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Introduction
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Motivation

Several dynamical systems in physics and optimal control theory can
be described by means of a variational principle.
® Having a variational principle permits to obtain:

® numerical methods,
® symmetries and conservation laws,
® a geometric framework ~» geometric methods,

In systems with collisions trajectories are no longer smooth.

We have developed a variational principle describing the dynamics of
mechanical systems with dissipation and impacts.
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Principle of least action

® | et @ denote the space of positions of a mechanical system, and TQ
the space of positions and velocities.
® et L: TQ — R denote the Lagrangian function of the system.

® The action functional is given by
t1 )
Ald) = [ " L{a().4(2) d.
0

for each smooth curve g: [to, 1] CR — Q.

The trajectories of a dynamical system on Q with Lagrangian function
L: TQ — R are the curves such that

0A=0.
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Euler—Lagrange equations

A smooth curve q: [ty, 1] C R — Q is an extremal of the action A iff it
satisfies the Euler—Lagrange equations
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Example (mechanical Lagrangian)
For a Lagrangian function of the form
m

o
—V
54 (9),

L(q,q) =
the Euler—Lagrange equations yield Newton's Second Law:

mg =F,

where F = —gradV.
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Action-dependent Lagrangians

® From the fundamental theorem of calculus, we have

LA(9() = La(0) (1)

® Now suppose that the Lagrangian function depends on the action:

L Aa(e)) = Lla(e). a0 Ala(1)).

® This will lead to extra terms on the Euler-Lagrange equations, which
allows to describe dissipative phenomena.
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Action-dependent Lagrangians

Given an action-dependent Lagrangian function L: TQ x R — R, a
smooth curve q: [to, t1] C R — Q is an extremal of the action A iff it
satisfies the Herglotz—Euler—Lagrange equations

doL oL dLaL

dt9g  9q 0g0A
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Energy dissipation

® The energy function is

) 0L )
EL(qa q, A) = q7q - L(q7 qvA) .

® |ts evolution is given by

® Hence,

EL(q(t), 4(t), A(t)) = EL(q(0), 4(0), A(0)) eJo 5 (alt)a(t)) at
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Example (The damped harmonic oscillator)

Consider the action-dependent Lagrangian

. m k
L(g,q,A) = 3672 - §q2 —~A.

The Herglotz—Euler—Lagrange equations yield
mg+ kq+~vg=0.
The energy

m k
El ==& +=¢°
L 2q +2q +~vA

decreases exponentially, namely,

EL(a(t), (1), A(1)) = EL(q(0), 4(0), A(0)) e
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Nonsmooth trajectories

® So far we have assumed that the trajectories considered were smooth
(at least C?) curves.

® However, at points were the system experiences an impact it is not
realistic to assume the curve to be smooth.

® Thus, instead we will have to consider curves which are C° and
piecewise C2.
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Nonsmooth principle of least action

® Suppose that the admissible configurations are in a submanifold
C C Q and that the impacts take place at the boundary 0C.

® For simplicity’s sake suppose that the system experiences a single
impact at time t* € (to, t1).

e Let Q denote the set of all curves q: [to, t;] € R — C which are C° in
(to, t1) and C2 in (to, t*) U (t*, t1).
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Nonsmooth principle of least action

Theorem (Fetecau, Marsden, Ortiz and West, 2003)

A curve g € Q is an extremal of the action A iff

;gg(q(f)a q(t)) — g:(q(f),q(t)) =0, for telt,t*)U(t" 1],
tﬂ?}, g;(q(t)a g(t)) -v = tLtH ch]( (t),q(t)) - v, V v tangent to dC,

lim £ (q(t). 4(8) = lim_Ev(q(2). 4(1)).

t—t*— t—t*t
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Nonsmooth Herglotz principle

Theorem (Colombo, de Ledn and L.-G., 2022)

Given an action-dependent Lagrangian function L: TQ x R — R, a curve
g € Q is an extremal of the action A iff

ig:(q( ):a(t)) — (Q(f) q(t)) — aLgﬁ(q(t),q(t)) —0, t#¢
tlirtq— gg(q(t)’ q(t)) V= tlrgh 87( q(t),q(t)) - v, V v tangent to dC,
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Application: billiard with dissipation

® Let Q@ = R? with cartesian coordinates (x, y).

® Consider a particle confined to the unit disk
C={(xy) eR?|x*+y* <1},

with action-dependent Lagrangian function

L(x,y, %, 3, A) = % (2 +5?) =74

® Herglotz equations yield

X = —yX,
y==-y.
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Application: billiard with dissipation

® |ntegrating them we obtain
X
x(t) = x0 + 70 (1—e?),

ym=m+§u—€%-
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Application: billiard with dissipation

® The boundary of C is the unit circle
oC ={(x,y) eR? | x>+ y> =1}.
® The velocities (X, y™) after the impact are given by

L —X x>+ Xx"y? =2y xy

X = X2+ y2 ;
42X xy +yx?—yTy?
y - X2 +y2 9

where (x7, ™) are the velocities before the impact.
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billiard with dissipation
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Figure: Numerical simulation for v = 1074,
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Conclusions and further work

® \We have developed a non-differentiable Herglotz variational principle
that allows us to describe mechanical systems with dissipation and
impacts.
® Subsequent problems related to the results discussed in this work
include:
® The reduction of this type of systems when there are symmetries that
leave the Lagrangian invariant.
® The construction of variational integrators that preserve the qualitative
behaviour of the system.

® A geometric formulation for these systems ~» hybrid contact
Hamiltonian systems.
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Thanks for your attention!

Feel free to contact me at DX asier.lopez@icmat.es

These slides will be available at ® www.alopezgordon.xyz

Nonsmooth Herglotz Principle ACC 2023 20


mailto:asier.lopez@icmat.es
https://alopezgordon.xyz

	Introduction
	Herglotz principle
	Nonsmooth trajectories
	Application: billiard with dissipation
	Conclusions and further work
	References

