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Symplectic geometry

® Symplectic manifolds are the natural geometric frameworks for
Hamiltonian mechanics.

® Let me recall that a symplectic manifold (M, w) is a 2n-dimensional
manifold endowed with a 2-form w such that dw = 0 and w" # 0.

® The Hamiltonian vector field X}, of a function h € €°°(M) is given by
w(Xp, ) =0.

® In a neighborhood of each point in M there are canonical (or
Darboux) coordinates (g, p;) in which

_9h & 0h D
~ Opidq’ Oq' Op;

w=dq ANdp;, X
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Liouville—Arnol'd theorem

Theorem (Liouville—Arnol'd)

Let fi,...,f, be independent functions in involution (i.e., {f;, f;} =0 Vi, j)
on a symplectic manifold (M?",w). Let My = {x € M | f; = A\;} be a
regular level set.

@ Any compact connected component of My is diffeomorphic to T".
@® On a neighborhood of My there are coordinates (', J;) such that

w=dy¢' AdJ;,

and f; = fi(J1,...,Jn), so the Hamiltonian vector fields read

X = 5500
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Liouville—Arnol'd theorem

Corollary

Let (M?",w, h) be a Hamiltonian system. Suppose that fi, ..., f, are
independent conserved quantities (i.e. Xp(f;) =0 Y i) in involution. Then,
on a neighborhood of M) there are Darboux coordinates (¢', J;) such that
h= h(4,...,Jn), so the Hamiltonian dynamics are given by

de' _0h 0
dt 8Ji8§0i7
dJ;

P
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Example (The n-dimensional harmonic oscillator)

® Consider R?", with canonical coordinates (x;, p;), i € {1,...,n},
equipped with the symplectic form w and the Hamiltonian function h,

n n 2 2
w=Y"dx Adp;, h:Z(”z—"Jr%")

. p2 x? . . .
® The functions f; = - + 5 are independent and involution, and one
can write h= 3", f.
* Angle coordinates are ¢’ = arctan (%) and action coordinates are f;.
1

® Hamilton's equations read

def df;
-+ =1 ! =0.
dt ’ dt 0
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Integrable distributions

® Given a differentiable manifold M, a distribution D of (co)rank k on
M is a subbundle of the tangent bundle TM, i.e., a smoooth
assignment of a k-(co)dimensional vector subspace D, C T,M for
each x € M.

Theorem (Frobenius)

The following statements are equivalent:
@ For every x € M, there exists a submanifold N C M such that
D, = TxN (i.e., D is integrable).
@® fFor each pair of vector fields X, Y € X(M) such that
X(x), Y(x) € Dy for all x € M we have that [X, Y](x) € Dx (i.e., D
is involutive).
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Maximally non-integrable distributions

® Grosso modo, a distribution D will be “as far as possible” from being
integrable if

X,YeD=s[X,Y]¢Dor[X,Y]=0.

® More precisely, we will say that D is maximally non-integrable if the
bilinear map

vp: D xm D3 (X, Y) = 5([X, Y]) € TM/D

is non-degenerate. Here [-, ] denotes the Lie bracket of vector fields
with image in D, and v: TM — TM/D is the canonical projection.

Liouville—Arnol'd theorem for contact Hamiltonian systems GDE Seminar 7



Contact manifolds
00®0000000000000

Contact distributions

Definition

Let M be a (2n + 1)-dimensional manifold. A contact distribution C on
M is a maximally non-integrable distribution of corank 1. The pair (M, C)
is called a contact manifold.
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Distributions as kernels of 1-forms

® Note that a codistribution D of corank 1 on M can be locally written
as the kernel of a (local) 1-form a on M.

® |t is easy to see that D is integrable iff
aNda=0

for any local 1-form « such that D = ker a.

® On the contrary, D is maximally non-integrable iff

aANda"=aANdaAN---ANda #0
—_—

n times

for any local 1-form « such that D = ker a.
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Contact forms

Definition

Let (M, C) be a contact manifold such that C can be globally written as
the kernel of a global 1-form n on M. Then, C is said to be a
co-orientable contact distribution, 7 is called a contact form, and the
pair (M, n) is called a co-oriented contact manifold.
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Contact forms

® A co-orientable contact distribution C does not fix the contact form
7, but rather the equivalence class

n~1f <= kern=kerij<= 3 f: M — R\ {0} such that 7j = fn.

® Not all contact manifolds are co-orientable. Nevertheless, their double
cover is always co-orientable.

® Several authors refer to co-oriented contact manifolds as contact
manifolds. The term “contact structure” is used to refer either to the
contact distribution or to the contact form, so | will not use it in
order to avoid ambiguity.
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Example (Odd-dimensional Euclidean space)

n=dz— Y y'dx’, in R?™*1 with canonical coordinates (x, y’, z).

Example (Trivial bundle over the cotangent bundle)

The cotangent bundle T*Q of @ is endowed with the tautological 1-form
fq. The trivial bundle 7m1: T*Q x R — T*Q can be equipped with the
contact form ng = dr — 7*0q, with r the canonical coordinate of R. If
(g') are coordinates in @ which induce bundle coordinates (q', p;) in T*Q
and (q', pi, r) in T*Q x R, we have

0o =pidq’, ng=dr—pidq'.
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Example (Projective space)

Let M = R"” x RP"~1. Consider the open subsets

U ={(x,Iv]) e M| y* # 0},

where x = (x1,...,x"),y = (y},...,yk,...,¥") € R". We have the local
contact forms _
k=dxk =3 Laxd e l(u).
ik
If a global contact form 7 on M existed, then n A dn” would define an
orientation. Hence, M is not co-orientable if n is even.
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The Reeb vector field

Definition
Let (M, n) be a co-oriented contact manifold. The Reeb vector field of
(M, n) is the unique vector field R € X(M) such that

R € kerdn, n(R)=1.
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The tangent bundle TM of a co-oriented contact manifold (M, ) can be
decomposed as the Whitney sum

TM =kern@ kerdn=C® (R).

Note that the complement of the contact distribution C = kern depends
on the choice of contact form.
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Proposition

Let n be a 1-form on a manifold M. The map
by X(M) — QY (M), by(X) = n(X)n + txdn

is a €°°(M)-module isomorphism iff 1 is a contact form.

Note that the Reeb vector field can be equivalently defined as R = b, (n).
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Darboux coordinates

Let (M,n) be a (2n + 1)-dimensional co-oriented contact manifold.
Around each point x € M there exist local coordinates (q', p;, z),
i€ {1...,n} such that the contact form reads

n=dz—pdq".
Consequently, the Reeb vector field is written as

_9
9z

These coordinates are called canonical or Darboux coordinates.

R
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Jacobi structures

® Consider a manifold M endowed with a bivector field
A € Sec(A*> TM) and a vector field E € X(M).

® Define the bracket {-,-}: (M) x €°°(M) — €°°(M) by
{f.g} = N\(df,dg) + fE(g) — gE(f).
® |t is a Lie bracket iff
ANE| =0, [AA=2EAAN,

where [-, -] denotes the Schouten—Nijenhuis bracket.

¢ In that case, (A, E) is called a Jacobi structure on M, {-,-} is called
a Jacobi bracket, and (M, A, E) is called a Jacobi manifold.
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Jacobi structures

A Poisson structure A is a Jacobi structure with E = 0.
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Jacobi structures

® A Jacobi structure (A, E) defines a €°°(M)-module morphism
s QH(M) — X(M),  ta(a) = Ao, -).

e This defines a so-called orthogonal complement DA = f5(D°), for a
distribution D with annihilator D°.

e A submanifold N of M is called coisotropic if TN-r C TN.
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Jacobi structures

® Two Jacobi structures (A, E) and (A, E) on M are conformally
equivalent if there exists a nowhere-vanishing function f on M such
that
A=fA, E=t\df +fE.

The orthogonal complement coincides for conformally equivalent Jacobi
structures, namely, DA = D& for any distribution D.
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Jacobi structures

Definition
Let (M, A, E) be a Jacobi manifold with Jacobi bracket {-,-}. A collection
of functions fi,. .., fx € €>°(M) will be said to be in involution if

(f,f}=0,Vije{l,... k}.
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Jacobi structures

® For each function f € ¥°°(M), we can define a vector field
X¢ = ta(df) + fE
or, equivalently,
Xr(g) = {f.g} +gE(f), VgeE>™(M).

® Following the nomenclature of Dazord, Lichnerowicz, Marle, et al., we
will refer to Xr as the Hamiltonian vector field of 7.

® However, Xr does not satisfy the properties of a usual Hamiltonian
vector field (w.r.t. a symplectic or Poisson structure). In particular,

{f,.g} =0~ Xr(g) =0.
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Jacobi structure defined by a contact form

® A co-oriented contact manifold (M2"*1 1) is endowed with a Jacobi
structure (A, E) given by

Nar, B) = =dn (b, (a).5,1(8)) . E =R,

where R is the Reeb vector field.

® Any contact form 7} defining the same contact distribution, i.e.,
ker 7j = kern, defines a conformally equivalent Jacobi structure.
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Contact Hamiltonian vector field

® Let (M,n) be a co-oriented contact manifold. The Hamiltonian
vector field of f € €°°(M) is uniquely determined by

n(Xe) =—f, Lxn=-R(f)n.

® |n Darboux coordinates

N Of 0 _<8f+ _af) 9 +<_8f_f>8
f_ap,-ﬁq" oq’ Pz Opi p'(?p,— 0z’
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Contact Hamiltonian vector field

® The Reeb vector field is the Hamiltonian vector field of f = —1.

® Every Hamiltonian vector field is an infinitesimal contactomorphism
(i.e., its flow preserves the contact distribution C = kern).
Conversely, if Y € X(M) is an infinitesimal contactomorphism, then it
is the Hamiltonian vector field of f = —n(Y).

® Knowing C = kern and X¢ does not fix n nor f. As a matter of fact,
Xr is the Hamiltonian vector field of g = f/a with respect to 7j = an,
for any non-vanishing a € €>°(M).
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Contact Hamiltonian systems

Definition

A contact Hamiltonian system (M, 7, h) is a co-oriented contact
manifold (M, n) with a fixed Hamiltonian function h € €><(M).

® The dynamics of (M, n, h) is determined by the integral curves of the
Hamiltonian vector field Xp, of h w.r.t. 0.
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Contact Hamiltonian systems

® In Darboux coordinates, these curves c(t) = (q'(t), pi(t), z(t)) are
determined by the contact Hamilton equations:

dq'(t Oh
dg ) - opi °ct),
dp,-(t) . Oh _ Oh
i~ oq oc(t)— p,(t)g oc(t),
dz(t)

Tl pi(t)g/:- oc(t)—hoc(t).
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Example (The harmonic oscillator with linear damping)

Consider the solution x: R — R of the second-order ordinary differential
equation

d?x

CX(B) = —x(1) — 52 (0),
where k € R. Defining p = dx/dt, we can reduce it to the system of
first-order ordinary differential equations

dx d
—(®) =p(t), L) =—x(t) = rp(2).

We can obtain this system as the two first contact Hamilton equations
from the contact Hamilton system (R3, 7, h), where 7 = dz — pdx and

2 2
h=%+%+nz.
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Notions of integrability for contact manifolds

® Khesin and Tabachnikov, Liberman, Banyaga and Molino, Lerman,
etc. have defined notions of contact complete integrability which are
geometric but not dynamical, e.g. a certain foliation over a contact
manifold.

® Boyer considers the so-called good Hamiltonians h, i.e., R(h) =0~
no dissipation, “symplectic” dynamics.

® Miranda considered integrability of the Reeb dynamics when R is the
generator of an S!-action.

® \We are interested in complete integrability of contact Hamiltonian
dynamics.
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Notions of integrability for contact manifolds

Instead, we will use the equivalence between the categories of contact
manifolds and symplectic R*-principal bundles, and proof a
Liouville=Arnol’d theorem for homogeneous functions in involution.
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Exact symplectic manifolds

An exact symplectic manifold is a pair (M, ), where 0 is a symplectic

potential on M, i.e., w = —d#f is a symplectic form on M. The Liouville
vector field V € X(M) is given by

tyw = —0.

A tensor field A on P is called k-homogeneous (for k € Z) if

LoA= KA.
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Homogeneous integrable system

Definition

A homogeneous integrable system consists of an exact symplectic
manifold (M2",6) and a map F = (f1,...,f,): M — R" such that the
functions fi, ..., f, are independent, in involution and homogeneous of
degree 1 (w.r.t. the Liouville vector field V of ) on a dense open subset
Moy € M. We will denote it by (M, 0, F).

For simplicity’s sake, in this talk | will assume that My = M.
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Proposition

Let (M, 0, F) be a homogeneous integrable system. Then, for each
A € R", the level set My = F~1(A) is a Lagrangian submanifold, and

oF (Mp) = Mep = F7Y(tA),

where ¢y denotes the flow of the Liouville vector field V.
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¢ Consider the exact symplectic manifold (M, ), with Liouville vector

field V.
® Around each point in M, there are canonical coordinates (q', p;)
where 0 = p;dq’.

® Then, a straightforward computation shows that V = Piaip--

® Note that coordinates may be canonical for w = —d6 but not for 6.
For instance, in the coordinates §' = q', p; = p; + €% we have

0

0=>(5—e")dg, w=dg Adp, V=(pi—e") 75

® |n particular, the Liouville=Arnol'd theorem provides coordinates
which are canonical for w, but not necessarily for 6 or V.
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Homogeneous Liouville—Arnol'd theorem

Consider a homogeneous integrable system (M, 0, F). Let U be an open
neighbourhood of the level set My = F~1(A) (with A € R") such that:

® fi,..., 1, have no critical points in U,
@® the Hamiltonian vector fields Xy, ..., X, are complete,

©® the submersion F: U — R" is a trivial bundle over a domain V C R".
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Homogeneous Liouville—Arnol'd theorem

Theorem (Colombo, de Leén, Lainz, L. G., 2023)

Let (M,0, F) be a homogeneous integrable system with F = (fi,...,f,).
Given N\ € R", suppose that My = F~(A) is connected, and assume the
statements from the previous slide. Then, U = T* x R"~* x V and there
is a chart (U C U;y',A)) of M s.t.

0 A= 5 where MJ are homogeneous functions of degree 0
depend/ng only on fl, .-
® 0= A-dyi,

® Xr=M 881, with (N!) the inverse matrix of (M).
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Let M be an n-dimensional manifold, and let X1, ..., X, € X(M) be
linearly independent vector fields. If these vector fields are pairwise
commutative and complete, then M is diffeomorphic to Tk x R"=¥ for
some k < n, where T¥ denotes the k-dimensional torus.
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Let (M?".0, F) be a homogeneous integrable system, with
F = (fi,...,f,). Assume that the Hamiltonian vector fields Xz are
complete. Then, there exists n functions gi = M!f; € €°°(M) such that

(1) (M, 0,(g1,--. ,g,,)) is also a homogeneous integrable system,

® X, ..., Xq are infinitesimal generators of St-actions and their flows
have period 1,

© Xg .., .., Xg, are infinitesimal generators of R-actions,

(4] M{ fori,j €1,...,n are homogeneous functions of degree 0, and
they depend only on fi, ..., f,.

Liouville—Arnol'd theorem for contact Hamiltonian systems GDE Seminar
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Let m: P — M be a G-principal bundle over a connected and simply
connected manifold. Suppose there exists a connection one-form A such
that the horizontal distribution H is integrable. Then w: P — M is a trivial
bundle and there exists a global section x: M — P such that x*A = 0.
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Proof of the theorem

e We know that M, is diffeomorphic to TX x Rk,

® W.lo.g., assume that Xy,..., X are infinitesimal generators of
S!-actions with period 1, and that Xy, ,, ..., Xg, are infinitesimal
generators of R-actions.

o let £=kerf and U= {x € U|fi(x)#0Viand 6(x) # 0}.
® Since F: U — V is a trivial bundle, U2 V x TX x R~k can be
endowed with a Riemannian metric g, given by the product of flat

metrics in V C R”, Tk and R"~X, which is flat and invariant by the
Lie group action of T x R"~k.
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Proof of the theorem

® The distribution
el = (&N (Xp)
is
@ invariant by the Lie group action of T x R,

@® contained in £,
© complementary to the vertical bundle:

20 (Xe(x)), =T M, VxeU.
® Moreover, F: U — U/(T* x R" k) is a principal bundle and £7 is a
principal connection with connection one-form 6.

® The fact that 8 A df = 0 implies that £ is integrable.

e Since it is the orthogonal complement of £ w.r.t. a flat metric, £7 is
integrable.
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Proof of the theorem

e Let {J C U be an open subset of U such that V = F(U) is simply
connected.

® Then, there exists a global section y of F: U — V = U/(Tk x R"k)
such that x*0 = 0.

o Let d: Tk x R" % x M — M denote the action defined by the flows
of Xfl..

® For each point x € My = F~1(A), the angle coordinates (y’(x)) are
determined by

o (y'(x),Xx(F(x))) = x.

* Notice that (y', ;) are coordinates in {J adapted to the foliation of M
in M/\.
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Proof of the theorem

® |n these coordinates,

. . B
9 = A,‘dyl + Bldfj", Xf: = -y
ay'

¢ Contracting 6 with Xg yields A; = f;.
® Finally, notice that Imy = N2_;(y")~!(u;). Hence,

0= x*0 = B'df;.

e Since ;s are arbitrary values of y/, the functions B’ are identically
zero on all the manifold M and 0 = fdy'.
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Construction of action-angle coordinates

In order to construct action-angle coordinates in a neighbourhood U of

My, one has to carry out the following steps:
@ Fix a section x of F: U — V such that x*6 = 0.
fi

® Compute the flows qﬁf

© Let &: R” x M — M denote the action of R” on M defined by the
flows, namely,

of the Hamiltonian vector fields X.

X, X,
O(t1,...,thx) = ¢t1f1 0---0 tnf”(x).

O It is well-known that the isotropy subgroup
Gynn) = 18 € R" | ©(g, x(N)) = x(N)}, forms a lattice (that is, a
Z-submodule of R"). Pick a Z-basis {ei,...,en}, where m is the

rank of the isotropy subgroup.

Liouville— Arnol'd theorem for contact Hamiltonian systems GDE Seminar
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Construction of action-angle coordinates

@ Complete it to a basis B = {e1,...,€m, €mt1,---,€n} of R".

@ Let (M) denote the matrix of change from the basis {X¢(x(A))} of
TymyMa = R" to.the basis {€;}. The action coordinates are the
functions A; = M/f;.

@ The angle coordinates (y') of a point x € M are the solutions of the
equation

x = dJ(yiei; x o F(x)).
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Trivial symplectization of a co-oriented contact manifold

Definition

Let (M, n) be a co-oriented contact manifold. Then, the trivial bundle
w1 MY =M x Ry — M, m1(x, r) = x can be endowed with the
symplectic potential §(x, r) = rn(x). The Liouville vector field reads
V = ro,.

We will refer to (M*¥™P ) as the trivial symplectization of (M, 7).

| will present a more general setting at the end of the talk.
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Trivial symplectization of a co-oriented contact manifold

Proposition

There is a one-to-one correspondence between functions f(x) on M and
1-homogeneous functions fY™P(x, r) = —rf(x) on M®™P such that the
symplectic Xgsymp and contact X¢ Hamiltonian vector fields are related as

follows:
Ty (Xpsymp) = Xr .

Moreover, the Poisson {-, -}y and Jacobi {-,-} brackets have the
correspondence

(e gy, = ({Fgdy)
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A completely integrable contact system is a triple (M, n, F), where
(M2m+1 p) is a co-oriented contact manifold and
F = (f,...,f,): M — R™1is a map such that

® f,....,f,arein involution, i.e., {f,,f3} =0Va,B €{0,...,n},
® rank TF > n on a dense open subset My C M.
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Proposition

Let (M, n) be a co-oriented contact manifold and F: M — R™1 a smooth
map. Consider the trivial symplectization, i.e., M¥™P = M x R endowed
with the symplectic potential 0(x, r) = rn(x), and the map

FY™P(x,r) = —rF(x). Then, (M3¥™P @ FS™P) js a homogeneous
integrable system iff (M,n, F) is a completely integrable contact system.

V.
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Some notation

® For each A € R™1\ {0}, let (A), denote the ray generated by A,
namely,
(N4 = {XGR”H |3 eRy: x:r/\} .

® Consider the preimages My, of those rays by a map F: M — R,
namely,

My, = F1((Ny).
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Assumptions

@ Assume that the Hamiltonian vector fields X, ..., X¢, are complete.
@® Given A € R™1\ {0}, let B C R™!\ {0} be an open neighbourhood
of A.

© Let m: U — My, be a tubular neighbourhood of My, such that

+
F|y: U — B is a trivial bundle over a domain V' C B.
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Theorem (Colombo, de Ledn, Lainz, L. G., 2023)

Let (M,n, F) be a completely integrable contact system, where
F = (fo,...,f,). Consider the assumptions of the previous slide. Then:

@ My, is coisotropic, invariant by the Hamiltonian flow of f,, and
diffeomorphic to TK x R"1=k for some k < n.

@® There exist coordinates (y°,...,y", A, ... ,An) on U such that the
Hamiltonian vector fields of the functions f, read

Xs, = No X,

where Nﬁ are functions depending only on A1, ..., A,.
© There exists a nowhere-vanishing function Ag € €>°(U) and a

conformally equivalent contact form ij = n/Ap such thatN(y", Ai,y°)
are Darboux coordinates for (M, i), namely, 7j = dy® — A;dy’.
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Sketch of the proof

@ Translate the problem to the exact symplectic manifold
(MY™P = M x Ry, 0 = rn).
° {f,,fzg} =0= {fymp f;ymp} =0.
® Xy, complete = Xgsvmp complete.
® rankdf, > n= rankd(rnify) > n+1.
fsymp
o m((F¥Y™P)~Y(A) = {x e M|Is e Rt: F(x) =2} =Mpy,,.
® Xgvmr are tangent to (F¥Y™P)~1(A) = Xj, are tangent to M. .
® Xr, commute and are tangent to Mx,, = M, =~ Tk x Rr+1-k,
® F: U — Bis a trivial bundle = F™: 771U — B is a trivial bundle.
. We can apply the theorem for exact symplectic manifolds to obtain

_ : -1
action-angle coordinates (yg,,, Ax™P) on m; (V).
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Sketch of the proof

® In these coordinates,

0= AYPAySp, AT = MO
and 5
Xprmw = N ——, (Ng) = (M)~
Oysymp
Due to the homogeneity, there are functions ya,Aa,Wg and Nﬁ on
M such that
AT = —r(mAd) Yoymp = T1¥"
MP = ﬂ‘ﬂg , NS = wi‘Nﬁ .
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Sketch of the proof

©® Since r(min) = 0, the contact form is given by
n= Aadya

and

—8 =8 0
fo=M,Agz, Xf——Naaﬁ,

O Since A # 0, there is at least one nonvanishing f,. Hence, there is at
least one nonvanishing A,. W.l.o.g. , assume that Ag # 0. Then,
(y', Ai = —Ai/ Ao, y°) are Darboux coordinates for

1 ~ .
= ——n=dy’ — Ay’
=21 = y',
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An example

Let M = R3\ {0} with canonical coordinates (g, p, z), and
n =dz — pdq.

The functions h = p and f = z are in involution.

Let F = (h,f): M — R2.

rank TF = 2, and thus (M, n, F) is a completely integrable contact
system.
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An example

® Hypothesis of the theorem are satisfied:
@ The Hamiltonian vector fields

are complete,
@® Since F: (g, p,z) — (p, z) is the canonical projection,
F:R3\ {0} — R?\ {0} is a trivial bundle.
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An example

® Therefore, § = rdz — rpdq is the symplectic potential on
M3Y™P = M x R, and the symplectizations of h and f are

hY™MP = —rp and FY™P = —rz. Their Hamiltonian vector fields are
0 0 0 0
X Sym = - X sym = —D— — —_— —_—.
T 9q 0 T op zf)z+r8r

e Consider a section y: R? — MSYmP of FSYWP — (pSYMP_£SYmP) gych
that x*0 = 0. For instance, one can choose x(A1,/\2) = (0, %, 1,/\2>
in the points where Ay # 0.
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An example

® The Lie group action ®: R? x MY™P — MSY™P defined by the flows
of Xpsymp and Xgsymp is given by

S —S

&(t,s:q,p,2,r) = (q+t,pe°,ze" %, re’) |

whose isotropy subgroup is the trivial one.

® The angle coordinates (
determined by

Y3 mps Yaymp) Of @ point x € M™P are

(18 aps ¥ampr X(F(x)) ) = x.

e |f the canonical coordinates of x are (q, p, z, r), then

0 1
.ysymp =q, .ysymp = - |ng.
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An example

® Since the isotropy subgroup is trivial, the action coordinates coincide
with the functions in involution, namely,

R e s

® Projecting to M yields the functions

y0:q7 y1:_|0g27 AOZh:pa Alzf:Z.
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An example

® The action coordinate is

In the coordinates (y°, y*, A) the Hamiltonian vector fields reads

0 0
Xp= -2 xp= L
h 8}/0’ f ayla

and there is a conformal contact form given by

1 ~
fj=——n=dy' —Ady°.
A1
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An example

® Similarly,
N . A >

A, N)=1{—,1,— A
X( 1, 2) (/\17 7/\17 1
is a section of F*Y™P in the points where A; # 0.

® Performing analogous computations as above one obtains the
action-angle coordinates

N z ~
yO:q_77 y1:_|0gpa A:_ia
p
such that
0 0 1 N
Xp=—=, X¢= , h=——n=dy’ — Adp’.
h=a50 F=gpr == y
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R*-principal bundles

® (Consider the multiplicative group of non-zero real numbers
GL(1,R) =R* =R\ {0}.

® et m: P — M be an R*-principal bundle, and denote the R*-action
by ®, and the Euler vector field by V.

® In a local trivialization 7=1(U) =~ U x R* of P, they read

0
m(x,s) =x, he(x,s)=(x,ts), V= Soe-
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Homogeneous symplectic forms

Definition

Let 7: P — M be an R*-principal bundle with Euler vector field V. A
tensor field A on P is called k-homogeneous (for k € Z) if

LoA= KA.

Definition

| \

A symplectic R*-principal bundle is an R*-principal bundle 7: P — M

endowed with a 1-homogeneous symplectic form w on P. We will denote it
by (P, 7w, M,V,w)
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Contact manifolds and symplectic R*-principal bundles

Theorem (Grabowski, 2013)

There is a canonical one-to-one correspondence between contact
distributions C C TM on M and symplectic R*-principal bundles

m: P — M over M.

More precisely, the symplectic R* -principal bundle associated with C is
(C°)* = C°\ Or«p C T*M (i.e., the annihilator of C with the zero
section removed), whose symplectic form is the restriction to (C°)* of the
canonical symplectic form wyy on T*Q. It is called the symplectic cover
of (M, C).
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Every symplectic R*-principal bundle (P, 7, M,V,w) is an exact
symplectic manifold. Indeed, the 1-form 8 = —iyw is a symplectic
potential for w.

Conversely, an exact symplectic manifold (M, 6) is a symplectic
R*-principal bundle if the Liouville vector field V is complete.
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Contact Hamiltonian vector fields

Theorem (Grabowska and Grabowski, 2022)

Let (P, 7, M,V ,w) be the symplectic cover of (M, C). Then, the
Hamiltonian vector field X}, of a 1-homogeneous function h € €°>°(P) is
w-projectable. The vector field X = Tn(Xp) € X(M) is called the
contact Hamiltonian vector field of h.
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Let (P?", 1, M,V,w) be the symplectic cover of the contact manifold
(M, C), and let F = (f,...,f,): P — R" a map such that
(M, 0 = —1yw, F) is a homogeneous integrable system. Then:

(1) 7r(F_1(/\)) is coisotropic, invariant by the flows of X£, ..., X£, and
diffeomorphic to TX x R"=k for some k < n.
@® There exist coordinates (y',...,y", A, ... ,74,,_1) such that

—3 0
Xt =Nog 5

where Ni are functions depending only on ;41, e ,;4,,.
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