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Symplectic geometry

• Symplectic manifolds are the natural geometric frameworks for
Hamiltonian mechanics.

• Let me recall that a symplectic manifold (M, ω) is a 2n-dimensional
manifold endowed with a 2-form ω such that dω = 0 and ωn ̸= 0.

• The Hamiltonian vector field Xh of a function h ∈ C ∞(M) is given by
ω(Xh, ·) = 0.

• In a neighborhood of each point in M there are canonical (or
Darboux) coordinates (qi , pi) in which

ω = dqi ∧ dpi , Xh = ∂h
∂pi

∂

∂qi − ∂h
∂qi

∂

∂pi
.
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Liouville –Arnol’d theorem

Theorem (Liouville –Arnol’d)
Let f1, . . . , fn be independent functions in involution (i.e., {fi , fj} = 0 ∀i , j)
on a symplectic manifold (M2n, ω). Let MΛ = {x ∈ M | fi = Λi} be a
regular level set.

1 Any compact connected component of MΛ is diffeomorphic to Tn.
2 On a neighborhood of MΛ there are coordinates (φi , Ji) such that

ω = dφi ∧ dJi ,

and fi = fi(J1, . . . , Jn), so the Hamiltonian vector fields read

Xfi = ∂fi
∂Jj

∂

∂φj .
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Liouville –Arnol’d theorem

Corollary
Let (M2n, ω, h) be a Hamiltonian system. Suppose that f1, . . . , fn are
independent conserved quantities (i.e. Xh(fi) = 0 ∀ i) in involution. Then,
on a neighborhood of MΛ there are Darboux coordinates (φi , Ji) such that
h = h(J1, . . . , Jn), so the Hamiltonian dynamics are given by

dφi

dt = ∂h
∂Ji

∂

∂φi ,

dJi
dt = 0 .
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Example (The n-dimensional harmonic oscillator)
• Consider R2n, with canonical coordinates (xi , pi), i ∈ {1, . . . , n},

equipped with the symplectic form ω and the Hamiltonian function h,

ω =
n∑

i=1
dxi ∧ dpi , h =

n∑
i=1

(
p2

i
2 + x2

i
2

)

• The functions fi = p2
i

2 + x2
i
2 are independent and involution, and one

can write h =
∑n

i=1 fi .
• Angle coordinates are φi = arctan

(
xi
pi

)
and action coordinates are fi .

• Hamilton’s equations read

dφi

dt = 1 ,
dfi
dt = 0 .
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Integrable distributions

• Given a differentiable manifold M, a distribution D of (co)rank k on
M is a subbundle of the tangent bundle TM, i.e., a smoooth
assignment of a k-(co)dimensional vector subspace Dx ⊆ TxM for
each x ∈ M.

Theorem (Frobenius)
The following statements are equivalent:

1 For every x ∈ M, there exists a submanifold N ⊆ M such that
Dx = TxN (i.e., D is integrable).

2 For each pair of vector fields X , Y ∈ X(M) such that
X (x), Y (x) ∈ Dx for all x ∈ M we have that [X , Y ](x) ∈ Dx (i.e., D
is involutive).
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Maximally non-integrable distributions

• Grosso modo, a distribution D will be “as far as possible” from being
integrable if

X , Y ∈ D =⇒ [X , Y ] /∈ D or [X , Y ] = 0 .

• More precisely, we will say that D is maximally non-integrable if the
bilinear map

νD : D ×M D ∋ (X , Y ) 7→ γ
(
[X , Y ]

)
∈ TM/D

is non-degenerate. Here [·, ·] denotes the Lie bracket of vector fields
with image in D, and γ : TM → TM/D is the canonical projection.
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Contact distributions

Definition
Let M be a (2n + 1)-dimensional manifold. A contact distribution C on
M is a maximally non-integrable distribution of corank 1. The pair (M, C)
is called a contact manifold.
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Distributions as kernels of 1-forms

• Note that a codistribution D of corank 1 on M can be locally written
as the kernel of a (local) 1-form α on M.

• It is easy to see that D is integrable iff

α ∧ dα = 0

for any local 1-form α such that D = ker α.
• On the contrary, D is maximally non-integrable iff

α ∧ dαn = α ∧ dα ∧ · · · ∧ dα︸ ︷︷ ︸
n times

̸= 0

for any local 1-form α such that D = ker α.
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Contact forms

Definition
Let (M, C) be a contact manifold such that C can be globally written as
the kernel of a global 1-form η on M. Then, C is said to be a
co-orientable contact distribution, η is called a contact form, and the
pair (M, η) is called a co-oriented contact manifold.
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Contact forms

Remarks
• A co-orientable contact distribution C does not fix the contact form

η, but rather the equivalence class

η ∼ η̃ ⇐⇒ ker η = ker η̃ ⇐⇒ ∃ f : M → R \ {0} such that η̃ = f η .

• Not all contact manifolds are co-orientable. Nevertheless, their double
cover is always co-orientable.

• Several authors refer to co-oriented contact manifolds as contact
manifolds. The term “contact structure” is used to refer either to the
contact distribution or to the contact form, so I will not use it in
order to avoid ambiguity.
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Example (Odd-dimensional Euclidean space)
η = dz −

∑
y idx i , in R2n+1 with canonical coordinates (x i , y i , z).

Example (Trivial bundle over the cotangent bundle)
The cotangent bundle T∗Q of Q is endowed with the tautological 1-form
θQ. The trivial bundle π1 : T∗Q × R → T∗Q can be equipped with the
contact form ηQ = dr − π∗θQ, with r the canonical coordinate of R. If
(qi) are coordinates in Q which induce bundle coordinates (qi , pi) in T∗Q
and (qi , pi , r) in T∗Q × R, we have

θQ = pidqi , ηQ = dr − pidqi .
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Example (Projective space)
Let M = Rn × RPn−1. Consider the open subsets

Uk = {(x , [y ]) ∈ M | yk ̸= 0} ,

where x = (x1, . . . , xn), y = (y1, . . . , yk , . . . , yn) ∈ Rn. We have the local
contact forms

ηk = dxk −
∑
i ̸=k

yi
yk

dx i ∈ Ω1(Uk) .

If a global contact form η on M existed, then η ∧ dηn would define an
orientation. Hence, M is not co-orientable if n is even.
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The Reeb vector field

Definition
Let (M, η) be a co-oriented contact manifold. The Reeb vector field of
(M, η) is the unique vector field R ∈ X (M) such that

R ∈ ker dη , η(R) = 1 .
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The tangent bundle TM of a co-oriented contact manifold (M, η) can be
decomposed as the Whitney sum

TM = ker η ⊕ ker dη = C ⊕ ⟨R⟩ .

Note that the complement of the contact distribution C = ker η depends
on the choice of contact form.
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Proposition
Let η be a 1-form on a manifold M. The map

♭η : X(M) → Ω1(M) , ♭η(X ) = η(X )η + ιX dη

is a C ∞(M)-module isomorphism iff η is a contact form.

Note that the Reeb vector field can be equivalently defined as R = ♭−1
η (η).

Asier López-Gordón (IM PAN) Liouville – Arnol’d theorem for contact Hamiltonian systems GDE Seminar 16



Introduction Contact manifolds Homog. Liouville–Arnol’d theorem Contact Liouville–Arnol’d theorem References

Darboux coordinates

Theorem
Let (M, η) be a (2n + 1)-dimensional co-oriented contact manifold.
Around each point x ∈ M there exist local coordinates (qi , pi , z),
i ∈ {1 . . . , n} such that the contact form reads

η = dz − pidqi .

Consequently, the Reeb vector field is written as

R = ∂

∂z .

These coordinates are called canonical or Darboux coordinates.

Asier López-Gordón (IM PAN) Liouville – Arnol’d theorem for contact Hamiltonian systems GDE Seminar 17



Introduction Contact manifolds Homog. Liouville–Arnol’d theorem Contact Liouville–Arnol’d theorem References

Jacobi structures

• Consider a manifold M endowed with a bivector field
Λ ∈ Sec(

∧2 TM) and a vector field E ∈ X(M).
• Define the bracket {·, ·} : C ∞(M) × C ∞(M) → C ∞(M) by

{f , g} = Λ(df , dg) + fE (g) − gE (f ) .

• It is a Lie bracket iff

[Λ, E ] = 0 , [Λ, Λ] = 2E ∧ Λ ,

where [·, ·] denotes the Schouten–Nijenhuis bracket.
• In that case, (Λ, E ) is called a Jacobi structure on M, {·, ·} is called

a Jacobi bracket, and (M, Λ, E ) is called a Jacobi manifold.
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Jacobi structures

Remark
A Poisson structure Λ is a Jacobi structure with E ≡ 0.
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Jacobi structures

• A Jacobi structure (Λ, E ) defines a C ∞(M)-module morphism

♯Λ : Ω1(M) → X(M) , ♯Λ(α) = Λ(α, ·) .

• This defines a so-called orthogonal complement D⊥Λ = ♯Λ(D◦), for a
distribution D with annihilator D◦.

• A submanifold N of M is called coisotropic if TN⊥Λ ⊆ TN.
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Jacobi structures

• Two Jacobi structures (Λ, E ) and (Λ̃, Ẽ ) on M are conformally
equivalent if there exists a nowhere-vanishing function f on M such
that

Λ̃ = f Λ , Ẽ = ♯Λdf + fE .

Remark
The orthogonal complement coincides for conformally equivalent Jacobi
structures, namely, D⊥Λ = D⊥Λ̃ for any distribution D.
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Jacobi structures

Definition
Let (M, Λ, E ) be a Jacobi manifold with Jacobi bracket {·, ·}. A collection
of functions f1, . . . , fk ∈ C ∞(M) will be said to be in involution if

{fi , fj} = 0 , ∀ i , j ∈ {1, . . . , k} .
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Jacobi structures

• For each function f ∈ C ∞(M), we can define a vector field

Xf = ♯Λ(df ) + fE ,

or, equivalently,

Xf (g) = {f , g} + gE (f ) , ∀g ∈ C ∞(M) .

• Following the nomenclature of Dazord, Lichnerowicz, Marle, et al., we
will refer to Xf as the Hamiltonian vector field of f .

• However, Xf does not satisfy the properties of a usual Hamiltonian
vector field (w.r.t. a symplectic or Poisson structure). In particular,

{f , g} = 0 ⇍⇒ Xf (g) = 0 .
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Jacobi structure defined by a contact form

• A co-oriented contact manifold (M2n+1, η) is endowed with a Jacobi
structure (Λ, E ) given by

Λ(α, β) = −dη
(
♭−1
η (α), ♭−1

η (β)
)

, E = −R ,

where R is the Reeb vector field.
• Any contact form η̃ defining the same contact distribution, i.e.,

ker η̃ = ker η, defines a conformally equivalent Jacobi structure.
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Contact Hamiltonian vector field

• Let (M, η) be a co-oriented contact manifold. The Hamiltonian
vector field of f ∈ C ∞(M) is uniquely determined by

η(Xf ) = −f , LXf η = −R(f )η .

• In Darboux coordinates

Xf = ∂f
∂pi

∂

∂qi −
(

∂f
∂qi + pi

∂f
∂z

)
∂

∂pi
+
(

pi
∂f
∂pi

− f
)

∂

∂z .
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Contact Hamiltonian vector field

Remarks
• The Reeb vector field is the Hamiltonian vector field of f ≡ −1.
• Every Hamiltonian vector field is an infinitesimal contactomorphism

(i.e., its flow preserves the contact distribution C = ker η).
Conversely, if Y ∈ X(M) is an infinitesimal contactomorphism, then it
is the Hamiltonian vector field of f = −η(Y ).

• Knowing C = ker η and Xf does not fix η nor f . As a matter of fact,
Xf is the Hamiltonian vector field of g = f /a with respect to η̃ = aη,
for any non-vanishing a ∈ C ∞(M).
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Contact Hamiltonian systems

Definition
A contact Hamiltonian system (M, η, h) is a co-oriented contact
manifold (M, η) with a fixed Hamiltonian function h ∈ C ∞(M).

• The dynamics of (M, η, h) is determined by the integral curves of the
Hamiltonian vector field Xh of h w.r.t. η.
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Contact Hamiltonian systems

• In Darboux coordinates, these curves c(t) = (qi(t), pi(t), z(t)) are
determined by the contact Hamilton equations:

dqi(t)
dt = ∂h

∂pi
◦ c(t) ,

dpi(t)
dt = − ∂h

∂qi ◦ c(t) − pi(t)∂h
∂z ◦ c(t) ,

dz(t)
dt = pi(t) ∂h

∂pi
◦ c(t) − h ◦ c(t) .
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Example (The harmonic oscillator with linear damping)
Consider the solution x : R → R of the second-order ordinary differential
equation

d2x
dt2 (t) = −x(t) − κ

dx
dt (t) ,

where κ ∈ R. Defining p = dx/dt, we can reduce it to the system of
first-order ordinary differential equations

dx
dt (t) = p(t) ,

dp
dt (t) = −x(t) − κp(t) .

We can obtain this system as the two first contact Hamilton equations
from the contact Hamilton system (R3, η, h), where η = dz − pdx and

h = p2

2 + x2

2 + κz .
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Notions of integrability for contact manifolds

• Khesin and Tabachnikov, Liberman, Banyaga and Molino, Lerman,
etc. have defined notions of contact complete integrability which are
geometric but not dynamical, e.g. a certain foliation over a contact
manifold.

• Boyer considers the so-called good Hamiltonians h, i.e., R(h) = 0 ;

no dissipation, “symplectic” dynamics.
• Miranda considered integrability of the Reeb dynamics when R is the

generator of an S1-action.
• We are interested in complete integrability of contact Hamiltonian

dynamics.
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Notions of integrability for contact manifolds

Instead, we will use the equivalence between the categories of contact
manifolds and symplectic R×-principal bundles, and proof a
Liouville–Arnol’d theorem for homogeneous functions in involution.
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Exact symplectic manifolds

Definition
An exact symplectic manifold is a pair (M, θ), where θ is a symplectic
potential on M, i.e., ω = −dθ is a symplectic form on M. The Liouville
vector field ∇ ∈ X(M) is given by

ι∇ω = −θ .

A tensor field A on P is called k-homogeneous (for k ∈ Z) if

L∇A = kA .
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Homogeneous integrable system

Definition

A homogeneous integrable system consists of an exact symplectic
manifold (M2n, θ) and a map F = (f1, . . . , fn) : M → Rn such that the
functions f1, . . . , fn are independent, in involution and homogeneous of
degree 1 (w.r.t. the Liouville vector field ∇ of θ) on a dense open subset
M0 ⊆ M. We will denote it by (M, θ, F ).

For simplicity’s sake, in this talk I will assume that M0 = M.
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Proposition
Let (M, θ, F ) be a homogeneous integrable system. Then, for each
Λ ∈ Rn, the level set MΛ = F −1(Λ) is a Lagrangian submanifold, and

ϕ∇
t (MΛ) = MtΛ = F −1(tΛ) ,

where ϕ∇
t denotes the flow of the Liouville vector field ∇.
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• Consider the exact symplectic manifold (M, θ), with Liouville vector
field ∇.

• Around each point in M, there are canonical coordinates (qi , pi)
where θ = pidqi .

• Then, a straightforward computation shows that ∇ = pi
∂

∂pi
.

• Note that coordinates may be canonical for ω = −dθ but not for θ.
For instance, in the coordinates q̃i = qi , p̃i = pi + eqi we have

θ =
∑

i
(p̃i − eq̃i )dq̃i , ω = dq̃i ∧ dp̃i , ∇ =

(
p̃i − eq̃i) ∂

∂p̃i
.

• In particular, the Liouville–Arnol’d theorem provides coordinates
which are canonical for ω, but not necessarily for θ or ∇.
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Homogeneous Liouville – Arnol’d theorem

Consider a homogeneous integrable system (M, θ, F ). Let U be an open
neighbourhood of the level set MΛ = F −1(Λ) (with Λ ∈ Rn) such that:

1 f1, . . . , fn have no critical points in U,
2 the Hamiltonian vector fields Xf1 , . . . , Xfn are complete,
3 the submersion F : U → Rn is a trivial bundle over a domain V ⊆ Rn.
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Homogeneous Liouville – Arnol’d theorem

Theorem (Colombo, de León, Lainz, L. G., 2023)

Let (M, θ, F ) be a homogeneous integrable system with F = (f1, . . . , fn).
Given Λ ∈ Rn, suppose that MΛ = F −1(Λ) is connected, and assume the
statements from the previous slide. Then, U ∼= Tk × Rn−k × V and there
is a chart (Û ⊆ U; y i , Ai) of M s.t.

1 Ai = M j
i fj , where M j

i are homogeneous functions of degree 0
depending only on f1, . . . , fn,

2 θ = Aidy i ,
3 Xfi = N j

i
∂

∂y j , with (N j
i ) the inverse matrix of (M j

i ).
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Lemma

Let M be an n-dimensional manifold, and let X1, . . . , Xn ∈ X(M) be
linearly independent vector fields. If these vector fields are pairwise
commutative and complete, then M is diffeomorphic to Tk × Rn−k for
some k ≤ n, where Tk denotes the k-dimensional torus.
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Lemma

Let (M2n, θ, F ) be a homogeneous integrable system, with
F = (f1, . . . , fn). Assume that the Hamiltonian vector fields Xfi are
complete. Then, there exists n functions gi = M j

i fj ∈ C ∞(M) such that

1
(
M, θ, (g1, . . . , gn)

)
is also a homogeneous integrable system,

2 Xg1 , . . . , Xgk are infinitesimal generators of S1-actions and their flows
have period 1,

3 Xgk+1 , . . . , Xgn are infinitesimal generators of R-actions,
4 M j

i for i , j ∈ 1, . . . , n are homogeneous functions of degree 0, and
they depend only on f1, . . . , fn.
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Lemma

Let π : P → M be a G-principal bundle over a connected and simply
connected manifold. Suppose there exists a connection one-form A such
that the horizontal distribution H is integrable. Then π : P → M is a trivial
bundle and there exists a global section χ : M → P such that χ∗A = 0.
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Proof of the theorem

• We know that MΛ is diffeomorphic to Tk × Rn−k .
• W.l.o.g., assume that Xf1 , . . . , Xfk are infinitesimal generators of
S1-actions with period 1, and that Xgk+1 , . . . , Xgn are infinitesimal
generators of R-actions.

• Let L = ker θ and U = {x ∈ U | fi(x) ̸= 0 ∀ i and θ(x) ̸= 0}.
• Since F : U → V is a trivial bundle, U ∼= V × Tk × Rn−k can be

endowed with a Riemannian metric g , given by the product of flat
metrics in V ⊆ Rn, Tk and Rn−k , which is flat and invariant by the
Lie group action of Tk × Rn−k .
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Proof of the theorem

• The distribution
Lθ =

(
L ∩ ⟨Xfi ⟩

n
i=1
)⊥g ∩ L

is
1 invariant by the Lie group action of Tk × Rn−k ,
2 contained in L,
3 complementary to the vertical bundle:

Lθ
x ⊕ ⟨Xfi (x)⟩n

i=1 = Tx M , ∀x ∈ U .

• Moreover, F : U → U/(Tk × Rn−k) is a principal bundle and Lθ is a
principal connection with connection one-form θ.

• The fact that θ ∧ dθ = 0 implies that L is integrable.
• Since it is the orthogonal complement of L w.r.t. a flat metric, Lθ is

integrable.

Asier López-Gordón (IM PAN) Liouville – Arnol’d theorem for contact Hamiltonian systems GDE Seminar 42



Introduction Contact manifolds Homog. Liouville–Arnol’d theorem Contact Liouville–Arnol’d theorem References

Proof of the theorem

• Let Û ⊆ U be an open subset of U such that V̂ = F (Û) is simply
connected.

• Then, there exists a global section χ of F : Û → V̂ ∼= Û/(Tk × Rn−k)
such that χ∗θ = 0.

• Let Φ: Tk × Rn−k × M → M denote the action defined by the flows
of Xfi .

• For each point x ∈ MΛ = F −1(Λ), the angle coordinates (y i(x)) are
determined by

Φ
(
y i(x), χ(F (x))

)
= x .

• Notice that (y i , fi) are coordinates in Û adapted to the foliation of M
in MΛ.
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Proof of the theorem

• In these coordinates,

θ = Aidy i + B idfj , Xfi = ∂

∂y i ,

• Contracting θ with Xfi yields Ai = fi .
• Finally, notice that Im χ = ∩n

i=1(y i)−1(µi). Hence,

0 = χ∗θ = B idfi .

• Since µi ’s are arbitrary values of y i , the functions B i are identically
zero on all the manifold M and θ = fidy i .
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Construction of action-angle coordinates

In order to construct action-angle coordinates in a neighbourhood U of
MΛ, one has to carry out the following steps:

1 Fix a section χ of F : U → V such that χ∗θ = 0.
2 Compute the flows ϕ

Xfi
t of the Hamiltonian vector fields Xfi .

3 Let Φ: Rn × M → M denote the action of Rn on M defined by the
flows, namely,

Φ(t1, . . . , tn; x) = ϕ
Xf1
t1 ◦ · · · ◦ ϕ

Xfn
tn (x) .

4 It is well-known that the isotropy subgroup
Gχ(Λ)(Λ) = {g ∈ Rn | Φ(g , χ(Λ)) = χ(Λ)}, forms a lattice (that is, a
Z-submodule of Rn). Pick a Z-basis {e1, . . . , em}, where m is the
rank of the isotropy subgroup.
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Construction of action-angle coordinates

5 Complete it to a basis B = {e1, . . . , em, em+1, . . . , en} of Rn.
6 Let (M j

i ) denote the matrix of change from the basis {Xfi (χ(Λ))} of
Tχ(Λ)MΛ ≃ Rn to the basis {ei}. The action coordinates are the
functions Ai = M j

i fj .
7 The angle coordinates (y i) of a point x ∈ M are the solutions of the

equation
x = Φ

(
y iei ; χ ◦ F (x)

)
.
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Trivial symplectization of a co-oriented contact manifold

Definition
Let (M, η) be a co-oriented contact manifold. Then, the trivial bundle
π1 : Msymp = M × R+ → M, π1(x , r) = x can be endowed with the
symplectic potential θ(x , r) = rη(x). The Liouville vector field reads
∇ = r∂r .
We will refer to (Msymp, θ) as the trivial symplectization of (M, η).

Remark
I will present a more general setting at the end of the talk.
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Trivial symplectization of a co-oriented contact manifold

Proposition
There is a one-to-one correspondence between functions f (x) on M and
1-homogeneous functions f symp(x , r) = −rf (x) on Msymp such that the
symplectic Xf symp and contact Xf Hamiltonian vector fields are related as
follows:

Tπ1 (Xf symp) = Xf .

Moreover, the Poisson {·, ·}θ and Jacobi {·, ·} brackets have the
correspondence

{f symp, g symp}ω =
(
{f , g}η

)symp
.
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Definition

A completely integrable contact system is a triple (M, η, F ), where
(M2n+1, η) is a co-oriented contact manifold and
F = (f0, . . . , fn) : M → Rn+1 is a map such that

1 f0, . . . , fn are in involution, i.e., {fα, fβ} = 0 ∀ α, β ∈ {0, . . . , n},
2 rank TF ≥ n on a dense open subset M0 ⊆ M.
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Proposition
Let (M, η) be a co-oriented contact manifold and F : M → Rn+1 a smooth
map. Consider the trivial symplectization, i.e., Msymp = M × R+ endowed
with the symplectic potential θ(x , r) = rη(x), and the map
F symp(x , r) = −rF (x). Then, (Msymp, θ, F symp) is a homogeneous
integrable system iff (M, η, F ) is a completely integrable contact system.
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Some notation

• For each Λ ∈ Rn+1 \ {0}, let ⟨Λ⟩+ denote the ray generated by Λ,
namely,

⟨Λ⟩+ :=
{

x ∈ Rn+1 | ∃ ∈ R+ : x = rΛ
}

.

• Consider the preimages M⟨Λ⟩+ of those rays by a map F : M → Rn+1,
namely,

M⟨Λ⟩+ := F −1
(
⟨Λ⟩+

)
.

Asier López-Gordón (IM PAN) Liouville – Arnol’d theorem for contact Hamiltonian systems GDE Seminar 51



Introduction Contact manifolds Homog. Liouville–Arnol’d theorem Contact Liouville–Arnol’d theorem References

Assumptions

1 Assume that the Hamiltonian vector fields Xf0 , . . . , Xfn are complete.
2 Given Λ ∈ Rn+1 \ {0}, let B ⊆ Rn+1 \ {0} be an open neighbourhood

of Λ.
3 Let π : U → M⟨Λ⟩+ be a tubular neighbourhood of M⟨Λ⟩+ such that

F |U : U → B is a trivial bundle over a domain V ⊆ B.
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Theorem (Colombo, de León, Lainz, L. G., 2023)
Let

(
M, η, F

)
be a completely integrable contact system, where

F = (f0, . . . , fn). Consider the assumptions of the previous slide. Then:
1 M⟨Λ⟩+ is coisotropic, invariant by the Hamiltonian flow of fα, and

diffeomorphic to Tk × Rn+1−k for some k ≤ n.
2 There exist coordinates (y0, . . . , yn, Ã1, . . . , Ãn) on U such that the

Hamiltonian vector fields of the functions fα read

Xfα = Nβ
αXfβ ,

where Nβ
α are functions depending only on Ã1, . . . , Ãn.

3 There exists a nowhere-vanishing function A0 ∈ C ∞(U) and a
conformally equivalent contact form η̃ = η/A0 such that (y i , Ãi , y0)
are Darboux coordinates for (M, η̃), namely, η̃ = dy0 − Ãidy i .
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Sketch of the proof

1 Translate the problem to the exact symplectic manifold
(Msymp = M × R+, θ = rη).

• {fα, fβ} = 0 ⇒ {f symp
α , f symp

β } = 0.
• Xfα complete ⇒ Xf symp

α
complete.

• rank dfα ≥ n ⇒ rank d(rπ∗
1 fα︸ ︷︷ ︸

f symp
α

) ≥ n + 1.

• π1
(
(F symp)−1(Λ)

)
=
{

x ∈ M | ∃s ∈ R+ : F (x) = Λ
s
}

= M⟨Λ⟩+ .
• Xf symp

α
are tangent to (F symp)−1(Λ) ⇒ Xfα

are tangent to M⟨Λ⟩+ .
• Xfα

commute and are tangent to M⟨Λ⟩+ ⇒ M⟨Λ⟩+ ≃ Tk × Rn+1−k .
• F : U → B is a trivial bundle ⇒ F symp : π−1

1 U → B is a trivial bundle.
∴ We can apply the theorem for exact symplectic manifolds to obtain

action-angle coordinates (yα
symp, Asymp

α ) on π−1
1 (U).
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Sketch of the proof

2 In these coordinates,

θ = Asymp
α dyα

symp , Asymp
α = Mβ

α f symp
β ,

and
Xf symp

α
= Nβ

α

∂

∂yβ
symp

, (Nα
β ) = (Mα

β )−1 .

Due to the homogeneity, there are functions yα, Aα, Mβ
α and Nβ

α on
M such that

Asymp
α = −r (π∗

1Aα) , yα
symp = π∗

1yα ,

Mβ
α = π∗

1Mβ
α , Nβ

α = π∗
1Nβ

α .
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Sketch of the proof

3 Since r (π∗
1η) = θ, the contact form is given by

η = Aαdyα .

and
fα = Mβ

αAβ , Xfα = Nβ
α

∂

∂yβ
,

4 Since Λ ̸= 0, there is at least one nonvanishing fα. Hence, there is at
least one nonvanishing Aα. W.l.o.g. , assume that A0 ̸= 0. Then,
(y i , Ãi = −Ai/A0, y0) are Darboux coordinates for

η̃ = 1
A0

η = dy0 − Ãidy i ,
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An example

• Let M = R3 \ {0} with canonical coordinates (q, p, z), and
η = dz − pdq.

• The functions h = p and f = z are in involution.
• Let F = (h, f ) : M → R2.
• rank TF = 2, and thus (M, η, F ) is a completely integrable contact

system.
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An example

• Hypothesis of the theorem are satisfied:
1 The Hamiltonian vector fields

Xh = ∂

∂q , Xf = −p ∂

∂p − z ∂

∂z

are complete,
2 Since F : (q, p, z) 7→ (p, z) is the canonical projection,

F : R3 \ {0} → R2 \ {0} is a trivial bundle.
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An example

• Therefore, θ = rdz − rpdq is the symplectic potential on
Msymp = M × R+, and the symplectizations of h and f are
hsymp = −rp and f symp = −rz . Their Hamiltonian vector fields are

Xhsymp = ∂

∂q , Xf symp = −p ∂

∂p − z ∂

∂z + r ∂

∂r .

• Consider a section χ : R2 → Msymp of F symp = (hsymp, f symp) such
that χ∗θ = 0. For instance, one can choose χ(Λ1, Λ2) =

(
0, Λ1

Λ2
, 1, Λ2

)
in the points where Λ2 ̸= 0.
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An example

• The Lie group action Φ: R2 × Msymp → Msymp defined by the flows
of Xhsymp and Xf symp is given by

Φ(t, s; q, p, z , r) =
(
q + t, pe−s , ze−s , res) ,

whose isotropy subgroup is the trivial one.
• The angle coordinates (y0

symp, y1
symp) of a point x ∈ Msymp are

determined by
Φ
(
y0

symp, y1
symp, χ(F (x))

)
= x .

• If the canonical coordinates of x are (q, p, z , r), then

y0
symp = q , y1

symp = − log z .
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An example

• Since the isotropy subgroup is trivial, the action coordinates coincide
with the functions in involution, namely,

Asymp
0 = hsymp = −rp , Asymp

1 = f symp = −rz .

• Projecting to M yields the functions

y0 = q , y1 = − log z , A0 = h = p , A1 = f = z .
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An example

• The action coordinate is

Ã = −A0
A1

= −p
z

In the coordinates (y0, y1, Ã) the Hamiltonian vector fields reads

Xh = ∂

∂y0 , Xf = ∂

∂y1 ,

and there is a conformal contact form given by

η̃ = − 1
A1

η = dy1 − Ãdy0 .

Asier López-Gordón (IM PAN) Liouville – Arnol’d theorem for contact Hamiltonian systems GDE Seminar 62



Introduction Contact manifolds Homog. Liouville–Arnol’d theorem Contact Liouville–Arnol’d theorem References

An example

• Similarly,
χ(Λ1, Λ2) =

(Λ2
Λ1

, 1,
Λ2
Λ1

, Λ1

)
is a section of F symp in the points where Λ1 ̸= 0.

• Performing analogous computations as above one obtains the
action-angle coordinates

ŷ0 = q − z
p , ŷ1 = − log p , Â = −z

p ,

such that

Xh = ∂

∂ŷ0 , Xf = ∂

∂ŷ1 , η̂ = − 1
p η = dŷ0 − Âdŷ1 .
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R×-principal bundles

• Consider the multiplicative group of non-zero real numbers
GL(1,R) = R× = R \ {0}.

• Let π : P → M be an R×-principal bundle, and denote the R×-action
by Φ, and the Euler vector field by ∇.

• In a local trivialization π−1(U) ≃ U × R× of P, they read

π(x , s) = x , ht(x , s) = (x , ts) , ∇ = s ∂

∂s .
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Homogeneous symplectic forms

Definition
Let π : P → M be an R×-principal bundle with Euler vector field ∇. A
tensor field A on P is called k-homogeneous (for k ∈ Z) if

L∇A = kA .

Definition
A symplectic R×-principal bundle is an R×-principal bundle π : P → M
endowed with a 1-homogeneous symplectic form ω on P. We will denote it
by (P, π, M, ∇, ω)
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Contact manifolds and symplectic R×-principal bundles

Theorem (Grabowski, 2013)
There is a canonical one-to-one correspondence between contact
distributions C ⊂ TM on M and symplectic R×-principal bundles
π : P → M over M.
More precisely, the symplectic R×-principal bundle associated with C is
(C◦)× = C◦ \ 0T∗M ⊂ T∗M (i.e., the annihilator of C with the zero
section removed), whose symplectic form is the restriction to (C◦)× of the
canonical symplectic form ωM on T∗Q. It is called the symplectic cover
of (M, C).
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Remark
Every symplectic R×-principal bundle (P, π, M, ∇, ω) is an exact
symplectic manifold. Indeed, the 1-form θ = −ι∇ω is a symplectic
potential for ω.
Conversely, an exact symplectic manifold (M, θ) is a symplectic
R×-principal bundle if the Liouville vector field ∇ is complete.
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Contact Hamiltonian vector fields

Theorem (Grabowska and Grabowski, 2022)
Let (P, π, M, ∇, ω) be the symplectic cover of (M, C). Then, the
Hamiltonian vector field Xh of a 1-homogeneous function h ∈ C ∞(P) is
π-projectable. The vector field X c

h := Tπ(Xh) ∈ X(M) is called the
contact Hamiltonian vector field of h.
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Proposition
Let (P2n, π, M, ∇, ω) be the symplectic cover of the contact manifold
(M, C), and let F = (f1, . . . , fn) : P → Rn a map such that
(M, θ = −ι∇ω, F ) is a homogeneous integrable system. Then:

1 π
(
F −1(Λ)

)
is coisotropic, invariant by the flows of X c

f1 , . . . , X c
fn , and

diffeomorphic to Tk × Rn−k for some k ≤ n.
2 There exist coordinates (y1, . . . , yn, Ã1, . . . , Ãn−1) such that

X c
fα = Nβ

α

∂

∂yβ
,

where Nβ
α are functions depending only on Ã1, . . . , Ãn.

Asier López-Gordón (IM PAN) Liouville – Arnol’d theorem for contact Hamiltonian systems GDE Seminar 69



Introduction Contact manifolds Homog. Liouville–Arnol’d theorem Contact Liouville–Arnol’d theorem References

Main references

[1] V. I. Arnold. Mathematical Methods of Classical Mechanics. Graduate
Texts in Mathematics. Springer-Verlag, 1978.

[2] L. Colombo, M. de León, M. Lainz, and A. López-Gordón.
Liouville-Arnold theorem for contact Hamiltonian systems. 2023.
arXiv: 2302.12061 [math.SG].

[3] P. Dazord, A. Lichnerowicz, and C.-M. Marle. “Structure Locale Des
Variétés de Jacobi”. J. Math. Pures Appl. (9), 70(1), pp. 101–152
(1991).

[4] E. Fiorani, G. Giachetta, and G. Sardanashvily. “An Extension of the
Liouville-Arnold Theorem for the Non-Compact Case”. Nuovo
Cimento Soc. Ital. Fis. B (2003).

Asier López-Gordón (IM PAN) Liouville – Arnol’d theorem for contact Hamiltonian systems GDE Seminar 70

https://arxiv.org/abs/2302.12061


Introduction Contact manifolds Homog. Liouville–Arnol’d theorem Contact Liouville–Arnol’d theorem References

Main references

[5] K. Grabowska and J. Grabowski. “A Geometric Approach to Contact
Hamiltonians and Contact Hamilton–Jacobi Theory”. J. Phys. A:
Math. Theor., 55(43), p. 435204 (2022).

[6] J. Grabowski. “Graded Contact Manifolds and Contact Courant
Algebroids”. J. Geom. Phys., 68, pp. 27–58 (2013).

[7] J. Liouville. “Note sur l’intégration des équations différentielles de la
Dynamique”. J. Math. Pures Appl., pp. 137–138 (1855).

[8] A. López-Gordón. “The geometry of dissipation”. PhD thesis.
Universidad Autónoma de Madrid, 2024. arXiv: 2409.11947
[math-ph].

Asier López-Gordón (IM PAN) Liouville – Arnol’d theorem for contact Hamiltonian systems GDE Seminar 71

https://arxiv.org/abs/2409.11947
https://arxiv.org/abs/2409.11947


Introduction Contact manifolds Homog. Liouville–Arnol’d theorem Contact Liouville–Arnol’d theorem References

Dziękuję za uwagę!

� alopez-gordon@impan.pl
www.alopezgordon.xyz

Asier López-Gordón (IM PAN) Liouville – Arnol’d theorem for contact Hamiltonian systems GDE Seminar 72

mailto:alopez-gordon@impan.pl
https://alopezgordon.xyz

	Introduction
	Contact manifolds
	Homog. Liouville–Arnol'd theorem
	Contact Liouville–Arnol'd theorem
	References

