages of 5 and 10
49.  The total number of sea urchins between points a and b
51.  The change in concentration between time t1 and t2

53.  The number of gallons of oil leaked in the first two hours
55.  1800 liters        57.  29.8 cm      
59.  (a)  yL

0  Asxd dx      (b)  Upper: L; lower: L

61.  (a)  Pstd − Pmaxs1 2 e2aktd      (b)  Pmax F5 1
1

ak
e25ka 2

1

akG   

(c)  PmaxFt 1
1

ak
e2akt 2

1

akG      (d)  Pmax(1 2 e2akt)

5.  (a)  8, 6.875	

ca050105a1
10.3.00

y

x0 1

2

	

ca050105a2
10.3.00

y

x0 1

2

(b)  5, 5.375	

ca050105b 1
10.3.00

y

x0 1

2

	

ca050105b 2
10.3.00

y

x0 1

2

(c)  5.75, 5.9375	

ca050105c1
10.3.00

y

x0 1

2

	

ca050105c2
10.3.00

y

x0 1

2

(d)  M6

7.  34.7 ft, 44.8 ft      
9.  M6 − 7840 sinfected cellsymLd ? days

11.  L6 < 24 people, R6 < 28 people        13.  155 ft

15.   lim
n l `

 o
n

i−1
 

2s1 1 2iynd
s1 1 2iynd2 1 1

?
2

n
        17.  lim

n l `
 o

n

i−1
S i

2n
 cos 

i

2nD 

2n
19.  (a)  Ln , A , Rn

21.  (a)  lim
n l `

 
64

n6  o
n

i−1
 i 5      (b) 

n 2sn 1 1d2s2n 2 1 2n 2 1d
12

      (c)  32
3     

23.  sin b, 1

■  Exercises 5.2  |  page 339

1.  26	

ms80442-1
6et 5.2.1
8.12.06

y

0 x

2
3

1

2 4 6

ƒ=3-   x1
2

8 10 12 14

 
The Riemann sum represents 
the sum of the areas of the two  
rectangles above the x-axis  
minus the sum of the areas of  
the three rectangles below the  
x-axis; that is, the net area of the 
rectangles with respect to the  
x-axis.
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■  Exercises 5.6  |  page 370

1.  (a) 
1

x 2 2 1
−

A

x 1 1
1

B

x 2 1
      (b) 

2

x 2 1 x
−

A

x
1

B

x 1 1
3.  x 1 6 ln | x 2 6 | 1 C        5.  2 ln | x 1 5 | 2 ln | x 2 2 | 1 C

7.  1
2 ln 32        9.  a ln | x 2 b | 1 C        11.  2 ln 32

13.  27
5  ln 2 2 9

5 ln 3 sor 95 ln 83d        15.  2 1 ln 25
9

17.  ln fse x 1 2d2yse x 1 1dg 1 C      
19.  2 ln | x | 1 3 ln | x 1 2 | 1 s1yxd 1 C

21.  A − 1, B − 1, C − 1; ln | x | 1 tan21x 1 1
2 ln | x 2 1 1 | 1 C

■  Exercises 5.7  |  page 375

1. 
1

2�
 tan2s�xd 1

1

�
 ln | coss�xd | 1 C

3.  2s4x 2 1 9ys9xd 1 C        5.  1
2 se2x 1 1d arctanse xd 2 1

2 e x 1 C
7.  � 3 2 6�        9.  21

2 tan2s1yzd 2 ln |coss1yzd | 1 C

11.  1
9 sin3x f3 lnssin xd 2 1g 1 C

13. 
1

2s3 
 ln Z e x 1 s3 

e x 2 s3 Z 1 C        15.  1
5 ln | x 5 1 sx 10 2 2 | 1 C

17.  1
2sln xds4 1 sln xd2 1 2 lnfln x 1 s4 1 sln xd2 g 1 C

21.  1
3 tan x sec2x 1 2

3 tan x 1 C

23.  1
10s1 1 2xd5y2 2 1

6s1 1 2xd3y2 1 C

25.  2ln | cos x | 2 1
2 tan2x 1 1

4 tan4x 1 C

27.  2
5(8 1 3s3 x2 2 4s3 x )s1 1 s3 x 1 C

■  Exercises 5.8  |  page 380

1.  1
2 2 1ys2t 2 d; 0.495, 0.49995, 0.4999995; 0.5

3.  2        5.  Diverges        7.  2e22        9.  Diverges        11.  0         
13.  Diverges        15.  1

25        17. Diverges        19.  �y9        21. 12      
23.  e	

25.  (a)  �4.23 mgymL; 0.5 h 
(b)  5.75 smgymLd 3 hours; this is the long-term “availability” of a 
single drug dose.

27.  y`
0  PsIsxdd dx −

a

k
 is the rate of photosynthesis per unit area in

 a water column of infinite depth. In practice, this is a good approx-
imation for an entire water column of unit area in the deep ocean.
29.  (a) 

1

700 t0
(in hours)

y

y=F(t)
(b)  The rate at which the 
fraction Fstd increases as t 
increases
(c)  1; all bulbs burn out 
eventually

33.  Î�

2
        35.  1

2s� 

x

y

0

x � 1
y � ex

1

65.  (a)  0, 2, 5, 7, 3	 (d)  y

0 x

1

1

g
(b)  (0, 3)
(c)  x − 3

67. 

c a050405
9.29.00

t

y

x

©

y=1+t@

0

	 t9sxd − 1 1 x 2

69.  t9sxd − 1ysx 3 1 1d        71.  t9syd − y 2 sin y

73.  F9sxd − 2s1 1 sec x        75.  h9sxd − 2
arctan s1yxd

x 2

77.  y9 − stan x 1 stan x  sec2x        79.  29        81.  3        83.  1
4

85.  f sxd − x 3y2, a − 9

■  Exercises 5.4  |  page 360

1.  2e2x 1 C        3.  2
9 sx 3 1 1d3y2 1 C        5.  21

4 cos4� 1 C      

7.  21
2 cossx 2d 1 C        9.  1

63s3x 2 2d21 1 C
11.  2s1y�d cos � t 1 C        13.  1

3sln xd3 1 C      

15.  2 1
3 ln| 5 2 3x | 1 C        17.  2

3 s3ax 1 bx 3 1 C

19.  2
3 s1 1 e x d3y2 1 C        21.  21yssin xd 1 C

23.  1
15sx 3 1 3xd5 1 C        25.  2 2

3 scot xd3y2 1 C

27.  21
2 cosse 2rd 1 C        29.  1

3 sec3x 1 C

31.  1
40s2x 1 5d10 2 5

36s2x 1 5d9 1 C        33.  2lns1 1 cos2 xd 1 C

35.  tan21x 1 1
2 lns1 1 x 2 d 1 C        37.  2y�        39.  45

28        41.  182
9

43.  2se 2 2 ed        45.  0        47.  16
15        49.  lnse 1 1d        51.  1

6
53.  6�        55.  All three areas are equal.        57.  < 4512 L

59. 
5

4�
S1 2 cos 

2�t

5 D L

61.  �1.0 mm 3        63.  �515 degree-days        65.  5

■  Exercises 5.5  |  page 367

1.  1
3 x 3 ln x 2 1

9 x 3 1 C        3.  1
5 x sin 5x 1 1

25 cos 5x 1 C

5.  2sr 2 2de ry2 1 C      

7.  2
1

�
x 2 cos �x 1

2

� 2 x sin �x 1
2

� 3  cos �x 1 C

9.  x ln s3 x 2 1
3 x 1 C        11.  1

13 e 2�s2 sin 3� 2 3 cos 3�d 1 C

13.  �y3        15.  1
2 2 1

2 ln 2        17.  1
4 2 3

4 e22

19.  2sln 2d2 2 4 ln 2 1 2        21.  2sx  sin sx 1 2 cos sx 1 C

23.  2 1
2 2 �y4        25.  1

2sx 2 2 1d lns1 1 xd 2 1
4 x 2 1 1

2 x 1 3
4 1 C

27.  (c)  2 1
4 cos x sin3x 1 3

8 x 2 3
16 sin 2x 1 C

31.  x fsln xd3 2 3sln xd2 1 6 ln x 2 6g 1 C
33.  �10.3560 (mgymL) ? h      
35. 12e21 cos 1 < 0.09938        37.  2
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758    ANSWERS TO ODD-NUMBERED EXERCISES

(b) 

x

y
xL=0.5(y@-6)

xR=y+1

50_1_3
_2

4

Îy

(c)  18

17.  13 cm2        19.  4232 cm2      

21.  (a)  M5 − 0.09 smLymLd ? min      (b)  711 mLymin

23.  117 1
3 ft      

25.  8868; increase in population over a 10-year period

27.  66

■  Exercises 6.2  |  page 399

1.  8
3        3.  45

28        5.  2ys5�d
7.  (a)  1      (b)  2, 4    

�(c)

9.    (a)  4y�      (b)  <1.24, 2.81    

(c) 

11.  9
8        13.  s50 1 28y�d°F < 59°F      

15.  74,719 million people      

17.  845.25 cellsymL

19.  1y� < 0.32 Lys

■  Exercises 6.3  |  page 404

1.  (a)  1480 members      (b)  9440 members       
(c) Not all of the 9440 new members survive.
3.  21,046 insects        5.  48.3 mg        7.  12,417 gallons
9.  1.19 3 1024 cm3ys        11.  6.59 Lymin        13.  5.69 Lymin

■  chapter 5 review  |  page 381

True-False Quiz
1.  True        3.  True        5.  False        7.  True        9.  True
11.  False        13.  False        15.  False        17.  False

Exercises
1.  (a)  8	 (b)  5.7

2 x

2

0

y=ƒ

6

y 	

6
2 x

2

0

y=ƒ

y

3.  1
2 1 �y4        5.  3        7.  f is c, f 9 is b, y x

0 f std dt is a
9.  37        11.  9

10        13.  2s1yxd 2 2 ln | x | 1 x 1 C        15.  1
2 ln 2

17.  1
3 sin 1        19.  s1y�dse� 2 1d          21.  sx2 1 4x 1 C

23.  5 1 10 ln 23        25.  0        27.  64
5  ln 4 2 124

25

29.  3e s3 x 

sx 2y3 2 2x 1y3 1 2d 1 C        31.  ln | 1 1 sec � | 1 C

33.  64
5         35. 

cos3x

1 1 sin4x
        37.  1

2fe xs1 2 e 2x  1 sin21sex dg 1 C

39.  4 < y3

1  sx 2 1 3 dx < 4s3        41.  1
36        43.  Diverges   

45.  The number of barrels of oil consumed from Jan. 1, 2000, 
through Jan. 1, 2015
47.  750 gallons
49.  (a)  yb

a rstd dt

(b)  yb
a rstd dt − snumber of birthsd 2 snumber of deathsd

51.  k 2 kS be2a sin b 2 ae2a cos b 1 a

a 2 1 b 2 D
53.  e 2xs1 1 2xdys1 2 e2xd

Chapter 6

■  Exercises 6.1  |  page 392

1.  32
3         3.  e 2 s1yed 1 4

3        5.  1
3        7.  72        9.  e 2 2

11.  0, 0.90; 0.04      
13.  1

2	

15.  (a) 

x

y

y@=2x+6
y=x-1A¡

A™

5_1_3
_2

0

4

x

y

0

y=cos x
y=sin 2x

π
6

π
2
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■  Exercises 6.4  |  page 411

1.  19y12
		

ms80543-1 & 543-2
6et 6.2.1
8.22.06

y

1

0 x21 y=0

x=1
x=2

y

0 x

y=2-   1
2 x

3.  8

x

y
y=œ„„„„x-1

1 5

x=5

y=00 x

y

0

5.  4y21
	 y

3c Ans 6.2.5
9.12.04

0 x

(1, 1)

y=˛

y=x

y

0 x

7.  162	

3c3 Ans 6.2.3
9.12.04

y

0 x

(6, 9)

x=2œ„y

y=9

x=0

y

0 x

9.  V < M6 − 106.8 cm3        11. (a)  196      (b)  838

13.  1
3r 2h        15.  24        17.  5

12 r 3

■  chapter 6 review  |  page 412

Exercises

1.  8
3        3.  7

12        5.  M5 − 180.6 cm2        7.  �0.007
9.  �0.848 mgymL        11.  54,916      
13.  0.070 Lys
15.  (a)  0.38      (b)  0.87      
17.  (a)  2y15      (b)  y6      
19.  36

Chapter 7

■  Exercises 7.1  |  page 428

1.  Nonautonomous        3.  Pure-time
5.  (a)  It must be either 0 or decreasing. 
(c)  y − 0      (d)  y − 1ysx 1 2d
7.  (a)  0 , P , 4200      (b)  P . 4200        (c)  P − 0, P − 4200
11.  (a)  III      (b)  I      (c)  IV      (d)  II
13.  Pure-time; rate of change of drug concentration is a positive 
constant; c std − kt
15.  Nonautonomous; rate of change of concentration is propor-
tional to the difference between the concentration and cs, with a 
constant of proportionality kyt b, which decreases over time

■  Exercises 7.2  |  page 436

1.  (a)  (i) is locally stable. 
(b)  (i) and (ii) are locally stable.
3.  (a) 

y

g(y)

(b) 

y

g(y)

(c) 

y

g(y)

(d) 

y

g(y)

5.  (a)  ŷ < 0.7035

 

y

g(y)

0.7
0
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(c)  p̂ − 0 is locally stable when s , �;

p̂ − 1 2
�

s
 is locally stable when s . �.

■  Exercises 7.3  |  page 447

1.  (a) 

0 x1_1_2 2

0.5

1.0

1.5

2.0
y

(i)

(ii)
(iii)

(iv)

(b)  y − 0.5, y − 1.5
3.  III        5.  IV
7. 

ms30325
3c3 7.2.7
9.12.04

y

x3_3

_3
(c)

(a)
(b)

	 9. 

0 x_3 3

_3

3

y

11. 

ca070211
10.31.00

y

x3_3

3

_3

	 13. 

ca070213
10.31.00

y

x3_3

3

_3

15.  4

_2

3_3

3c3 Ans 7.2.15
9.12.04

17.  y

0

_2

_1 t1

2

c=3

c=_3

c=_1

c=1

	 22 < c < 2; 22, 0, 2

(b)  ŷ − s3 a 
 

y

g(y)

Œ„a_a

(c)  No equilibria
 

y

g(y)

5 10 15

1

2

0

7.  (a)  ŷ − 5
3 is locally stable

 

y

g(y)

1.67
0

(b)  ŷ − 0 is unstable and ŷ − 2
3 is locally stable

 

y

g(y)

0.67
0

0.2

_0.2

9.  (a)  ŷ − 21ya; locally stable when a , 0

(b)  ŷ − 0; locally stable when a , 0

(c)  ŷ − �y2; locally stable when a . 0

(d)  ŷ − 0 is locally stable when a , 0; 
ŷ − a is locally stable when a . 0
11.  (b)  r . 0 
(c)  Slope of the phase plot at N − K is zero (horizontal tangent 
line). Equilibrium may be locally stable or unstable. 
(d)  N̂ − K is unstable in both cases.
 

N

g(N)

0

r>0

KK/3

		

N

g(N)

0

r<0

KK/3

13.  (a)  N̂ − 0, N̂ − 500s2 2 hd      (b)  h > 2      (c)  h , 2
15.  (a)  p̂ − 0, p̂ − 1 2 smycd    
(b)  m , c; colonization rate greater than extinction rate       
(c)  m , c
19.  (a) dpydt − sps1 2 pd 2 �p, where s − r1 2 r2

(b)  p̂ − 0, p̂ − 1 2
�

s
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27.  (a), (c)

0 x_3 3

_3

3
y (b)  y −

1

K 2 x
, y − 0

29.  y − 1 1 e 22x2y2        31.  y − s1
2 x 2 1 2d2

33.  nstd − n0e12se2t1 td; population goes extinct
35.  cstd − cs 2 cs e2kt        37.  nstd − 1

4skt 1 2d2

39.  (a)  Mstd − �23 f1 2 s1 2 �de2� ty3g3

(b)  Approaches �23 grams

(c) 
dD

dt
−

�

3 S ka

�
2 DD

41.  p std −
p0 e st

1 2 p0 1 p0 e st

43.  (a)  Cstd − sC0 2 rykde2kt 1 ryk       
(b)  ryk; the concentration approaches ryk regardless of the  
value of C0

45.  (a)  15e2ty100 kg      (b)  15e20.2 < 12.3 kg      
47.  About 4.9%        49.  tyk      

51.  (a)  dAydt − ksA sM 2 Ad    

(b)  Astd − MSCesM kt 2 1

Ce sM kt 1 1D
2

, where C −
sM 1 sA0

sM 2 sA0

 

and A0 − As0d; Astd − 0

53.  SsAd − CAk, where S is number of species, A is the area, and 
C and k are constants

■  Exercises 7.5  |  page 465

1. 

0 2

2
t=0
(0, 0)

t=2
(6, 2)

t=_2
(2, 6)

y

x

3. 

0 1

1
t=0
(1, 1)

(0, 0)

y

x

t= π2
t= π3

t= π6

5.  (a) 

x

y

0

(1, 5)
t=2

(_8, _1)
t=_1

(_5, 1)
t=0

(_2, 3)
t=1

	

(b)  y − 2
3x 1 13

3

19.  (a)  (i)  1.4    (ii)  1.44    (iii)  1.4641 
(b)  y

0 0.2 x0.40.1 0.3

y=´
h=0.1
h=0.2
h=0.4

1.0

1.1

1.2

1.3

1.4

1.5

        Underestimates

(c)  (i)  0.0918    (ii)  0.0518    (iii)  0.0277 
It appears that the error is also halved (approximately).
21.  Ns4d < 1.3906; close agreement with Table 7.1.1
23.  21, 23, 26.5, 212.25        25.  1.7616
27.  (a)  (i)  3    (ii)  2.3928    (iii)  2.3701    (iv)  2.3681 
(c)  (i)  20.6321    (ii)  20.0249    (iii)  20.0022      (iv)  20.0002 
It appears that the error is also divided by 10 (approximately).

■  Exercises 7.4  |  page 455

1.  y −
2

K 2 x 2 , y − 0        3.  y − Ksx 2 1 1

5.  1
2 y 2 2 cos y − 1

2 x 2 1 1
4 x 4 1 C

7.  y − 6sf3ste t 2 e t 1 Cdg2y3 2 1       

9.  u − Ae 2 t1t 2y2 2 1

11.  y − 2sx 2 1 9        13.  u − 2st 2 1 tan t 1 25

15.  1
2 y 2 1 1

3s3 1 y 2d3y2 − 1
2 x 2 ln x 2 1

4 x 2 1 41
12

17.  y −
4a

s3
 sin x 2 a      

19.  y − e x2y2        21.  y − Ke x 2 x 2 1

23.  (a)  sin21y − x 2 1 C for 2�y2 < x 2 1 C < �y2;  
y − 1 is also a solution

(b)  y − sinsx 2d, 2s�y2 < x < s�y2         (c)  No

ca070317
10.31.00

1

0

y=sin (≈)

_œ„„„π/2_œ „„„π/2œ

25.  cos y − cos x 2 1  
5

2.5
0

�2.5
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■  Exercises 7.6  |  page 476

1. 

x

y

0 a

      Cannot tell

3. 

x

y

0

      Cannot tell

5. 

x

y

0

      Locally stable

7.  (a) 

x

y

0 1

1

2

2

3

3

(i)

(ii)

(iii)

(b)  (i)  x̂ − 0, ŷ − 0    (ii)  x̂ − 0, ŷ − 2    (iii)  x̂ − 3, ŷ − 0

9.  (a) 

n

m

0 1

0.5

0.75

2

(i)

(ii)

(iii)

(b)  (i)  n̂ − 0, m̂ − 0    (ii)  n̂ − 0, m̂ − 2    (iii)  n̂ − 3
4, m̂ − 1

2

7.  (a)  y

0 x

(0, 1)  t=0

(1, 0)  t=1

(2, _3)  t=4

	 (b)  y − 1 2 x 2, x > 0

9.  Moves counterclockwise along the circle  
sx 2 3d2 1 sy 2 1d2 − 4 from s3, 3d to s3, 21d
11.  Moves 3 times clockwise around the ellipse  
sx 2y25d 1 sy 2y4d − 1, starting and ending at s0, 22d
13.  (a)  x − predators, y − prey; growth is restricted only by  
predators, which feed only on prey. 
(b)  x − prey, y − predators; growth is restricted by carrying  
capacity and by predators, which feed only on prey.
15.  Competition    
17.  (a)  The rabbit population starts at about 300, increases to 
2400, then decreases back to 300. The fox population starts at 100, 
decreases to about 20, increases to about 315, decreases to 100,  
and the cycle starts again.
(b) 

0 t

R

2000

t¡

1000

F

200

t™ t£

1500

500

2500
300

100

R F

19. 

0 Species 1

Species 2

50

200

100

50

100 150 200 250

t=3

t=0, 5

150

t=1

t=2

t=4

23.  (a)  Population stabilizes at 5000. 
(b)  The populations stabilize at 1000 rabbits and 64 wolves.

(c) 

0 t

R

1000

W

40

1500

500

60

20

80
W

R
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23.  (a)  2SI: rate of decrease of the number of susceptible people 
due to transmission of the disease 
SI: rate of increase of the number of infected people due to trans-
mission of the disease  
2mI: rate of decrease of the infected population due to recovery 
(b) 

S

I

0 5

(c) 

S

I

0 m/∫

25.  (a)  2kf xyM: rate of decrease of substrate molecules due to 
binding with enzymes, where kf  is the fractional rate of enzyme 
binding 
krs1 2 ydM: rate of increase of substrate molecules due to dissocia-
tion of the enzyme-substrate complex, where kr is the fractional 
rate of dissociation 
kcat s1 2 ydM: rate of increase of free enzymes due to the catalyzed 
reaction and rate at which product molecules are generated, where 
kcat is the fractional rate of the forward reaction 
(b)  dxydt and dyydt are independent of z.
(c) 

x

y

0

1

27.  (a) 

N¡

N™

0

K™

K¡/å

K¡K™/∫
(i)

(ii)

(iii)

11.  (a) 

p

q

0

6

2_4

_2

(i)

(ii)

(b)  (i)  p̂ < 0.618, q̂ < 1.382    (ii)  p̂ < 21.618, q̂ < 3.618
13.  (a) 

x

y

0 1

3

2.5

6

9

(i)

(ii)

(b)  (i)  x̂ − 2.5, ŷ − 0    (ii)  x̂ − 1, ŷ − 3
15.  (a) 

x

y

0 1

1

2 3

2

3

(i)

(ii)

(b)  (i)  x̂ − 2, ŷ − 2    (ii)  x̂ − 1, ŷ − 1
17.  (a)  Locally stable when a . 1      (b)  x̂ − 0, ŷ − 0
19.  (a)  Locally stable for all values of a      (b)  x̂ − a 1 1, ŷ − 1
21.  (b) 

p

q

0

(c)  The mass will cycle in front of and behind its rest position, 
p − 0, as time passes. 
(d)  The velocity of the mass will cycle from positive to negative 
values and back as time passes.
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(b) 

c

p

0

Urea concentration approaches zero in blood and pool.

33. 

R

C

0 Kab

(i) (ii)

(iii)

1-b

■  chapter 7 review  |  page 481

True-False Quiz
1.  True        3.  True        5.  True

Exercises
1.  (a)  x̂ − 0, a
(b) 

x

g(x)

0a

a<0
	� (i)  x̂ − 0 is stable, 

x̂ − a is unstable

	

x

g(x)

0

a=0
	� (ii)  x̂ − a − 0 is unstable

	

x

g(x)

0 a

a>0

	� (iii)  x̂ − 0 is unstable, 
x̂ − a is stable

(b) 

N¡

N™

0

K™

K¡/å

K¡ K™/∫
(i)

(ii)

(iii)

(c) 

N¡

N™

0

K™

K¡/å

K¡K™/∫
(i)

(ii)

(iii)

(iv)

(d) 

N¡

N™

0

K™

K¡/å

K¡ K™/∫
(i)

(ii) (iv)

(iii)

29. 

R

C

0

r/b

�/(∑b)

(i)

(ii)

Oscillatory dynamics are predicted.

31.  (a) 2
K

V
c: rate of decrease of urea concentration in the blood 

due to dialysis, where K is the rate of flow through the dialyzer 
ap: rate of increase of urea concentration in the blood due to urea 
outflow from the inaccessible pool 
bc: rate of change of urea concentration due to urea flow from the 
blood back to the inaccessible pool
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21.  (a)  Stabilizes at 200,000
(b)  (i)  x − 0, y − 0: zero populations
(ii)  x − 200,000, y − 0: In the absence of birds, the insect  
population is always 200,000.
(iii)  x − 25,000, y − 175: Both populations are stable.
(c)  The populations stabilize at 25,000 insects and 175 birds.

(d) 

0 t

x

35,000

15,000

y

15025,000

5,000

45,000

200

100

250

(insects) (birds)

50

birds

insects

23.  dp1ydt has no term with p2 so species 1 growth is unaffected 
by species 2; 2c1p1p2 term in dp2 ydt means species 2 population 
decreases as species 1 population grows.
(b) 

p¡

p™

0

0.9

0.43

0.4

(i)

(ii)

(iii)

(iv)

25.  (a) 

M

C

0 1

5
3

(b)  M cycles between values above and below 1 mgymL;  
cell division is a periodic process.

Chapter 8

■  Exercises 8.1  |  page 493

1.  s4, 0, 23d        3.  Q; R
5.  A vertical plane that	 z

y
2

x

2

0

y=2-x

y=2-x, z=0

intersects the xy-plane in 
the line y − 2 2 x, z − 0 
(see graph at right)

3.  (a)  x̂ − 0, 6sa  (provided a > 0)
(b) 

x

g(x)

0

a<0
	 (i)  x̂ − 0 is stable

	

x

g(x)

0

a=0
	 (ii)  x̂ − 0 is stable

	

x

g(x)

0_œ„

a>0

a œ„a

	� (iii)  x̂ − 6sa  are stable, 
x̂ − 0 is unstable

5.  (a) 
6

10 t

y

2

4

(i)

(ii)

(iv)

(iii)

(b)  0 < c < 4; y − 0, y − 2, y − 4      (c)  Inconclusive
7.  (a) 

0 x

y

1 2_1_2

1

2

3_3

3
      ys0.3d < 0.8

(b)  0.75676 
(c)  y − x and y − 2x; there is a loc max or min

9.  y − 6slnsx 2 1 2x 3y2 1 Cd      

11.  rstd − 5e t2t 2
      

13.  nstd − n0 e s365y2�d sins2� ty365d

15.  (a)  pstd −
p0sc 2 mdesc2md t

c 2 m 2 cp0 1 p0cesc2md t   when c ± m;

pstd −
p0

cp0t 1 1
  when c − m

(b) c < m
17.  (a)  Vstd − 3000 2 2400e2s1y300d t

(b)  Approximately 416 s or 6.9 h
19.  k ln h 1 h − s2RyV dt 1 C
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766    aNSWERS TO ODD-NUMBERED EXERCISES

11.  f5, 2 g				   13.  f0, 1, 21g

x0

y

[6, _2]

[5, 2]

[_1, 4]

		  z

y

[0, 0, _3]

x

[0, 1, 2]

[0, 1, _1]

15.  f2, 218 g,  f1,  242 g, 13, 10
17.  f21, 1, 2g, f24, 1, 9g,  s14 , s82 

19.  F2
3

s58 
, 

7

s58 
 G        21.  f8

9, 21
9, 49g

23.  f2, 2s3 g        25.  < 45.96 ftys, <38.57 ftys

27.  100s7 < 264.6 N, <139.1°

29.  s493 < 22.2 miyh, N8°W

31.  (a)  5i 1 2j 1 4k      (b)  23i 1 2j 2 10k       
(c)  14i 1 4j 1 15k      (d)  223i 1 10j 2 64k

33.  6f1, 4g ys17      

35.  (a), (b)  y

x0

a

b

c

sa

tb

    �    (c)  s < 1.3, t < 1.6 
(d)  s − 9

7, t − 11
7

37.  a < f0.50, 0.31, 0.81g
39.  (a)  Observing a resultant voltage vector that points upwards 
and has a smaller (horizontal) magnitude compared to a healthy 
individual 
(b)  Observing a resultant voltage vector that points to the right of 
the patient
41.  A sphere with radius 1, centered at sx0, y0, z0 d

■  Exercises 8.3  |  page 511

1.  (b), (c), (d)  are meaningful        3.  215        5.  14        7.  19
9.  1        11.  u ? v − 1

2, u ? w − 21
2

15.  cos21S 9 2 4s7 

20 D < 95°        17.  cos21S 21

2s7 
D < 101°

19.  45°, 45°, 90°      
21.  (a)  Neither      (b)  Orthogonal        (c)  Orthogonal       
(d)  Parallel

23.  Yes        25.  F 1

s3 
, 2

1

s3 
, 2

1

s3 
G or F2

1

s3 
, 

1

s3 
, 

1

s3 
G

27.  x 2 2y 1 5z − 0

29.  3, f 9
5, 212

5 g        31.  1ys21, f 2
21, 2 1

21, 4
21g

35.  f0, 0, 22s10g or any vector of the form fs, t, 3s 2 2s10g,
s, t [ R
37.  (a)  Magnitude is about twice as large in North American 
viruses      (b)  Directions are perpendicular

7.  (a)  |PQ| − 6, | QR | − 2s10, | RP | − 6; isosceles triangle 
(b)  |PQ| − 3, | QR | − 3s5 , | RP | − 6; right triangle
9.  (a)  No      (b)  Yes      
11.  sx 2 3d2 1 sy 2 8d2 1 sz 2 1d2 − 30
13.  s3, 22, 1d, 5        15.  s2, 0, 26d, 9ys2 

17.  (b)  5
2, 12 s94 , 12 s85 

19.  (a)  sx 2 2d2 1 sy 1 3d2 1 sz 2 6d2 − 36 
(b)  sx 2 2d2 1 sy 1 3d2 1 sz 2 6d2 − 4 
(c)  sx 2 2d2 1 sy 1 3d2 1 sz 2 6d2 − 9
21.  A plane parallel to the yz-plane and 5 units in front of it
23.  A half-space consisting of all points to the left of the  
plane y − 8 
25.  All points on or between the horizontal planes z − 0 and z − 6
27.  All points on a circle with radius 2 and center on the z-axis that 
is contained in the plane z − 21
29.  All points on or inside a sphere with radius s3  and center O

31.  0 , x , 5        33.  r 2 , x 2 1 y 2 1 z2 , R2

35.  (a)  (2, 1, 4)      (b) 

P

A

C

B

0

z

y
x

L™

L¡

37.  (a)  0.2 cm      (b)  1.0 cm      (c)  �2.24 cm
39.  (a)  Yes      (b)  No      (c)  The circles in part (a) are the projec-
tions of the spheres in part (b) onto the xy-plane.

■  Exercises 8.2  |  page 502

1.  (a)  Scalar      (b) Vector      (c)  Vector      (d)  Scalar

3.  AB
l

− DC
l

, DA
l

− CB
l

, DE
l

− EB
l

, EA
l

− CE
l

5.  (a) 

ca090205a
10.13.00

u+v

u

v

	 (b) 

ca090205b
10.13.00

u-v

u_v

(c) 

ca090205c
10.13.00

v+w

w
v

	 (d) 

ca090205d
10.13.00

u
w+v+u

w
v

7.  a − f3, 21 g			   9.  a − f2, 0, 22 g	

x0

y

A(_1, 3)

B(2, 2)

a

		  z

y

0

A(0, 3, 1)

a
B(2, 3, _1)x
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3.  (a) c1 0

2 3
d       (b)  £

0 0 4

1 2 0

0 3 0
§     

(c)  £
0 0 0 1

0 0 2 0

0 3 0 0

4 0 0 0

§       (d)  c0 1

0 2
d

5.  (a) 

A B

5

6

1

(b) 

A B C

3

7

95

2

2

1

(c) 

A B

1

1

1 1

(d) 

A B C

6 1

3

2

7

7.  No contributions to the variable having a row of zeroes; a matrix 
diagram would have no incoming arrows to the circle representing 
this variable.
9. 

A B

0.2

0.3

0.8 0.7

11. 

h e l

0.002 0.35

0.9

0.10.65

0.998

13. 

s b

0.5

0.5 0.2

39.  (a)  s115 < 10.7 
(b)  Drug A: 37y115 < 0.32      Drug B: 46y115 − 0.4 
(c)  Drug B
41.  cos21(1ys3) < 55°

43.  Center: f1
2sa1 1 b1d, 12sa2 1 b2d, 12sa3 1 b3dg

Radius: 12ssa1 2 b1d2 1 sa2 2 b2d2 1 sa3 2 b3d2 

■  Exercises 8.4  |  page 518

1.  (a)  2 3 2      (b)  Not defined      (c)  2 3 3      (d)  3 3 3 
(e)  Not defined      (f)  3 3 2      (g)  Not defined      (h)  3 3 3

3.  (a)  c225 21

220 223
d     

(b)  £
3x 1 13 5 26

16 3y 1 3 51

22 210 24
§

(c)  c 32 9 68

135 5y 23
d       (d)  Not defined    

(e)  c 33 5x 2 5

5a 2 1 18
d       (f)  Not defined

(g)  £
2x 4 18

12 2y 26

0 2 0
§       (h)  c 8 3 20

45 2y 5
d

5.  (a)  f3X  1  2]      (b)  £
3

3

9
§       (c)  £

2 8

1 3

7 6
§       (d)  c2 1

1 3
d

7.  (b)  d ii
k

9.  (a)  C 2 − c1 0

0 1
d , C 3 − c0 1

1 0
d , C 4 − c1 0

0 1
d , C 5 − c0 1

1 0
d

(b) 

	 c0 1

1 0
d when k is odd

Ck −

	 c1 0

0 1
d when k is even

17.  aij − H0 when i − j sdiagonal termsd
2aji when i ± j soff@diagonal termsd

■  Exercises 8.5  |  page 525

1.  (a)  cX 0
X 0 d       (b)  £

0 X 0
X 0 X
0 X 0

§       (c)  £
X X 0 0
X 0 X 0
0 X X X
0 0 X 0

§

(d)  £
0 X 0
X 0 0
0 0 X

§       (e)  cX X
X X d
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35.  v̂ − ck
0
d , where k is any real number (infinite number of 

equilibria)

■  Exercises 8.7  |  page 544

1.  (a)  Reflects about the x-axis      (b)  Reflects about the y-axis 
(c)  Reflects about the x-axis and the y-axis 
(d)  Reflects about the x- and y-axes and the line y − x (swaps  
x- and y-values).
3.  Vertical segment of L rotates clockwise and increases in length 
(b)  Horizontal segment of L rotates clockwise and increases in 
length 
(c)  Vertical segment of L rotates counterclockwise and increases 
in length 
(d)  Horizontal segment of L rotates counterclockwise and 
increases in length

5.  (a)  c21 0

0 1
d       (b)  c2 0

0 1
d       (c)  c1 1.5

0 1
d     

(d)  c1ys2 21ys2 

1ys2 1ys2 d
7.  Denote the voltage vector of a healthy heart by v − f0.3, 20.2g.

(a)  c1 0

0 21
d       (b)  c21 0

0 1
d       (c)  c21 0

0 21
d     

(d)  c1 1

0 0.3335
d

9.  (a)  Yes      (b)  Yes      (c)  No      (d)  Yes      (e)  No      (f)  Yes

11.  (a)  0, 2      (b)  1, 21      (c)  2, 3      (d)  i, 2i      (e)  0, 2       
(f)  1, 2, 3

13.  (a)  � − 1, v − c1
0
d ; � − 21, v − c0

1
d

(b)  � − 3, v − c1
1
d ; � − 21, v − c 1

21
d

(c)  � − 1 1 2i, v − c i

1
d ; � − 1 2 2i, v − c1

i
d

(d)  � − 2, v − c1
0
d ; � − 5, v − c7

3
d

(e)  � − 21 1 s10 , v − c 22

2 2 s10 d ; 

� − 21 2 s10 , v − c 22

2 1 s10 d

(f)  � − 1 1 s31 , v − c 26

1 2 s31 d ; 

� − 1 2 s31 , v − c 26

1 1 s31 d

15. 

g s f

0.1 0.2

0.999

0.0010.001

0.799

0.9

17.  Hxt11 − 2xt 1 3yt

yt11 − 0.9yt
J, cxt11

yt11
d − c2 3

0 0.9
d  cxt

yt
d

19.  Hdt11 − 1dt 1 1
4ht

ht11 − 1
2 ht

rt11 − 1
4ht 1 1rt

J , £
dt11

ht11

rt11

§ − £
1 1

4 0

0 1
2 0

0 1
4 1

§  £
dt

ht

rt

§

21.  HXt11 − 0.92Xt 1 0.9Zt

Yt11 − 0.05Xt 1 0.999Yt

Zt11 − 0.03Xt 1 0.001Yt 1 0.1Zt

J ,

£
Xt11

Yt11

Zt11

§ − £
0.92 0 0.9

0.05 0.999 0

0.03 0.001 0.1
§  £

Xt

Yt

Zt

§

■  Exercises 8.6  |  page 534

1.  (a)  Yes      (b)  Yes      (c)  No      (d)  Yes      (e)  No      (f)  Yes

5.  c61 0

0 61
d

11.  1        13.  1, 2        15.  det Ak ± 0, so Ak is nonsingular.
19.  One solution when k ± 6; infinite number of solutions  
when k − 6

21.  x1 −
a22 b1 2 a12 b2

a11 a22 2 a12 a21
, x2 −

2a21 b1 1 a11 b2

a11 a22 2 a12 a21

25.  x1 − 11
4 , x2 − 23

4        27.  x1 − 21, x2 − 5
6

29.  Infinite number of solutions satisfying x2 − 22x1 1 1

31.  x t − c1
2
d

33.  n̂ − cb 2
1
2 0

d  n̂ ? n̂ 2 cb 2
1
2 0

d  n̂ − 0

 ? c1 0

0 1
d  n̂ 2 cb 2

1
2 0

d  n̂ − 0

 ? S c1 0

0 1
d 2 cb 2

1
2 0

dD n̂ − 0

 ? c1 2 b 22

21
2 1

d  n̂ − c0
0
d

A

So finding n̂ requires solving the homogeneous system above. The 
matrix A will be invertible when det A ± 0 ? 
s1 2 bds1d 2 (21

2)s22d ± 0 ? b ± 0.

(a)  n̂ − c0
0
d     

(b)  n̂ − c2k

k
d , where k is any real number (infinite number of 

equilibria)
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(g)  � − 1, v − £
0

1

0
§ ; � − 1 1 s3 , v − £

s3 

2

3
§ ;

� − 1 2 s3 , v − £
2s3 

2

3
§

(h)  � − 1, v − £
1

0

0
§ ; � − 1 1 s14 , v − £

3 1 s14 

7

s14 

§ ;

� − 1 2 s14 , v − £
23 1 s14 

27

s14 

§

15.  (a)  Free to choose any values for the components of the  
eigenvectors associated with the repeated eigenvalue � − 1.

Two distinct eigenvectors c1
0
d  and c0

1
d  are associated with � − 1.

(b)  Only one eigenvector c1
0
d  is associated with the repeated 

eigenvalue � − 1.

(c)  Two distinct eigenvectors £
1

0

0
§  and £

0

1

0
§  are associated with

the repeated eigenvalue � − 1. One eigenvector £
0

0

1
§  is associated 

with � − 2.
25.  (a)  �A 1 �B      (b)  �A �B

27.  � − 2, v − c1
0
d ; � − 9

10, , v − c 30

211
d

29.  � − 1
2b 1 1

2sb2 1 4 , v − c 4

2b 1 sb2 1 4 d ; 

� − 1
2b 2 1

2sb2 1 4 , v − c 24

b 1 sb2 1 4 d

31.  2�3 1 �2 1 � 1 2
3

■  Exercises 8.8  |  page 556

1.  D − c1 0

0 2
d , P − c0 1

1 0
d , P21 − c0 1

1 0
d

3.  D − c3 0

0 21
d , P − c1 1

1 21
d , P21 − c

1
2

1
2

1
2 21

2
d

5.  D − c2 1 s5 i 0

0 2 2 s5 i
d , P − c 2 2

1 1 s5 i 1 2 s5 i
d , 

P21 − £
1

4s5 
i 1

1

4
2

1

2s5 
i

2
1

4s5 
i 1

1

4

1

2s5 
i
§

7.  D − £
0 0 0

0 1 0

0 0 2
§ , P − £

1 0 1

0 1 0

0 0 2
§ , P21 − £

1 0 21
2

0 1 0

0 0 1
2

§

9.  D 2 − c1 0

0 16
d , P − c1 0

0 1
d , P21 − c1 0

0 1
d

11.  D 2 − c1 0

0 4
d , P − c 2 1

21 0
d , P21 − c0 21

1 2
d

13.  D 2 − ca
2 0

0 b 2 d , P − c1 0

0 1
d , P21 − c1 0

0 1
d

15.  n t − c0
1
d 1 c1

0
d  2 t        17.  n t − c1

1
d  2 t      

19.  n t − c1 2 a

0
d 1 ca

1
d  2 t

21–25  Denote the arbitrary initial condition by n0 − c x0

y0
d .

21.  n t − x0 c1
0
d  a t 1 y0 c0

1
d  b t      

23.  n t − 2y0 c 1

21
d 1 sx0 1 y0d c1

0
d  2t

25.  n t − 1
2sx0 1 y0d c1

1
d  sa 1 bd t 1 1

2sx0 2 y0d c 1

21
d  sa 2 bd t

31.  n t − (s2 ) t £
cosS�

4
tD 2sinS�

4
tD

sinS�

4
tD cosS�

4
tD §  c1

1
d

33.  n t − (s6 ) t c s5  sins�td
coss�td

d , where � − tan21s5 

35.  (a)  No      (b)  vt − c0.3

0
d 1 c 0

20.2
d  s21dt

(c)  vt cycles between c 0.3

20.2
d  and c0.3

0.2
d .

37.  (a)  �1 − 1, �2 − 7
10    

(b)  yt approaches steady state in long term.

(c)  yt −
1

3
 S c21 d 1 c 1

21
d  S 7

10D
tD

(d)  lim
t l `

 yt −
1

3
 c2

1
d

39.  (a)  �1 − 1, �2 − 3
10    

(b)  x t approaches steady state in long term.

(c)  x t −
1

7
 c5

2
d 1 Sa 2

5

7D c 1

21
d  S 3

10D
t

(d)  lim
t l `

 x t −
1

7
 c5

2
d
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Chapter 9

■  Exercises 9.1  |  page 580

1.  (a)  227°C; a temperature of 215°C with wind blowing at  
40 kmyh feels equivalent to about 227°C without wind. 
(b)  When the temperature is 220°C, what wind speed gives a 
wind chill of 230°C?    20 kmyh 
(c)  With a wind speed of 20 kmyh, what temperature gives a wind 
chill of 249°C?    235°C 
(d)  A function of wind speed that gives wind-chill values when the 
temperature is 25°C 
(e)  A function of temperature that gives wind-chill values when 
the wind speed is 50 kmyh
3.  (a)  <20.5; the surface area of a person 70 in tall who weighs 
160 lb is approximately 20.5 square feet. 
(b)  Answers vary depending on height and weight.
5.  (a)  �94.2; When the manufacturer invests $20 million and the 
number of labor hours is 120,000, its yearly production is about 
$94.2 million.
7.  Snake with R − 3 and S − 1 is likely to survive longer.
9.  (a)  1      (b)  R 2      (c)  f21, 1g
11.  (a)  3      (b)  hsx, y, zd | x 2 1 y 2 1 z 2 , 4, x > 0, y > 0, z > 0j, 
interior of a sphere of radius 2, center the origin, in the first octant

13.  hsx, yd | y < 2xj	

x

y

x

y

y=2x

0

15.  hsx, yd | 21 < x < 1, 21 < y < 1j	

3c3 Ans 9.6.7
09.12.04

y

x_1 10

1

_1

17.  hsx, yd | y > x 2, x ± 61j	

ca090607
10.13.00

y

x0 1_1

y=≈

19.  hsx, y, zd | x 2 1 y 2 1 z2 < 1j	 z

y

0

x

41.  (b)  �1 −
1 1 s5 

2
, �2 −

1 2 s5 

2
(c)  Yes; components of zn grow by a factor �1 each time step and 
asymptotically approach the line defined by the associated eigen-
vector v1.

(d)  Fn −
1

s5 FS 1 1 s5 

2
Dn

2 S 1 2 s5 

2 DnG
■  chapter 8 review  |  page 561

True-False Quiz
1.  True        3.  False        5.  False        7.  False        9.  True         
11.  True        13.  False        15.  True        17.  True

Exercises
1.  (a)  sx 1 1d2 1 sy 2 2d2 1 sz 2 1d2 − 69 
(b)  sy 2 2d2 1 sz 2 1d2 − 68, x − 0 
(c)  Center s4, 21, 23d, radius 5
3.  sx1 2 c1d2 1 sx2 2 c2d2 1 . . . 1 sxn 2 cnd2 − r 2 for a  
hypersphere centered at Psc1, c2, . . . , cnd with radius r
5.  22, 24        7.  (a)  45°      (b)  74.7°        9.  13

5

11.  (a)  s8 < 2.83      (b)  cos21S 1

s5 D < 1.11 sor 63.4°)

13.  £
0 0 0

0.5 1 2

0 0.5 0
§

15.  (a)  Not defined      (b)  c 9 4

19 21
d       (c)  Not defined

(d)  Not defined      (e)  c16 1 7

4 5 11
d         (f)  c

13
7 4

1135
63

107
9
d

21.  x − 9
11, y − 5

11
23.  Infinite number of solutions given by y − 27x

25.  n̂ − £
0

0

0
§ ; population extinct

27.  � − 2, v − c 1

21
d ; � − 4, v − c1

1
d

29.  � − 2 1 i, v − c1
i
d ; � − 2 2 i, v − c i

1
d

33.  n t − 21
2 c 1

22
d  s24d t for t > 1

35.  n t − r t SFcoss�td 2 sins�td
sins�td 1 coss�td

dD 

where r − s1 1 a 2  and � − tan21 S 1

aD
37.  Yes

39.  (a)  A − c
1
2

1
2

1 0
d       (c)  �1 − 1 and �2 − 21

2

(d)  zn approaches steady state in long term.
(e)  lim

n l `
 an − c (component 1 of v1), where c is constant
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37.  y − ke2x	

3c3 Ans 11.1.19
09.16.04

y

x0
0

1 2 3

_1
_2

_3

39.  m − kh 2	

h

m

0 21.521

56

62

40 30 25
18

.5

O
pt

im
al

 B
M

I

No
41.  (a)  C      (b)  II        43.  (a)  F      (b)  I      
45.  (a)  B      (b)  VI      
47. 

0

20

40

R
S

F

_20

_10
0 10 10

0
_10

_10

_10 10

10

_16
_8

0

8

16

24_16
_8

0

8

16
24

��FsR, Sd is shaped like a saddle.
49.  1        51.  2

7        53.  Does not exist        55.  Does not exist      
57.  0        59.  hsx, yd | y > 0j        61.  hsx, yd | x 2 1 y 2 . 4j      

63.  hsx, y, zd | y > 0, y ± sx 2 1 z 2 j      

65.  hsx, yd | sx, yd ± s0, 0dj      

■  Exercises 9.2  |  page 593

1.  (a)  The rate of change of temperature as longitude varies, with 
latitude and time fixed; the rate of change as only latitude varies; 
the rate of change as only time varies 
(b)  Positive, negative, positive

21.  z − 3, horizontal plane	 z

y

0

x

23.  4x 1 5y 1 z − 10, plane	

0

z

y
x

(0, 0, 10)

(2.5, 0, 0)
(0, 2, 0)

25.  z − y2 1 1, parabolic cylinder	

3c Ans 9.6.13
07.09.04

z

x y

27.  <56, <35        29.  11°C, 19.5°C      

31.  Steep; nearly flat

33.  y − 2x 2 k	

x

y

_2 _1 0 1 2

35.  y − kyx	

x

y

0

k<0

k<0

k>0

k>0

k=0

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



772    aNSWERS TO ODD-NUMBERED EXERCISES

−P

−m
− 2 

Bmt 2

vx 2 , rate of change in required power that occurs 

from an increase in the bird’s mass
47.  Ems400, 8d < 0.301 kcalyg, an increase in mass of 1 g 
requires approximately 0.3 kcal of additional energy when 
m − 400 and v − 8. 
Evs400, 8d < 24.89 kcalyskmyhd, an increase in speed of 
1 kmyh results in approximately 4.9 kcal of energy saved when 
m − 400 and v − 8.

49. 
−T

−P
−

V 2 nb

nR
; 

−P

−V
−

2n 2a

V 3 2
nRT

sV 2 nbd2

51.  fxx − 6xy 5 1 24x 2y, fxy − 15x 2y 4 1 8x 3 − fyx, fyy − 20x 3y 3

53.  wuu − v2ysu2 1 v2d3y2, wuv − 2uvysu2 1 v2d3y2 − wvu, 
wvv − u2ysu2 1 v2d3y2

55.  zxx − 22xys1 1 x 2d2, zxy − 0 − zyx, zyy − 22yys1 1 y 2d2

59.  12xy, 72xy
61.  24 sins4x 1 3y 1 2zd, 12 sins4x 1 3y 1 2zd
63.  �e r�s2 sin � 1 � cos � 1 r� sin �d
65.  6yz 2        73.  No

■  Exercises 9.3  |  page 601

1.  z − 27x 2 6y 1 5        3.  x 1 y 2 2z − 0        5.  z − y
7.  2x 1 1

4 y 2 1        9.  1
9 x 2 2

9 y 1 2
3        11.  4x 1 13y 1 4z 2 28

15.  6.3        17.  3
7 x 1 2

7 y 1 6
7 z; 6.9914      

19.  4T 1 H 2 329; 1298F        21.  < 0.301m 2 4.89v 1 96

■  Exercises 9.4  |  page 608

1.  s2x 1 yd cos t 1 s2y 1 xde t      

3.  fsxytd 2 y sin tgys1 1 x 2 1 y2

5.  e yyzf2t 2 sxyzd 2 s2xyyz2 dg
9.  −zy−s − 2xy 3 cos t 1 3x 2y 2 sin t, 
−zy−t − 22sxy 3 sin t 1 3sx 2y 2 cos t

11.  62        13. 
2x 1 y sin x

cos x 2 2y
        15. 

sinsx 2 yd 1 e y

sinsx 2 yd 2 xe y

17. 
3yz 2 2x

2z 2 3xy
, 

3xz 2 2y

2z 2 3xy

19. 
1 1 y 2z 2

1 1 y 1 y 2z 2 , 2
z

1 1 y 1 y 2z 2

21.  (a) 
dW

dt
−

−W

−F

dF

dt
1

−W

−C

dC

dt
(b)  −Wy−F is positive, −Wy−C is negative. 
(c)  Wolf population increases. 
(d)  Nothing

23. 
dB

da
−

1

h 2

dm

da
2 2 

m

h 3

dh

da

25. 
−A

−�
−

1

�q 2 e qA         27.  < 20.27 Lys

■  Exercises 9.5  |  page 617

1.  < 20.08 mbykm        3.  < 0.778        5.  2 1 s3y2      
7.  (a)  =f sx, yd − f5y 2 2 12x 2y, 10xy 2 4x 3g 
(b)  f24, 16g      (c)  172y13
9.  (a)  =f sx, yd − f2 coss2x 1 3yd, 3 coss2x 1 3ydg 
(b)  f2, 3g      (c)  s3 2 3

2

3.  (a)  fT s215, 30d < 1.3; for a temperature of 215°C and wind 
speed of 30 kmyh, the wind-chill index rises by 1.3°C for each 
degree the temperature increases. fvs215, 30d < 20.15; for a  
temperature of 215°C and wind speed of 30 kmyh, the wind-chill 
index decreases by 0.15°C for each kmyh the wind speed  
increases. 
(b)  Positive, negative      (c)  0
5.  (a)  Positive      (b)  Negative      
7.  fxs1, 2d − 28 − slope of C1, fy s1, 2d − 24 − slope of C2

z

y

0

x

(1, 2, 8)

C¡

(1, 2)

2

16

4

z

y

0

x

(1, 2, 8)

C™

(1, 2)

2

16

4

9.  fx sx, yd − 23y, fy sx, yd − 5y 4 2 3x
11.  fx sx, td − 2�e2t sin �x, ft sx, td − 2e2t cos �x
13.  −zy−x − 20s2x 1 3yd9, −zy−y − 30s2x 1 3yd9

15.  fx sx, yd − 2yysx 1 yd2, fy sx, yd − 2 2xysx 1 yd2

17.  −wy−� − cos � cos �, −wy−� − 2sin � sin �

19.  fr sr, sd −
2r 2

r 2 1 s 2 1 lnsr 2 1 s 2d, fs sr, sd −
2rs

r 2 1 s 2

21.  −uy−t − ewyts1 2 wytd, −uy−w − ewyt

23.  fx − z 2 10xy 3z4, fy − 215x 2y 2z4, fz − x 2 20x 2y 3z3

25.  −wy−x − 1ysx 1 2y 1 3zd, −wy−y − 2ysx 1 2y 1 3zd, 
−wy−z − 3ysx 1 2y 1 3zd
27.  −uy−x − e2t sin �, −uy−t − 2xe2t sin �, −uy−� − xe2t cos �
29.  fx − yz 2 tansytd, fy − xyz 2t sec2sytd 1 xz 2 tansytd, 
fz − 2xyz tansytd, ft − xy 2z 2 sec2sytd
31.  −uy−xi − xi ysx1

2 1 x2
2 1 ∙ ∙ ∙ 1 xn

2        33.  1
5        35.  1

4

37. 
−z

−x
−

3yz 2 2x

2z 2 3xy
, 

−z

−y
−

3xz 2 2y

2z 2 3xy

39. 
−z

−x
−

1 1 y 2z 2

1 1 y 1 y 2z 2 , 
−z

−y
−

2z

1 1 y 1 y 2z 2

41.  (a)  �0.0545 ft 2y lb; rate at which body surface area increases 
with respect to weight when an individual weighs 160 lb and has a 
height 70 in. 
(b)  �0.213 ft 2yin; rate at which body surface area increases with 
respect to height when an individual weighs 160 lb and has a height 
70 in.

43. 
−R

−L
−

C

r 4 , rate of increase of resistance of blood when artery 

length increases (with constant artery radius);
−R

−r
− 24C

L

r 5 , rate of change of resistance of blood when artery 

radius increases (with constant artery length)

45. 
−P

−v
− 3Av 2 2

Bsmtyxd2

v 2 , rate of change in required power 

that occurs from an increase in the bird’s velocity;
−P

−x
− 22 

Bm 2t 2

vx 3 , rate of change in required power that occurs 

from an increase in the fraction of time the bird spends flapping;
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■  chapter 9 review  |  page 628

True-False Quiz
1.  True        3.  False        5.  False        7.  True        9.  False      
11.  True

Exercises
1.  hsx, yd | y . 2x 2 1j	 3. 

x y

z

3c3 Ans 11.R.3
09.16.04

1

1

3c3 Ans 11.R.1
09.23.04

y

x_1

_1

y=_x-1

5. 

x

y

1234
5

15_15 10_10

15

10

_15

_10

7.  2
3      

9.  (a)  <3.58Cym, 23.08Cym      (b)  < 0.358Cym by Equa-
tion 9.5.9 (Definition 9.5.2 gives <1.18Cym.)     
(c)  �20.25
11.  fx − 1ys2x 1 y 2 , fy − yys2x 1 y 2 

13.  tu − tan21v, tv − uys1 1 v 2d
15.  Tp − lnsq 1 e rd, Tq − pysq 1 e rd, Tr − pe rysq 1 e rd
17.  (a)  −Py−m < 4.87, −Py−T < 20.013 
(b)  Worsen      (c)  Yes
19.  f xx − 24x, f xy − 22y − f yx, f yy − 22x
21.  f xx − ksk 2 1dx k22 y lz m, f xy − klx k21y l21z m − f yx,  
f xz − kmx k21y lz m21 − f zx, f yy − lsl 2 1dx k y l22z m, 
f yz − lmx k y l21z m21 − f zy, f zz − msm 2 1dx k y lz m22

25.  z − 28x 2 2y        27.  x 2 2y 1 z − 4        29.  x 1 5y 2 4
31.  2xy 3s1 1 6pd 1 3x 2y 2s pe p 1 e pd 1 4z 3s p cos p 1 sin pd
35.  fq 2e2pq 2 pq 3e2pq, 2pqe2pq 2 p 2q 2e2pqg        37.  24

5

39.  < 5
8 knotymi

41.  Maximum f s1, 1d − 1; saddle points (0, 0), (0, 3), (3, 0)
43.  Maximum f s1, 2d − 4, minimum f s2, 4d − 264

Chapter 10

■  Exercises 10.1  |  page 638

1.  Linear, homogeneous, nonautonomous
3.  Nonlinear, autonomous
5.   Linear, nonhomogeneous, nonautomonous

7.  cdxydt

dyydt
d − c 5 23

21 2
d cx

y
d

11.  23y10        13.  28ys10        15.  26ys5         17.  2y5 
19.  4s2 , f21, 1g        21.  1, f0, 1g      
23.  (b)  f212, 92g        25.  All points on the line y − x 1 1
27.  Deeper        29.  f21, 22g
31.  (a)  It is beneficial
(b) 

d

1

2

3

4

u

√

0

1

0.8

0.2

2 4 6 8 10

0.6

0.4

33.  f2, 3g, 2x 1 3y − 12
y

x0

2x+3y=12

xy=6

(3, 2)

f (3, 2)Î

35.  774
25

■  Exercises 9.6  |  page 626

1.  (a)  f  has a local minimum at (1, 1). 
(b)  f  has a saddle point at (1, 1).
3.  Local minimum at (1, 1), saddle point at (0, 0)
5.  Minimum f s1

3, 22
3d − 21

3
7.  Minima f s1, 1d − 0, f s21, 21d − 0, saddle point at s0, 0d
9.  Minimum f s2, 1d − 28, saddle point at s0, 0d
11.  None        13.  Minimum f s0, 0d − 0, saddle points at s61, 0d
15.  Minima f s0, 1d −  f s�, 21d −  f s2�, 1d − 21,  
saddle points at s�y2, 0d, s3�y2, 0d
17.  Maximum f s2, 0d − 9, minimum f s0, 3d − 214
19.  Maximum f s61, 1d − 7, minimum f s0, 0d − 4
21. 

_3

_2

_1

0

_1 0 1
_2

2
4

x

y

z

(_1, 0, 0) (1, 2, 0)

23.  s3         25.  s2, 1, s5 d, s2, 1, 2s5 d        27.  100
3 , 100

3 , 100
3       

29.  8r 3ys3s3 d        31.  4
3        33.  Cube, edge length cy12

35.  Square base of side 40 cm, height 20 cm      

37.  (a)  Hsp1, p2d − lnFs1 2 p1 2 p2d p11p221

p1
p1 p2

p 2 G
(b)  hsp1, p2d | p1 > 0, p2 > 0, p1 1 p2 < 1j

(c)  ln 3, p1 − p2 − p3 − 1
3

39.  100
21
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31. 

m

p

2

2

33.  (a) 

x¡

x™

c

b

(b)  Amount of antibody in blood and tumor approaches zero.

■  Exercises 10.2  |  page 650

11. 

x¡

x™

3

3

_3

_3

13. 

x¡

x™

4

2

_2

_4

15. 

x¡

x™

3

3

_3

_3

17.  xstd − 3
2e2t c1

1
d 2 1

2e22t c 1

21
d

9.  cdxydt

dyydt
d − c0 3t

2 23
d cx

y
d 1 c27

0
d

11.  cdxydt

dyydt
d − c2 0

3 7
d cx

y
d 1 c25

0
d

13.  cdxydt

dyydt
d − c 1 4

21 1
d cx

y
d 1 c23t

0
d

15. 

x¡

x™

3

3

_3

_3

    Node

17. 

x¡

x™

3

3

_3

_3

  Spiral

19. 

x¡

x™

3

3

_3

_3

    Spiral

21. 

x¡

x™

3

3

_3

_3

    Node

23.  (a)  x̂ − 2A21g 
(b)  The distance between the vector x and the equilibrium vector x̂ 
along each coordinate dimension
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7.  (a)  x90 − 2u0 x0, x91 − u0 x0 2 u1x1, x92 − u1x1

(b)  xstd −
k

u0 2 u1
 e2u0 t cu0 2 u1

2u0
d 1

u0k

u0 2 u1
 e2u1 t c0

1
d

(c) 
dx2

dt
− 2

u0u1k

u0 2 u1
 e2u0 t 1

u0u1k

u0 2 u1
 e2u1 t

(d)  x2std −
u1k

u0 2 u1
 se2u0 t 2 1d 2

u0k

u0 2 u1
 se2u1 t 2 1d

9.  (a)  Water temperature affected only by room temperature;  
coin temperature affected only by water temperature

(b) 
dx
dt

− Ax, where x − cwstd 2 R

pstd 2 R
d

(c)  xstd − c1e2kw t ckw 2 kp

2kp
d 1 c2e2kpt c0

1
d

(d)  cwstd
pstd

d −
w0 2 R

kw 2 kp
e2kwt ckw 2 kp

2kp
d

		  1 Skp
w0 2 R

kw 2 kp
1 p0 2 RDe2kpt c0

1
d 1 cR

R
d

11.  (a)  x̂1 − x̂2 − cV

(b) 
dy
dt

− Ay, where y − cx1std
x2std

d 2 ccVy2

0
d

(c)  ystd − cVe2atyV c1
1
d 2

cV

2
e22atyV c1

0
d

(d)  xstd − cVe2atyV c1
1
d 2

cV

2
e22atyV c1

0
d 1 ccVy2

0
d

■  Exercises 10.4  |  page 673

1. 
d«

dt
− c4 0

0 22
d«, where « − cx1

x2
d

3. 
d«

dt
− c 1 0

21 7
d«, where « − cx1

x2
d

5. 
d«

dt
− c21 1

0 2
d«, where « − cx1

x2
d

7.  (i)  x̂1 − 0, x̂2 − 0; 
d«

dt
− c25 0

0 1
d«, where « − cx1

x2
d  

(ii)  x̂1 − 1
5, x̂2 − 5; 

d«

dt
− c 0 1

5

225 0
d«, where « − cx1

x2
d 2 c

1
5

5
d

9.  (i)  x̂1 − 0, x̂2 − 0; 
d«

dt
− c1 0

8 0
d«, where « − cx1

x2
d

(ii)  x̂1 − 224, x̂2 − 22; 

��
d«

dt
− c21 0

0 296
d«, where « − cx1

x2
d 2 c224

22
d

19.  xstd − 3et c1
2
d 2 4e2t c0

1
d

21.  xstd − 29et c1
1
d 1 4e3t c2

3
d

23.  xstd − e2t c 2 cos s6 t

2s6  sin s6 t
d

25.  xstd − 1
2et c 1

21
d 1 3

2e2t c1
1
d

27.  xstd − e 3ty2 £
cos 

s39 

2
 t 2

3s39 

13
 sin 

s39 

2
 t

cos 
s39 

2
 t 1

s39 

13
 sin 

s39 

2
 t

§

29.  xstd − c1 c 1

22
d 1 c2e2t c 1

21
d

31.  (b) No restrictions on the components of the eigenvectors
33.  a , 0: stable spiral; 0 < a , 1: stable node; 
a − 1: unstable (infinite number of equilibria); 
a . 1: saddle (unstable)
35.  a , 21: stable node;  
a − 21: unstable (infinite number of equilibria);  
21 , a , 1: saddle (unstable);  
a − 1: unstable (infinite number of equilibria);  
a . 1: unstable node

■  Exercises 10.3  |  page 661

1.  zstd − e2531024 t ?

c k1 cos 0.1t 1 k2 sin 0.1t

s25 3 1024k1 1 0.1k2d cos 0.1t 2 s0.1k1 1 5 3 1024k2d sin 0.1t
d

3.  (a) 
dx
dt

− Ax, where xstd − ystd 2 c 0

dy2
d

(b)  xstd − c1e22t c0
1
d 1 c2e24t c22

1
d

(c)  xstd − (1
2 2 dy2)e22t c0

1
d 2 1

2e24t c22

1
d

(d)  y2std − (1
2 2 dy2)e22t 2 1

2e24t 1 dy2

(e)  21
2 lnf1

2(1 2 d 1 ssd 2 1dsd 1 3d )g
5.  (a)  xstd − c1es�2�dt c0

1
d 1 c2e2s�1�dt c� 2 � 1 � 1 �

2�
d

(b)  � . �: saddle (unstable); � , �: stable node

(c)  xstd −
�C0

� 2 � 1 � 1 �
es�2�dt c0

1
d

		  1
C0

� 2 � 1 � 1 �
e2s�1�dt c� 2 � 1 � 1 �

2�
d
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13.  (a) 
d

dt
cx1

x2
d − c2

4
25 0
4
25 2 8

25
d cx1

x2
d 1 c16

0
d  and xs0d − c8

0
d

(b)  cx1std
x2std

d − 292e24 ty25 c1
1
d 1 42e28ty25 c0

1
d 1 c100

50
d

(c)  50 g
19.  Cannot tell        21.  Locally stable
23.  (i)  x̂ − 0, ŷ − 0, unstable 
(ii)  x̂ − 0, ŷ − 4, unstable 
(iii)  x̂ − 21

2, ŷ − 5, locally stable
25.  (i)  R̂ − 0, Ŵ − 0, unstable
(ii)  R̂ − 1

2, Ŵ − 0, locally stable

(iii)  R̂ − 1, Ŵ − 28, unstable
27.  (a)  (i) N̂1 − 0, N̂2 − 0, (ii) N̂1 − 0, N̂2 − K2,

��(iii) N̂1 − K1, N̂2 − 0, (iv) N̂1 −
�K2 2 K1

�� 2 1
, N̂2 −

K1� 2 K2

�� 2 1

(b)  JsN1, N2d − £
1 2

2N1 1 �N2

K1
2

�N1

K1

2
�N2

K2
1 2

2N2 1 �N1

K2

§

(c)  (i) and (ii) are unstable; (iii) is locally stable; (iv) is not  
biologically feasible
(d)  (i) and (iii) are unstable; (ii) is locally stable; (iv) is not  
biologically feasible 
(e)  (i) and (iv) are unstable; (ii) and (iii) are locally stable 
(f)  (i), (ii), and (iii) are unstable; (iv) is locally stable

29. 
dp1

dt
− f1s p1, p2d − c1p1sh 2 p1d 2 m1p1;

dp2

dt
− f2s p1, p2d − c2 p2sh 2 p1 2 p2d 2 m2 p2 2 c1p1p2

(a)  (i) p̂1 − 0, p̂2 − 0, (ii) p̂1 − 0, p̂2 − h 2
m2

c2
,

�(iii) p̂1 − h 2
m1

c1
, p̂2 − 0, and

(iv) p̂1 − h 2
m1

c1
, p̂2 −

m1

c1
2

m2

c2
2

c1h

c2
1

m1

c2

(b) 

Js p1, p2d − cc1sh 2 2p1d 2 m1 0

2c2 p2 2 c1p2 c2sh 2 p1 2 2p2d 2 m2 2 c1p1
d

(c)  hc1 , m1 and hc2 , m2

Appendixes

■  Appendix A  |  page 688

1.  18        3.  5 2 s5        5.  2 2 x

7.  | x 1 1 | − Hx 1 1

2x 2 1

for x > 21

for x , 21
      9.  x 2 1 1

11.  s22, `d	 13.  f21, `d 
	

0_2
		

0_1

11.  (i)  x̂1 − 0, x̂2 − 0; 
d«

dt
− c1 21

1 0
d«, where « − cx1

x2
d

(ii)  x̂1 − 21, x̂2 − 21; 

��
d«

dt
− c e 2e

21 0
d«, where « − cx1

x2
d 2 c21

21
d

13.  (i) unstable, (ii) locally stable
15.  (i) inconclusive, (ii) unstable
17.  (i) locally stable, (ii) unstable
19.  (i)  x̂ − 0, ŷ − 0; unstable      (ii)  x̂ − 0, ŷ − 2; unstable
(iii)  x̂ − 3, ŷ − 0; locally stable
21.  (i)  n̂ − 0, m̂ − 0; unstable
(ii)  n̂ − 0, m̂ − 2; locally stable
(iii)  n̂ − 3

4, m̂ − 1
2; unstable

23.  (i)  p̂ − 21
2 1 s5 y2, q̂ − 5

2 2 s5 y2; locally stable

(ii)  p̂ − 21
2 2 s5 y2, q̂ − 5

2 1 s5 y2; unstable
25.  (i)  x̂ − 0, ŷ − 0; locally stable when a , 1

(ii)  x̂ −
1 2 a

a
, ŷ −

1 2 a

a
; locally stable when a . 1

27.  (a)  (i)  p̂1 − 0, p̂2 − 0, (ii)  p̂1 − 0, p̂2 − 9
10, 

(iii)  p̂1 − 2
5,  p̂2 − 0, and (iv)  p̂1 − 2

5,  p̂2 − 13
30

(b)  Jsp1, p2d − c2 2 10p1 0

235p2 27 2 35p1 2 60p2
d

(c)  (i), (ii), and (iii) are unstable; (iv) is locally stable.
(d)  Yes
29.  R̂ − 1, Ĉ − 2; locally stable
31.  (i)  R̂ − 0, Ĉ − 0; unstable
(ii)  R̂ − 5, Ĉ − 0; unstable
(iii)  R̂ − 1, Ĉ − 8

5; locally stable

33.  (a)  dxydt and dyydt do not contain any terms with z 
(b)  x̂ − 0, ŷ − 1

(c)  Jsx, yd − c2kf yM 2Mskf x 1 krd
2kf yM 2Mskf x 1 kr 1 kcatd

d
(d)  Locally stable

35.  (b)  Jsv, wd − c23v2 1 2s1 1 adv 2 a 21

« 2«
d

(c)  Locally stable for all positive constants a and «

■  chapter 10 review  |  page 676

True-False Quiz
1.  False        3.  True        5.  True        7.  True        9.  False      

Exercises
1.  Nonlinear        3.  Linear

9.  xstd − ccos t 1 sin t

cos t 2 sin t
d

11.  xstd − 1
3et c1

0
d 1 2

3e22 t c 1

23
d
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53. 

0 x

y

1

5

x=2¥-8

x+4y=8

■  Appendix C  |  page 707

1.  (a)  7�y6      (b)  �y20        3.  (a)  720°      (b)  267.5°
5.  3� cm        7.  2

3 rad − s120y�d°
9.  (a) 

0 x

y

315ϒ

		  (b) 

0
x

y

_ 3π
4

11.  sins3�y4d − 1ys2, coss3�y4d − 21ys2, tans3�y4d − 21,
cscs3�y4d − s2, secs3�y4d − 2s2, cots3�y4d − 21

13.  cos � − 4
5, tan � − 3

4, csc � − 5
3, sec � − 5

4, cot � − 4
3

15.  5.73576 cm        17.  24.62147 cm        29.  1
15 s4 1 6s2 d

31.  �y3, 5�y3        33.  �y6, �y2, 5�y6, 3�y2
35.  0 < x < �y6 and 5�y6 < x < 2�
37.  0 < x , �y4, 3�y4 , x , 5�y4, 7�y4 , x < 2�
39.  y

0 x

11
2

π
3

5π
6

41.  y

0 x3π
2

2πππ
2

5π
2

3π

■  Appendix D  |  page 713

1.  (a)  n . 100
3.  4

7 (or any smaller positive number)
5.  1.44 (or any smaller positive number)
7.  0.0906 (or any smaller positive number)
9.  0.11 or 0.012 (or smaller positive numbers)
13.  (a)  s1000y�  cm        (b)  Within approximately 0.0445 cm    
(c)  Radius; area; s1000y� ; 1000; 5; <0.0445 
15.  (a)  0.025      (b)  0.0025      

■  Appendix F  |  page 722

1.  s1 1 s2 1 s3 1 s4 1 s5        3.  34 1 35 1 36

5.  21 1 1
3 1 3

5 1 5
7 1 7

9        7.  110 1 210 1 310 1 ∙ ∙ ∙ 1 n10

15.  s0, 1g	 17.  s2`, 1d ø s2, `d 
	

0 1
		

1 2

19.  s2s3, s3 d	 21.  s2`, 1g 
	

_œ„3 0 œ„3
		

0 1

23.  s21, 0d ø s1, `d	 25.  s2`, 0d ø s 1
4 , `d 

	
_1 10

		
0 1

4

27.  10 < C < 35      
29.  (a)  T − 20 2 10h, 0 < h < 12    
(b)  2308C < T < 208C      
31.  2, 2 4

3        33.  s23, 3d      
35.  s3, 5d        37.  s2`, 27g ø f23, `d        39.  f1.3, 1.7g      
41.  x > sa 1 bdcysabd

■  Appendix B  |  page 698

1.  5        3.  2 9
2

7. 

0 3 x

y

x=3

		  9. 

0 x

y

xy=0

11.  y − 6x 2 15        13.  5x 1 y − 11        15.  y − 3x 2 2      
17.  y − 3x 2 3        19.  y − 5        21.  x 1 2y 1 11 − 0      
23.  5x 2 2y 1 1 − 0      
25.  m − 2 1

3, b − 0		  27.  m − 3
4, b − 23

0 x

y 		

0 x

y

_3

29. 

0

y

x

		  31. 

0

y

x_2 2

33. 

0

y

x

x � 2

y � 4
	 35. 

0

y

x

y=1-2x

y=1+x

�0, 1�

37.  sx 2 3d2 1 sy 1 1d2 − 25        39.  s2, 25d, 4        41.  s1, 22d
45.  y − x 2 3
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29.  4fcoss�y2d 1 i sins�y2dg, coss2�y6d 1 i sins2�y6d, 
1
2 fcoss2�y6d 1 i sins2�y6dg
31.  4s2 fcoss7�y12d 1 i sins7�y12dg,
(2s2)fcoss13�y12d 1 i sins13�y12dg, 14 fcoss�y6d 1 i sins�y6dg
33.  21024        35.  2512s3 1 512i

37.  61, 6i, s1ys2 ds61 6 i d		 39.  6ss3y2d 1 1
2 i, 2i

	

0

Im

Re

i

1

	

0

Im

Re

_i

41.  i        43.  1
2 1 ss3y2di        45.  2e 2

47.  cos 3� − cos3� 2 3 cos � sin2�,  
sin 3� − 3 cos2� sin � 2 sin3�

9.  1 2 1 1 1 2 1 1 ∙ ∙ ∙ 1 s21dn21        11.  o
10

i−1
 i

13.  o
19

i−1
 

i

i 1 1
        15.  o

n

i−1
 2i        17.  o

5

i−0
 2 i        19.  o

n

i−1
 x i

21.  80        23.  3276        25.  0        27.  61        29.  nsn 1 1d
31.  nsn 2 1 6n 1 17dy3        33.  nsn 2 1 6n 1 11dy3
35.  nsn 3 1 2n 2 2 n 2 10dy4
41.  (a)  n 4      (b)  5100 2 1      (c)  97

300      (d)  an 2 a0

43.  1
3        45.  14        49.  2n11 1 n 2 1 n 2 2

■  Appendix G  |  page 731

1.  8 2 4i        3.  13 1 18i        5.  12 2 7i        7.  11
13 1 10

13 i
9.  1

2 2 1
2 i        11.  2i        13.  5i        15.  12 1 5i, 13

17.  4i, 4        19.  6 3
2 i        21.  21 6 2i

23.  2 1
2 6 ss7y2di        25.  3s2 fcoss3�y4d 1 i sins3�y4dg

27.  5hcosftan21(4
3)g 1 i sin ftan21(4

3)g j
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Biological Index

absorption of cerebrospinal fluid, 29
ACE (angiotensin-converting enzyme) 

inhibitor, 215, 384
acetylsalicylic acid (ASA), 335, 365
action potential, 474, 476. See also 

Fitzhugh-Nagumo equations for a 
neuron; Fitzhugh-Nagumo model 
equations

actively dividing NK cells, 654
actual temperature, 580, 593, 601, 602
acute normovolemic hemodilution (ANH) 

procedure, 222
administration of drugs, 427, 428, 446
age and size at maturity related to 

reproductive success, 294
age–length relationship for Atlantic 

redfish, 419, 451
age-structured population, 351, 523
	 long-term behavior of, 555
	 and the Leslie matrix, 547, 555, 562
AIDS (HIV), 47, 51, 56, 89, 130, 164, 169, 

208, 272, 309
airborne disease, 56, 66, 89, 101, 110, 

210, 214, 238, 244, 257, 258, 354, 
325–27, 394, 400, 436, 478, 479, 
535, 654. See also influenza virus

alcohol metabolism. See blood alcohol 
concentration

algal community abundance, 512
Allee effect (population decline), 254, 432, 

433, 436
allele, 627
allometric growth, power-function model 

for, 451
amino acid, 69–70
amplification of DNA, 69
analysis of microarray data, 513
anatomy, 7, 24, 30, 38–39, 214, 407,  

411, 413
anesthesia, model for concentration of 

CO2 during, 24, 121, 185
anesthesiology, 24, 121, 185
angiotensin-converting enzyme (ACE) 

inhibitor, 215, 384
ANH (acute normovolemic hemodilution) 

procedure, 222
animal survival and renewal, 404, 413
annual survival rates, 562

annual tuna catch, 605
antagonistic relationship between host 

Daphnia and its parasite, xlvi–xlvii, 
151–54, 416–18, 484–85, 679–81

antibiotic concentration, xlii, 274, 283
	 for a large patient 283
	 model for, 595
	 rate of decay, 245
	 related to MIC, 85
antibiotic concentration profile, xlii, 84, 

245, 385
antibiotic dosage, 36
antibiotic pharmacokinetics, 100, 258, 

273, 274, 313, 384, 413, 595
antibiotic treatment
	 effectiveness of, xliii, xliv, 84, 87, 414
	 magnitude of, xliii, xliv, 84, 86
	 measures of killing effectiveness  

of, 87, 414
	 measures of magnitude of, 86, 385
	 peak concentration, xliii, xliv, 84
	 for sinus infection, 213
antibodies, 639, 662, 633
	  bloodstream and organs, 663, 664
antigenic cartography, xxxvi, 257, 479, 

487, 490–91, 492, 493, 497–98, 500, 
504, 514, 527, 535

antigenic data, 495 
antigenic evolution, xxxvii, 495, 512, 514, 

535, 547
	 of influenza virus, 512, 514
	 matrix model for, 527, 558
	 of a pathogen, 514
	 and vaccination, 495, 514
antigenic map. See antigenic cartography
	 of isolates of human enterovirus, 487
antigenic space, 490, 491, 493, 495, 497, 

500, 512, 514 
	 virus clustering in, 561
antigenicity plot, 490
antihypertension medication, 4
	 effect on heart rate, 4, 241
antimicrobial dosing, system of linear 

differential equations for, 664
anti-predator behavior, 614, 618
antiserum, 490
antiviral drugs, 89, 101–2
ants, 14, 166

aphid, 460, 466, 467
aphid-ladybug dynamics, 466
apical ischemia, 512, 545
apparent temperature, 595
	 as a function of temperature and 

humidity, 580
aquatic birds, 289, 295. See also foraging
area under the curve (AUC), 336
Argentine ant, rate of invasion of, 166
Argyropelicus offers, 545
ASA concentration function, 335
asbestos exposure, lung tumor 

development caused by, 30
Asian viruses, 561
aspirin, 335, 365, 413
aspirin pharmacokinetics, 335, 340, 365, 

367, 413
Atlantic redfish
	 age–length relationship graph, 451
	 otoliths, 419
atmospheric pressure, 582
	 and temperature change, 222
AUC (area under the curve), 336
auto-activation model for gene  

regulation, 679
autoimmune disease, 663
auto-repression model for gene  

regulation, 675
Avastin (bevacizumab), xxxiv
average energy needed for a lizard to 

walk/run, 595
average maximum temperature, 617
average values, 397–98

BAC. See blood alcohol concentration
bacteria, chemotaxis by, 618
bacteria colony
	 difference equation model for, 77
	 growth of 351
bacteria count, 15, 51, 241
bacteria culture, population function  

for, 51, 311
bacteria growth, 243, 456
bacteria population, 167
	 growth function for, 67, 220, 361
bacteria population genetics, 437
bacteria strains, recursion for population 

sizes, 78
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780    biological index

bacterial cross-feeding, 434, 437
bacteriophage, xlvi
Bangladesh, life expectancy of population 

of, 241
barometric pressure, 617
base (DNA), 69
basic reproduction number, 56, 574, 627
bear predation, 77
bee population, 269
beehive, construction of, 295
bevacizumab (Avastin), xxxiv
Beverton-Holt recruitment curve, 83
bifurcation plot, 438, 439
bifurcation theory, 438
bioavailability, 40
biodiversity, 14, 25, 63, 193
	 of tropical rain forest, 68
bioeconomics. See harvesting, tragedy of 

the commons; resource extraction
biological community, 527
biological feasibility of an  

equilibrium, 472
biomass
	 of a guppy population, 202
	 of a fish population, 361
	 of a tuna population, ii, 605
biomechanics of human movement, 

xxxvii, 10, 14, 40, 175, 179, 489, 
496, 501, 504

bird(s)
	 cooperative breeding, 527
	 Darwin’s finches, 494
	 diet, 494
	 flap-bounding by, 22
	 flapping and gliding in flight, ii, 297, 

595
	 flight path of, 296, 467
	 morphology, 494
bird count, Christmas, 15
bird population, finite limits for, 118, 139
bird’s egg, model for shape of, 411
birth rate of a population, 394, 413
birth weight 274
	  and infant survival, 536
blood alcohol concentration (BAC) 

function, 15, 166
	 average, 400
	 exponential decay model for, 51, 68
	 limiting value of, 281
	 maximum value of, 255
	 rate of absorption and metabolism, 

156, 162, 180, 213
blood cell production, model for, 306
blood clot, 663
blood flow, xxxvii, 193, 387, 402
	 average velocity of, 400

	 branching of vessels, 291
	 cerebral, 390, 392, 393, 394
	 model for, 187, 215
	 rate of, 402, 404
	 relative change in, 238
	 resistance of, 595, 618
blood velocity
	 model for, 581
	 relative change in, 238
blood vascular system, 38, 39, 249, 

291–92, 387, 402–3, 527, 581, 595
blowfly, chaotic population dynamics  

of, ii, 430
BMI. See body mass index
body mass index (BMI), 567, 573, 583, 

588, 609
body surface area, model for, 581, 595, 

602, 630
bone mass, 214
	 of a human femur, 7
brain weight (in fish), model for, 215
branching in vascular system, 291
breast cancer, 523, 527, 559
breathing cycle, 361, 400
breeding of rabbits, 77
breeding system (birds), 527 
Brentano-Stevens law, 482
bumblebee, optimal foraging time for, ii, 

271, 283, 287, 297

cancer
	 breast, stages of, 523
	 model for progression of stages of, 483, 

527, 547, 559, 662
	 NK cells and, 654
	 progression, 483, 527, 547, 633, 662
	 prostate, model for resistance of  

cell, 639
	 radioimmunity treatment of, 633
	 See also tumor; tumor growth
capillary, 662
carbon dating method, 221, 229
carbon dioxide in the atmosphere, 18
cardiac output, 403, 404, 405, 413
Caribbean reefs, stability of, 675
carrying capacity, 74, 424, 438
CAT (computed axial tomography)  

scan, 563
	 measuring volume of an organ by,  

407, 410
catastrophic population collapse, 117, 438
cell cycle dynamics, 484
cell division
	 geometry of, 559
	  model for interaction of biomolecules 

in, 484, 674

cell growth, spherical, 194
cell-killing radioactivity, 633, 662
cerebral blood flow, concentrations of 

N2O in, 390, 391, 392, 393, 394
cerebrospinal fluid (CSF)
	 absorption of, 29
	 discrete-time recursion for pressure 

and volume, 75
challenge experiment for fraction of hosts 

infected, xlvi, 152, 153, 154, 416
	 outcome, 484
chaotic behavior of a logistic sequence, 

98, 100
chaotic population dynamics, ii, 430
chemical pollutant, release of, 658
chemostat, 479, 675
chemotaxis, 618
chronic obstructive pulmonary disease 

(COPD), 512, 545
chymotrypsin, 201
cicada wing, area of, 393
ciprofloxacin, 84
	 dose response relationship for,  

84, 245
	 drug concentration profile for, 84, 245
	 kill curve, 86, 246
circular colony, difference equation model 

for, 77
class-structured population model,  

215, 239
	 matrix model for, 520, 551
claw length of fiddler crabs, allometric 

growth of, 451
clearance rates (drugs). See 

pharmacokinetics
climate change, 29
CO2 concentration during anesthesia, 

model for, 121
CO2 level, 20
cobwebbing, 300
	 spiral, 301
coding function of amino acids, 69
codominant disease, 284
codon, 69
coefficient of inequality, 396
Coho salmon
	 matrix model for, 523
	 swimming speed, 168
colony, circular, 77
colony, spherical, 77
commercial marine fish catch, 82
community ecology, 512
comparison of influenza strains, 512
compensatory growth, 262
competition between two species, 670, 

672, 678
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competition-colonization model, 483, 674
competition for resources, system of 

equations for, 465. See also Lotka-
Volterra competition equations

competitive exclusion, 671
computed axial tomography (CAT). See 

CAT scan
concentration of pollutant, diffusion 

equation model for, 593
conductive abnormalities in the  

heart, 504
conservation biology, xxxviii
	 of coral reefs, 675
	 environmental pollutants, transport  

of, 658
	 habitat destruction, 455
	 habitat fragmentation, 25, 215, 239
	 population sustainability, effect of 

harvesting on, 239, 290, 294,  
298, 306

	 of right whales, 521
	 of spotted owls, 528
	 thermal pollution, 167
consumer-resource model, 479,  

675, 678
contour map
	 of fitness function of snake, 583
	  of temperature function, 610
control of red blood cell loss during 

surgery, 222
control of SARS by quarantine and 

vaccination, 618
cooperation for mutual benefit, system of 

equations for, 465
cooperatively breeding species, 527
COPD (chronic obstructive pulmonary 

disease), 512, 545
coral reefs, stability of, 675
corpse, change in temperature of, 221
correlational selection for color pattern 

and anti-predator behavior in garter 
snake, ii, 581, 595, 614, 618, 623

coughing, contraction of trachea  
during, 258

crab (fiddler), allometric growth of, 451
cricket, chirping rate for, 29, 30
critical vaccination coverage, ii, 479, 663
crop contamination by pollutant, 662
crop yield, model for, 293, 627
cross-feeding, bacterial, 434, 437
cross-section of a human brain,  

area of, ii, 413
crows, whelks dropped by, 296
CSF. See cerebrospinal fluid
cyclic neutropenia, 39
cyclin, 484, 674

Daphnia, ii, xlvi, 151
	 model for dynamics of genotypes,  

416, 679
	 predicted fraction of hosts  

infected, 417
Darwin’s finches, morphological 

measurements for, 494
dating of dinosaur fossils with  

potassium, 221
daylight, model for, 34, 213
death rate of a population, 394, 413
deer mice, 633, 639
degree of stripedness in the color pattern 

of garter snakes, 595
degree-day, 362, 368
dendogram, 513
development rate, 362, 368
diagnosis of heart conditions, 527,  

535, 536
dialysis (hemodialysis)
	 as an initial-value problem, 457
	 length of treatment, 67, 229, 244
	 treatment adequacy of, 67
	 rate of removal of urea by, 361, 380, 

595, 661, 677
differences in morphology between 

species, 545
diffusion equation, 593, 596
dinosaur fossil, radiometric dating of,  

ii, 221
diploid, 78
direction of antigenic change, 512
direction of change in algal  

community, 512
discrete logistic equation, 74, 77
discrete-time model, 73, 81
disease
	 infectiousness of, 395
	 probability of outbreak, 56, 66
	 progression and immunity  

(measles), 394
	 transmissibility, 608
	 outbreak size of, 210, 214, 238, 244, 

354, 478, 608
	 effect of quarantine on, 589
	 virulence of, 110, 258
	 See also airborne disease; disease, 

genetic
disease, genetic
	 codominant, 284
	 dominant, 284
	 Huntington’s, 284
	 neurofibromatosis, 284
	 phenylketonuria, 284
	 recessive, 284
	 Tay-Sachs, 284

dispersal of a population, 526, 563
dispersion, 259
distribution of income
	 Gini index, 395–96
	 in the United States, 396
DNA, 69
	 amplification of, 69
	 bases of, 69
	 coding of amino acids by, 69
	 codons of, 69
DNA methylation, matrix model for,  

527, 558
dodo (bird), extinction of, 68
dominant disease, 284
	 neurofibromatosis, 284
	 Huntington’s, 284
dose fractionation, 386
dose response curve, 273
dose response relationship, xlii,  

84, 245
	 modeled by a piecewise defined 

function, 85, 246
dot product, uses for biological  

discovery, 507
dragonfly population, dispersal of,  

526, 563
drinking and driving, 68
drug, effect on genome  

expression, 513
drug administration, 405
drug metabolism. See blood alcohol 

concentration
drug concentration, 100
	 cobwebbing equilibrium for, 302
	 difference equation model for, 77
	 discontinuity of model for, 147
	 geometric recursion model for, 93
	 as an initial-value problem, 428
	 limiting value of, 95, 150
	 prediction of future, 404
	 rate of change of, 243
drug design, 512
drug diffusion, matrix diagram for, 527
drug dissolution, differential equations  

for, 429, 456
drug dosage, 29
	 antibiotic, 36
	 bioavailability of, 40
	 as a one-sided limit, 123
	 rate of elimination, 405
	 two-compartment mixing model  

for, 665
drug elimination, 243–44
drug infusion at fixed intervals, 665
drug injection, 123
drug-loading curve, 273 
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drug pharmacokinetics, 100, 283, 284, 
305, 340

	 maximum drug concentration, 380
	 model for concentration of drug in 

bloodstream, 313
	 See also pharmacokinetics
drug resistance
	 frequency of gene for, 148
	 in malaria, 78–80, 306
	 model for spread of, 313
	 recursion equation for spread of a gene 

for, 306
dye dilution method, 403, 404, 405

ecological succession, 527, 563
effectiveness of antibiotic treatment, xliii, 

84, 87, 414
Einthoven’s triangle, 509, 510, 512
electrocardiogram, 1, 2, 251, 256
electrocardiograph reading, 509, 512
elimination constant, 244
elimination rate of drug. See 

pharmacokinetics
embolism, pulmonary air, 663, 678
emergence of geometric order in 

proliferating cells, 559
energy expenditure for migrating fish, 591
energy expenditure model for lizard, 565, 

595, 602
energy reward, ii, 26
energy use/power use, 10, 175, 297
environmental pollutant, 662
	 model for transport of, 384, 658
enzootic stability, 294
enzymes, 40, 110, 151, 201, 215, 384, 404, 

478, 482
epidemiological model of vaccine 

coverage, 479, 663
epidemiology, mathematical, xxxiv, 56, 

66, 130, 164, 169, 210, 214, 238, 
244, 257, 258, 272, 309, 608, 663

equilibria in predator-prey dynamic, 469
Escherichia coli, model for growth rate, 

198, 220
esophageal pH, 14
estimation of atmospheric pressure, 582
European viruses, 561
expression profiles of two related  

species, 562
extinction, population, 68, 117, 139, 140, 

145, 239, 254, 432, 437, 438, 654. 
See also catastrophic population 
collapse; habitat destruction; 
population harvesting and collapse

extinction of the dodo (bird), 68 
eye, sensitivity of, to brightness, 202

family of kill curves, xlii, xliii, 86,  
246, 415

femur, length of, 30
Fibonacci numbers, xxxiii, 559
Fibonacci sequence, 72, 77
fiddler crab claw, allometric growth  

of, 451
filtering of urea from blood, 661
finches, flapping vs. gliding by, 297
fish, 82, 110, 193, 215, 285, 294, 295, 299, 

401, 413, 429, 438, 453, 460, 524, 
527, 545, 605

	 energy expenditure of swimming,  
296, 575

	 energy expenditure of migration,  
575, 590

	 harvesting of, 139, 145, 290, 298
	 length, 23, 31, 351, 400, 419, 450, 451
	 population dynamics for, 139, 202,  

361, 511
	 swimming speed of, 155, 168
fish biomass, 202, 361
fish growth, model for, 31, 193, 295,  

351, 450
fish population, 23, 139, 145, 202, 361
	 Ricker equation for, 303
fishing effort, 290, 294
	 best response, 298
fitness function for garter snakes, ii, 581, 

595, 614, 618, 623
Fitzhugh-Nagumo model, 428, 475, 479, 

666, 676
	 for a neuron, 474
flap-bounding by birds, 22
flapping (by birds)
	 model for, 595
	 vs. gliding, ii, 297
flight path of raptor, 467
flux, arterial, 387, 402, 404
food deprivation experiment, 262
food web, 465
foraging
	 by aquatic birds, ii, 289, 295
	 by bumblebees, ii, 271, 283, 287, 295
forensic medicine, 69, 221
foxes, 465
frogs, 527

game theory, xxxviii, 298
garter snake, fitness function for, ii, 581, 

595, 614, 618, 623
gas law for an ideal gas, 202
Gause’s logistic model for Paramecium, 

108, 207
gene expression, 639, 656
gene frequency, 39

gene regulation, 136, 213, 368, 639
	 auto-activation model for, 679
	 auto-repression model for, 675
	 model for, 656
genetic disease, 284
genetic drift, 229
genetics of inbreeding, 527, 549
genome expression, microarray analysis 

of, 513
genome expression profile(s), 490
	 alteration by a drug, 512
	 of closely related species, 562
	 divergence of, 562
	 matrix model for, 527
	 represented as a vector, 507
genotype frequencies, 151, 152
genotypes of host vs. parasite, xlvii, 151, 

416, 484, 679
	 as a function of depth in sediment core, 

xlvii, 152, 416
	 outcome of challenge experiments, 484
geographic clusters in antigenic space, 

561, 562
geometric order, emergence of, 559
Giardia lamblia, population growth rate, 

ii, 51
Gini coefficient, 395, 396
Gini index, 395, 396 
global temperature, 13
global warming, 13, 527
glucose
	 concentration in bloodstream, 275
	 intravenous administration of, 456
Gompertz model for tumor growth, 361, 

452, 453
gray wolf population, model for, ii, 609
ground reaction force in walking,  

14, 179
growth
	 and blood flow, 618
	 of malarial parasites, 41–42
	 tumor, 211, 361, 452, 456
	 of yeast population, 420–24
growth rate of a human, 274, 351
guppy population, biomass of, 202

habitat destruction, 455, 483
habitat fragmentation, 215, 239, 633
half-life of HIV viral load, 51
handling of prey, 629
haploid, 78
Hardy-Weinberg Law, 627
hare-lynx food web, 464, 465
harvesting
	 of fish, 77, 82, 139, 290, 294, 438
	 population, models for, 139, 145, 438
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	 of renewable resources, 239, 437
	 sustainable, 290, 294, 306
harvesting pressure, 140, 438
harvesting rate, 139, 145, 438
health care expenditures, 243
heart, 306, 509, 510, 512, 514, 535, 536, 

545, 547
heart excitation, 306
heart voltage vector, xxxv, xxxvi, 504, 

509, 510, 512, 545, 547, 558
	 model for, 527, 535, 536
heartbeat, 2, 504, 509, 510, 535, 536
heartbeat measurement with ECG  

leads, 509
heat index (humidex), 580, 585, 593, 600
hemocrit, 222
hemodialysis, 67, 479, 661, 677. See also 

dialysis
heritable disease, 284
hierarchical clustering of drugs, 513
HIV, 56, 89
	 density (viral load), 47, 208
	 half-life, 51
	 incidence, 130, 164, 169
	 plasma viral load, 47, 62
	 prevalence, 130, 164, 169, 272, 309
Hodgkin-Huxley model, 475
homeostasis, 457
honeybee, rate of population growth 269, 

351, 384
horizontal and vertical force vectors,  

503, 504
hormone, transport of, 482
host genotype(s)
	 average per capita reproduction  

rates, 485
	 frequencies of, xlvii, 151, 152, 484, 679
	 predicted frequencies of, 152, 416, 485
hosts, parasites, and time-travel, xlvi, 151, 

416, 484, 679
hours of daylight, model for, 34, 38, 213
human biomechanics, 489, 495, 501, 504
human body surface area, model for, 602
humidex, 580, 585, 600
humidity, 585
Huntington’s disease, 284

iguana, energy expenditure of, ii, 567,  
595, 602

illicit drug use, spread of, 380
immunity, 654
inbreeding by plants, matrix model for, 

527, 547, 564
incidence 
	 of HIV, 130, 164, 169
	 of an infectious disease, 352

Indian population, 67 
Indonesian population, model for growth 

of, 221, 400
infarction, cardiac, 256
infection, amount of, 326
infection experiment, xlvi, 152, 153,  

154, 416
	 outcome, 484
infectious disease
	 basic reproduction number for, 56, 574
	 model for size of outbreak, 210, 214, 

238, 244, 354, 608, 609
	 model for spread of, 436, 574, 589, 609, 

618, 627
	 rate of development of, 294
	 virulence, 110, 258
	 See also airborne disease; influenza
infectious disease control, 5, 574, 589, 

609, 627
infectiousness of a disease, 395
influenza, 527
	 antigenic cartography of strains of, 490
	 antigenic evolution of virus, 512,  

527, 535
	 matrix diagram for, 562
	 pandemic, 257
	 resistance to, 562
	 See also airborne disease
insect metamorphosis, rate of development 

of, 368
insect survival and renewal, 404
insecticide resistance, frequency of gene 

for, 201, 237
insects, 294, 368, 371, 404, 430, 465, 466, 

482, 526
insulin, concentration of, 100
interaction between Daphnia and parasite, 

xlvi, 151, 416, 484, 679
interdose interval, 386
interpolation and extrapolation of CO2 

level, 20
intravenous drug delivery, model for, 426, 

427, 428, 432, 433
invasive species, colonization by, 166, 193
island biogeography, 14, 25, 63, 68, 193
isobar, 572
isothermal, 571, 610
iterated matrix models, 547

Japanese males, average age of marriage 
of, 179

Japanese population growth, model  
for, 213

jellyfish, model for locomotion of, ii,  
639, 661

junco, habitats of, ii, 266

Kermack-McKendrick model, 210, 354, 
478, 608, 675

	 local stability analysis of, 671
Kety-Schmidt method for measuring 

cerebral blood flow, xxxvii, 390
kidney failure, 661
kill curve of ciprofloxacin for E. coli, xlii, 

xliii, 86, 246, 385, 415
killing effectiveness of antibiotic 

treatment, xliii, 84, 245, 385, 414
	 measures of, 87, 414

ladybug, 466
lake pollution, 404, 658
lakes, 401, 404
laminar flow, law of, 187, 215, 402
latent period of NK cells, 654
laurel leaf, area of, 393
law of natural growth or decay, 216
leads, xxxv, 510
left anterior hemiblock, 504, 512, 545
left posterior hemiblock, 504, 512, 545
length of a fish, 23, 31, 351, 400, 419,  

450, 451
length of daylight, model for, 34, 38, 213
Leslie matrix, 523, 524, 535, 547, 555,  

558, 562
level curves, 570
	 for air temperature, 571
	 for water temperature, 582
	 for worldwide precipitation, 572
Levins’ metapopulation model,  

437, 482
life cycle of malaria, 78–80
life expectancy, 82, 241
life history, 78, 521
limiting drug concentration, 95
limnology, 352, 362, 401, 404, 512,  

527, 658
linear approximation 
	 to heat index function, 600, 602
	 to wind chill index function, 601, 602
	 to energy function for lizard, 602
lithotripsy, 696 
liver, volume of, 407
lizard, energy expenditure of, ii, 565,  

595, 602
logarithmic spiral, ii, 468
logistic difference equation, 97, 100, 150, 

302, 305
logistic difference equation, 74, 75,  

305, 424
	 dependence on initial values, 100
	 equilibrium for, 302
	 equilibrium solution for, 424
	 limiting behavior of, 97
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logistic difference equation (continued)
	 long-term behavior of, 150
	 with migration, 214
logistic differential equation, 429, 430, 

433, 453, 436. See also logistic 
difference equation

logistic growth model for a population, 
213, 424, 428

logistic model, integration by partial 
fractions, 369

log-log plot, 63
loons, foraging by, ii, 289, 295
Lorenz curve, 395
	 power model for, 397
Lotka-Volterra competition equations, 461, 

464, 466, 478
	 local stability analysis of, 670, 672, 678
	 phase plane analysis of, 470, 473
lung preoxygenation, 482
lung ventilation 121, 185, 457
lungs
	 compartments of, 663
	 volume of, 38
lynx-hare food web, 464, 465

magnitude of antibiotic treatment, xliii, 
xliv, 84

	 measures of, 86, 385
magnitude of antigenic change, 512
magnitude of change in expression levels 

of genes, 512
magnitude of change in algal  

community, 512
malarial infection, 41, 68, 78, 163, 180
	 drug resistance to, 78, 306
	 temperature chart for, 12, 16
malarial parasites, 41, 68
	 diploid vs. haploid, 78
	 life cycle of, 78, 79
	 rate of population increase of,  

163, 180
marine fish catch, 82
marriage age of Japanese men, 179
mathematical epidemiology, xxxiv
mathematical modeling (process), xli
matrix-digesting enzymes, 40
matrix model, 520, 528, 551, 555
	 for population biology, 523
maturation promoting factor (MPF),  

484, 674
Maynard Smith and Slatkin model for 

population growth, 258
measles pathogenesis, xxxvii, 325, 327, 

338, 394
	 average level of infection for, 400
	 function for, 293

	 infectiousness of virus, 395
	 rate of change of infection, 349
	 threshold for onset of symptoms, 351
measles pathogenesis curve, 325
	 area under, 326
	 polynomial model for, 326, 327
measles virus, 315
	 disease progression of 325
	 pathogenesis of, 325
measure of ecosystem diversity (Shannon 

Index), 627
medical imaging (CT scan), rate of 

attenuation for, 352
metabolic power (in walking and running), 

10, 175
metabolism, model for, 359
metapopulation, 652
	 model for, 662
metapopulation dynamics, 633, 634, 639
metastasis of malignant tumor, model for, 

478, 662
methyl DNA groups, 78
methylated genes, 528
methylation 78, 558
MIC (minimum inhibitory concentration), 

85, 246
mice, 633, 639
Michaelis–Menten equations, 102, 110, 

151, 201, 243, 478, 675
microarray, 513
microarray analysis of genome  

expression, 513
microbiology, 15, 26, 51, 67, 77, 167, 220, 

241, 243, 311
migration of fish
	 energy expenditure, 575
	 rates of change related to, 591
minimum inhibitory concentration (MIC), 

85, 246
mixing problems, 457
model
	 crop yield, 627
	 effect of vaccination and quarantine on 

spread of SARS, 574, 589
	 handling of prey, 629
	 intravenous drug delivery, 427,  

432, 433
	 jellyfish locomotion, 639
	 metapopulation of deer mice, 639
	 mRNA transcription, 136, 213, 456
	 peak serum level, 664
	 population growth, 283, 420. See also 

population growth
	 spread of SARS, 574, 627
	 surface area of a human body, 581,  

595, 630

	 tumor cell resistance, 639, 662
	 viral infection, 89, 101
	 yeast population, 430, 448
Monod growth function, 102, 105, 110
	 for Escherichia coli, 198
morphometrics, 545
mortality rate, 633
mosquito, 78–80
MPF (maturation promoting factor),  

484, 674
MRI scan, measuring the area of a brain 

by, 413
mRNA, 136, 213, 456, 639, 656
mutation, 558
	 synonymous vs. nonsynonymous, 70
	 matrix diagram for, 527, 528, 535
mutation accumulation, 273
mutation-selection balance, 438, 456
	 for a disease, 283

Nash equilibrium, 298
natural killer (NK) cells, ii, 654
nautilus, logarithmic spiral shape of,  

ii, 468
nectar foraging by bumblebees,  

287, 295
neurofibromatosis, 284
Newton’s Law of Cooling, 219, 400
Newton’s Law of Motion, 457
niche overlap, 328, 352, 384
nifedipine, effect on heart rate, 241
Nigerian population, exponential model 

for, 83
NK (natural killer) cells, ii, 654
nonsynonymous mutation, 70
North American viruses, 561
Noyes-Whitney equation for drug 

dissolution, 429, 456

oceans, 352, 362, 380
Olympic records, 99
one-compartment model for dialysis, 458
optimal foraging, 266, 271, 283, 287,  

289, 296
oral antibiotics, 213
otolith, Atlantic redfish, 419
outbreak size of an infectious disease, 354
oxygen, solubility of, 167

Pacific halibut population, model for, 110
Pacific salmon population, discrete-time 

recursion model for, 77
pancreas, volume of, 411
panobacumab, 664
Paramecium, Gause’s population model 

for, 108, 207
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parasite, 160, 180, 416–18, 484–85
parasite genotype(s)
	 average per capita reproduction  

rate, 485
	 frequencies of, xlvii, 151, 152,  

484, 679
	 predicted frequencies of, 152,  

416, 485
Pasoh Forest Reserve, model for number 

of tree species in, 193
Pasteuria ramosa, xlvi
patch, 633, 652
pathogen, 494, 495, 514, 562, 593,  

608, 654. See also infectious 
disease

pathogen transmission, 110
pathogenesis, 101, 293, 325. See also 

measles pathogenesis
peak antibiotic concentration, xliii,  

xliv, 84
peak serum level, 665
Pearson correlation coefficient, 513
peptic ulcer, rate by income, 29
per capita growth factor, 73, 74
per capita growth rate, 216, 245, 421,  

423, 452
perceived temperature, 580, 602
pharmacokinetics, 29, 36–37, 40, 77, 93, 

95, 123, 147, 150, 243, 302, 404, 
405, 446

	 antibiotic, 100, 258, 273
	 drug, 100, 283, 284, 305
	 of microbial dosing, 664
phase portrait of predator-prey  

system, 462
phenylketonuria, 284
photosynthesis, 293, 352, 361, 380
phyllotaxy, xxxii
physiological time, 368
physiology, 14, 39, 40, 167, 202, 283, 

314, 359,361, 400, 482, 545, 547, 
581, 595, 662. See also blood cell 
production; blood flow; blood 
vascular system; cardiac output; 
cerebral blood flow; Poiseuille’s 
laws of laminar flow

pineapple, phyllotaxy of, xxxiii
plant inbreeding, 547, 549
plants, 13, 465, 527–28, 662
Plasmodium chabaudi, 41, 92
Plasmodium falciparum, 16
Plasmodium malariae, 16
Plasmodium vivax, 12
Poiseuille’s laws of laminar flow, xxxvii, 

187, 215, 238, 291, 384, 403, 581, 
595, 566

pollutant contamination of crops, 662
pollution, 404, 662
polymerase chain reaction (PCR), 69
population, 2, 139, 163, 166, 167, 179, 202, 

207, 210, 213, 214, 215, 216, 220, 
221, 229, 232, 243, 244, 245, 246, 
247, 254, 255, 258, 269, 273, 283, 
284, 290, 291, 294, 298, 299, 306, 
311, 313, 314, 384, 394, 398, 400, 
401, 404, 426, 432, 433, 436

population biology, 523
population collapse, 139, 140, 145
population decline, 633, 652, 663
population density, 426
population dynamics, xxxvi, 2, 41, 70, 

371, 384, 430, 452, 482, 511, 633, 
639, 652, 662, 663

population genetics, 39, 46, 83, 85, 166, 
216, 229, 232, 273, 284, 433, 434, 
437, 440, 456, 523, 652, 654, 662, 
663, 670

population growth, 166, 213, 216, 217, 232, 
243, 246, 258, 283, 347, 351, 371, 
384, 420–24, 470

	 bound on, 313
population growth, models for, 216, 420
	 bacteria, 67
	 discontinuous, 146
	 exponential model for, 147
	 Indian, 67
	 Indonesian, 221
	 logistic differential equation for,  

424, 428
	 Japanese, 213
	 Nigerian, 83
	 US, 52, 166
	 world, 2, 6, 46, 52, 146, 213, 217,  

283, 398
population growth rate, linear 

approximation of, 232
population harvesting and collapse,  

139, 145
precancerous stages, 662
predation, 465, 470, 581, 595
predator, 118, 609, 629
predator handling of prey, 629
predator-prey dynamics, 230, 460
	 of birds and insects, 482, 483
predator-prey equations, 461–64, 465, 469, 

666, 672
	 solution of, 461, 482
prediction of population size
	 of endangered species, 522
	 of trout, 401
	 with survival and renewal  

functions, 412

preoxygenation, 482
pressure, 630 
prevalence
	 of HIV, 130, 164, 169, 272, 309
	 of an infectious disease, 352
prey, 460
principle of mass action, 461
progression of measles, 394
propagation of nerve signals, 593
propagule, xlvi
proportion of alleles in a population, 627
prostate cancer, model for tumor cell 

resistance, 639, 662
protein synthesis, 69
protozoan population, growth rate of, 220
pulmonary air embolism, 663, 678
pulse rate, 4

quarantine, 574, 589, 609, 618 

rabbit-fox food web, 465
rabbit-wolf food web, 460, 461
radioactive atoms in cancer treatment, 

633, 662
radioactive decay, 218
radioimmunotherapy, 633, 634, 639, 662
radiometric dating technique, 221
rain forest biodiversity, 193
raptor, flight path of, 467
rate of antibody removal from 

bloodstream, 663
rate of change 
	 of blood flow resistance, 618
	 in energy expenditure of migrating 

fish, 591
rate of decay of radioactive substance, 216
rate of growth of fish length, 429. See also 

fish: length
rate of increase of disease outbreak  

size, 608
rate of plant development  

(degree-days), 362
rate of primary production, 352, 361
recessive disease, 284
	 phenylketonuria, 284
	 Tay-Sachs, 284
red blood cell loss during surgery, ii, 222
redfish, 419, 451
reefs, stability of, 675
relative change
	 in artery length vs. radius, 618
	 in blood flow, 238
	 in blood velocity, 238
	 in surface area of tumor, 238
	 in volume of tumor, 238
relative growth rate, 216
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relative humidity, 580, 593, 602
renewal function, 401, 404, 413
reproduction number, basic, 56, 574, 609
reproduction of malarial species  

P. chabaudi, 92
reproductive rate of a  

metapopulation, 633
reproductive success, measure of, 294
resistance of blood flow, 566
resistance of tumor cells to treatment,  

639, 662
resource allocation, 536
resource extraction 77, 82, 110, 140, 239
respiratory cycle
	 average rate of air flow in, 400
	 rate of air flow in, 361
	 volume of air in, 38
resultant force, 501
reversals of direction of a garter snake, ii, 

581, 595, 614, 618, 623
Rhodobacker sphaeroides, 311
Ricker difference equation, 77, 100,  

239, 393
	 cobwebbing for, 304
	 model for population growth,  

303, 313
right whale, 521
risk aversion by foraging birds, 266
robin population, finite limits for, 118
rock bass, model for length, 193
Rosenzweig-MacArthur model, 479, 678
rumen microbial ecosystem, 367
rumor, rate of spread of, 213
running, ground force in, 41

salicylic acid, 340
salicylic acid (SA) pharmacokinetics, 335, 

340, 367, 377, 413
salmon and bear population dynamics, 

discrete-time recursion for, 77
salmon swimming speed, 155, 168
SARS (severe acute respiratory  

syndrome)
	 incidence of, 328
	 model for spread of, 574, 589, 609, 

 618, 627
scalar projections in drug design, 512
screw-worm fly, ii, 371
sea level, 81–82
sea urchin, species range of, ii, 351
seasonality
	 effect on habitat destruction, 455
	 effect on population dynamics, 482
second-order linear differential  

equation, 639

semilog plot, 61, 62
sensitivity (of the eye) to brightness, 202
sexually transmitted disease. See  

HIV (AIDS)
Shannon index, 627 
small-fish biomass, 605
smallpox, epidemiology of, xxxiv
snake, fitness function for, 581, 595,  

614, 618
	 maximum value, 623
soda pop, rate of cooling of, 219
soil contamination by a pollutant, 662
spatial species distribution, 426 
species area, 14, 25, 63, 193
species–area relationship, 266
	 for bats, 25, 63, 64
	 on an island, 458
	 for reptiles, 30
species conservation, 215, 239
species discovery curve, 306
species’ niche, 328, 352, 384
species richness, xxxv
	 of ants, 14
	 of bats in Mexican caves, 25, 63, 266
	 of forest trees, 193
	 of reptiles, 30
Speedo LZR racer, ii, 603
spherical colony, difference equation  

for, 77
spiral, logarithmic, ii, 468
sporozoite, 79
spotted owls, conservation biology of,  

ii, 528
spread of bacteria or virus colony modeled 

by wave equation, 593
spread of drug use, 380
spread of infectious diseases, 574, 663
squirrel population, graph of, 147
stage-structured population, 562 
sterile insect technique for population 

growth control, ii, 371, 679. See 
also population growth

Sterner and Elser model for  
homeostasis, 457

Sternoptyx diaphana, 545
Stiles-Crawford effect, 283
subpopulation, 652, 662
succession, ecological, 563
sunflower, phyllotaxy, of, xxxiii
surface wind, 572
surge function, 273, 284
surgery, 24, 75, 121, 185, 457, 482, 663
	 controlling red blood cell loss during, 

ii, 222
survival and renewal, 413

survival function, 401, 404, 413
survivorship of juvenile garter snakes, 

581, 595, 614, 623
sustainable harvesting, 139, 290, 294,  

298, 306
swimming speed
	 of fish, 296
	 of salmon, 155, 168
swimsuit, effect on drag , 603
systemic lupus erythematosus, 663, 678

tadpole
	 predation of, 629
	 weight of, 14, 179
Tay-Sachs disease, 284
TEF (thermic effect of food), 314
TEM (transmission electron micrograph), 

315
temperature, 580, 585, 593, 609, 610,  

617, 630
	 effect on wheat production, 609
	 on the surface of the earth, 566
temperature-humidity index (humidex), 

580, 585, 600
thermic effect of food (TEF), 314
Thompson, D’arcy, development of 

morphometrics by, 545
time-travel experiment with host-parasite 

genotype frequencies, xlvi, 151, 
416, 484, 679

tissue culture, rate of growth of 457
total fertility rate in the United States, 242
trachea, contraction during coughing, 258
tragedy of the commons, 298
transcritical bifurcation, 439
transmission electron micrograph  

(TEM), 315
transport of environmental pollutants, 658
tree rings, widths of, 13
trout population, prediction of future  

size, 401
tumor, 30,
	 metastasis of, 478, 662
	 rate of growth of, 211
	 relative change in size, 238
	 resistance to treatment, 639, 662
	 treatment by radioimmunotherapy,  

633, 639
tumor growth
	 aided by matrix-digesting enzymes, 40
	 model for, 361, 452, 456
	 long-term, 662
tuna biomass, ii, 605
two-compartment mixing model, 283, 

458, 661, 663, 664, 678
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unmethylated genes, 528
urea concentration rebound after  

dialysis, 458
US health care expenditures, 243
US national debt, 167
US population growth, model for, 52, 166

vaccination, 574, 589, 609, 618
	 and antigenic evolution, 495
	 coverage, 66, 479, 663
vaccine(s)
	 design of, xxxvi, 495
	 epidemiological model of coverage, 

479, 663
	 See also antigenic cartography
vaccine escape, xxxvii, 514
van der Pol equation, 477
vascular system, branching in, 291
vectorcardiography, xxxv, 251, 256, 504, 

512
	 and Einthoven’s triangle, 509
	 matrix model for, 527, 535, 536, 545, 

547, 558
ventilation, lung volume during, 457
vertical trajectory of a zebra finch, ii, 22
viral identification, 561

viral infection, 89
	 model for, 101
viral load (function) of HIV, 47, 62, 107, 

108, 166
	 exponential model for, 47, 208
viral respiratory illness, 618, 627
virulence, disease, 110, 258
virus, 89, 547, 561
virus clusters in antigenic space, 561
viscosity of blood, 566
voltage vector of heart, 504, 510, 512, 514, 

535, 536, 545, 547
volume, method for estimation 
	 for liver, 407
	 for pancreas, 411
volume of air in lungs, model for, 38
von Bertalanffy model for fish length, 110, 

215, 295, 351, 400, 419, 429, 450

walking
	 ground reaction force, 14, 41, 179
	 metabolic power, 10
water pollution, 404
wave equation, 592
weather, 566, 571, 585, 600, 610, 617
weather map, 571, 572, 610, 612, 617

Weibull equation for drug dissolution,  
429, 456

whale, right, 521
wheat, rate of production of, 609
whelks, dropped by crows, 296
wind speed, 580, 593, 595, 601
wind-chill index, 566, 567, 580, 581, 593
	 linear approximation of, 601, 602
	 model of function for, 595
wingspan, related to weight, 30
wolf population, model for, ii, 609
world population growth, model for, 2, 

6, 46, 52, 146, 213, 217, 220, 283, 
398, 424

world-record hammer throw distances, 99
world-record sprint times, 99

X-ray beams, 563

yeast population, growth of, ii, 179, 244, 
420, 430, 448

yellow perch, matrix diagram for 
population of, 527

zebra finch, vertical trajectory of, ii, 22
zero-order kinetic equation, 429
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Index

absolute maximum value, 250
	 for a function of two variables,  

619, 624
absolute minimum value, 250
	 for a function of two variables,  

619, 624
absolute value, 9, 686
	 of a complex number, 725
	 properties of, 687
	 review of, rp1
acceleration
	 defined as second derivative, 176
	 interpreted as a rate of change, 176
acceleration function, 310
ACE (angiotensin-converting enzyme) 

inhibitor, 215, 384
acetylsalicylic acid, 335, 365
action potential, 474, 476
acute normovolemic hemodilution (ANH) 

procedure, 222
addition formulas, 704, rp2
addition of vectors, algebraic, 500
addition of vectors, geometric, 496
age-structured population, 351, 523
	 long-term behavior, 555
alcohol metabolism. See blood alcohol 

concentration
algebraic function, 25
Allee, Ward Clyde, 254, 432
Allee effect, 254, 432, 433, 436
allometric growth, power-function model 

for, 451
anesthesia, model for concentration of CO2 

during, 24, 121, 185
anesthesiology, 24, 121, 185
angiotensin-converting enzyme (ACE) 

inhibitor, 215, 384
angle, 699
	 positive, 700
	 negative, 700
angle measurement, review of, rp2
angle of deviation, 259
ANH (acute normovolemic hemodilution) 

procedure, 222
antagonistic relationship between host and 

parasite, xlvi
antibiotic concentration, xlii, 274, 283
	 for a large patient, 283

	 model for, 595
	 rate of decay, 245
	 related to MIC, 85
antibiotic concentration profile, xlii, 84, 

245, 385
antibiotic dosage, 36
antibiotic pharmacokinetics, 100, 258, 

273, 274, 313, 384, 413, 595
antibiotic treatment
	 effectiveness of, xliii, xliv, 84, 87, 414
	 magnitude of, xliii, xliv, 84, 86
	 measures of killing effectiveness of, 

87, 414
	 measures of magnitude of, 86, 385
	 peak concentration, xliii, xliv, 84
	 for sinus infections, 213
antibodies, 639, 662, 633, 663, 664
antiderivative(s), 306
	 position function as, 310
	 table of formulas for, 308, 345
	 velocity function as, 310
antigenic cartography, xxxvi, 490 492, 

493, 497, 498, 500
antigenic evolution, xxxvii, 495, 512, 514, 

535, 547
	 matrix model for, 527, 558
antigenic space, 490
	 virus clustering in, 561
antigenicity plot, 490
antihypertension medication, 4
	 effect on heart rate, 4, 241
antimicrobial dosing, system of linear 

differential equations for, 664
antiserum, 490
aphid-ladybug food web, 466, 467
apical ischemia, 512, 545
approximation of a function, 6
arctan function, 227, 228
area, 316, 388, 389
	 approximation of, 317
	 between curves, 388, 389
	 between velocity curves, 390
	 defined as a limit of sums of areas of 

approximating rectangles, 319
	 under a pathogenesis curve, 326, 327
	 of a region under the graph of a 

continuous function, 321
area problem, 316

area under the curve (AUC), 336
Argentine ant, rate of invasion of, 166
argument of a complex number, 726
Argyropelecus offers, 545
arithmetic operations, review of, rp1
arrow diagram for a function, 3
ASA concentration function, 335
asbestos exposure, lung tumor 

development caused by, 30
aspirin pharmacokinetics, 335, 340, 365, 

367, 413
asymptotes of a hyperbola, 697
asymptotic length, 451
Atlantic redfish
	 age–length relationship graph, 451
	 otoliths, 419
AUC (area under the curve), 336
auto-activation model for gene  

regulation, 679
auto-repression model for gene  

regulation, 675
autonomous differential equation(s), 426
	 system of, 460, 632
Avastin (bevacizumab), xxxiv
average cost, 294
average rate of change, 157
	 defined as the difference quotient, 162
average value of a function, 397, 398
average velocity, 111
axis of a parabola, 694

BAC. See blood alcohol concentration
bacteria, chemotaxis by, 618
bacteria colony
	 difference equation model for, 77
	 growth of 351
bacteria count, 15, 51, 241
bacteria culture, population function  

for, 51, 311
bacteria population, 167
	 growth function for, 67, 220, 361
bacteria strains, recursive model for, 78
bacterial cross-feeding, 434, 437
bacteriophage, xlvi
Bangladesh, life expectancy of population 

of, 241
Barrow, Isaac, 128, 342
base (DNA), 69

rp denotes Reference Page numbers.
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base of a logarithmic function, 57
basic reproduction number, 56, 574, 627
beehive, construction of, 295
Bernoulli, Daniel, xxxiv
Bernoulli, James, 449
Bernoulli, John, 276, 449
bevacizumab (Avastin), xxxiv
Beverton-Holt recruitment curve, 83
bifurcation plot, 438
bifurcation theory, 438
binomial theorem, rp1
bioavailability, 40
biodiversity of tropical rain forest, 68
biological feasibility of an  

equilibrium, 472
biomass
	 of a guppy population, 202
	 of a fish population, 361
	 of a tuna population, ii, 605
biomechanics of human movement, 

xxxvii, 10, 14, 40, 175, 179, 489, 
495, 501, 504

bird count, Christmas, 15
bird population, finite limits for, 118, 139
bird(s)
	 cooperative breeding, 527
	 Darwin’s finches, 494
	 flap-bounding by, 22
	 flapping and gliding in flight, ii,  

297, 595
	 flight path of, 296
bird’s egg, volume of, 411
birth rate of a population, 394, 413
blood alcohol concentration (BAC) 

function, 15, 166
	 average, 400
	 exponential decay model for, 51, 68
	 limiting value of, 281
	 maximum value of, 255
	 rate of absorption and metabolism, 

156, 162, 180, 213
blood cell production, model for, 306
blood flow, xxxvii, 193, 387,
	 average velocity of, 400
	 branching of vessels, 291
	 cerebral, 390, 392, 393, 394
	 model for, 187, 215
	 rate of, 402, 404
	 relative change in, 238
	 resistance of, 595, 618
blood velocity
	 model for, 581
	 relative change in, 238
blowfly, chaotic population dynamics  

of, ii, 430
BMI. See body mass index

body mass index (BMI), 567, 573, 583, 
588, 609

body surface area, model for, 581, 595, 
602, 630

bone mass, 214
	 of a human femur, 7
bounded set, 624
brain weight (in fish), model for, 215
branches of a hyperbola, 697
branching in vascular system, 291
Brentano-Stevens Law, 482
bumblebee, optimal foraging time for, ii, 

271, 283, 287, 297

cancellation equations for inverse 
functions, 55

cancellation equations for logarithms, rp4
cancer
	 breast, stages of, 523
	 model for progression of stages of, 483, 

527, 547, 559, 662
	 NK cells and, 654
	 prostate, model for resistance of  

cell, 639
	 radioimmunity treatment of, 633
	 See also tumor; tumor growth
cancer progression, 483, 527, 547, 633, 662
carbon dating method, 221, 229
carbon dioxide in the atmosphere, 18
cardiac output, 403, 404, 405, 413
Caribbean reefs, stability of, 675
carrying capacity, 74, 424, 438
Cartesian coordinate system, 689
Cartesian plane, 689
CAS (computer algebra system),  

xxvii, 373
CAT (computed axial tomography)  

scan, 563
	 measuring volume of an organ by,  

407, 410
catastrophic population collapse, 117, 438
Cauchy-Schwartz Inequality, 512
cell division
	 geometry of, 559
	  model for interaction of biomolecules 

in, 484, 674
cell growth, spherical, 194
center (equilibrium), 648, 651
cerebral blood flow, concentrations of N2O 

in, 390, 391, 392, 393, 394
cerebrospinal fluid (CSF)
	 absorption of, 29
	 discrete-time recursion for pressure 

and volume, 77
cerebrospinal pressure, recursion model 

for, 75

Chain Rule for differentiation, 202, 203
	 combined with the Power Rule, 205
	 for a function of two variables, 604
	 with longer chains, 208
change of base formula for  

logarithms, 59
challenge experiment for fraction of hosts 

infected, xlvi, 152, 153, 154, 416
	 outcome, 484
chaotic behavior of a logistic sequence, 

98, 100
chaotic population dynamics, ii, 430
characteristic polynomial, 542
chemostat, 479, 675
chemotaxis, 618
chronic obstructive pulmonary disease 

(COPD), 512, 545
chymotrypsin, 201
cicada wing, area of, 393
ciprofloxacin, 84
	 dose response relationship for,  

84, 245
	 drug concentration profile for,  

84, 245
	 kill curve, 86, 246
circle
	 equation of, 691, rp1
	 geometric formulas for, rp1
circular colony, difference equation model 

for, 77
circular cylinder
	 geometric formulas for, rp1
	 volume of, 405
	 volume as model for bacterium, 408
Clairaut, Alexis, 592
Clairaut’s Theorem, 592
	 proof, 717
class-structured population model, 215, 

239
	 matrix model for, 520, 551
climate change, 29
closed interval, 684
Closed Interval Method, 254
closed set, 624
CN Tower, 111, 311
CO2 level, 20
CO2 concentration during anesthesia, 

model for, 121
Cobb-Douglas production function,  

581, 596
cobwebbing, 300
	 spiral, 301
cobalt-60, 243
coding function of amino acids, 69
codominant disease, 284
codon, 69
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coefficient of a polynomial, 21
coefficient of inequality, 396
Coho salmon
	 matrix model for, 523
	 swimming speed, 168
colony, circular, 77
colony, spherical, 77
column vector, 515
combinations of functions, 35
commercial marine fish catch, 82
common logarithm, 58
community ecology, 512
commutative property of matrix 

multiplication, 517
comparison of growth rates of  

functions, 278
comparison properties of the  

integral, 338
compensatory growth, 262
competition between two species, 670, 

672, 678
competition-colonization model, 483, 674
competition for resources, system of 

equations for, 465. See also Lotka-
Volterra competition equations

competitive exclusion, 671
complex components of a vector, 557
complex conjugate, 724
	 properties, 725
complex conjugate of a vector, 557
complex eigenvalues(s), 542
	 solutions of a matrix model  

involving, 552, 646
complex number(s), 724
	 argument, 726
	 division of, 727
	 equal, 724
	 imaginary part, 724
	 multiplication of, 726
	 nth power, 727
	 polar form, 726
	 real part, 724
	 roots of, 728
complex-valued function, 729
	 derivative of, 729
component of b along a, 508
components of a vector, 498, 499
composite function(s), 35
	 limits of continuous, 143, 144
composition of functions, 35
computer algebra system (CAS), xxvii, 

373
computed axial tomography (CAT). See 

CAT scan
concavity, upward and downward, 265
Concavity Test, 265

cone, geometric formulas for, rp1
conic, 694
conic section, 694
	 ellipse, 696
	 hyperbola, 697
	 parabola, 694, 695
conservation biology, xxxviii
	 of coral reefs, 675
	 environmental pollutants, transport  

of, 658
	 habitat destruction, 455
	 habitat fragmentation, 25, 215, 239
	 population sustainability, effect of 

harvesting on, 239, 290, 294,  
298, 306

	 of right whales, 521
	 of spotted owls, 528
	 thermal pollution, 167
constant function, derivative for, 182
Constant Multiple Law for limits, 125
Constant Multiple Rule for  

differentiation, 185
	 geometric interpretation, 185
consumer-resource model, 479, 675, 678
continuity of a function, 137, 140, 143
	 from the left, 140
	 from the right, 140
	 on an interval, 140
	 of polynomial and rational functions, 

141, 143
	 relationship to differentiability, 173
	 of three variables, 580
	 of trigonometric function, 142, 143
	 of two variables, 578
continuous function(s)
	 limits of, 143
	 limits of composite, 143
	 of three variables, 580
	 of two variables, 578
continuous probability distribution, 379
contour lines, 570
contraction by matrix multiplication, 544
convergent improper integral, 376
convergent sequence, 91
cooperation for mutual benefit, system of 

equations for, 465
cooperatively breeding species, 527
coordinate axes, 488, 689
coordinate geometry, review of, 689
coordinate plane, 488, 689
coordinates of a point, 489
COPD (chronic obstructive pulmonary 

disease), 512, 545
coral reefs, stability of, 675
cosine function
	 derivative for, 191

	 domain and range, 706
	 graph, 706
	 limits involving, 132, 133
coupled system of differential  

equations, 459
Crawford, B. H., 283
crickets, chirping rate for, 29, 30
critical number of a function, 254
critical point, 620
critical vaccination coverage, ii, 479, 663
crop contamination by pollutant, 662
crop yield, model for, 293, 627
cross-feeding, bacterial, 434, 437
cross-section of a solid, 406
cross-section of a human brain, area  

of, ii, 413
crows, whelks dropped by, 296
CSF. See cerebrospinal fluid
cubic function, 21
cubic spline, 536
curve(s)
	 drug-loading, 273
	 equation of, 691
	 folium of Descartes, 209
	 sinusoidal, 26
cyclic neutropenia, 39
cyclin, 484, 674
cylinder, circular. See circular cylinder
cylinder, right, 405

Daphnia, ii, xlvi, 151
	 model for dynamics of genotypes,  

416, 679
	 predicted fraction of hosts  

infected, 417
Darwin’s finches, morphological 

measurements for, 494
daylight, model for, 34, 213
death rate of a population, 394, 413
decay function, exponential, 47
decomposition of functions, 37
decreasing function, 12
	 relationship of derivative to, 177
defective matrix, 538
definite integral, 329, 331
	 comparison properties of, 338
	 interpreted as the area under a  

curve, 330
	 properties of, 336, 337
degree-day, 362
degree of a polynomial, 21
= (del), 613
de Moivre, Abraham, 727
De Moivre’s Theorem, 553, 727
dendogram, 513
dependent variable, 3, 421, 566
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derivative of a function
	 of a constant function, 182
	 defined as a function, 168
	 defined as a limit, 160, 161, 168
	 defined as a slope, 161
	 defined as a velocity, 163, 164, 176
	 of an exponential function, 188
	 finding from a formula, 170
	 finding from a graph, 168
	 higher, 175
	 Leibniz notation for, 172
	 of logarithmic functions, 222, 223
	 of the natural exponential  

function, 190
	 of the natural logarithmic  

function, 223
	 of a power function, 182
	 relationship to increasing and 

decreasing functions, 177
	 second, 175
	 third, 176
	 of trigonometric functions, 191,  

199, 200
determinant of a matrix, 531
	 related to the stability of the  

origin, 649
diagonal matrix, 517
dialysis (hemodialysis)
	 as an initial-value problem, 457
	 length of treatment, 67, 229, 244
	 treatment adequacy of, 67
	 rate of removal of urea by, 361, 380, 

595, 661, 677
difference equation, 72
	 first-order, 72
	 logistic, 74, 75
	 second-order, 73
	 solution of, 73, 95
	 See also recursive sequence
Difference Law for limits, 125
Difference Rule for differentiation, 186
difference quotient, 5, 162
differentiability of a function, 172, 599
	 failure to have, 174
	 relationship to continuity, 173
	 of two variables, 599
differentiable function, 172, 599
differential, 355
differential equation(s), 216, 308, 420
	 autonomous, 426
	 classification of, 425
	 coupled system of, 459
	 first-order, 449
	 nonautonomous, 427
	 order of, 425
	 pure-time, 309

	 separable, 449
	 solutions of, 216, 422, 425
differentiation, 172
	 formulas for, 181, rp5
	 implicit, 208, 209
	 as an inverse process of  

integration, 349
	 logarithmic, 225
	 summary of formulas for, 199
differentiation operator, 172
diffusion equation, 593, 596
dinosaur fossil, radiometric dating  

of, ii, 221
diploid, 78
Direct Substitution Property, 128
direction cosines, 504
direction field, 440, 441
directional derivative, 610, 611
directrix of a parabola, 694
discontinuity of a function, 137
	 biological applications of, 146
	 infinite, 139
	 jump, 139
	 removable, 138
discrete-time model, 73, 81
disease
	 infectiousness of, 395
	 probability of outbreak, 56, 66
	 progression and immunity (measles), 

394
	 transmissibility, 608
	 outbreak size of, 210, 214, 238, 244, 

354, 478, 608
	 effect of quarantine on, 589
	 virulence of, 110, 258
disease, genetic
	 codominant, 284
	 dominant, 284
	 Huntington’s, 284
	 neurofibromatosis, 284
	 phenylketonuria, 284
	 recessive, 284
	 Tay-Sachs, 284
dispersal of a population, 526, 563
dispersion, 259
displacement vector, 496
distance
	 defined as a limit, 324
	 Euclidean, 513
distance formula, 690, rp1
	 in n dimensions, 493
	 in three dimensions, 491
distance problem, 323
divergent improper integral, 376
divergent sequence, 91
division of complex numbers, 727

DNA, 69
	 amplification of, 69
	 bases of, 69
	 coding of amino acids by, 69
	 codons of, 69
DNA methylation, matrix model for,  

527, 558
dodo (bird), extinction of, 68
domain 
	 convention for, 7
	 of a function, 3
	 of a function of two variables, 566
	 of an inverse function, 54
dominant disease, 284
	 neurofibromatosis, 284
	 Huntington’s, 284
Doppler effect, 610
dose fractionation, 386
dose response curve, 273
dose response relationship, xlii, 84, 245
	 modeled by a piecewise defined 

function, 85, 246
dot product, 505, 506
	 properties of, 505
double-angle formulas, 704, rp2
dragonfly population, dispersal of,  

526, 563
drug concentration, 100
	 cobwebbing equilibrium for, 302
	 difference equation model for, 77
	 discontinuity of model for, 147
	 geometric recursion model for, 93
	 as an initial-value problem, 428
	 limiting value of, 95, 150
	 prediction of future, 404
	 rate of change of, 243
drug design, 512
drug diffusion, matrix diagram for, 527
drug dissolution, differential equations  

for, 429, 456
drug dosage, 29
	 antibiotic, 36
	 bioavailability of, 40
	 as a one-sided limit, 123
	 rate of elimination, 405
	 two-compartment mixing model  

for, 665
drug-loading curve, 273
drug pharmacokinetics, 100, 283, 284, 

305, 340
	 maximum drug concentration, 380
	 model for the concentration of a drug 

in the bloodstream, 313
	 See also pharmacokinetics
drug resistance
	 frequency of gene for, 148
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	 in malaria, 78–80, 306
	 model for spread of, 313
	 recursion equation for spread of a gene 

for, 306
dye dilution method, 403, 404, 405

e (the number), 48, 189
	 approximation for, 189
	 expressed as a limit, 227
ecological succession, 527, 563
effectiveness of antibiotic treatment, xliii, 

84, 87, 414
eigenvalue(s), 538
	 complex conjugate pairs of,  

542, 646
	 repeated, 546, 651
	 of a 2 3 2 matrix, 542
eigenvector, 538
Einthoven’s triangle, 509, 510, 512
electrocardiogram, 1, 2, 251, 256
electrocardiograph, 509, 512
elementary antiderivative, 375
elementary function, 374
elimination constant, 244
elimination rate of a drug. See 

pharmacokinetics
ellipse, 696
embolism, pulmonary air, 663, 678
Endeavour space shuttle, 258
energy expenditure model for lizard, 565, 

595, 602
energy reward, ii, 26
environmental pollutant, 662
	 model for transport of, 384, 658
enzootic stability, 294
epidemiology, mathematical, xxxiv
equal complex numbers, 724
equal matrices, 516
equation
	 of a circle, 691
	 of a curve, 691
	 diffusion, 593, 596
	 partial differential, 592
	 of a plane, 508
	 point-slope form for a line, 692
	 of a sphere, 492
	 wave, 592
equilibrium (solution), 424, 433
	 of an autonomous nonlinear system of 

differential equations, 666
	 of an autonomous system of 

differential equations, 469, 634
	 biological feasibility of, 472
	 for drug concentration difference 

equation, 302
	 finding graphically, 470

	 locally stable, 433, 635, 666
	 for a logistic difference equation, 302
	 neutrally stable, 673
	 node, 636
	 saddle, 635
	 spiral, 637
	 stability properties, 650
	 stable, 299
	 trace and determinant condition for 

stability, 650, 652
	 unstable, 299, 433
equivalent vectors, 496
escape velocity, 458
Escherichia coli, model for growth rate, 

198, 220
esophageal pH, 14
Euclidean distance, 513
Euler, Leonhard, 444
Euler’s formula, 646, 730
Euler’s method, 443, 444
Evaluation Theorem, 342
even function, 10
Existence and Uniqueness of Solutions 

(Theorem), 640
expansion by matrix multiplication, 544
exponential decay, 47, 215, 216
exponential function(s), 27, 42, rp4
	 continuity of, 142, 143
	 decay, 47
	 derivative for, 188, 190, 207, rp5
	 graphs of, 60, rp4
	 growth of, 61
exponential growth and decay, 215, 216
exponents, review of, rp1
extinction, population, 140
extrapolation, 20
extreme value of a function, 250
Extreme Value Theorem, 252
Extreme Value Theorem for Functions of 

Two Variables, 624

factorial, 236
family of antiderivatives, 344
family of functions, 24
family of kill curves, xlii, xliii, 86,  

246, 415
femur, length of, 30
Fermat, Pierre, 253
Fermat’s Theorem, 253
Fermat’s Theorem for Functions of Two 

Variables, 619
	 proof, 715
Fibonacci numbers, xxxiii, 559
Fibonacci sequence, 72, 77
fiddler crab claw, allometric growth  

of, 451

finite geometric series, 95
	 sum of, 95
First Derivative Test, 264
First Derivative Test for Absolute Extreme 

Values, 288
first octant, 488
fish, 82, 110, 193, 215, 285, 294, 295, 299, 

401, 413, 429, 438, 453, 460, 524, 
527, 545, 605

	 energy expenditure of swimming,  
296, 575

	 energy expenditure of migration,  
575, 590

	 harvesting of, 139, 145, 290, 298
	 length, 23, 31, 351, 400, 419, 450, 451
	 population dynamics for, 139, 202,  

361, 511
	 swimming speed of, 155, 168
fish biomass, 202, 361
fish growth, model for, 31, 193, 295,  

351, 450
fish population, 23, 139, 145, 202, 361
	 Ricker equation for, 303
fishing effort, 290, 294
	 best response, 298
fitness function for garter snakes, ii, 581, 

595, 614, 618, 623
Fitzhugh-Nagumo model, 428, 475, 479, 

666, 676
	 for a neuron, 474
fixed point, 299
flap-bounding by birds, 22
flapping (by birds)
	 model for, 595
	 vs. gliding, ii, 297
flight path of raptor, 467
flux, arterial, 387, 402, 404
foci of an ellipse, 696
foci of a hyperbola, 697
focus of a parabola, 694
folium of Descartes, 209
food deprivation experiment, 262
food web, 465
foraging
	 by aquatic birds, ii, 289, 295
	 by bumblebees, ii, 271, 283, 287, 295
force, resultant, 501
forcing function, 632
function(s)
	 acceleration, 310
	 algebraic, 25
	 arrow diagram for, 3
	 average value of, 397, 398
	 Cobb-Douglas production, 581, 596
	 combinations of, 35
	 common logarithm, 58
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function(s) (continued)
	 composition of, 35
	 continuity of, 137
	 cubic, 21
	 decay, 47
	 decreasing, 12
	 differentiable, 172, 599
	 domain, 3
	 even, 10
	 exponential, 27, 42, 47, 49, rp4
	 family of, 24
	 forcing, 632
	 graph of, 3
	 Heaviside, 138
	 hyperbolic, rp4
	 increasing, 12
	 inverse, 52, 54
	 inverse hyperbolic, rp4
	 inverse trigonometric, rp3
	 linear, 17
	 linear, in two variables, 569
	 logarithmic, 27, 57, 58, rp4
	 machine diagram for, 36
	 measles pathogenesis, 293
	 natural exponential, 49
	 natural logarithmic, 58, 60
	 of n variables, 576
	 odd, 11
	 one-to-one, 53
	 periodic, 11
	 piecewise defined, 8
	 polynomial, 21, 579
	 position, 310
	 power, 23, rp3
	 quadratic, 21
	 range, 3
	 rational, 25, 579
	 reciprocal, 24
	 reflecting of, 32
	 representation in four ways, 5
	 root, 24
	 shifts of, 32
	 step, 10, 146
	 stretching of, 32
	 surge, 273, 284
	 symmetry of, 10
	 tabular, 6
	 transformations of, 31, 32
	 translations of, 31
	 trigonometric, 26, 701
	 of three variables, 575
	 of two variables, 566
	 updating, 73
	 value, 3
	 velocity, 310
function machine, 36

function of n variables, 576
	 partial derivatives of, 590
function of three variables, 575
	 continuity of, 580
	 linear approximation for, 601
	 partial derivatives of, 590
function of two variables, 566
	 Chain Rule for, 604
	 continuity of, 578
	 limits of, 576
functions, comparison of growth  

rates, 278
Fundamental Theorem of Algebra, 725
Fundamental Theorem of Calculus, 342, 

347, 348, 349

Galilei, Galileo, xxxiii
game theory, xxxviii, 298
garter snake, fitness function for, ii, 581, 

595, 614, 618, 623
Gause, G. F., 108, 207
Gause’s logistic model for Paramecium, 

108, 207
Gauss, Karl Friedrich, 720
gene frequency, 39
gene regulation, 136, 213, 368, 639
	 auto-activation model for, 679
	 auto-repression model for, 675
	 model for, 656
general solution of a differential equation, 

642, 643
	 terms of, 644
general term of a sequence, 71
generic case vs. nongeneric case, 634
genetic disease, 284
genetic drift, 229
genome expression, microarray analysis 

of, 513
genome expression profile(s), 490
	 alteration by a drug, 512
	 of closely related species, 562
	 divergence of, 562
	 matrix model for, 527
	 represented as a vector, 507
genotype frequencies, 151, 152
genotypes of host vs. parasite, xlvii, 151, 

416, 484, 679
	 as a function of depth in sediment core, 

xlvii, 152, 416
	 outcome of challenge experiments, 484
geographic clusters in antigenic space, 

561, 562
geometric order, emergence of, 559
geometric sequence, 92
geometric sequence, infinite, 96
geometric series, 94

Giardia lamblia, population growth  
rate, ii, 51

Gini, Corrado, 395
Gini coefficient, 396
Gini index, 395, 396
global maximum or minimum value,  

250, 619
global temperature, 13
globally stable equilibrium, 635
glucose
	 concentration in bloodstream, 275
	 intravenous administration of, 456
gnomon, 723
Gompertz model for tumor growth, 361, 

452, 453
grad f, 613
gradient vector, 613, 614
	 maximization of, 615
graph(s)
	 of a function, 3
	 of a function of two variables, 568
	 plotted with technology, 270
	 of a sequence, 71
	 of trigonometric functions, 705
gray wolf population, model for, ii, 609
Gregory, James, 203
	 and blood flow, 618
	 of malarial parasites, 41–42
	 tumor, 211, 361, 452, 456
	 of yeast population, 420–24
growth rate of a human, 274, 351
guppy population, biomass of, 202

habitat destruction, 455, 483
habitat fragmentation, 215, 239, 633
half-angle formulas, 705, rp2
half-life, 47, 218
	 of HIV viral load, 51
	 of palladium-100, 83
	 of radium-226, 218
half-space, 576
handling of prey, 629
haploid, 78
Hardy-Weinberg Law, 627
hare-lynx food web, 464, 465
harvesting, 145
	 of fish, 77, 82, 139, 290, 294, 438
	 population, models for, 139, 145, 438
	 of renewable resources, 239, 437
	 sustainable, 290, 294, 306
harvesting pressure, 140, 438
harvesting rate, 139, 145, 438
heart voltage vector, xxxv, xxxvi, 504, 

509, 510, 512, 535, 545, 547, 558
heat index (humidex), 580, 585, 593, 600
Heaviside, Oliver, 138
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Heaviside function, 138
hemocrit, 222
hemodialysis, 67, 479, 661, 677. See  

also dialysis
hierarchical clustering of drugs, 513
higher derivatives, 175
higher-dimensional space, 493
HIV, 56, 89
	 density (viral load), 47, 208
	 half-life, 51
	 incidence, 130, 164, 169
	 plasma viral load, 47, 62
	 prevalence, 130, 164, 169, 272, 309
Hodgkin, Alan Lloyd, 475
Hodgkin-Huxley model, 475
homeostasis, 457
homogeneous system, 533, 632
honeybee, rate of population growth 269, 

351, 384
horizontal asymptote, 103, 104
Horizontal Line Test, 53
hormone, transport of, 482
host genotype(s)
	 average per capita reproduction  

rates, 485
	 frequencies of, xlvii, 151, 152, 484, 679
	 predicted frequencies of, 152, 416, 485
hosts, parasites, and time-travel, xlvi, 151, 

416, 484, 679
hours of daylight, model for, 34, 38
humidex, 580, 585, 600
Huntington’s disease, 284
Huxley, Andrew Fielding, 475
hyperbola, 697
hyperbolic functions, rp4
	 derivatives for, rp5
hypotenuse, 701

I/D Test, 263
ideal gas law, 202
identity matrix, 518
iguana, energy expenditure of, ii, 567,  

595, 602
illicit drug use, spread of, 380
imaginary part of a complex number, 724
implicit differentiation, 208, 209
	 for a function of two variables, 606
Implicit Function Theorem, 607, 608
improper integral, 376, 378, 379
improper node, 651
inbreeding by plants, matrix model for, 

527, 547, 564
incidence 
	 of HIV, 130, 164, 169
	 of an infectious disease, 352
Increasing/Decreasing Test, 263

increasing function, 12
	 relationship of derivative to, 177
increment, 162
indefinite integral, 344
indefinite integrals, table of formulas  

for, 345
independent variable, 3, 421, 566
indeterminate difference, 281
indeterminate product, 280
indeterminate quotient, 274, 275
index of summation, 719
Indian population, 67
Indonesian population, model for growth 

of, 221, 400
inequalities
	 review of, rp1
	 rules for working with, 684
	 solving, 685
	 solution set, 685
	 test values for solving, 685
infarction, cardiac, 256
infection, amount of, 326
infection experiment, xlvi, 152, 153, 154, 

416
	 outcome, 484
infectious disease
	 basic reproduction number for, 56, 574
	 model for size of outbreak, 210, 214, 

238, 244, 354, 608, 609
	 model for spread of, 436, 574, 589, 609, 

618, 627
	 rate of development of, 294
	 virulence, 110, 258
	 See also influenza
infectious disease control, 5, 574, 589, 

609, 627
infectiousness of a disease, 395
infinite discontinuity, 139
infinite geometric series, 96
	 sum of, 96
infinite limits, 119, 120
infinite limits at infinity, 108
infinite series, 96
inflection point, 267
influenza
	 antigenic cartography of strains of, 490
	 antigenic evolution of virus, 512,  

527, 535
	 matrix diagram for, 562
	 pandemic, 257
	 resistance to, 562
initial condition, 309, 425, 640
initial point of a vector, 496
initial-value problem, 309, 425, 640
	 solution, 640
	 unique solution, 647

insect metamorphosis, rate of development 
of, 368

insecticide resistance, frequency of gene 
for, 201, 237

instantaneous rate of change, 157
	 defined as a limit of average rates, 162
instantaneous velocity, 112
insulin, concentration of, 100
integrable function, 329, 331
integral(s)
	 definite, 344
	 improper, 376, 378, 379
	 indefinite, 329, 344
	 table of, 372, rp6–10
integral equation, 455
integral sign, 329
integrand, 329
integration, 329
	 by computer algebra systems, 373
	 as an inverse process of  

differentiation, 349
	 of partial fractions, 368
	 by tables of integrals, 372
integration by parts
	 for definite integrals, 365
	 for indefinite integrals, 362
interdose interval, 386
Intermediate Value Theorem, 144
interpolation, 20
interval(s), 684
	 open vs. closed, 684
	 table of, 684
intravenous drug delivery, model for, 426, 

427, 428, 432, 433
invasive species, colonization by, 166, 193
inverse function, 52, 54
	 graph of, 56
inverse hyperbolic functions, rp4
	 derivatives for, rp5
inverse of a matrix, 528, 529
	 properties of, 530
	 of a 2 3 2 matrix, 530
inverse tangent function(s), 227, rp3
	 derivative of, 228
	 graph of, 227, rp3
	 limits involving, 228, rp3
inverse trigonometric functions, rp3
	 derivatives for, rp5
invertible matrix, 529
isobar, 572
isothermal, 571, 610
iterated matrix models, 547

Jacobian matrix, 669
Japanese males, average age of marriage 

of, 179
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Japanese population growth, model  
for, 213

jellyfish, model for locomotion of, ii,  
639, 661

jump discontinuity, 139
junco, habitats of, ii, 266

Kermack-McKendrick model, 210, 354, 
478, 608, 675

	 local stability analysis of, 671
Kety, Seymour, 390
Kety-Schmidt method for measuring 

cerebral blood flow, xxxvii, 390
kill curve of ciprofloxacin for E. coli, xlii, 

xliii, 86, 246, 385, 415
killing effectiveness of antibiotic 

treatment, xliii, 84, 245, 385, 414
	 measures of, 87, 414

Lagrange, Joseph-Louis, 261
laminar flow, law of, 187, 215, 402
laurel leaf, area of, 393
Law of Cosines, 43, rp2
law of natural growth or decay, 216
Law of Sines, rp2
laws of exponents, 44
laws of logarithms, 58, rp4
leads, xxxv, 510
least squares, method of, 20
left anterior hemiblock, 504, 512, 545
left-hand limit of a function, 117
left posterior hemiblock, 504, 512, 545
Leibniz, Gottfried Willhelm, 172,  

342, 449
length of a vector, 500
Leslie, Patrick H., 524
Leslie matrix, 523, 524, 536, 547, 558, 562
level curves, 570
	 for air temperature, 571
	 for water temperature, 582
	 for worldwide precipitation, 572
l’Hospital, Marquis de, 276, 284
l’Hospital’s Rule, 276
life cycle of malaria, 78–80
life expectancy, 82, 241
limit(s) of a function
	 at a finite number, 111
	 graphical method for finding, 113, 115, 

116
	 indeterminate form of type `y`, 275
	 indeterminate form of type ` 2 `, 281
	 indeterminate form of type 0 ? `, 280
	 indeterminate form of type 0y0, 275
	 infinite, 119, 120
	 infinite, of trigonometric functions, 

132, 133

	 infinite, at infinity, 108
	 at infinity, 103
	 laws for, 125
	 at negative infinity, 103
	 numerical method for finding, 112, 113, 

114, 116
	 one-sided, 117, 131
	 precise definition, 710
	 properties of, 131, 132
	 velocity as, 108
Limit Laws for function, 125
Limit Laws for Sequences, 91
limit of a function of two variables, 576
	 precise definition, 712
	 properties of, 578
limit of a sequence, 90, 91
	 precise definition, 709
limiting drug concentration, 95
limits of integration, 329
line(s)
	 normal, 184
	 parallel, 693
	 perpendicular, 693
	 point-slope equation, 158, 692, rp1
	 secant, 158
	 slope through two points, rp1
	 slope-intercept equation, 693, rp1
	 tangent, 157
	 two-intercept equation, 698
linear approximation, 230
	 for a function of three variables, 601
	 for a function of two variables,  

598, 599
	 to heat index function, 600, 602
	 to wind-chill index function, 601, 602
linear function, 17
linear function in two variables, 569
linear model, 17
linear regression, 20
linearization, 230
	 of a linear system, 598, 599
	 of a nonlinear system, 669
lithotripsy, 696
liver, estimate for volume, 407
lizard, energy expenditure of, ii, 565,  

595, 602
local maximum value, 250, 619
local minimum value, 250, 619
Local Stability, Theorem for, 669
Local Stability Criterion, 434
locally stable equilibrium
	 analysis of, 666
	 of a linear system, 433, 635
	 of a nonlinear system, 666
locomotion, ground force in, 40
logarithmic differentiation, 225, 226

logarithmic function(s), 27, 57, rp4
	 cancellation equations for, rp4
	 change of base formula, 59
	 continuity of, 143
	 derivatives of, 223, rp5
	 graphs of, rp4
	 laws of, rp4
	 natural, 58
	 notation for, 58
logarithmic spiral, ii, 468
logistic difference equation, 74, 75, 305, 

424
	 dependence on initial values, 100
	 equilibrium for, 302
	 equilibrium solution for, 424
	 limiting behavior of, 97
	 with migration, 214
logistic differential equation, 429, 430, 

433, 453, 436. See also logistic 
difference equation

logistic growth model for a population, 
213, 424, 428

logistic model, 369
log-log plot, 63
long-term behavior of a sequence, 90
long-term behavior of a system of linear 

differential equations, 649
loons, foraging by, ii, 289, 295
Lorenz, Max, 396
Lorenz curve, 395
	 power model for, 397
Lotka-Volterra competition equations, 461, 

464, 466, 478
	 local stability analysis of, 670, 672, 678
	 phase plane analysis of, 470, 473
lower triangular matrix, 520
lung preoxygenation, 482
lung ventilation 121, 185, 457
lungs
	 compartments of, 663
	  volume of, 38
lynx-hare food web, 464, 465

machine diagram for a function, 3
magnitude of antibiotic treatment, xliii, 

xliv, 84
	 measures of, 86, 385
magnitude of a vector, 500
malarial fever, 12, 16
	 drug resistance to, 78, 306
malarial parasites, 41, 68
	 diploid vs. haploid, 78
	 life cycle of, 78, 79
	 rate of population increase of, 163, 180
marginal cost, 294
marginal revenue function, 294
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mass of a particle, 124
mathematical epidemiology, xxxiv
mathematical model(s), xli, 6, 17
	 for CO2 concentration during 

anesthesia, 121
	 comparison of linear, exponential, and 

power, 65
	 hours of daylight, 34
	 linear, 17
	 metapopulation, 662
	 metastasis of a malignant tumor, 662
	 mRNA transcription, 136, 213, 456
	 Nigerian population, 83
	 number of tree species, 193
	 Pacific halibut population, 110
	 Pacific salmon population, 77
	 Paramecium population, Gause’s,  

108, 207
	 prostate cancer, tumor cell resistance 

in, 639, 662
	 population growth, 216, 420
	 rock bass, length of, 193
	 SARS, spread of, 574, 589, 609,  

618, 627
	 tumor growth, 211, 361, 452, 456
	 viral infection, 101
	 world population, 46, 283, 398
	 See also specific topics
mathematical modeling (process), xli
matrix (matrices), 514
	 addition of, 515, 516
	 defective, 538
	 determinant of, 531
	 diagonal, 517
	 equal, 516
	 identity, 518
	 inverse of, 529
	 invertible, 529
	 lower triangular, 520
	 multiplication of, 516, 517
	 nonsingular, 529
	 notation for, 514
	 primitive, 555
	 scalar multiplication, 515, 516
	 singular, 529
	 size of, 514
	 skew-symmetric, 520
	 square, 515
	 subdiagonal, 525
	 subtraction of, 516
	 symmetric, 520
	 trace of, 546
	 transpose of, 515
	 upper triangular, 520
matrix addition, 515, 516
	 properties of, 516

matrix algebra, 514
	 addition, 515
	 multiplication, 516
	 scalar multiplication, 515, 516
	 subtraction, 516
matrix diagram, 522
matrix-digesting enzymes, 40
matrix model, 521, 525
	 change by matrix multiplication, 537
	 solution involving complex 

eigenvalues, 552
	 solution of, 547
matrix multiplication, 516, 517
	 contraction or expansion, 544
	 power of a matrix, 518
	 properties of, 518
	 reflection, 544
	 rotation, 545
	 shear, 545
matrix subtraction, 516
maturation promoting factor (MPF),  

484, 674
Maynard Smith and Slatkin model for 

population growth, 258
mean, 274
Mean Value Theorem, 261
Mean Value Theorem for Integrals, 399
measles pathogenesis, xxxvii, 325, 338
	 average level of infection for, 400
	 function for, 293
	 infectiousness of virus, 395
	 rate of change of infection, 349
	 threshold for onset of symptoms, 351
measles pathogenesis curve, 325
	 area under, 326
	 polynomial model for, 326, 327
measles virus, 315
	 disease progression of 325
	 pathogenesis of, 325
medical imaging (CT scan), rate of 

attenuation for, 352
merozoite, 79
metabolic power (in walking and running), 

10, 175
metapopulation, 652
	 model for, 662
metapopulation dynamics, 633, 634, 639
metastasis of a malignant tumor, 478
	 model for, 662
MIC (minimum inhibitory concentration), 

85, 246
Michaelis-Menten equation, 102, 110, 151, 

201, 243, 478, 675
microarray, 513
microarray analysis of genome  

expression, 513

midpoint formula, rp1
Midpoint Rule, 334
minimum inhibitory concentration (MIC), 

85, 246
mixing problems, 457
modulus, 725
Monod, Jacques, 102
Monod growth function, 102, 105, 110
	 for Escherichia coli, 198
morphometrics, 545
motion of an object in a straight  

line, 310
MPF (maturation promoting factor),  

484, 674
MRI scan, measuring the area of a brain 

by, 413
mRNA, 136, 213, 456, 639, 656
mRNA transcription, model for, 136,  

213, 456
multiplication of complex numbers, 726
multiplication of matrices, 516
multiplication of matrices, scalar, 515, 516
mutation, 558
	 synonymous vs. nonsynonymous, 70
	 matrix diagram for, 527, 528, 535
mutation accumulation, 273
mutation-selection balance, 438, 456
	 for a disease, 284

Nash, John, 298
Nash equilibrium, 298
natural exponential function, 49
	 derivative for, 190
natural killer (NK) cells, ii, 654
natural logarithm function, 58
	 derivative for, 223, 225, rp5
	 graph of, 60
	 growth of, 61
nautilus, logarithmic spiral shape of,  

ii, 468
n-dimensional vector, 502
negative angle, 700
net area, 330
Net Change Theorem, 346, 347
neurofibromatosis, 284
neutrally stable equilibrium, 673
Newton, Isaac, 128, 342
Newton’s Law of Cooling, 219, 400
Newton’s Law of Motion, 457
Newton’s method, 233
niche overlap, 328, 352, 384
nifedipine, effect on heart rate, 241
Nigerian population, exponential model 

for, 83
NK (natural killer) cells, system of linear 

equations describing, ii, 654
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node (equilibrium), 636, 645
	 improper, 651
	 proper, 651
	 stable vs. unstable, 645
nonautonomous differential equation, 427
nonhomogeneous system of linear 

equations, 632
nongeneric system of linear differential 

equations, 638
nonsingular matrix, 529
nonsynonymous mutation, 70
normal density function, 274
normal line, 184
normal vector, 508
Noyes-Whitney equation for drug 

dissolution, 429, 456
nth-degree Taylor polynomial, 236
nth term of a sequence, 70
nullcline
	 of a differential equation, 470
	 vs. eigenvectors, 643
	 of a system of differential  

equations, 634

octant, 488
odd function, 11
one-sided limit of a function, 117
	 existence of, 131
one-to-one function, 53
open interval, 684
optimization problem, 285
	 steps in solving, 285
order of a differential equation, 425
orthogonal vectors, 506
otolith, Atlantic redfish, 419
oxygen, solubility of, 167

Pacific halibut population, model for, 110
Pacific salmon population, discrete-time 

recursion model for, 77
palladium-100, half-life of, 83
pancreas, estimate for volume of, 411
panobacumab, 664
parabola, 694, 695
paraboloid, 569
parallel lines, 693
parallelepiped, rectangular, 405
Parallelogram Law, 496
Paramecium, Gause’s population model 

for, 108, 207
parameter, 459
parametric curve, 459, 460
parametric equations, 459
parasite genotype(s)
	 average per capita reproduction  

rate, 485

	 frequencies of, xlvii, 151, 152,  
484, 679

	 predicted frequencies of, 152, 416, 485
partial derivative(s), 586
	 of a function of n variables, 590
	 of a function of three variables, 590
	 of a function of two variables, 587
	 geometric interpretation of, 587
	 of higher orders, 592
	 interpreted as a rate of change, 588
	 rules for finding, 587
	 second, 591
partial differential equation, 592
	 diffusion equation, 593, 596
	 wave equation, 592
partial fractions, 368
Pasoh Forest Reserve, model for number 

of tree species in, 193
Pasteuria ramosa, xlvi
patch, 633, 652
pathogen transmission, 110
pathogenesis, 293, 325. See also measles 

pathogenesis
peak antibiotic concentration, xliii,  

xliv, 84
peak serum level, 665
Pearson correlation coefficient, 513
peptic ulcer, rate by income, 29
per capita growth factor, 73, 74
per capita growth rate, 216, 245, 421,  

423, 452
period
	 of a function, 11
	 of a sine or cosine function, 27
periodic function, 11
perpendicular lines, 693
perpendicular vectors, 506
Perron-Frobenius Theory, 554, 555
pharmacokinetics, 100, 664
	 antibiotic, 100, 258, 273
	 drug, 100, 283, 284, 305
	 of microbial dosing, 664
phase of a function, 152
phase plane analysis, 468
	 for qualitative dynamics 472
phase plane, 462
phase plot, 431
phase portrait, 462
phase trajectory, 462
phenylketonuria, 284
photosynthesis, 293, 352, 361, 380
phyllotaxy, xxxii
piecewise defined function, 8
pineapple, phyllotaxy of, xxxiii
Pinching Theorem, 132
plane, equation for, 508

Plasmodium chabaudi, 41, 92
Plasmodium falciparum, 16
Plasmodium malariae, 16
Plasmodium vivax, 12
point-slope form of the equation of a  

line, 158, 692
Poiseuille, Jean-Louis-Marie, 187
Poiseuille’s laws of laminar flow, xxxvii, 

187, 215, 238, 291, 384, 403, 581, 
595, 566

polar coordinates, 467, 726
polymerase chain reaction (PCR), 69
polynomial function, 21
	 coefficients of, 21
	 continuity of, 141, 143
	 degree of, 21
	 factoring, review of, rp1
polynomial function of two variables, 579
population collapse, 139, 140, 145
population dynamics, xxxvi, 384, 452, 

482, 511
population genetics, 434, 442, 456
population growth, bound on, 313
population growth, models for, 216, 420
	 bacteria, 67
	 discontinuous, 146
	 exponential model for, 147
	 Indian, 67
	 Indonesian, 221
	 logistic differential equation for,  

424, 428
	 Japanese, 213
	 Nigerian, 83
	 US, 52, 166
	 world, 2, 6, 46, 52, 146, 213, 217,  

283, 398
population growth rate, linear 

approximation of, 232
position function, 310
position vector, 499
positive angle, 700
potassium-40, use in radiometric dating, 

ii, 221
potential, 475, 476
power function(s), 23
	 continuity of, 143
	 derivative for, 182
	 graphs of, rp3
power-function model for allometric 

growth, 452
Power Law for limits, 126
power of a matrix, 518
Power Rule for differentiation, 182,  

184, 226
	 combined with the Chain Rule, 205
predator, 460

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



index    799

predator-prey dynamics, 230, 460
	 of birds and insects, 482, 483
predator-prey equations, 461–64, 465, 469, 

666, 672
	 solution of, 461, 482
preoxygenation, 482
prevalence 
	 of HIV, 130, 164, 169, 272, 309
	 of an infectious disease, 352
prey, 460
primitive matrix, 555
principal square root, 725
Principia Mathematica, 128
principle of mass action, 461
Principle of Mathematical Induction, 721
product formulas, 705
Product Law for limits, 125
Product Rule for differentiation, 194, 195
	 geometric interpretation of, 195
projection of a point in space, 489
propagule, xlvi
proper node, 651
properties of vectors, 502
prostate cancer, model for tumor cell 

resistance, 639, 662
protozoan population, growth rate of, 220
pulmonary air embolism, 663, 678
pure-time differential equation, 309, 425

quadratic formula, rp1
quadratic function, 21
quarantine, 574, 589, 609, 618 
Quotient Law for limits, 125
Quotient Rule for differentiation, 196, 197

rabbit-fox food web, 465
rabbit-wolf food web, 460, 461
radian, 699
radicals, review of, rp1
radioactive atoms in cancer treatment, 

633, 662
radioactive decay, 218
radioimmunotherapy, 633, 634, 639, 662
radiometric dating technique, 221
radium-226, 218
rainbow angle, 259
	 for secondary rainbow, 260
rainbows, calculus of, 259
rain forest biodiversity, 193
range
	 of a function, 3
	 of a function of two variables, 566
	 of an inverse function, 54
raptor, flight path of, 467
rate(s) of change, 162
	 acceleration interpreted as, 176

	 average, 157, 162
	 instantaneous, 157, 162
	 partial derivatives interpreted as, 588
rate of primary production, 352, 361
rational function, 25
	 continuity of, 141, 143
	 of two variables, 579
real part of an imaginary number, 724
recessive disease, 284
	 phenylketonuria, 284
	 Tay-Sachs, 284
reciprocal function, 24
Reciprocal Rule for differentiation, 202
rectangular coordinate system, 689
recursive sequence, 72
	 solution, 73
	 See also difference equation
red blood cell loss during surgery, ii, 222
reefs, stability of, 675
reflecting a function, 32
reflection by matrix multiplication, 544
related rates, 210
relative change, 238
relative growth rate, 216
removable discontinuity, 138
renewal function, 401, 404, 413
repeated eigenvalues, 546, 651
representation of a function, 5
reproduction number, basic, 56, 574, 609
reproductive rate of a metapopulation, 633
reproductive success, measure of, 294
resource allocation, 536
respiratory cycle
	 average rate of air flow in, 400
	 rate of air flow in, 361
	 volume of air in, 38
resultant force, 501
reversals of direction (of a garter snake), 

ii, 581, 595, 614, 618, 623
Rhodobacker sphaeroides, 311
Ricker, W. E., 303
Ricker difference equation, 77, 100,  

239, 303
	 cobwebbing for, 304
	 model for population growth, 303, 313
Riemann, Bernhard, 330
Riemann sum, 330
	 approximation to an integral, 334
	 interpreted as a sum of areas, 330
right atrial hypertrophy, 256
right-hand limit of a function, 117
right-hand rule, 488
right whale, 521
risk aversion by foraging birds, 266
Roberval, Gilles de, 344
robin population, finite limits for, 118

rock bass, model for length, 193
root function(s), 24
	 continuity of, 142, 143
Root Law for limits, 127
roots of a complex number, 728
Rosenzweig-MacArthur model, 479, 678
rotation by matrix multiplication, 545
row vector, 515
rumen microbial system, 367
rumor, rate of spread of, 213
running, ground force in, 41

saddle (equilibrium), 635, 644
saddle-node bifurcation, 439
saddle point, 620, 621
salicylic acid, 340
salicylic acid (SA) pharmacokinetics, 335, 

340, 367, 377, 413
salmon and bear population dynamics, 

discrete-time recursion for, 77
salmon swimming speed, 155, 168
sample points, 321
Sandwich Theorem, 132
SARS (severe acute respiratory syndrome)
	 incidence of, 328
	 model for spread of, 574, 589, 609,  

618, 627
scalar, 497
scalar multiple of a vector, 497
scalar multiplication of matrices, 515, 516
scalar multiplication of vectors, 497, 500
scalar product, 505
scalar projection of a vector, 508, 509
scatter plot, 6
screw-worm fly, ii, 371
Schmidt, Carl, 390
sea urchin, species range of, ii, 351
seasonality
	 effect on habitat destruction, 455
	 effect on population dynamics, 482
secant line, 158
	 slope of, 261
second-degree Taylor polynomial, 236
second derivative, 175
	 acceleration defined as, 176
	 Leibniz notation for, 176
Second Derivative Test, 267
Second Derivative Test for a function of 

two variables, 621
	 proof, 718
second-order differential equation, 477
second partial derivatives, 591
sector of a circle, review of geometric 

formulas for, rp1
semilog plot, 61, 62
sensitivity (of the eye) to brightness, 202
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separable equation, 449
sequence, 70
	 convergent, 91
	 difference equation, 72
	 divergent, 91
	 Fibonacci, 72
	 general term an, 71
	 geometric, 92
	 graph, 71
	 limit of, 90, 91
	 long-term behavior, 90
	 nth term, 70
	 recursive, 72
	 terms, 70
series, 95
	 finite geometric, 95
	 infinite, 96
Shannon index, 627
shear (by matrix multiplication), 545
shift of a function (horizontal or  

vertical), 32
Sierpinski carpet, 100
sigma notation, 321, 718
	 rules for, 332, 719
sine function
	 derivative for, 191
	 domain and range, 706
	 graph, 706
	 limits involving, 132, 133
singular matrix, 529
sinusoidal curve, 26
skew-symmetric matrix, 520
slope
	 of a curve at a point, 159
	 of a nonvertical line, 692
	 of a secant line, 159, 261
	 of a tangent line, 159, 160
slope field, 441
slope-intercept form of the equation of a 

line, 693
smallpox, epidemiology of, xxxiv
snake, fitness function for, 581, 595, 614, 

618, 623
soil contamination by a pollutant, 662
solid of revolution, 410
	 area of, 410
	 volume of, 410
solution
	 of a difference equation, 95, 216,  

422, 425
	 of predator-prey equations, 461
	 to a system of linear equations,  

532, 534
	 of a recursive sequence, 73
	 trivial, 533
solution curve, 441

solution set for an inequality, 685
spatial species distribution, 426
species–area relationship, 266
	 for bats, 25, 63, 64
	 on an island, 458
	 for reptiles, 30
species conservation, 215, 239
species discovery curve, 306
species’ niche, 328, 352, 384
species richness, xxxv
	 of ants, 14
	 of bats in Mexican caves, 25, 63, 266
	 of forest trees, 193
	 of reptiles, 30
Speedo LZR racer, ii, 603
sphere
	 equation of, 492
	 functions of, 569
	 geometric formulas for, rp1
	 volume as model for tumor, 408
spherical colony, difference equation, 77
spiral (equilibrium), 637, 646
	 stable vs. unstable, 648
spiral, logarithmic, ii, 468
spiral cobwebbing, 301
sporozoite, 79
spotted owls, conservation biology of,  

ii, 528
square matrix, 515
Squeeze Theorem for limits, 132
Stability Criterion for Recursive 

Sequences, 302
	 proof, 716
stability properties of the equilibrium at 

the origin, 650
stable node, 645
stable spiral, 648
stage-structured population, 562
standard basis vectors, 503
standard deviation, 274
standard position of an angle, 700
stationary point, 620
step function, 10
sterile insect technique for population 

growth control, ii, 371, 679
Sterner and Elser model for  

homeostasis, 457
Sternoptyx diaphana, 545
Stiles, W. Stanley, 283
Stiles-Crawford effect, 283
stretching a function, 32
subdiagonal of a matrix, 525
subpopulation, 652, 662
Substitution Rule
	 for definite integrals, 358
	 for indefinite integrals, 354, 355

subtraction formulas, 704, rp2
subtraction of vectors, algebraic, 500
succession, ecological, 563
sum
	 of a finite geometric series, 95
	 of an infinite geometric series, 96
Sum Law for limits, 125
	 proof, 715
sum of partial fractions, rational function 

expressed as, 369
sum of vectors, 496
Sum Rule for differentiation, 185
sums of powers of positive integers,  

331, 332
sunflower, phyllotaxy, of, xxxiii
Superposition Principle, 642
surge function, 273, 284
surgery, 24, 75, 121, 185, 457, 482, 663
	 controlling red blood cell loss during, 

ii, 222
survival function, 401, 404, 413
sustainable harvesting, 139, 290, 294,  

298, 306
swimming speed of fish, 155, 168, 296
swimsuit, effect on drag, 603
symmetry
	 of a function, 10
	 of an integrable function, 359
symmetric functions, 359
symmetric matrix, 520
synonymous mutation, 70
system of autonomous nonlinear 

differential equations, 665,  
666, 668

system of difference equations, 520
system of differential equations
	 autonomous, 460
	 coupled, 459
system of first-order autonomous 

differential equations, 632
system of linear differential  

equations, 632
	 first-order autonomous, 632
	 first-order nonautonomous, 632
	 homogeneous, 632
	 long-term behavior of, 649
	 nongeneric, 638
	 nonhomogeneous, 632
	 two-dimensional, 632
system of linear equations, 532, 631
	 matrix notation for, 532
	 solution to, 532, 534
systemic lupus erythematosus, 663, 678

Table of Integrals, 372, rp6–10
tabular function, 6
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tadpole
	 predation of, 629
	 weight of, 14, 179
tangent function
	 derivative for, 199
	 graph, 27
tangent line, 157
	 defined as a derivative, 161
	 defined as a limit, 159
	 slope of, 159, 160, 161
	 vertical, 174
tangent line approximation, 230
tangent plane, 597
	 equation of, 597
tangent plane approximation, 598,  

599, 668
Taylor polynomial, 235
	 nth-degree, 236
	 second-degree, 236
Tay-Sachs disease, 284
TEF (thermic effect of food), 314
telescoping sum, 720
TEM (transmission electron  

micrograph), 315
temperature-humidity index (humidex), 

580, 585, 600
terminal point of a vector, 496
terms of a sequence, 70
test values for solving an inequality, 685
thermic effect of food (TEF), 314
third derivative, 176
three-dimensional rectangular coordinate 

system, 489
three-dimensional space, 488
Thompson, D’Arcy, 545
time-travel experiment with host-parasite 

genotype frequencies, xlvi, 151, 
416, 484, 679

tissue culture, rate of growth of 457
total fertility rate in the United States, 242
trace, 569
trace and determinant condition for 

stability, 650, 652
trace of a matrix, 546
	 related to the stability of the  

origin, 649
trachea, contraction during coughing, 258
tragedy of the commons, 298
transformations of functions, 31, 32
transmission electron micrograph  

(TEM), 315
translation (shift) of a function, 31
transpose of a matrix, 515
tree rings, widths of, 13
triangle, geometric formulas for, rp1
Triangle Inequality, 714

Triangle Inequality for vectors, 504, 512
Triangle Law, 496
trigonometric identities, 703, rp2
trigonometric function(s), 26, 701, rp2
	 continuity of, 142, 143
	 derivatives for, 191, 199, 200, rp5
	 graphs of, 27, 705, rp2
	 limits of, 132, 133
	 periodicity of, 27
trigonometric ratios, 702, rp2
trigonometry, review of, 699, rp2
trivial solution, 533
trout population, prediction of future  

size, 401
tumor, 30
	 metastasis of, 478, 662
	 rate of growth of, 211
	 relative change in size, 238
	 resistance to treatment, 639, 662
	 treatment by radioimmunotherapy,  

633, 639
tumor growth
	 aided by matrix-digesting enzymes, 40
	 model for, 361, 452, 456
	 long-term, 662
two-compartment mixing model, 283, 

458, 661, 663, 664, 678
two-dimensional plane, 488
two-dimensional system of linear 

differential equations, 632
two-intercept form of an equation of  

a line, 698

unit vector, 501
unstable equilibrium, 433, 635
unstable node, 645
unstable spiral, 648
updating function, 73
upper triangular matrix, 520
urea concentration rebound after  

dialysis, 458
US health care expenditures, 243
US national debt, 167
US population growth, model for, 52, 166

vaccination, 574, 589, 609, 618
	 and antigenic evolution, 495
	 coverage, 66, 479, 663
vaccine(s)
	 design of, xxxvi, 495
	 epidemiological model of coverage, 

479, 663
vaccine escape, xxxvii, 514
value of a function, 3
van der Pol, Balthasar, 477
van der Pol equation, 477

van der Waals equation, 595
vascular system, branching in, 291
vector(s), 496
	 addition, 496, 500
	 column, 515
	 complex components of, 557
	 components of, 498, 499
	 difference of, 498
	 displacement, 496
	 equivalent, 496
	 geometric representation, 499
	 initial point of, 496
	 length, 500
	 magnitude, 500
	 n-dimensional, 502
	 normal, 508
	 orthogonal, 506
	 parallel, 497
	 perpendicular, 506
	 position, 499
	 projections of, 508
	 properties of, 502
	 multiplication, 497, 500
	 row, 515
	 scalar multiplication, 497, 500
	 standard basis, 503
	 subtraction, 500
	 sum of, 496
	 terminal point of, 496
	 unit, 501
	 zero, 496
vector projection, 508, 509
vectorcardiography, xxxv, 251, 256,  

504, 512
	 and Einthoven’s triangle, 509
	 matrix model for, 527, 535, 536, 545, 

547, 558
velocity
	 average, 111
	 derivative defined as, 164
	 instantaneous, 112
	 as a limit of a function, 111
	 as a rate of change, 163
velocity function, 310
velocity gradient, 187
ventilation, lung volume during, 457
Verhulst, Pierre-François, 424
vertex of a parabola, 694
vertical asymptote, 120
Vertical Line Test, 8
vertical tangent line, 174
vertical trajectory of a zebra finch,  

ii, 22
viral identification, 561
viral infection, 89
	 model for, 101
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viral load (function) of HIV, 47, 62, 107, 
108, 166

	 exponential model for, 47, 208
virulence, disease, 110, 258
virus, 89, 547, 561
virus clusters in antigenic space, 561
Volterra, Vito, 461
volume of a solid, 405, 407
von Bertalanffy, Ludwig, 451
von Bertalanffy model for fish length, 110, 

215, 295, 351, 400, 419, 429, 450

walking
	 ground reaction force, 14, 41, 179
	 metabolic power, 10

washer (annular ring), 409
wave equation, 596
Weibull equation for drug dissolution,  

429, 456
whale, right, 521
wheat, rate of production of, 609
whelks, dropped by crows, 296
wind-chill index, 566, 567, 580, 581, 593
	 linear approximation of, 601, 602
	 model of function for, 595
wingspan, related to weight, 30
wolf population, model for, ii, 609
world population growth, model for, 2, 

6, 46, 52, 146, 213, 217, 220, 283, 
398, 424

world-record hammer throw distances, 99
world-record sprint times, 99

x-coordinate, 689

y-coordinate, 689
yeast population, growth of, ii, 179, 244, 

420, 430, 448
yellow perch, matrix diagram for 

population of, 527

zebra finch, vertical trajectory of, ii, 22
zero vector, 496
zero-order kinetic equation, 429
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Reference page 3

(i)  f sxd − x n, n a positive integer	

x

y

0

y=x#

y=x%

(_1, _1)

(1, 1)

n odd

n even

0

y

x

y=x$

(1, 1)(_1, 1)

y=x^
y=≈

(ii)  f sxd − x 1yn − sn x, n a positive integer	

ƒ=#œ„xƒ=œ„x

x

y

0

(1, 1)

x

y

0

(1, 1)

(iii)  f sxd − x21 −
1

x
	

x

1

y

10

y=∆

Inverse Trigonometric Functions

arcsin x − sin21x − y  &?    sin y − x    and    2
�

2
< y <

�

2

arccos x − cos21x − y    &?    cos y − x    and    0 < y < �

arctan x − tan21x − y    &?    tan y − x    and    2
�

2
, y ,

�

2

Special Functions

Power Functions   f sxd − x p

y=tan–!x=arctan x

π
2

_ π
2

y

0
x 	 lim

x l 2`
 tan21x − 2

�

2

	 lim
x l `

 tan21x −
�

2
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Reference page 4

logb x − y    &?    b y − x	 y

1
0

x1

y=x
y=´

y=ln x

ln x − loge x,    where    ln e − 1		

ln x − y    &?    ey − x

	C ancellation Equations	 Laws of Logarithms

	  logbsbxd − x	  b logb x − x	 1.  logbsxyd − logb x 1 logb y

	  lnsexd − x	 e ln x − x	 2.  logbS x

yD − logb x 2 logb y	

			   3.  logbsxr d − r logb x

	

y

1®

1.5®

2®4®10®”   ’®1
4”   ’®1

2

x

e®

0 	

0

y

1

x1

y=ln x

y=log™ x

y=log∞ x
y=log¡¸ x

	 Exponential functions	 Logarithmic functions

Hyperbolic Functions	 y

x

y=sinh x

y=cosh x

y=tanh xsinh x −
ex 2 e2x

2
	 csch x −

1

sinh x

cosh x −
ex 1 e2x

2
	 sech x −

1

cosh x

tanh x −
sinh x

cosh x
	 coth x −

cosh x

sinh x

Inverse Hyperbolic Functions

y − sinh21x &? sinh y − x	  sinh21x − lnsx 1 sx 2 1 1d

y − cosh21x &?    cosh y − x and y > 0	  cosh21x − lnsx 1 sx 2 2 1d

y − tanh21x &?    tanh y − x	  tanh21x − 1
2 lnS 1 1 x

1 2 xD 

Special Functions

Exponential and Logarithmic Functions

lim
x l 2`  

e x − 0	 lim
x l `

 ex − `

lim
x l 01

 ln x − 2` 	 lim
x l `

 ln x − `
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	 1.	
d

dx
 scd − 0	 2.	

d

dx
 fcf sxdg − cf 9sxd

	 3.	
d

dx
 f f sxd 1 tsxdg − f 9sxd 1 t9sxd	 4.	

d

dx
 f f sxd 2 tsxdg − f 9sxd 2 t9sxd

	 5.	
d

dx
 f f sxdtsxdg − f sxdt9sxd 1 tsxd f 9sxd    (Product Rule)	 6.	

d

dx
 F  f sxd

tsxd G −
tsxd f 9sxd 2 f sxdt9sxd

ftsxdg2     (Quotient Rule)

	 7.	
d

dx
 f stsxdd − f 9stsxddt9sxd    (Chain Rule)	 8.	

d

dx
 sx n d − nx n21    (Power Rule)

Exponential and Logarithmic Functions

	9.	
d

dx
 se x d − e x	 10.	

d

dx
 sb x d − b x ln b

	11.	
d

dx
 ln | x | −

1

x
	 12.	

d

dx
 slogb xd −

1

x ln b

Trigonometric Functions

	13.	
d

dx
 ssin xd − cos x	 14.	

d

dx
 scos xd − 2sin x	 15.	

d

dx
 stan xd − sec2x

	16.	
d

dx
 scsc xd − 2csc x cot x	 17.	

d

dx
 ssec xd − sec x tan x	 18.	

d

dx
 scot xd − 2csc2x

Inverse Trigonometric Functions

	19.	
d

dx
 ssin21xd −

1

s1 2 x 2
	 20.	

d

dx
 scos21xd − 2

1

s1 2 x 2
	 21.	

d

dx
 stan21xd −

1

1 1 x 2

	22.	
d

dx
 scsc21xd − 2

1

xsx 2 2 1
	 23.	

d

dx
 ssec21xd −

1

xsx 2 2 1
	 24.	

d

dx
 scot21xd − 2

1

1 1 x 2

Hyperbolic Functions

	25.	
d

dx
 ssinh xd − cosh x	 26.	

d

dx
 scosh xd − sinh x	 27.	

d

dx
 stanh xd − sech2x

	28.	
d

dx
 scsch xd − 2csch x coth x	 29.	

d

dx
 ssech xd − 2sech x tanh x	 30.	

d

dx
 scoth xd − 2csch2x

Inverse Hyperbolic Functions

	31.	
d

dx
 ssinh21xd −

1

s1 1 x 2
	 32.	

d

dx
 scosh21xd −

1

sx 2 2 1
	 33.	

d

dx
 stanh21xd −

1

1 2 x 2

34.	
d

dx
 scsch21xd − 2

1

| x |sx 2 1 1
	 35.	

d

dx
 ssech21xd − 2

1

xs1 2 x 2
	 36.	

d

dx
 scoth21xd −

1

1 2 x 2

Reference page 5

Differentiation Rules

General Formulas
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	 1.	 y u dv − uv 2 y v du	 11.	 y csc u cot u du − 2csc u 1 C

	 2.	 y u n du −
u n11

n 1 1
 1 C,    n ± 21	 12.	 y tan u du − ln | sec u | 1 C

	 3.	 y 
du

u
− ln | u | 1 C	 13.	 y cot u du − ln | sin u | 1 C

	4.	 y e u du − e u 1 C	 14.	 y sec u du − ln | sec u 1 tan u | 1 C

	 5.	 y b u du −
b u

ln b
 1 C	 15.	 y csc u du − ln | csc u 2 cot u | 1 C

	6.	 y sin u du − 2cos u 1 C	 16.	 y 
du

sa 2 2 u 2
− sin21 

u

a
1 C,    a . 0

	 7.	 y cos u du − sin u 1 C	 17.	 y 
du

a 2 1 u 2 −
1

a
 tan21 

u

a
1 C

	 8.	 y sec2u du − tan u 1 C	 18.	 y 
du

usu 2 2 a 2
−

1

a
 sec21 

u

a
1 C

	9.	 y csc2u du − 2cot u 1 C	 19.	 y 
du

a 2 2 u 2 −
1

2a
 ln Z u 1 a

u 2 a Z 1 C

	10.	y sec u tan u du − sec u 1 C	 20.	 y 
du

u 2 2 a 2 −
1

2a
 ln Z u 2 a

u 1 a Z 1 C

Forms Involving sa 2 1 u 2 ,  a . 0

21.  y sa 2 1 u 2 du −
u

2
 sa 2 1 u 2 1

a 2

2
 lnsu 1 sa 2 1 u 2 d 1 C

22.  y u 2 sa 2 1 u 2 du −
u

8
 sa 2 1 2u 2d sa 2 1 u 2 2

a 4

8
 lnsu 1 sa 2 1 u 2 d 1 C

23.  y 
sa 2 1 u 2

u
 du − sa 2 1 u 2 2 a ln Z a 1 sa 2 1 u 2

u Z 1 C

24.  y 
sa 2 1 u 2

u 2  du − 2
sa 2 1 u 2

u
1 lnsu 1 sa 2 1 u 2 d 1 C

25.  y 
du

sa 2 1 u 2
− lnsu 1 sa 2 1 u 2 d 1 C

26.  y 
u 2 du

sa 2 1 u 2
−

u

2
 sa 2 1 u 2 2

a 2

2
 lnsu 1 sa 2 1 u 2 d 1 C

27.  y 
du

usa 2 1 u 2
− 2

1

a
 ln Z sa 2 1 u 2 1 a

u Z 1 C

28.  y 
du

u 2 sa 2 1 u 2
− 2

sa 2 1 u 2

a 2u
1 C

29.  y 
du

sa 2 1 u 2d3y2 −
u

a 2 sa 2 1 u 2
1 C

table of integrals

Basic Form

Reference page 6
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table of integrals

Forms Involving sa 2 2 u 2 ,  a . 0

30.	 y sa 2 2 u 2 du −
u

2
 sa 2 2 u 2 1

a 2

2
 sin21 

u

a
1 C

31.	 y u 2sa 2 2 u 2 du −
u

8
 s2u 2 2 a 2d sa 2 2 u 2 1

a 4

8
 sin21 

u

a
1 C

32.  y 
sa 2 2 u 2

u
 du − sa 2 2 u 2 2 a ln Z a 1 sa 2 2 u 2

u Z 1 C

33.  y 
sa 2 2 u 2

u 2  du − 2
1

u
 sa 2 2 u 2 2 sin21 

u

a
1 C

34.  y 
u 2 du

sa 2 2 u 2
− 2

u

2
 sa 2 2 u 2 1

a 2

2
 sin21 

u

a
1 C

35.  y 
du

usa 2 2 u 2
− 2

1

a
 ln Z a 1 sa 2 2 u 2

u Z 1 C

36.  y 
du

u 2sa 2 2 u 2
− 2

1

a 2u
 sa 2 2 u 2 1 C

37.  y sa 2 2 u 2d3y2 du − 2
u

8
 s2u 2 2 5a 2dsa 2 2 u 2 1

3a 4

8
 sin21 

u

a
1 C

38.  y 
du

sa 2 2 u 2d3y2 −
u

a 2 sa 2 2 u 2
1 C

Forms Involving su 2 2 a 2 , a . 0

39.  y su 2 2 a 2 du −
u

2
 su 2 2 a 2 2

a 2

2
 ln | u 1 su 2 2 a 2 | 1 C

40.  y u 2su 2 2 a 2 du −
u

8
 s2u 2 2 a 2d su 2 2 a 2 2

a 4

8
 ln | u 1 su 2 2 a 2 | 1 C

41.  y 
su 2 2 a 2

u
 du − su 2 2 a 2 2 a cos21 

a

| u | 1 C

42.  y 
su 2 2 a 2

u 2  du − 2
su 2 2 a 2

u
1 ln | u 1 su 2 2 a 2 | 1 C

43.  y 
du

su 2 2 a 2
− ln | u 1 su 2 2 a 2 | 1 C

44.  y 
u 2 du

su 2 2 a 2
−

u

2
 su 2 2 a 2 1

a 2

2
 ln | u 1 su 2 2 a 2 | 1 C

45.  y du

u 2su 2 2 a 2
−

su 2 2 a 2

a 2u
1 C

46.  y 
du

su 2 2 a 2d3y2 − 2
u

a 2 su 2 2 a 2
1 C
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47.	 y 
u du

a 1 bu
−

1

b 2  sa 1 bu 2 a ln | a 1 bu |d 1 C

48.  y 
u 2 du

a 1 bu
−

1

2b 3  fsa 1 bud2 2 4asa 1 bud 1 2a 2 ln | a 1 bu |g 1 C

49.  y 
du

usa 1 bud
−

1

a
 ln Z u

a 1 bu Z 1 C

50.  y 
du

u 2sa 1 bud
− 2

1

au
1

b

a 2  ln Z a 1 bu

u Z 1 C

51.  y 
u du

sa 1 bud2 −
a

b 2sa 1 bud
1

1

b 2  ln | a 1 bu | 1 C

52.  y 
du

usa 1 bud2 −
1

asa 1 bud
2

1

a 2  ln Z a 1 bu

u Z 1 C

53.  y 
u 2 du

sa 1 bud2 −
1

b 3  Sa 1 bu 2
a 2

a 1 bu
2 2a ln | a 1 bu |D 1 C

54.  y usa 1 bu du −
2

15b 2  s3bu 2 2adsa 1 bud3y2 1 C

55.  y 
u du

sa 1 bu
−

2

3b 2  sbu 2 2adsa 1 bu 1 C

56.  y 
u 2 du

sa 1 bu
−

2

15b 3  s8a 2 1 3b 2u 2 2 4abudsa 1 bu 1 C

57.   y 
du

usa 1 bu
−

1

sa
 ln Z sa 1 bu 2 sa

sa 1 bu 1 sa
Z 1 C, if a . 0

	  −
2

s2a
 tan21Î a 1 bu

2a
1 C,     if a , 0

58.  y 
sa 1 bu

u
 du − 2sa 1 bu 1 a y 

du

usa 1 bu

59.  y 
sa 1 bu

u 2  du − 2
sa 1 bu

u
1

b

2
 y 

du

usa 1 bu

60.  y u nsa 1 bu du −
2

bs2n 1 3d
 Fu nsa 1 bud3y2 2 na y u n21 sa 1 bu duG

61.  y 
u n du

sa 1 bu
−

2u nsa 1 bu

bs2n 1 1d
2

2na

bs2n 1 1d
 y 

u n21 du

sa 1 bu

62.  y 
du

u nsa 1 bu
− 2

sa 1 bu

asn 2 1du n21 2
bs2n 2 3d
2asn 2 1d

 y 
du

u n21sa 1 bu

table of integrals

Forms Involving a 1 bu
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63.	 y sin2u du − 1
2 u 2 1

4 sin 2u 1 C	 76.	 y cot nu du −
21

n 2 1
 cot n21u 2 y cot n22u du

64.  y cos2u du − 1
2 u 1 1

4 sin 2u 1 C	 77.	 y secnu du −
1

n 2 1
 tan u secn22u 1

n 2 2

n 2 1
 y secn22u du

65.  y tan2u du − tan u 2 u 1 C	 78.	 y cscnu du −
21

n 2 1
 cot u cscn22u 1

n 2 2

n 2 1
 y cscn22u du

66.  y cot2u du − 2cot u 2 u 1 C	 79.	 y sin au sin bu du −
sin sa 2 bdu

2sa 2 bd
2

sin sa 1 bdu
2sa 1 bd

1 C

67.  y sin3u du − 2 1
3 s2 1 sin2ud cos u 1 C	 80.	 y cos au cos bu du −

sin sa 2 bdu
2sa 2 bd

1
sin sa 1 bdu

2sa 1 bd
1 C

68.  y cos3u du − 1
3 s2 1 cos2ud sin u 1 C	 81.	 y sin au cos bu du − 2

cos sa 2 bdu
2sa 2 bd

2
cos sa 1 bdu

2sa 1 bd
1 C

69.  y tan3u du − 1
2 tan2u 1 ln | cos u | 1 C	 82.	 y u sin u du − sin u 2 u cos u 1 C

70.  y cot3u du − 2 1
2 cot2u 2 ln | sin u | 1 C

71.  y sec3u du − 1
2 sec u tan u 1 1

2 ln | sec u 1 tan u | 1 C	 83.	 y u cos u du − cos u 1 u sin u 1 C

72.  y csc3u du − 2 1
2 csc u cot u 1 1

2 ln | csc u 2 cot u | 1 C	 84.	 y u n sin u du − 2u n cos u 1 n y u n21 cos u du

73.  y sinnu du − 2
1

n
 sinn21u cos u 1

n 2 1

n
 y sinn22u du	 85.	 y u n cos u du − u n sin u 2 n y u n21 sin u du

74.  y cosnu du −
1

n
 cosn21u sin u 1

n 2 1

n
 y cosn22u du	 86.	  y sinnu cosmu du − 2

sinn21u cosm11u

n 1 m
1

n 2 1

n 1 m
 y sinn22u cosmu du

75.  y tannu du −
1

n 2 1
 tann21u 2 y tann22u du		   −

sinn11u cosm21u

n 1 m
1

m 2 1

n 1 m
 y sinnu cosm22u du

Inverse Trigonometric Forms

87.  y sin21u du − u sin21u 1 s1 2 u 2 1 C	 92.	 y u tan21u du −
u 2 1 1

2
 tan21u 2

u

2
1 C

88.  y cos21u du − u cos21u 2 s1 2 u 2 1 C	
93.	 y u n sin21u du −

1

n 1 1
 Fu n11 sin21u 2 y 

u n11 du

s1 2 u 2G, n ± 21

89.  y tan21u du − u tan21u 2 1
2 lns1 1 u 2d 1 C	

94.	 y u n cos21u du −
1

n 1 1
 Fu n11 cos21u 1 y 

u n11 du

s1 2 u 2G, n ± 21
90.  y u sin21u du −

2u 2 2 1

4
 sin21u 1

us1 2 u 2

4
1 C	

95.	 y u n tan21u du −
1

n 1 1
 Fu n11 tan21u 2 y 

u n11 du

1 1 u 2 G, n ± 2191.  y u cos21u du −
2u 2 2 1

4
 cos21u 2

us1 2 u 2

4
1 C

Reference page 9
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	 96.	 y ueau du −
1

a 2  sau 2 1deau 1 C	 100.	 y ln u du − u ln u 2 u 1 C

	 97.	 y u neau du −
1

a
 u neau 2

n

a
 y u n21eau du	 101.	 y u n ln u du −

u n11

sn 1 1d2  fsn 1 1d ln u 2 1g 1 C

	 98.	 y eau sin bu du −
eau

a 2 1 b 2  sa sin bu 2 b cos bud 1 C	 102.	 y 
1

u ln u
 du − ln | ln u | 1 C

	 99.	 y eau cos bu du −
eau

a 2 1 b2  sa cos bu 1 b sin bud 1 C

Hyperbolic Forms

103.	 y sinh u du − cosh u 1 C	 108.	 y csch u du − ln | tanh 12 u | 1 C 

104.	 y cosh u du − sinh u 1 C	 109.	 y sech2u du − tanh u 1 C	

105.	 y tanh u du − ln cosh u 1 C	 110.	 y csch2u du − 2coth u 1 C

106.	 y coth u du − ln | sinh u | 1 C	 111.	 y sech u tanh u du − 2sech u 1 C

107.	 y sech u du − tan21 | sinh u | 1 C	 112.	 y csch u coth u du − 2csch u 1 C

Forms Involving s2au 2 u2 ,  a . 0

113.	 y s2au 2 u 2 du −
u 2 a

2
 s2au 2 u 2 1

a 2

2
 cos21S a 2 u

a D 1 C

114.	 y us2au 2 u 2 du −
2u 2 2 au 2 3a 2

6
 s2au 2 u 2 1

a 3

2
 cos21S a 2 u

a D 1 C

115.	 y 
s2au 2 u 2

u
 du − s2au 2 u 2 1 a cos21S a 2 u

a D 1 C

116.	 y 
s2au 2 u 2

u 2  du − 2
2s2au 2 u 2

u
2 cos21S a 2 u

a D 1 C

117.	 y 
du

s2au 2 u 2
− cos21S a 2 u

a D 1 C

118.	 y 
u du

s2au 2 u 2
− 2s2au 2 u 2 1 a cos21S a 2 u

a D 1 C

119.	 y 
u2 du

s2au 2 u 2
− 2

su 1 3ad
2

 s2au 2 u 2 1
3a 2

2
 cos21S a 2 u

a D 1 C

120.	 y 
du

us2au 2 u 2
− 2

s2au 2 u 2

au
1 C

table of integrals

Exponential and Logarithmic Forms
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	 7.	 �Sketch by hand, on the same axes, the graphs of the following 
functions.

		  (a)	 f sxd − x	 (b)	 tsxd − x 2

		  (c)	 hsxd − x 3	 (d)	 jsxd − x 4

ƒ=x

g
h

y

x

j
©=≈

h(x)=˛

j(x)=x$

	 8.	 �Draw, by hand, a rough sketch of the graph of each function.

		  (a)	 y − sin x

π
2

5π
2

3π
2

π
2

_

x

y

π0_π

1

_1
2π 3π

		  (b)	 y − cos x

x

y

0

1

_1

π_π

2π

3π

π
2

5π
2

3π
2

π
2

_

		  (c)	 y − tan x

x

y

π0_π

1

π
 2

3π
 2

π
 2

_3π 
2

_

		  (d)	 y − e x	 (e)	 y − ln x

		

x

y

0 1

1

		

x

y

0 1

1

		  (f)	 y − 1yx	 (g)	 y − | x |

		

x

y

0 1

1

		

y

x1

1

	 1.	 (a)	 What is a function? What are its domain and range?

		  	� A function f  is a rule that assigns to each element x in a set 
D exactly one element, called f sxd, in a set E. The set D is 
called the domain of the function. The range of f  is the set of 
all possible values of f sxd as x varies throughout the domain.

		  (b)	 What is the graph of a function?

		  	� If f  is a function with domain D, then its graph is the set of 
ordered pairs hsx, f sxdd | x [ Dj.

		  (c)	� How can you tell whether a given curve is the graph of a 
function?

		  	� Use the Vertical Line Test: A curve in the xy-plane is the 
graph of a function of x if and only if no vertical line inter-
sects the curve more than once.

	 2.	 �Discuss four ways of representing a function. Illustrate your 
discussion with examples.

		  �The four ways to represent a function are: verbally, numerically, 
visually, and algebraically. An example of each is given below.

		  �Verbally:  An assignment of students to chairs in a classroom (a 
description in words)

		  �Numerically:  A tax table that assigns an amount of tax to an 
income (a table of values)

		  �Visually:  A graphical history of the Dow Jones average (a graph) 

		  �Algebraically:  A relationship between distance, speed, and 
time: d − rt (an explicit formula)

	 3.	 (a)	� What is an even function? How can you tell if a function is 
even by looking at its graph?

		  	� A function f  is even if it satisfies f s2xd − f sxd for every 
number x in its domain. If the graph of a function is sym-
metric with respect to the y-axis, then f  is even. Examples of  
even functions: f sxd − x 2, f sxd − x 4 1 x 2, f sxd − | x |.

		  (b)	� What is an odd function? How can you tell if a function is 
odd by looking at its graph?

		  	� A function f  is odd if it satisfies f s2xd − 2f sxd for every 
number x in its domain. If the graph of a function is symmet-
ric with respect to the origin, then f  is odd. Examples of odd 
functions: f sxd − x 3, f sxd − x 3 1 x 5, f sxd − s3 x .

	 4.	 What is an increasing function?

		  �A function f  is called increasing on an interval I if f sx1d , f sx2d 
whenever x1 , x2 in I.

	 5.	 �What is a mathematical model?

		  �A mathematical model is a mathematical description (often by 
means of a function or an equation) of a real-world phenomenon.

	 6.	 �Give an example of each type of function.

		  (a)	 Linear function: f sxd − 2x 1 1, f sxd − ax 1 b
	 	 (b)	 Power function: f sxd − x 2, f sxd − x a

		  (c)	 Exponential function: f sxd − 2 x, f sxd − b x

	 	 (d)	 �Quadratic function: f sxd − x 2 1 x 1 1, 
f sxd − ax 2 1 bx 1 c  sa ± 0d

	 	 (e)	 Polynomial of degree 5: f sxd − x 5 1 2x 4 2 3x 2 1 7

	 	 (f)	� Rational function: f sxd −
x

x 1 2
, f sxd −

Psxd
Qsxd

 where Psxd

		  	� and Qsxd are polynomials
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Chapter 1 Concept Check Answers

		  (b)	� If f  is a one-to-one function, how is its inverse function  
f 21 defined? How do you obtain the graph of f 21 from the 
graph of f ?

		  	� If f  is a one-to-one function with domain A and range B, 
then its inverse function f 21 has domain B and range A and is 
defined by 

		  	 f 21syd − x &? f sxd − y

		  	� for any y in B. The graph of f 21 is obtained by reflecting the 
graph of f  about the line y − x.

	 13.	 (a)	� What is a semilog plot?

		  	� A semilog plot is a graph of the points sx, log yd given sx, yd 
data points.

		  (b)	�� If a semilog plot of your data lies approximately on a line, 
what type of model is appropriate?

		  	� An exponential model is appropriate when a semilog plot of 
the data lies on a line.

	 14.	 (a)	� What is a log-log plot?

		  	� A log-log plot is a graph of the points slog x, log yd given 
sx, yd data points.

		  (b)	� If a log-log plot of your data lies approximately on a line, 
what type of model is appropriate?

		  	� A power model is appropriate when a log-log plot of the data 
lies on a line.

	 15.	 (a)	� What is a sequence?

		  	� A sequence is an ordered list of numbers.

		  (b)	� What is a recursive sequence?

		  	� A recursive sequence is a sequence in which each term is 
defined using one or more preceding terms.

	 16.	 Discrete-time models

		  (a)	� If there are Nt cells at time t and they divide according to the 
difference equation Nt11 − RNt, write an expression for Nt.

		  	 Nt − N0 R t

		  (b)	� If a population has carrying capacity K, write the logistic dif-
ference equation for Nt.

		  	 Nt11 − F1 1 rS1 2
Nt

K DGNt

		  (c)	 Write the logistic difference equation for

		  xt −
r

s1 1 rdK
 Nt

		  	 xt11 − Rmax xts1 2 xtd

		  (h)	 y − sx 

0

1

1 x

y

	 9.	 Suppose that f  has domain A and t has domain B.
		  (a)	 What is the domain of f 1 t?

		  	� The domain of f 1 t is the intersection of the domain of f  
and the domain of t; that is, A � B, the numbers that are in 
both A and B.

		  (b)	 What is the domain of f t?

		  	� The domain of f t is also A � B.

		  (c)	 What is the domain of fyt?

		  	� The domain of fyt must exclude values of x that make t 
equal to 0; that is, hx [ A � B | tsxd ± 0j.

	 10.	 �How is the composite function f 8 t defined? What is its domain?

		  �Given two functions f  and t, the composite function f 8 t is 
defined by s f 8 tdsxd − f stsxdd. The domain of f 8 t is the set of 
all x in the domain of t such that tsxd is in the domain of f .

	 11.	 �Suppose the graph of f  is given. Write an equation for each of the 
graphs that are obtained from the graph of f  as follows.

		  (a)	 Shift 2 units upward:    y − f sxd 1 2

		  (b)	 Shift 2 units downward:    y − f sxd 2 2

		  (c)	 Shift 2 units to the right:    y − f sx 2 2d
		  (d)	 Shift 2 units to the left:    y − f sx 1 2d
		  (e)	 Reflect about the x-axis:    y − 2f sxd
		  (f)	 Reflect about the y-axis:    y − f s2xd
		  (g)	 Stretch vertically by a factor of 2:    y − 2 f sxd
		  (h)	 Shrink vertically by a factor of 2:    y − 1

2 f sxd
		  (i)	 Stretch horizontally by a factor of 2:    y − f (1

2x)
		  ( j)	 Shrink horizontally by a factor of 2    y − f s2xd
	 12.	 (a)	� What is a one-to-one function? How can you tell if a function 

is one-to-one by looking at its graph?

		  	� A function f  is called a one-to-one function if it never takes 
on the same value twice; that is, if f sx1d ± f sx2d whenever 
x1 ± x2. (Or, f  is 1-1 if each output corresponds to only one 
input.)

		  	�   Use the Horizontal Line Test: A function is one-to-one if 
and only if no horizontal line intersects its graph more than 
once.
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		  (b)	 lim
x la1

 f sxd − L

		  	� lim
x la1

 f sxd − L means that the values of f sxd approach L as 

		  	 the values of x approach a from the right side.

0 x

y

L

xa

ƒ

x    a+
lim  ƒ=L		  (c)	 lim

x la2
 f sxd − L

		  	� lim
x la2

 f sxd − L means that the values of f sxd approach L as 

		  	 the values of x approach a from the left side.

x    a_
lim  ƒ=L

0 x

y

ƒ L

x a

		  (d)	 lim
x la

 f sxd − `

		  	� lim
x la

 f sxd − ` means that the values of f sxd become arbitrarily 

		  	 large as x approaches a (from either side)

x

y

x=a

y=ƒ

a0

		  (e)	 lim
x l `

 f sxd − L

		  	� This means that the values of f sxd approach L as x becomes 
large.

0

y=ƒ

y=L

0

y=ƒ

y=L

0

y=ƒ

y=L

x

y

x

y

x

y

	 5.	 �State the following Limit Laws for functions.
		  (a)	 Sum Law

		  	� The limit of a sum is the sum of the limits: 
lim
x la

 f f sxd 1 tsxdg − lim
x la

 f sxd 1 lim
x la

 tsxd

	 1.	 (a)	 What is a convergent sequence?

		  	� A convergent sequence is an ordered list of numbers hanj for 
which lim

nl`
 an exists.

		  (b)	 What does lim
nl`

an − 3 mean?

		  	� The terms of the sequence hanj approach 3 as n becomes 
large.

	 2.	 �What is lim
nl`

 r n in the following three cases?

		  (a)	 0 , r , 1

		  	 lim
nl`

 r n − 0 when 0 , r , 1

		  (b)	 r − 1

		  	 lim
nl`

 r n − 1 when r − 1

		  (c)	 r . 1

		  	 lim
nl`

 r n − ` when r . 1

	 3.	 (a)	� What is the sum of the finite geometric series 
a 1 ar 1 ar 2 1 ∙ ∙ ∙ 1 ar n?

		  	� a 1 ar 1 ar 2 1 ∙ ∙ ∙ 1 ar n −
as1 2 r n11d

1 2 r

		  (b)	 �If 21 , r , 1, what is the sum of the infinite geometric 
series a 1 ar 1 ar 2 1 ∙ ∙ ∙ 1 ar n 1 ∙ ∙ ∙?

		  	� �a 1 ar 1 ar 2 1 ∙ ∙ ∙ 1 ar n 1 ∙ ∙ ∙ −
a

1 2 r
 if 21 , r , 1

	 4.	 ����Explain what each of the following means and illustrate with a 
sketch.

		  (a)	 lim
x la

 f sxd − L

		  	� lim
x la

 f sxd − L means that the values of f sxd approach L as the 
		  	 values of x approach a (from either side).

x

y

0

L

a

x

y

0

L

ax

y

0

L

a
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		  	 lim
x la2

 f sxd − 2`	 lim
x la1

 f sxd − 2`

		  	

y

7 a x

	

a

y

0 x

		  (b)	� What does it mean to say that the line y − L is a horizontal 
asymptote of the curve y − f sxd? Draw curves to illustrate 
the various possibilities.

		  	� The line y − L is a horizontal asymptote of the curve 
y − f sxd if either lim

x l `
 f sxd − L or lim

x l2 `
 f sxd − L.

		  0

y=ƒ

y=L

x

y

    0

y=ƒ

y=L

x

y

	 8.	 �Which of the following curves have vertical asymptotes? Which 
have horizontal asymptotes?

		  (a)	 y − x 4:  No asymptote

		  (b)	 y − sin x:  No asymptote

		  (c)	 y − tan x:  Vertical asymptotes x − �
2 1 �n, n an integer

		  (d)	 y − e x:  Horizontal asymptote y − 0 a lim
x l2`

 e x − 0b

		  (e)	 y − ln x:  Vertical asymptote x − 0 a lim
x l 01

 ln x − 2`b
		  (f)	� y − 1yx: 

		  	 Vertical asymptote x − 0, horizontal asymptote y − 0

		  (g)	 y − sx : � No asymptote

	 9.	 (a)	 What does it mean for f  to be continuous at a?

		  	� A function f  is continuous at a number a if f sxd approaches 
f sad as x approaches a; that is, lim

x la
 f sxd − f sad.

		  (b)	� What does it mean for f  to be continuous on the interval 
s2`, `d? What can you say about the graph of such a  
function?

		  	� A function f  is continuous on the interval s2`, `d if f  is 
continuous at every real number a. The graph of such a func-
tion has no break and every vertical line crosses it.

	 10.	 What does the Intermediate Value Theorem say?

		  �The Intermediate Value Theorem states that if f  is continuous on 
the closed interval fa, bg and N is any number between f sad and 
f sbd, where f sad ± f sbd, then there exists a number c in sa, bd 
such that f scd − N. In other words, a continuous function takes 
on every intermediate value between the function values f sad  
and f sbd.

		  (b)	 Difference Law

		  	� The limit of a difference is the difference of the limits: 
lim
x la

 f f sxd 2 tsxdg − lim
x la

 f sxd 2 lim
x la

 tsxd

		  (c)	 Constant Multiple Law

		  	� The limit of a constant times a function is the constant times 
the limit of the function:  lim

x la
 fcf sxdg − c lim

x la
 f sxd

		  (d)	� Product Law

		  	� The limit of a product is the product of the limits: 
lim
x la

 f f sxdtsxdg − lim
x la

 f sxd ? lim
x la

 tsxd

		  (e)	 Quotient Law

		  	� The limit of a quotient is the quotient of the limits, provided 
that the limit of the denominator is not 0: 

		  	 lim
x la

 
f sxd
tsxd

−
lim
x la 

f sxd

lim
x la

 tsxd
  if lim

x la
 tsxd ± 0

		  (f)	 Power Law

		  	� The limit of a power is the power of the limit: 
lim
x l

 

a
 f f sxdg n − f lim

x l
 

a
 f sxdg n  (for n a positive integer)

		  (g)	 Root Law

		  	� The limit of a root is the root of the limit:

		  	 lim 
x l

 

a
sn f sxd − sn lim

x l
 

a
 f sxd where n is a positive integer

		  	� [If n is even, assume that lim
x l a

 f sxd . 0.]

	 6.	 �What does the Squeeze Theorem say?

		  �The Squeeze Theorem states that if f sxd < tsxd < hsxd when x is 
near a (except possibly at a) and lim

x l a
 f sxd − lim

x l a
 hsxd − L, then 

lim
x l a

 tsxd − L.

	 7.	 (a)	� What does it mean to say that the line x − a is a vertical 
asymptote of the curve y − f sxd? Draw curves to illustrate 
the various possibilities.

		  	� The line x − a is a vertical asymptote of the curve y − f sxd 
if at least one of the following is true:

		  	 lim
x la

 f sxd − `	 lim
x la

 f sxd − 2`

		  	

x

y

x=a

y=ƒ

a0

	

0

x=a

y=ƒ
a x

y

		  	 lim
x la2

 f sxd − `	 lim
x la1

 f sxd − `

		  	

y

0 a x

  

a

y

x0
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	 6.	 �Describe several ways in which a function can fail to be  
differentiable. Illustrate with sketches.

		  �A function is not differentiable at any value where the graph has 
a corner, where the graph has a discontinuity, or where it has a 
vertical tangent line.

	 7.	 State each differentiation rule both in symbols and in words.

		  (a)	 The Power Rule

		  	� If n is any real number, then 
d

dx
 sx nd − nx n21. The deriva-

		  	� tive of a variable base raised to a constant power is the power 
times the base raised to the power minus one.

		  (b)	 The Constant Multiple Rule

		  	� If c is a constant and f  is a differentiable function, then 

		  	
d

dx
 fcf sxdg − c 

d

dx
 f sxd. The derivative of a constant times a 

			   function is the constant times the derivative of the function.

		  (c)	 The Sum Rule

		  	� If f  and t are both differentiable, then 

			 
d

dx
 f f sxd 1 tsxdg −

d

dx
 f sxd 1

d

dx
 tsxd. The derivative of a 

			   sum of functions is the sum of the derivatives.

		  (d)	 The Difference Rule

		  	� If f  and t are both differentiable, then 

			 
d

dx
 f f sxd 2 tsxdg −

d

dx
 f sxd 2

d

dx
 tsxd. The derivative of a 

		  	 difference of functions is the difference of the derivatives.

		  (e)	 The Product Rule

		  	� If f  and t are both differentiable, then 

			�  
d

dx
 f f sxdtsxdg − f sxd 

d

dx
 tsxd 1 tsxd 

d

dx
 f sxd 

		  	� The derivative of a product of two functions is the first 
function times the derivative of the second function plus the 
second function times the derivative of the first function.

	 1.	 �Write an expression for the slope of the tangent line to the curve 
y − f sxd at the point sa, f sadd.

		  �The slope of the tangent line to the graph of y − f sxd at the point 
sa, f sadd is given by

		  lim
x la

 
f sxd 2 f sad

x 2 a
    or    lim

hl0
 

f sa 1 hd 2 f sad
h

	 2.	 �Define the derivative f 9sad. Discuss two ways of interpreting this 
number.

		  �f 9sad − lim
hl0

 
f sa 1 hd 2 f sad

h
 or, equivalently, 

		  �f 9sad − lim
x la

 
f sxd 2 f sad

x 2 a
. The derivative f 9sad is the instanta-

		  �neous rate of change of f  (with respect to x) when x − a and also 
represents the slope of the tangent line to the graph of f  at x − a.

	 3.	 �If y − f sxd and x changes from x1 to x2, write expressions for the 
following.

		  (a)	� The average rate of change of y with respect to x over the 
interval fx1, x2 g.

		  	� The average rate of change of y with respect to x over the 

interval fx1, x2 g is 
f sx2d 2 f sx1d

x2 2 x1
.

		  (b)	� The instantaneous rate of change of y with respect to x  
at x − x1.

		  	� The instantaneous rate of change of y with respect to x at 

x − x1 is lim
x2lx1

 
f sx2d 2 f sx1d

x2 2 x1
.

	 4.	 �Define the second derivative of f . If f std is the position function 
of a particle, how can you interpret the second derivative?

		  �The second derivative of f , f 0, is the derivative of f 9. If f std 
is the position function of a particle, then the first derivative is 
velocity and the second derivative is the derivative of velocity, 
namely, acceleration.

	 5.	 (a)	 What does it mean for f  to be differentiable at a?

		  	� A function f  is differentiable at a number a if its derivative f 9 
exists at x − a; that is, if f 9sad exists.

		  (b)	� What is the relation between the differentiability and conti-
nuity of a function?

		  	� If f  is differentiable at a, then f  is continuous at a. So if f  is 
not continuous at a, then f  is not differentiable at a.

		  (c)	� Sketch the graph of a function that is continuous but not  
differentiable at a − 2.

		  	

0

y

x2
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		  (b)	 Express e as a limit.

		  	 e − lim
xl0

 s1 1 xd1yx

		  (c)	� Why is the natural exponential function y − e x used more 
often in calculus than the other exponential functions y − b x?

		  	� The differentiation formula for y − b x  fy9 − b x ln bg   
is simplest when b − e because ln e − 1.

		  (d)	� Why is the natural logarithmic function y − ln x used 
more often in calculus than the other logarithmic functions 
y − logb x?

		  	� The differentiation formula for y − logb x  fy9 − 1ysx ln bdg 
is simplest when b − e because ln e − 1.

	 10.	 (a)	� Explain how implicit differentiation works. When should you 
use it?

		  	� Implicit differentiation consists of differentiating both sides 
of an equation involving x and y with respect to x, and then 
solving the resulting equation for y9. Use implicit differentia-
tion when it is difficult to solve an equation for y in terms  
of x.

		  (b)	� Explain how logarithmic differentiation works. When should 
you use it?

		  	� Logarithmic differentiation consists of taking natural loga-
rithms of both sides of an equation y − f sxd, simplifying, 
differentiating implicitly with respect to x, and then solving 
the resulting equation for y9. Use logarithmic differentiation 
when the calculation of derivatives of complicated functions 
involving products, quotients, or powers can be simplified by 
taking logarithms.

	 11.	 Write an expression for the linearization of f  at a.

		  �Lsxd − f sad 1 f 9sadsx 2 ad.

	 12.	 �Write an expression for the nth-degree Taylor polynomial of f  
centered at a.

Tnsxd − f sad 1 f 9sadsx 2 ad 1
f 0sad

2!
 sx 2 ad2 1 ∙ ∙ ∙ 1

f sndsad
n!

 sx 2 adn

		  (f)	 The Quotient Rule

		  	� If f  and t are both differentiable, then 

d

dx
 F f sxd

tsxd G −

tsxd 
d

dx
 f sxd 2 f sxd 

d

dx
 tsxd

ftsxdg 2

		  	� The derivative of a quotient of functions is the denominator 
times the derivative of the numerator minus the numerator 
times the derivative of the denominator, all divided by the 
square of the denominator.

		  (g)	 The Chain Rule

		  	� If t is differentiable at x and f  is differentiable at tsxd,  
then the composite function defined by Fsxd − f stsxdd 
is differentiable at x and F9 is given by the product 
F9sxd − f 9stsxddt9sxd. The derivative of a composite function 
is the derivative of the outer function evaluated at the inner 
function times the derivative of the inner function.

	 8.	 State the derivative of each function.

		  (a)	 y − x n:  y9 − nx n21

		  (b)	 y − e x:  y9 − e x

		  (c)	 y − b x:  y9 − b x ln b

		  (d)	 y − ln x:  y9 − 1yx

		  (e)	 y − logb x:  y9 − 1ysx ln bd
		  (f)	 y − sin x:  y9 − cos x

		  (g)	 y − cos x:  y9 − 2sin x

		  (h)	 y − tan x:  y9 − sec2 x

		  (i)	 y − csc x:  y9 − 2csc x cot x

		  (j)	 y − sec x:  y9 − sec x tan x

		  (k)	 y − cot x:  y9 − 2csc2x

		  (l)	 y − tan21x:  y9 − 1ys1 1 x 2d
	 9.	 (a)	 How is the number e defined?

			�   e is the number such that lim
hl0

 
e h 2 1

h
− 1.
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	 5.	 (a)	 State the Increasing/Decreasing Test.

		  	� If f 9sxd . 0 on an interval, then f  is increasing on that  
interval.

		  	� If f 9sxd , 0 on an interval, then f  is decreasing on that  
interval.

		  (b)	� What does it mean to say that f  is concave upward on an 
interval I?

		  	� A function f  is concave upward on an interval I if f 9 is an 
increasing function on I (or, equivalently, the graph of f  lies 
above all of its tangent lines on I ).

		  (c)	� State the Concavity Test.

		  	� If f 0sxd . 0 on an interval, then the graph of f  is concave 
upward on that interval.

		  	� If f 0sxd , 0 on an interval, then the graph of f  is concave 
downward on that interval.

		  (d)	� What are inflection points? How do you find them?

		  	� Inflection points on the graph of a continuous function f  
are points where the curve changes from concave upward to 
concave downward or from concave downward to concave 
upward. They can be found by determining the values at 
which the second derivative changes sign.

	 6.	 (a)	� State the First Derivative Test.

		  	� Suppose that c is a critical number of a continuous function f .

		  	 ■ � If f 9 changes from positive to negative at c, then f  has a 
local maximum at c.

		  	 ■ � If f 9 changes from negative to positive at c, then f  has a 
local mimimum at c.

		  	 ■ � If f 9 does not change sign at c, then f  has no local maxi-
mum or minimum at c.

		  (b)	� State the Second Derivative Test.

		  	 Suppose f 0 is continuous near c.

		  	 ■ � If f 9scd − 0 and f 0scd . 0, then f  has a local minimum  
at c.

		  	 ■ � If f 9scd − 0 and f 0scd , 0, then f  has a local maximum  
at c.

		  (c)	� What are the relative advantages and disadvantages of  
these tests?

			�   The Second Derivative Test is sometimes easier to use, but 
it is inconclusive when f 0scd − 0 and fails if f 0scd does not 
exist. In either case the First Derivative Test must be used.

	 7.	 (a)	� What does l’Hospital’s Rule say?

		  	� L’Hospital’s Rule states that if f  and t are differentiable 
functions, t9sxd ± 0 near a (except possibly at a), and 
lim
x la

 f sxdytsxd is an indeterminate form of type 00 or `y`, then 

		  	 lim
x la

 
f sxd
tsxd

− lim
x la

 
f 9sxd
t9sxd

 provided the right side limit exists.

	 1.	 �Explain the difference between an absolute maximum and a local 
maximum. Illustrate with a sketch.

		  �The function value f scd is the absolute maximum value of f  
if f scd is the largest function value on the entire domain of f, 
whereas f  is a local maximum value if it is the largest function 
value when x is near c.

		

x

y abs
max

loc
max

loc
min

abs and
loc min

	 2.	 (a)	� What does the Extreme Value Theorem say?

		  	� The Extreme Value Theorem states that if f  is a continuous 
function on a closed interval fa, bg, then it always attains an 
absolute maximum and an absolute minimum value on that 
interval.

		  (b)	� Explain how the Closed Interval Method works.

		  	� To find the absolute maximum and minimum values of a 
continuous function f  on a closed interval fa, bg, we follow 
these three steps:

		  	 ■ � Find the critical numbers of f  in the interval sa, bd and 
compute the values of f  at these numbers.

		  	 ■ � Find the values of f  at the endpoints of the interval.

		  	 ■ � The largest of the output values from the previous two steps 
is the absolute maximum value; the smallest of these values 
is the absolute minimum value.

	 3.	 (a)	 State Fermat’s Theorem.

		  	� Fermat’s Theorem states that if f  has a local maximum or 
minimum at c, and if f 9scd exists, then f 9scd − 0.

		  (b)	 Define a critical number of f.

		  	� A critical number of a function f  is a number c in the domain 
of f  such that either f 9scd − 0 or f 9scd does not exist.

	 4.	 �State the Mean Value Theorem and give a geometric  
interpretation.

		  �The Mean Value Theorem states that if f  is a differentiable func-
tion on the interval fa, bg, then there exists a number c between a 

and b such that f 9scd −
f sbd 2 f sad

b 2 a
. 

		  �Geometric interpretation: There is some point P on the graph 
of a function f  [on the interval sa, bd] where the tangent line is 
parallel to the secant line that connects sa, f sadd and sb, f sbdd.

		
0 bca

B{b, f(b)}

P{c, f(c)}

A{a, f(a)}

x

y
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unstable if solutions that start close to the equilibrium move 
away from it.

		  (c)	� State the Stability Criterion.

		  	� If x̂ is an equilibrium of the recursive sequence xt11 − f sxtd,  
where f 9 is continuous, and | f 9sx̂d | , 1, then the equilibri-
um is stable. If | f 9sx̂d | . 1, then the equilibrium is unstable.

	 9.	 (a)	� What is an antiderivative of a function f ?

		  	� A function F is an antiderivative of f  on an interval I if 
F9sxd − f sxd for all x in I.

		  (b)	� Suppose F1 and F2 are both antiderivatives of f  on an  
interval I. How are F1 and F2 related?

		  	� If F1 and F2 are both antiderivatives of f  on an interval I, then 
they differ by a constant.

		  (b)	� How can you use l’Hospital’s Rule if you have a product 
f sxd tsxd where f sxd l 0 and tsxd l ` as x l a?

		  	� Write ft as 
f

1yt
 or 

t
1yf

.

		  (c)	� How can you use l’Hospital’s Rule if you have a difference 
f sxd 2 tsxd where f sxd l ` and tsxd l ` as x l a?

		  	� Convert the difference into a quotient using a common 
denominator, rationalizing, factoring, or some other method.

	 8.	 (a)	� What is an equilibrium of the recursive sequence  
xt11 − f sxtd?

		  	� An equilibrium of the recursive sequence xt11 − f sxtd is a 
number x̂ that is left unchanged by the function f , that is, 
f sx̂d − x̂.

		  (b)	� What is a stable equilibrium? An unstable equilibrium?

		  	� An equilibrium is stable if solutions that begin close to the 
equilibrium approach that equilibrium. An equilibrium is 
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of f  (labeled “+” in the figure) minus the area of the region 
below the x-axis and above the graph of f  (labeled “2”).

		  	

y=ƒ

y

xa b0

	 3.	 �State the Midpoint Rule.

		  �If f  is a continuous function on the interval fa, bg and we divide 
fa, bg into n subintervals of equal width Dx − sb 2 adyn, then

		  y
b

a
 f sxd dx < o

n

i−1
 f sxid Dx − Dx f f sx1d 1 ∙ ∙ ∙ 1 f sxndg

		  �where  xi − 1
2 sxi21 1 xid − midpoint of fxi21, xig.

	 4.	 (a)	� State the Evaluation Theorem.

		  	� The Evaluation Theorem says that if f  is continuous on the 
interval fa, bg, then yb

a f sxd dx − Fsbd 2 Fsad, where F is any 
antiderivative of f, that is, F9 − f.

		  (b)	� State the Net Change Theorem.

		  	� The Net Change Theorem says that the integral of a rate of 
change is the net change: yb

a F9sxd dx − Fsbd 2 Fsad.

	 5.	 �If rstd is the rate of growth of a population at time t, where t is 
measured in months, what does y10

6  rstd dt represent?

		  �y10
6  rstd dt is the change in population size from month 6 to  

month 10.

	 6.	 (a)	� Explain the meaning of the indefinite integral y f sxd dx.

		  	� The indefinite integral y f sxd dx is another name for an anti-
derivative of f, so y f sxd dx − Fsxd means that F9sxd − f sxd.

		  (b)	� What is the connection between the definite integral 
yb
a f sxd dx and the indefinite integral y f sxd dx?

		  	� The connection is given by the Fundamental Theorem: 

yb

a
 f sxd dx − y f sxd dxga

b

		  	 if f  is continuous.

	 7.	 �State both parts of the Fundamental Theorem of Calculus.

		  �Suppose f  is continuous on fa, bg. The Fundamental Theorem of 
Calculus says

		  1.	 If tsxd − y x

a
 f std dt, then t9sxd − f sxd.

		  2.	 yb

a
 f sxd dx − Fsbd 2 Fsad, where F is any antiderivative of f, 

		  	 that is, F9 − f .

	 8.	 (a)	� State the Substitution Rule. In practice, how do you use it?

		  	� The substitution rule says that if u − tsxd is a differentiable 
function whose range is an interval I and f  is continuous on  
I, then y f stsxdd t9sxd dx − y f sud du. In practice, we make the 
substitutions u − tsxd and du − t9sxd dx in the integrand to 
make the integral simpler to evaluate.

	 1.	 (a)	� Write an expression for a Riemann sum of a function f. 
Explain the meaning of the notation that you use.

		  	� gn
i−1 f sxi*dDx is an expression for a Riemann sum of a func-

tion f , where xi* is a point in the ith subinterval fxi21, xig and 
Dx is the length of the subintervals.

		  (b)	�� If f sxd > 0, what is the geometric interpretation of a Rie-
mann sum? Illustrate with a diagram.

		  	� If f  is positive, then a Riemann sum can be interpreted as the 
sum of areas of approximating rectangles, as shown in the 
figure.

		  	 xi*0

y

xa

Îx

b

		  (c)	�� If f sxd takes on both positive and negative values, what is the 
geometric interpretation of a Riemann sum? Illustrate with a 
diagram.

		  	� If f  takes on both positive and negative values, as in the 
figure below, then the Riemann sum g f sxi*dDx is the sum of 
the areas of the rectangles that lie above the x-axis and the 
negatives of the areas of the rectangles that lie below the  
x-axis (the areas of the blue rectangles minus the areas of the 
gold rectangles).

		  	

0

y=ƒ
y

a b x

	 2.	 (a)	� Write the definition of the definite integral of a continuous 
function from a to b.

		  	� If f  is a function defined for a < x < b, we divide the inter-
val fa, bg into n subintervals of equal width Dx − sb 2 adyn. 

		  	� We let x0 s − ad, x1, x2, c , xn s − bd be the endpoints of 
these subintervals and we let x1*, x2*, . . . , xn* be any sample 
points in these subintervals, so xi* lies in the ith subinterval 
fxi21, xig. Then the definite integral of f  from a to b is

		  	 yb

a
 f sxd dx − lim

n l `
 o

n

i−1
 f sxi*d Dx

		  	 provided that this limit exists.

		  (b)	� What is the geometric interpretation of yb
a f sxd dx if f sxd > 0?

		  	� If f  is positive, then yb
a f sxd dx can be interpreted as the 

area under the graph of y − f sxd and above the x-axis for 
a < x < b.

		  (c)	� What is the geometric interpretation of yb
a f sxd dx if f sxd 

takes on both positive and negative values? Illustrate with a 
diagram.

		  	� In this case yb
a f sxd dx can be interpreted as a “net area,” that 

is, the area of the region above the x-axis and below the graph 
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		  (c)	� y`

2`
 f sxd dx

		  	� If both y`
c  f sxd dx and yc

2` f sxd dx are convergent, then we 

		  	 define y`
2` f sxd dx − yc

2` f sxd dx 1 y`
c  f sxd dx, where c is any 	

			   real number.

	 10.	 �Explain exactly what is meant by the statement that “differentia-
tion and integration are inverse processes.”

		  �The Fundamental Theorem of Calculus (or, equivalently, the Net 
Change Theorem) states that yb

a F9sxd dx − Fsbd 2 Fsad. This 
says that if we take a function F, first differentiate it, and then 
integrate the result, we arrive back at the original function, but 
in the form Fsbd 2 Fsad. Also, the indefinite integral y f sxd dx 

represents an antiderivative of f, so 
d

dx
 y f sxd dx − f sxd. Here we 

		  �first integrate a function, then differentiate the result, and arrive 
back at the original function.

		  (b)	� State the rule for integration by parts. In practice, how do you 
use it?

		  	� The rule for integration by parts states that 
y f sxdt9sxd dx − f sxdtsxd 2 y tsxd f 9sxd dx. In practice, we 

		  	� try to choose u − f sxd to be a function that becomes simpler 
when differentiated (or at least not more complicated) as long 
as dv − t9sxd dx can be readily integrated to give v. Then the 
original integral y u dv becomes uv 2 y v du.

	 9.	 �Define the following improper integrals.

		  (a)	 y`

a
 f sxd dx

		  	� If yb
a f sxd dx exists for every number b > a, then 

		  	� y`

a  f sxd dx − lim
b l `

 yb
a f sxd dx provided this limit exists (as a 

		  	 finite number).

		  (b)	 yb

2`
 f sxd dx

		  	� If yb
a f sxd dx exists for every number a < b, then 

		  	 yb
2` f sxd dx − lim

a l2`
 yb

a f sxd dx provided this limit exists (as a 

		  	 finite number).

Copyright 2015 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



✃

C
ut

 h
er

e 
an

d 
ke

ep
 fo

r r
ef

er
en

ce
Chapter 6 Concept Check Answers

rectangle with base fa, bg and height f scd has the same area 
as the region under the graph of f  from a to b.

		  	 0 x

y

a c b

y=ƒ

f(c)=fave

	 4.	 ����If we have survival and renewal functions for a population, how 
do we predict the size of the population T years from now?

		  �If a population begins with P0 members, new members are added 
at a rate given by the renewal function Rstd, where t is measured 
in years, and the proportion of the population that remains after  
t years is given by the survival function Sstd, then the population 
T years from now is given by

		  PsTd − SsTd ? P0 1 yT

0
 SsT 2 tdRstd dt

	 5.	 (a)	� What is the cardiac output of the heart?

		  	� The cardiac output of the heart is the volume of blood 
pumped by the heart per unit time.

		  (b)	� Explain how the cardiac output can be measured by the dye 
dilution method.

		  	� Dye is injected into part of the heart and a probe measures 
the concentration of the dye leaving the heart over a time 
interval f0, T g until the dye has cleared. If cstd is the concen-
tration of the dye at time t, then the cardiac output is given by

		  	 F −
A

yT

0
 cstd dt

		  	 where A is the amount of dye used.

	 6.	 (a)	� Suppose S is a solid with known cross-sectional areas. 
Explain how to approximate the volume of S by a Riemann 
sum. Then write an expression for the exact volume.

		  	� If we divide S into n “slabs” of equal width Dx, label the end-
points of the slabs x0, x1, x2, ∙ ∙ ∙ , xn, and the cross-sectional 
area Asxd of the solid is known, then the volume of S can be 

		  	 approximated by the Riemann sum o
n

i−1
 Asxi*d Dx, where xi* 

		  	� lies in the interval fxi21, xig. In the limit as n l ` the Rie-
mann sum approximation gives the exact volume

		  	 V − lim
n l `

 o
n

i−1
 Asxi*d Dx − yb

a
 Asxd dx

		  (b)	� If S is a solid of revolution, how do you find the cross- 
sectional areas?

		  	� If the cross-section is a disk, we find the radius in terms of x 
or y and use A − � sradiusd2. If the cross-section is a washer, 
we find the inner radius r in and outer radius rout and use 
A − �srout

2 d 2 �sr in
2 d.

	 1.	 �Draw two typical curves y − f sxd and y − tsxd, where 
f sxd > tsxd for a < x < b. Show how to approximate the area 
between these curves by a Riemann sum and sketch the corre-
sponding approximating rectangles. Then write an expression for 
the exact area.

		  �If we divide the interval fa, bg into n subintervals of equal width 
Dx and label the endpoints of the subintervals x0, x1, x2, ∙ ∙ ∙ , xn,  
then the area between f sxd and tsxd can be approximated by 
the Riemann sum gn

i−1 f f sxi*d 2 tsxi*dg Dx, where xi* lies in 
the interval fxi21, xig. In the limit as n l ` the Riemann sum 
approximation gives the exact area

		  A − lim
n l `

 o
n

i−1
 f f sxi*d 2 tsxi*dg Dx − yb

a
 f f sxd 2 tsxdg dx

		

x

y

b0 a

f(x i*)
f(x i*)-g(x i*)

_g(x i*)
x i*

x

x

y

b0 a

y=ƒ

y=©

	 2.	 �Suppose that Sue runs faster than Kathy throughout a  
1500-meter race. What is the physical meaning of the area 
between their velocity curves for the first minute of the race?

		  �It represents the number of meters by which Sue is ahead of 
Kathy after 1 minute.

	 3.	 (a)	� What is the average value of a function f  on an  
interval fa, bg?

		  	� The average value of a function f  on an interval fa, bg is

		  	 fave −
1

b 2 a
 yb

a
 f sxd dx.

		  (b)	� What does the Mean Value Theorem for Integrals say? What 
is its geometric interpretation?

		  	� The Mean Value Theorem for Integrals says that if f  is con-
tinuous on fa, bg, then there exists a number c in fa, bg such 

		  	� that yb

a
 f sxd dx − f scdsb 2 ad. The geometric interpretation is 

		  	� that, for positive functions f , there is a number c such that the 
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Chapter 7 Concept Check Answers

	 4.	 ���What is a direction field for the differential equation  
y9 − Fsx, yd?

		  �A direction field is a plot that helps visualize the general shape of 
the solution curves for the differential equation y9 − Fsx, yd. The 
direction field can be constructed by drawing short line segments 
with slope Fsx, yd at several points sx, yd. These line segments 
indicate the direction in which a solution curve is moving.

	 5.	 ��Explain how Euler’s method works.

		  �Euler’s method is used to approximate values for the solution of 
the initial-value problem y9 − Fst, yd, yst0d − t0. The method 
involves starting at the initial point st0, y0d, moving a short dis-
tance in the direction indicated by the direction field, stopping 
and proceeding in the new direction given by the direction field, 
then repeat. More formally, if the step size is h, the approximate 
values at tn11 − tn 1 h are yn11 − yn 1 hFstn, ynd.

	 6.	 ���What is a separable differential equation? How do you solve it?

		  �It is a first-order differential equation in which the expression for 
dyydx can be factored as a function of x times a function of y,  
that is, dyydx − tsxd f syd. We can solve the equation by inte-
grating both sides of the equation dyyf syd − tsxd dx and solving  
for y.

	 7.	 ���(a)	 Write the logistic equation.

		  	� dNydt − rNS1 2
N

KD, where K is the carrying capacity.

		  (b)	� Under what circumstances is this an appropriate model for 
population growth?

		  	� It is an appropriate model for population growth if the  
population grows at a rate proportional to the size of the 
population in the beginning, but eventually levels off and  
approaches its carrying capacity because of limited  
resources.

	 8.	 ��(a)	� Write Lotka-Volterra equations to model populations of 
sharks S and their food F.

		  	�
dF

dt
− rF 2 aFS    

dS

dt
− 2kS 1 bFS

		  (b)	� What do these equations say about each population in the 
absence of the other?

		  	� In the absence of sharks, the food grows exponentially, that 
is, dFydt − rF, where r is a positive constant. In the absence 
of food, the shark population declines at a rate proportional 
to itself, that is, dSydt − 2kS, where k is a positive constant.

	 9.	 ���What is a nullcline?

		  �A nullcline of a specific variable is a curve along which that vari-
able does not change. For example, if dxydt − f sx, yd then the  
x-nullclines are the curves in the xy-plane that satisfy  
f sx, yd − 0. Along these curves, dxydt − 0.

	 1.	 (a)	 What is a differential equation?

		  	� A differential equation is an equation that contains an 
unknown function and one or more of its derivatives.

		  (b)	 What is the order of a differential equation?

		  	� The order of a differential equation is the order of the highest 
derivative that occurs in the equation.

		  (c)	� What is an initial condition?

		  	� An initial condition is a condition of the form yst0d − y0.

		  (d)	� What are the differences between pure-time, autonomous, 
and nonautonomous differential equations?

		  	� Pure-time differential equations involve the derivative of the 
function but not the function itself and can be expressed in 
the form

		  	
dy

dt
− f std

		  	� Autonomous differential equations involve both the derivative 
of the function and the function itself, but have no explicit 
dependence on the independent variable. They can be written 
as 

		  	
dy

dt
− tsyd

		  	� Nonautonomous differential equations are a combination 
of pure-time and autonomous differential equations. They 
involve the function, its derivative, and the independent vari-
able explicitly.

	 2.	 �What can you say about the solutions of the equation 
y9 − x 2 1 y 2 just by looking at the differential equation?

		  �y9 − x 2 1 y 2 > 0 for all x and y. Also, y9 − 0 only at the origin, 
so there is a horizontal tangent at s0, 0d, but nowhere else. The 
graph of the solution is increasing on every interval.

	 3.	 ���What is a phase plot for the differential equation y9 − tsyd?
		  �A phase plot helps to visualize the equilibria of y9 − tsyd and to 

determine the stability properties of the equilibria. A phase plot 
is constructed by graphing tsyd as a function of y and drawing 
arrows on the horizontal axis to indicate the direction of change 
of y. Arrows point to the right when the curve lies above the hori-
zontal axis and to the left when the curve lies below the horizon-
tal axis. The points where the curve intersects the horizontal axis 
are the equilibrium points.

		

y decreasing

y increasing

y decreasing

y increasing

g(y)

y
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x

y

0

K

K /å

KK /∫
(i)

(ii)

(iii)

x

x

y

y

	 10.	 ��(a)	� Write Lotka-Volterra competition equations for two com-
peting fish species, x and y.

		  	
dx

dt
− xrS1 2

x 1 �y

Kx
D    

dy

dt
− yrS1 2

y 1 �x

Ky
D

		  (b)	� What would the nullclines have to look like for species x to 
always outcompete species y?

		  	� The nullclines must result in movement away from equilibria 
(i) and (ii), but toward equilibrium (iii), as seen in the phase 
plane at the right.
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	 7.	 ���Write expressions for the scalar and vector projections of b  
onto a. Illustrate with diagrams.

		  �Scalar projection of b onto a:  compa b −
a ? b

| a |

		  �b � cos ¨ =

b

a

R

S Q¨

P compa b

		  Vector projection of b onto a:  proja b − S a ? b

| a | D 
a

| a | −
a ? b

| a |2  a

		

Q

R

P
S

b
a

proja b

R

S
P

Q
a

proja b

b

	 8.	 ���What is the equation of a sphere?

		  �An equation of a sphere with center Csh, k, ld and radius r is 
sx 2 hd2 1 sy 2 kd2 1 sz 2 ld2 − r 2.

	 9.	 ��(a)	� How do you tell if two vectors are parallel?

		  	� Two (nonzero) vectors are parallel if and only if one is a sca­
lar multiple of the other. In addition, two nonzero vectors are 
parallel if and only if their dot product is the product of their 
lengths.

		  (b)	� How do you tell if two vectors are perpendicular?

		  	� Two vectors are perpendicular if and only if their dot product 
is 0.

	 10.	 ���What is a symmetric matrix?

		  �A matrix A is called symmetric if AT − A.

	 11.	 ���If a matrix A rotates vectors counterclockwise by � degrees, what 
does the matrix A21 do?

		  �The inverse matrix A21 rotates vectors by � degrees clockwise. In 
other words, it reverses the rotation of the matrix A.

	 12.	 ���If a 2 3 2 matrix has complex eigenvalues, what does this matrix 
do to vectors upon multiplication?

		  �If a 2 3 2 matrix has complex eigenvalues � − a 6 bi, it rotates 
vectors by an angle � − tan21 sbyad and stretches them by a factor

		  | � | − sa 2 1 b 2 .

	 13.	 ���Suppose A is a matrix and k is a positive integer. What does the 
notation Ak mean?

		  �The notation Ak indicates that the matrix A is multiplied by itself 
k times, that is, Ak − AA ∙ ∙ ∙ A.

	 k times

	 1.	 What is the difference between a vector and a scalar?

		  �A scalar is a real number, whereas a vector is a quantity that has 
both a magnitude and a direction.

	 2.	 ���How do you add two vectors geometrically? How do you add 
them algebraically?

		  �To add two vectors geometrically, we can use either the Triangle 
Law or the Parallelogram Law, as illustrated in the figures below.

		

vu+v

u

v
v+

u

u

u

v

u+
v

The Triangle Law The Parallelogram Law

		  �Algebraically, we add the corresponding components of the  
vectors.

	 3.	 ���If a is a vector and c is a scalar, how is ca related to a geo­
metrically? How do you find ca algebraically?

		  �ca is the vector whose length is | c | times the length of a and 
whose direction is the same as a if c . 0 and is opposite to a if 
c , 0. If c − 0 or a − 0, then ca − 0. Algebraically, to find ca 
we multiply each component of a by c.

	 4.	 ���How do you find the vector from one point to another  
algebraically?

		  �The vector from point Asx1, y1, z1d to point Bsx2, y2, z2d is given by 
AB
l

− fx2 2 x1, y2 2 y1, z2 2 z1g.

	 5.	 ���How do you find the dot product a ? b of two vectors if you know 
their lengths and the angle between them? What if you know their 
components?

		  �When the lengths of a and b and the angle � between them are 
known, the dot product can be computed using 

a ? b − | a | | b | cos �

		  �If the components of a − fa1, a2, a3g and b − fb1,  b2, b3g are 
known, then the dot product is given by 

a ? b − a1b1 1 a2b2 1 a3b3

		  That is, we multiply corresponding components and add.

	 6.	 ���How are dot products useful?

		  �The dot product can be used to find the angle between two vec­
tors, to calculate the scalar or vector projection of one vector onto 
another, and to write equations of planes. In particular, the dot 
product can determine if two vectors are orthogonal. Also, the 
dot product can be used to analyze genome expression profiles 
for biological discovery and to diagnose cardiac problems using 
vectorcardiography.
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		  �be complex and have the form x − 2
b

2
6

s4c 2 b 2 

2
 i. Hence, 

		  �these solutions are complex-conjugate pairs.

	 18.	 ���Why is it sometimes useful to write a matrix A in the form 
A − PDP 21, where D is a diagonal matrix?

		  �The matrix decomposition A − PDP 21 is useful when computing 
powers of the matrix A. For example, Ak − PD kP 21 and, since D 
is a diagonal matrix, D k can be calculated by raising each entry 
of D to the power k. This provides a straightfoward method for 
raising a matrix to a power.

	 19.	 ���What does the Perron-Frobenius Theorem say, and why is it  
useful?

		  �The Perron-Frobenius Theorem states that if A is a primitive 
n 3 n matrix whose entries are all nonnegative then

		  ■ � There exists an eigenvalue of A, call it �1, that is real and  
positive.

		  ■ � �1 is greater in magnitude than all other eigenvalues.

		  ■ � The components of the eigenvector associated with �1 are all 
positive.

		  �The Perron-Frobenius Theorem can be used to determine the 
long-term behavior of the recursion n t11 − An t without explicitly 
finding a solution.

	 14.	 ���What is the relationship between the inverse of a matrix and the 
determinant of a matrix?

		  �An n 3 n matrix A is invertible if and only if det A ± 0. That is, 
there exists a matrix inverse A21 such that AA21 − I, provided 
that det A ± 0.

	 15.	 ���Explain what eigenvalues and eigenvectors are.

		  �An eigenvalue is a scalar quantity � that, together with a nonzero 
vector v called an eigenvector, satisfies the equation Av − �v 
where A is an n 3 n matrix. Consequently, an eigenvalue must 
satisfy the equation detsA 2 �I d − 0.

	 16.	 ���Why does a 2 3 2 matrix have two eigenvalues?

		  �The eigenvalues of a 2 3 2 matrix are determined by solving 
a quadratic characteristic polynomial. In general, there are two 
solutions to a quadratic equation, so there are two eigenvalues of 
a 2 3 2 matrix, though one of them may be repeated twice.

	 17.	 ���Suppose a 2 3 2 matrix with real entries has complex eigen- 
values. Why must the eigenvalues be complex conjugates?

		  �In general, the eigenvalues of a 2 3 2 matrix satisfy a second-
degree characteristic polynomial of the form �2 1 b� 1 c − 0 
with solutions given by the quadratic formula 

x −
2b 6 sb 2 2 4c 

2
		  �When the discriminant, b 2 2 4c, is negative, the solutions will 
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	 6.	 ���How do you find an equation for the tangent plane to a  
surface z − f sx, yd?

		  �If f  has continuous partial derivatives, then an equation of the 
tangent plane to the surface z − f sx, yd at the point Psx0, y0, z0d is 
z 2 z0 − fxsx0, y0dsx 2 x0d 1 fysx0, y0dsy 2 y0d.

	 7.	 ���Define the linearization of f  at sa, bd. What is the corresponding 
linear approximation? What is the geometric interpretation of the 
linear approximation?

		  �The linearization of f  at sa, bd is 

Lsx, yd − f sa, bd 1 fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd 

		  and the corresponding linear approximation is 

f sx, yd < f sa, bd 1 fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd
		  �We can interpret the linearization of f  at sa, bd geometrically as 

the linear function whose graph is the tangent plane to the graph 
of f  at sa, bd. Thus it is the linear function that best approximates 
f  near sa, bd.

	 8.	 ��(a)	� What does it mean to say that f  is differentiable at sa, bd?
		  	� The function f sx, yd is differentiable at sa, bd if 

lim
sx, yd lsa, bd

 | f sx, yd 2 Lsx, yd |
ssx 2 ad2 1 sy 2 bd2 

− 0

		  (b)	 How do you usually verify that f  is differentiable?

		  	� We check that the partial derivatives fx and  fy exist and are 
continuous in some region D. If this is the case, then f  is dif-
ferentiable in D.

	 9.	 ���State the Chain Rule for the case where z − f sx, yd and x and y 
are functions of a variable t.

dz

dt
−

−z

−x
 
dx

dt
1

−z

−y
 
dy

dt

	 10.	 ���If z is defined implicitly as a function of x and y by an equation of 
the form Fsx, y, zd − 0, how do you find −zy−x and −zy−y?

		  �Provided −Fy−z ± 0, the partial derivatives are given by

		
−z

−x
− 2 

−F

−x

−F

−z

          
−z

−y
− 2 

−F

−y

−F

−z

	 11.	 ��(a)	� Write an expression as a limit for the directional derivative  
of f  at sx0, y0 d in the direction of a unit vector u − fa, b g.  
How do you interpret it as a rate? How do you interpret it 
geometrically?

		  	�  Du f sx0, y0d − lim
h l 0

 
 f sx0 1 ha, y0 1 hbd 2 f sx0, y0d

h
		  	� We can interpret the directional derivative as the rate of 

change of f  at sx0, y0 d in the direction of u. Geometrically, 
if P is the point sx0, y0, f sx0, y0dd on the graph of f  and C is 
the curve of intersection of the graph of f  with the vertical 
plane that passes through P in the direction u, the directional 
derivative of f  at sx0, y0 d in the direction of u is the slope of 
the tangent line to C at P. (See Figure 9.5.3.)

	 1.	 (a)	 What is a function of two variables?

		  	� It is a rule that assigns to each ordered pair of real numbers 
sx, yd in its domain a unique real number denoted by f sx, yd.

		  (b)	� Describe two methods for visualizing a function of two  
variables.

		  	� One way to visualize a function of two variables is by graph-
ing it, resulting in the surface z − f sx, yd. Another method 
for visualizing a function of two variables is a contour map. 
The contour map consists of level curves of the function, 
with equations f sx, yd − k, which are horizontal traces of the 
graph of the function projected onto the xy-plane.

	 2.	 ��What does
		  lim

sx, yd l sa, bd
 
 f sx, yd − L

		  ��mean? How can you show that such a limit does not exist?

		  � lim
sx, yd l sa, bd

 
 f sx, yd − L means the values of f sx, yd approach the 

		  �number L as the point sx, yd approaches the point sa, bd along any 
path that is within the domain of f. We can show that a limit at 
a point does not exist by finding two different paths approaching 
the point along which f sx, yd has different limits.

	 3.	 ��(a)	 What does it mean to say that f  is continuous at sa, bd?
		  	� f  is continuous at sa, bd if lim

sx, yd l sa, bd
 
 f sx, yd − f sa, bd.

		  (b)	� If f  is continuous on R2, what can you say about its graph?

		  	� If f  is continuous on R2, its graph will appear as a surface 
without holes or breaks.

	 4.	 ��(a)	� Write expressions for the partial derivatives fxsa, bd and 
fysa, bd as limits.

		  	� fxsa, bd − lim
h l 0

 
 f sa 1 h, bd 2 f sa, bd

h

		  	 fysa, bd − lim
h l 0

 
 f sa, b 1 hd 2 f sa, bd

h

		  (b)	� How do you interpret fxsa, bd and fysa, bd geometrically? How 
do you interpret them as rates of change?

		  	� The partial derivative fxsa, bd is the slope of the tangent line 
at the point sa, b, f sa, bdd to the vertical trace in the plane 
y − b, and fysa, bd is the slope of the tangent line to the trace 
in the plane x − a. Also fxsa, bd represents the rate of change 
of f  with respect to x (at x − a) when y is fixed (y − b), and 
fysa, bd is the rate of change of f  with respect to y (at y − b) 
when x is fixed (x − a).

		  (c)	� If f sx, yd is given by a formula, how do you calculate fx  
and fy?

		  	� To find fx, regard y as a constant and differentiate f sx, yd with 
respect to x. To find fy, regard x as a constant and differentiate 
f sx, yd with respect to y.

	 5.	 ��What does Clairaut’s Theorem say?

		  �Suppose f  is defined on a disk D that contains the point sa, bd.  
If the functions fxy and fyx are both continuous on D, then 
fxysa, bd − fyxsa, bd.
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		  (b)	 What is a critical point of f ?

		  	� A point sa, bd is a critical point of f  if fxsa, bd − 0 and 
fysa, bd − 0, or if one of these partial derivatives does not 
exist.

	 15.	 ��State the Second Derivatives Test.

		  �Suppose that fx and fy are continuous on a disk with center  
sa, bd, and that fxsa, bd − 0 and fysa, bd − 0. Let 

D − fxxsa, bd fyysa, bd 2 f fx ysa, bdg2

		  ■ � If D . 0 and fxxsa, bd . 0, then f sa, bd is a local minimum.

		  ■ � If D . 0 and fxxsa, bd , 0, then f sa, bd is a local maximum.

		  ■ � If D , 0, then f  has a saddle point at sa, bd.

		  ■ � If D − 0, then the test gives no information.

	 16.	 ��(a)	 What is a closed set in R 2? What is a bounded set?

		  	� A closed set in R 2 is a set that contains all its boundary 
points. A bounded set in R 2 is one that is contained within 
some disk. In other words, it is finite in extent.

		  (b)	� State the Extreme Value Theorem for functions of two  
variables.

		  	� If f  is continuous on a closed, bounded set D in R 2, then f  
attains an absolute maximum value f sx1, y1d and an absolute 
minimum value f sx2, y2d at some points sx1, y1d and sx2, y2d  
in D.

		  (c)	� How do you find the values that the Extreme Value  
Theorem guarantees?

		  	� To find the absolute maximum and minimum values of a 
continuous function f  on a closed, bounded set D:

		  	 ■ � Find the values of f  at the critical points of f  in D.

		  	 ■ � Find the extreme values of f  on the boundary of D.

		  	 ■ � The largest of the values from steps 1 and 2 is the absolute 
maximum value; the smallest of these values is the absolute 
minimum value.

		  (b)	� If f  is differentiable, write an expression for Du f sx0, y0 d in 
terms of fx and fy.

		  	�  Du f sx, yd − fxsx, yd a 1 fysx, yd b  where u − fa, b g
	 12.	 ��(a)	� Define the gradient vector = f  for a function f  of two  

variables.

		  	�  = f sx, yd − f fxsx, yd, fysx, yd g
		  (b)	 Express Du f  in terms of = f .

		  	�  Du f sx, yd − = f sx, yd ? u

		  (c)	 Explain the geometric significance of the gradient.

		  	� The gradient vector of a function points in the direction of 
maximum rate of increase of the function. On a graph of 
the function, the gradient points in the direction of steepest 
ascent

	 13.	 ��What do the following statements mean?

		  (a)	 f  has a local maximum at sa, bd.
		  	� f  has a local maximum at sa, bd if f sx, yd < f sa, bd when 

sx, yd is near sa, bd.
		  (b)	 f  has an absolute maximum at sa, bd.
		  	� f  has an absolute maximum at sa, bd if f sx, yd < f sa, bd for 

all points sx, yd in the domain of f.

		  (c)	 f  has a local minimum at sa, bd.
		  	� f  has a local minimum at sa, bd if f sx, yd > f sa, bd when 

sx, yd is near sa, bd.
		  (d)	 f  has an absolute minimum at sa, bd.
		  	� f  has an absolute minimum at sa, bd if f sx, yd > f sa, bd for 

all points sx, yd in the domain of f.

		  (e)	 f  has a saddle point at sa, bd.
		  	� f  has a saddle point at sa, bd if f sa, bd is a local maximum in 

one direction but a local minimum in another.

	 14.	 ��(a)	� If f  has a local maximum at sa, bd, what can you say about its 
partial derivatives at sa, bd?

		  	� If f  has a local maximum at sa, bd and the first-order partial 
derivatives of f  exist there, then fxsa, bd − 0 and fysa, bd − 0.
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one of the variables is zero. This means the solution curves move 
in either a vertical or horizontal direction along nullclines. Eigen-
vectors lie on straight lines that are themselves solution curves in 
the phase plane.

	 8.��	� What is the linearization of a system of nonlinear differential 
equations?

		  �The linearization of the system of nonlinear differential equations

		   
dx1

dt
− f1sx1, x2d  and   

dx2

dt
− f2sx1, x2d

		  is given by

d«

dt
− £

−f1sx̂1, x̂2d
−x1

−f1sx̂1, x̂2d
−x2

−f2sx̂1, x̂2d
−x1

−f2sx̂1, x̂2d
−x2

§ «

		  �where « is the vector whose components are the deviations of x1 
and x2 from their equilibrium values.

	 9.��	� Explain what a Jacobian matrix is.

		  �The Jacobian matrix of the system of differential equations 

		   
dx1

dt
− f1sx1, x2d  and   

dx2

dt
− f2sx1, x2d

		  is defined as

Jsx1, x2d − £
−f1sx1, x2d

−x1

−f1sx1, x2d
−x2

−f2sx1, x2d
−x1

−f2sx1, x2d
−x2

§

		  �The Jacobian matrix can be used to determine the local stability 
properties of equilibria.

	 10.��	� What do the eigenvalues of a Jacobian matrix from a system of 
nonlinear differential equations tell us?

		  �The eigenvalues of a Jacobian matrix can be used to determine 
the local stability properties of an equilibrium sx̂1, x̂2d. If r is the 
largest eigenvalue of Jsx̂1, x̂2d when they are real, or the larg-
est real part of the eigenvalues when they are complex, then the 
equilibrium is stable when r , 0 and unstable when r . 0.

	 1.	 �What is the difference between an autonomous and a non-autono-
mous system of differential equations?

		  �A system of differential equations is autonomous if the equations 
do not explicitly contain the independent variable. If the differ- 
ential equations depend on the independent variable, it is a non-
autonomous system.

	 2.��	� What is an equilibrium of a system of differential equations?

		  �An equilibrium of the system of differential equations 
dxydt − f sxd is a vector of values x̂ that satisfies the equation 
dxydt − 0.

	 3.��	� Explain the difference between local and global stability in sys-
tems of differential equations.

		  �An equilibrium x̂ of a system of differential equations is locally 
stable if x approaches the value x̂ as t l ` for all initial values of 
x sufficiently close to x̂. The equilibrium is globally stable if the 
system approaches x̂ for all initial values of x.

	 4.��	� What is the difference between the solution of an initial-value 
problem and the general solution of a system of differential  
equations?

		  �The general solution represents a family of solutions all of which 
satisfy the system of differential equations, whereas the solution 
of an initial-value problem is a single solution that satisfies the 
system of differential equations along with an initial condition 
xst0d − x0.

	 5.��	� What does the Existence and Uniqueness Theorem tell us about 
homogeneous systems of linear, autonomous differential  
equations?

		  �The Existence and Uniqueness Theorem tell us that an initial- 
value problem involving a homogeneous systems of linear, 
autonomous differential equations will have one and only one 
solution xstd and this solution is defined for all t [ R.

	 6.��	 Explain the Superposition Principle.

		  �The Superposition Principle says that if x1std and x2std are solu-
tions to the linear system of differential equations dxydt − Ax, 
then xstd − c1x1std 1 c2 x2std, where c1 and c2 are scalar quanti-
ties, is also a solution.

	 7.��	� Explain the difference between nullclines and eigenvectors in 
systems of linear autonomous differential equations.

		  �The nullclines of a system of linear differential equations are 
straight lines in the phase plane along which the rate of change of 
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