Jacobi – Nijenhuis structures

Contact bi-Hamiltonian systems

Asier López-Gordón Work in progress with Leonardo J. Colombo, Manuel de León and María Emma Eyrea Irazú

Institute of Mathematical Sciences (ICMAT), CSIC, Madrid, Spain

XXXII International Fall Workshop on Geometry and Physics

Financially supported by Grants CEX2019-000904-S, PID2022-137909NB-C21 and RED2022-134301-T, funded by MCIN/AEI/10.13039/501100011033

Jacobi – Nijenhuis structures

Liouville-Arnol'd theorem

Theorem (Liouville–Arnol'd)

Let f_1, \ldots, f_n be independent functions in involution (i.e., $\{f_i, f_j\} = 0 \ \forall i, j$) on a symplectic manifold (M^{2n}, ω) . Let $M_{\Lambda} = \{x \in M \mid f_i = \Lambda_i\}$ be a regular level set.

- **1** Any compact connected component of M_{Λ} is diffeomorphic to \mathbb{T}^n .
- **2** In a neighborhood of M_{Λ} there are coordinates (φ^{i}, J_{i}) such that

$$\omega = \mathrm{d}\varphi^i \wedge \mathrm{d}J_i\,,$$

and $f_i = f_i(J_1, ..., J_n)$, so the Hamiltonian vector fields read

$$X_{f_i} = rac{\partial f_i}{\partial J_j} rac{\partial}{\partial arphi^j} \,.$$

Jacobi – Nijenhuis structures 000000

Liouville-Arnol'd theorem

Corollary

Let (M^{2n}, ω, h) be a Hamiltonian system. Suppose that f_1, \ldots, f_n are independent conserved quantities (i.e. $X_h(f_i) = 0 \forall i$) in involution. Then, on a neighborhood of M_Λ there are Darboux coordinates (φ^i, J_i) such that $H = H(J_1, \ldots, J_n)$, so the Hamiltonian dynamics are given by

$$\frac{\mathrm{d}\varphi^{i}}{\mathrm{d}t} = \frac{\partial H}{\partial J_{i}}\frac{\partial}{\partial\varphi^{i}},$$
$$\frac{\mathrm{d}J_{i}}{\mathrm{d}t} = 0.$$

Problem

Given a Hamiltonian system (M^{2n}, ω, h) , we would like to find n independent conserved quantities in involution f_1, \ldots, f_n , in order to construct action-angle coordinates (φ^i, J_i) .

Magri *et al.* developed a method for constructing such conserved quantities by computing the eigenvalues of a (1,1)-tensor field N verifying certain compatibility conditions.

Problem

Given a Hamiltonian system (M^{2n}, ω, h) , we would like to find n independent conserved quantities in involution f_1, \ldots, f_n , in order to construct action-angle coordinates (φ^i, J_i) .

Magri *et al.* developed a method for constructing such conserved quantities by computing the eigenvalues of a (1, 1)-tensor field N verifying certain compatibility conditions.

Jacobi – Nijenhuis structures

Compatible Poisson structures

Definition

Let *M* be a manifold. Two Poisson tensors are Λ and Λ_1 on *M* are said to be **compatible** if $\Lambda + \Lambda_1$ is also a Poisson tensor on *M*.

Definition

A vector field $X \in \mathfrak{X}(M)$ is called **bi-Hamiltonian** if it is a Hamiltonian vector field w.r.t. two compatible Poisson structures, namely,

$$X = \Lambda(\mathrm{d} h, \cdot) = \Lambda_1(\mathrm{d} h_1, \cdot) \,,$$

for two functions $h, h_1 \in \mathscr{C}^{\infty}(M)$.

Jacobi – Nijenhuis structures 000000

Compatible Poisson structures

Definition

Let *M* be a manifold. Two Poisson tensors are Λ and Λ_1 on *M* are said to be **compatible** if $\Lambda + \Lambda_1$ is also a Poisson tensor on *M*.

Definition

A vector field $X \in \mathfrak{X}(M)$ is called **bi-Hamiltonian** if it is a Hamiltonian vector field w.r.t. two compatible Poisson structures, namely,

$$X = \Lambda(\mathrm{d} h, \cdot) = \Lambda_1(\mathrm{d} h_1, \cdot),$$

for two functions $h, h_1 \in \mathscr{C}^{\infty}(M)$.

Jacobi – Nijenhuis structures

Poisson – Nijehuis structures

- The linear map $\sharp_{\Lambda} \colon T_x^* M \ni \alpha \mapsto \Lambda(\alpha, \cdot) \in T_x M$ is an isomorphism iff Λ comes from a symplectic structure ω . In that case, $\sharp_{\omega} \coloneqq \sharp_{\Lambda}^{-1}(v) = \iota_v \omega$.
- In that situation, we can define the (1,1)-tensor field

$$N = \sharp_{\Lambda_1} \circ \sharp_{\Lambda}^{-1}$$
.

Jacobi – Nijenhuis structures

Poisson – Nijehuis structures

Theorem (Magri and Morosi, 1984)

Let (M, ω) be a symplectic manifold and Λ_1 a bivector. Consider the (1, 1)-tensor field

$$N = \sharp_{\Lambda_1} \circ \sharp_{\omega}^{-1}$$
.

If Λ_1 is a Poisson tensor compatible with Λ , then the Nijehuis torsion T_N of N vanishes. In that case, the eigenvalues of N are in involution w.r.t. both Poisson brackets.

The pair (Λ, N) is called a **Poisson – Nijenhuis structure** on M.

Jacobi – Nijenhuis structures

Poisson – Nijehuis structures

Corollary

If a vector field $X \in \mathfrak{X}(M)$ is bi-Hamiltonian w.r.t. to ω and Λ_1 (i.e., $X = \sharp_{\omega} dh = \sharp_{\Lambda_1} dh_1$), then the eigenvalues of N form a family of conserved quantities in involution w.r.t. both Poisson brackets.

Jacobi – Nijenhuis structures

Proposition (Magri et al., 1997)

Let (Λ, N) be a Poisson – Nijenhuis structure on M. Consider the functions

$$I_k = \frac{1}{k} \operatorname{Tr} N^k$$
, $k \in \{1, \dots, n\}$.

In a neighbourhood of a point $x \in M$ such that $dI_1(x) \wedge \cdots \wedge dI_n(x) \neq 0$ there are coordinates (λ^i, μ_i) which are canonical both for Λ and N, namely,

$$\Lambda = \frac{\partial}{\partial \lambda^{i}} \wedge \frac{\partial}{\partial \mu_{i}},$$

$$N^{*} d\lambda^{i} = \lambda^{i} d\lambda^{i},$$

$$N^{*} d\mu_{i} = \lambda^{i} d\mu_{i}.$$

Jacobi – Nijenhuis structures

Contact geometry

Definition

A (co-oriented) **contact manifold** is a pair (M, η) , where M is an (2n + 1)-dimensional manifold and η is a 1-form on M such that the map

$$egin{aligned} eta_\eta\colon\mathfrak{X}(M)& o\Omega^1(M)\ X&\mapsto\iota_X\mathrm{d}\eta+\eta(X)\eta\end{aligned}$$

is an isomorphism of $\mathscr{C}^{\infty}(M)$ -modules.

There exists a unique vector field R on (M, η), called the Reeb vector field, given by R = b_η⁻¹(η), or, equivalently,

$$\iota_R \mathrm{d}\eta = 0, \ \iota_R \eta = 1.$$

Jacobi – Nijenhuis structures

Contact geometry

• The Hamiltonian vector field of $f \in \mathscr{C}^{\infty}(M)$ is given by

$$X_f = b_\eta^{-1}(\mathrm{d}f) - (R(f) + f) R,$$

• Around each point on *M* there exist **Darboux coordinates** (q^i, p_i, z) such that

$$\begin{split} \eta &= \mathrm{d}z - p_i \mathrm{d}q^i, \\ R &= \frac{\partial}{\partial z}, \\ X_f &= \frac{\partial f}{\partial p_i} \frac{\partial}{\partial q^i} - \left(\frac{\partial f}{\partial q^i} + p_i \frac{\partial f}{\partial z}\right) \frac{\partial}{\partial p_i} + \left(p_i \frac{\partial f}{\partial p_i} - f\right) \frac{\partial}{\partial z}. \end{split}$$

Jacobi – Nijenhuis structures

Contact Hamiltonian systems

Definition

A contact Hamiltonian system is a triple (M, η, h) formed by a contact manifold (M, η) and a Hamiltonian function $h \in \mathscr{C}^{\infty}(M)$.

 The dynamics of (M, η, h) is determined by the integral curves of the Hamiltonian vector field X_h of h w.r.t. η.

Jacobi – Nijenhuis structures

Contact Hamiltonian systems

In Darboux coordinates, these curves c(t) = (qⁱ(t), p_i(t), z(t)) are determined by the contact Hamilton equations:

$$\begin{split} \frac{\mathrm{d}q^{i}(t)}{\mathrm{d}t} &= \frac{\partial h}{\partial p_{i}} \circ c(t) \,, \\ \frac{\mathrm{d}p_{i}(t)}{\mathrm{d}t} &= -\frac{\partial h}{\partial q^{i}} \circ c(t) + p_{i}(t) \frac{\partial h}{\partial z} \circ c(t) \,, \\ \frac{\mathrm{d}z(t)}{\mathrm{d}t} &= p_{i}(t) \frac{\partial h}{\partial p_{i}} \circ c(t) - h \circ c(t) \,. \end{split}$$

Jacobi – Nijenhuis structures

Jacobi manifolds

Definition

A **Jacobi structure** on a manifold M is a pair (Λ, E) where Λ is a bivector and E a vector field such that the composition rule $\{\cdot, \cdot\}$ on $\mathscr{C}^{\infty}(M)$ given by

$$\{f,g\} = \Lambda(\mathrm{d}f,\mathrm{d}g) + fE(g) - gE(f)\,,$$

is a Lie bracket, called the **Jacobi bracket**. The triple (M, Λ, E) is called a **Jacobi manifold**.

In particular, $\{\cdot, \cdot\}$ is a Poisson bracket iff $E \equiv 0$.

Jacobi – Nijenhuis structures

Jacobi structure of a contact manifold

 A contact manifold (M, η) is endowed with a Jacobi bracket determined by

$$\{f,g\} = -\mathrm{d}\eta(\flat_\eta^{-1}\mathrm{d}f, \flat_\eta^{-1}\mathrm{d}g) - fR(g) + gR(f).$$

• It can also be expressed as follows:

$$\{f,g\}=X_f(g)+gR(f).$$

Jacobi – Nijenhuis structures

Jacobi brackets and dissipated quantities

Definition

Let (M, η, h) be a contact Hamiltonian system with Jacobi bracket $\{\cdot, \cdot\}$. A function $f \in \mathscr{C}^{\infty}(M)$ is called a **dissipated quantity** if

$$\{f,h\}=0.$$

Jacobi – Nijenhuis structures

Completely integrable contact system

Definition

A completely integrable contact system is a triple (M, η, F) , where (M, η) is a contact manifold and $F = (f_0, \ldots, f_n) \colon M \to \mathbb{R}^{n+1}$ is a map such that

- 1 f_0, \ldots, f_n are in involution, i.e., $\{f_\alpha, f_\beta\} = 0 \ \forall \alpha, \beta$,
- **2** rank $TF \ge n$ on a dense open subset $M_0 \subseteq M$.

Jacobi – Nijenhuis structures 000000

Liouville – Arnol'd theorem for contact systems

- **1** Given $\Lambda \in \mathbb{R}^{n+1} \setminus \{0\}$, let $M_{\langle \Lambda \rangle_+} = \{x \in M \mid \exists r \in \mathbb{R}^+ : f_\alpha(x) = r\Lambda_\alpha\}$.
- **2** Assume that the Hamiltonian vector fields X_{f_0}, \ldots, X_{f_n} are complete.
- **3** Let $B \subseteq \mathbb{R}^{n+1} \setminus \{0\}$ be an open neighbourhood of Λ .
- Let $\pi: U \to M_{\langle \Lambda \rangle_+}$ be a tubular neighbourhood of $M_{\langle \Lambda \rangle_+}$ such that $F|_U: U \to B$ is a trivial bundle over a domain $V \subseteq B$.

Jacobi – Nijenhuis structures 000000

Liouville – Arnol'd theorem for contact systems

Theorem (Colombo, de León, Lainz, L.-G., 2023)

Let (M, η, F) be a completely integrable contact system, where $F = (f_0, \ldots, f_n)$. Consider the assumptions of the previous slide. Then:

- $M_{\langle \Lambda \rangle_+}$ is coisotropic, invariant by the Hamiltonian flow of f_{α} , and diffeomorphic to $\mathbb{T}^k \times \mathbb{R}^{n+1-k}$ for some $k \leq n$.
- 2 There exists coordinates $(y^0, \ldots, y^n, \tilde{A}_1, \ldots, \tilde{A}_n)$ on U such that the equations of motion are given by

$$\dot{y}^{\alpha} = \Omega^{\alpha}(\tilde{A}_1,\ldots,\tilde{A}_n), \quad \dot{\tilde{A}}_i = 0.$$

③ There exists a nowhere-vanishing function $A_0 \in \mathscr{C}^{\infty}(U)$ and a conformally equivalent contact form $\tilde{\eta} = \eta/A_0$ such that (y^i, \tilde{A}_i, y^0) are Darboux coordinates for $(M, \tilde{\eta})$, namely, $\tilde{\eta} = dy^0 - \tilde{A}_i dy^i$.

Our goal

- We would like to generalize Magri *et al.*'s constructions for integrable contact systems.
- That is, given a contact Hamiltonian system (M, η, h), we want to find a tensor N such that, if it satisfies certain compatibility conditions with (η, h), one can compute dissipated quantities in involution for it.

Jacobi−Nijenhuis structures ●000000

Compatible Jacobi structures

• Nunes da Costa (1998) introduced the notion of compatibility of Jacobi structures.

Definition

Two Jacobi structures (Λ, E) and (Λ_1, E_1) on a manifold M are said to be **compatible** if $(\Lambda + \Lambda_1, E + E_1)$ is also a Jacobi structure on M.

• She also proved several conditions which are equivalent to (Λ, E) and (Λ_1, E_1) being compatible.

Jacobi – Nijenhuis structures •000000

Compatible Jacobi structures

• Nunes da Costa (1998) introduced the notion of compatibility of Jacobi structures.

Definition

Two Jacobi structures (Λ, E) and (Λ_1, E_1) on a manifold M are said to be **compatible** if $(\Lambda + \Lambda_1, E + E_1)$ is also a Jacobi structure on M.

• She also proved several conditions which are equivalent to (Λ, E) and (Λ_1, E_1) being compatible.

Jacobi−Nijenhuis structures 000000

Jacobi – Nijenhuis structures

- A Jacobi-Nijenhuis structure (Λ, E, N) is a generalization of Nijenhuis-Poisson structures.
- These structures were introduced by Marrero, Monterde and Padrón (1999).
- Their relation with homogeneous Nijenhuis Poisson structures was studied by Petalidou and Nunes da Costa (2001).

Jacobi−Nijenhuis structures 000000

Jacobi – Nijenhuis structures

• The space $\mathfrak{X}(M) \times \mathscr{C}^{\infty}(M)$ can be endowed with the Lie bracket $[\cdot, \cdot]$ given by

$$\left[(X,f),(Y,g)\right] = \left([X,Y],X(g)-Y(f)\right)$$

• Mutatis mutandis, the Nijenhuis torsion T_N of a linear operator $N \colon \mathfrak{X}(M) \times \mathscr{C}^{\infty}(M) \to \mathfrak{X}(M) \times \mathscr{C}^{\infty}(M)$ is defined as usual:

$$T_N((X,f),(Y,g)) \coloneqq \left[N(X,f),N(Y,g)\right] - N\left[N(X,f),(Y,g)\right] \\ - N\left[(X,f),N(Y,g)\right] + N^2\left[(X,f),(Y,g)\right],$$

Jacobi−Nijenhuis structures 0000000

Jacobi – Nijenhuis structures

Given a Jacobi structure (Λ, E), we can define the C[∞](M)-modules homomorphism
 [†](Λ, E): Ω¹(M) × C[∞](M) → 𝔅(M) × C[∞](M)

$$\sharp_{(\Lambda,E)}: (\alpha, f) \mapsto \left(\Lambda(\cdot, \alpha) + fE, \alpha(E)\right).$$

• It is an isomorphism iff (Λ, E) comes from a contact structure.

Jacobi−Nijenhuis structures

Jacobi – Nijenhuis structures

Definition

A Jacobi – Nijenhuis structure on a manifold M is a triple (Λ, E, N) where (Λ, E) is a Jacobi structure and $N: \mathfrak{X}(M) \times \mathscr{C}^{\infty}(M) \to \mathfrak{X}(M) \times \mathscr{C}^{\infty}(M)$ is a $\mathscr{C}^{\infty}(M)$ -linear map such that

$$N \circ \sharp_{(\Lambda,E)} = \sharp_{(\Lambda,E)} \circ N^*$$
$$T_N \equiv 0,$$
$$\mathcal{C}((\Lambda, E), N) \equiv 0.$$

The 4-tuple (M, Λ, E, N) is calle a **Jacobi – Nijenhuis manifold**.

Jacobi−Nijenhuis structures 0●00000

Jacobi – Nijenhuis structures

- In the previous slide, C denotes the concomitant. Its expression depends on N, (Λ, E) and a quite involved Lie bracket on Ω¹(M) × C[∞](M).
- Let (Λ_1, E_1) be the Jacobi structure determined by

$$\Lambda_1(\beta,\alpha) = \left\langle \beta, N_1(\Lambda(\cdot,\alpha),0) \right\rangle, \quad E_1 = N_1(E,0),$$

where $N_1: \mathfrak{X}(M) \times \mathscr{C}^{\infty}(M) \to \mathfrak{X}(M)$ is the projection of N on the first component.

• If (Λ_1, E_1) is also coming from a contact structure, then

$$T_N \equiv 0 \iff \mathcal{C}((\Lambda, E), N) \equiv 0.$$

Jacobi – Nijenhuis structures

The correspondence between Jacobi – Nijenhuis and homogeneous Nijenhuis – Poisson structures

Proposition (Petalidou and Nunes da Costa, 2001)

With any Jacobi–Nijenhuis manifold (M, Λ, E, N) , we can associate a homogeneous Nijenhuis–Poisson manifold, namely, a Nijenhuis–Poisson manifold $(M \times \mathbb{R}, \tilde{\Lambda}, \tilde{N})$ such that

$$\mathcal{L}_{rac{\partial}{\partial t}}\tilde{\Lambda} = -\tilde{\Lambda}, \quad \mathcal{L}_{rac{\partial}{\partial t}}\tilde{N} = 0,$$

where t denotes the canonical coordinate on the \mathbb{R} component of $M \times \mathbb{R}$.

Jacobi – Nijenhuis structures

Exact symplectic manifolds: Liouville geometry

Definition

An exact symplectic manifold is a pair (M, θ) , where M is a manifold and θ a one-form on N such that $\omega = -d\theta$ is a symplectic form on M.

• The Liouville vector field Δ of (M, θ) is given by

$$\iota_{\Delta}\omega = -\theta.$$

• A tensor T is called **homogeneous of degree** n if $\mathcal{L}_{\Delta}T = nT$.

Jacobi – Nijenhuis structures

Symplectization of contact manifolds

Definition

Let (M, η) be a contact manifold and (M^{Σ}, θ) an exact symplectic manifold. A symplectization is a fibre bundle $\Sigma: M^{\Sigma} \to M$ such that

$$\sigma \Sigma^* \eta = \theta,$$

for a function σ on M^{Σ} called the **conformal factor**.

Jacobi – Nijenhuis structures

Symplectization of contact manifolds

Category of contact manifolds Category of exact symplectic manifolds

- Contact distribution ker $\eta \iff$ symplectic potential θ
- Functions \longleftrightarrow homogeneous functions
- Hamiltonian vector fields \leftrightarrow Hamiltonian vector fields

Jacobi−Nijenhuis structures 0000000

Theorem (Magri's theorem for exact symplectic manifolds)

Let (Λ, N) be a Poisson–Nijenhuis structure on M such that $\Lambda = \omega^{-1}$ for an exact symplectic structure $\omega = -d\theta$. Consider the functions

$$I_k = rac{1}{k} \operatorname{Tr} N^k$$
, $k \in \{1, \dots, n\}$.

In a neighbourhood of a point $x \in M$ such that $dI_1(x) \wedge \cdots \wedge dI_n(x) \neq 0$ there are coordinates (λ^i, μ_i) which are canonical both for θ and N, namely,

$$\begin{split} \theta &= \mu_i \mathrm{d}\lambda^i \,, \\ N^* \mathrm{d}\lambda^i &= \lambda^i \mathrm{d}\lambda^i \,, \quad N^* \mathrm{d}\mu_i = \lambda^i \mathrm{d}\mu_i \,. \end{split}$$

Moreover, $\mathcal{L}_{\Delta}\lambda^{i} = 0$ and $\mathcal{L}_{\Delta}\mu_{i} = \mu_{i}$, where Δ is the Liouville vector field w.r.t. θ .

Jacobi – Nijehuis structures \rightsquigarrow action-angle coordinates

- Let (M, η) be a contact manifold with associated Jacobi structure (Λ, E) .
- Suppose that there is another contact form η₁ on M with Jacobi structure (Λ₁, E₁).
- Let $N = \sharp_{(\Lambda_1, E_1)} \circ \sharp_{(\Lambda, E)}^{-1}$.
- (Λ, E) and (Λ_1, E_1) are compatible iff $T_N \equiv 0$.
- Let $(M \times \mathbb{R}_+, \theta, \tilde{N})$ denote the symplectization-Poissonization of (M, η, N) .
- Let $(\lambda^{\alpha}, \mu_{\alpha}), \alpha \in \{1, \dots, n\}$ be the canonical coordinates adapted to (θ, \tilde{N}) .

Jacobi – Nijehuis structures \rightsquigarrow action-angle coordinates

• Unhomogeneizing, we have 2n + 2 functions in *M*:

$$\overline{\lambda}^{\alpha} = \lambda^{\alpha} \circ \pi_{M}, \quad \overline{\mu}_{\alpha} = \frac{\mu_{\alpha}}{r} \circ \pi_{M},$$

where $\pi_M \colon M \times \mathbb{R}_+ \to M$ is the canonical projection and r the global coordinate of \mathbb{R}_+ .

• We have (n + 1) functions in involution w.r.t. the Jacobi bracket:

$$\{\overline{\mu}_{\alpha}, \overline{\mu}_{\beta}\}_{\eta} = \mathbf{0}.$$

 Moreover, they lead to coordinates (λ̄^α, μ̃_i) on *M*, where μ̃_i = -μ̃_{μ̃_j} for i ∈ {0,...,n} \ {j}.

Jacobi−Nijenhuis structures

Jacobi – Nijehuis structures \rightsquigarrow action-angle coordinates

In these coordinates,

$$\begin{split} \eta &= \mathrm{d}\overline{\lambda}^{j} - \sum_{i \neq j} \tilde{\mu}_{i} \mathrm{d}\overline{\lambda}^{i} \,, \\ X_{\overline{\mu}_{\alpha}} &= \frac{\partial}{\partial \overline{\lambda}^{\alpha}} \,. \end{split}$$

• Consider a contact Hamiltonian system (M, η, h) such that $X_h = Y_{h_1}$ is the Hamiltonian vector field of h w.r.t. η and the Hamiltonian vector field of h_1 w.r.t. η_1 , namely,

$$X_h = Y_{h_1} = \Lambda_1(\cdot, \mathrm{d} h_1) + h_1 E_1 \,.$$

• Then, X_h is given by

$$X_h = f_lpha(ilde{\mu}_eta) rac{\partial}{\partial \overline{\lambda}^lpha} \,.$$

Main references

- L. Colombo, M. de León, M. Lainz, and A. L.-G. *Liouville-Arnold* Theorem for Contact Hamiltonian Systems. 2023. arXiv: 2302.12061.
- [2] F. Magri, P. Casati, G. Falqui, and M. Pedroni. "Eight Lectures on Integrable Systems". In: *Integrability of Nonlinear Systems*. Lecture Notes in Physics. Springer: Berlin, Heidelberg, 1997.
- [3] J. C. Marrero, J. Monterde, and E. Padron. "Jacobi–Nijenhuis Manifolds and Compatible Jacobi Structures". C. R. Acad. Sci. Paris Sér. 1 Math., 329(9) (1999).
- [4] J. M. Nunes da Costa. "Compatible Jacobi Manifolds: Geometry and Reduction". J. Phys. A: Math. Gen., 31(3) (1998).
- [5] F. Petalidou and J. Nunes Da Costa. "Local Structure of Jacobi–Nijenhuis Manifolds". J. Geom. Phys., 45(3-4) (2003).

Obrigado pela atenção

isier.lopez@icmat.es
 www.alopezgordon.xyz