

Liouville – Arnol'd theorem for contact Hamiltonian systems

Asier López-Gordón

Joint work with Leonardo Colombo, Manuel de León, and Manuel Lainz

Geometry and Differential Equations Seminar

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES

Symplectic geometry

- Symplectic manifolds are the natural geometric frameworks for Hamiltonian mechanics.
- Let me recall that a symplectic manifold (M, ω) is a 2*n*-dimensional manifold endowed with a 2-form ω such that $\mathrm{d}\omega = 0$ and $\omega^n \neq 0$.
- The Hamiltonian vector field X_h of a function $h \in \mathscr{C}^{\infty}(M)$ is given by $\omega(X_h, \cdot) = 0.$
- \bullet In a neighborhood of each point in M there are canonical (or $\mathsf{Darboux}\}\,$ coordinates (q^i, p_i) in which

$$
\omega = \mathrm{d} q^i \wedge \mathrm{d} p_i \,, \quad X_h = \frac{\partial h}{\partial p_i} \frac{\partial}{\partial q^i} - \frac{\partial h}{\partial q^i} \frac{\partial}{\partial p_i} \,.
$$

Liouville –Arnol'd theorem

Theorem (Liouville –Arnol'd)

Let f_1,\ldots,f_n be independent functions in involution (i.e., $\{f_i,f_j\}=0$ $\forall i,j)$ on a symplectic manifold (M^{2n},ω) . Let $M_\Lambda=\{x\in M\mid f_i=\Lambda_i\}$ be a regular level set.

- \textbf{D} Any compact connected component of M_Λ is diffeomorphic to \mathbb{T}^n .
- \bullet On a neighborhood of M_N there are coordinates (φ^i,J_i) such that

$$
\omega = \mathrm{d}\varphi^i \wedge \mathrm{d} J_i\,,
$$

and $f_i = f_i(J_1, \ldots, J_n)$, so the Hamiltonian vector fields read

$$
X_{f_i}=\frac{\partial f_i}{\partial J_j}\frac{\partial}{\partial \varphi^j}.
$$

Liouville –Arnol'd theorem

Corollary

Let (M^{2n},ω,h) be a Hamiltonian system. Suppose that f_1,\ldots,f_n are independent conserved quantities (i.e. $X_h(f_i) = 0 \ \forall i$) in involution. Then, on a neighborhood of M_Λ there are Darboux coordinates (φ^i,J_i) such that $h = h(J_1, \ldots, J_n)$, so the Hamiltonian dynamics are given by

$$
\frac{\mathrm{d}\varphi^i}{\mathrm{d}t} = \frac{\partial h}{\partial J_i} \frac{\partial}{\partial \varphi^i} ,
$$

$$
\frac{\mathrm{d}J_i}{\mathrm{d}t} = 0 .
$$

Example (The *n*-dimensional harmonic oscillator)

• Consider \mathbb{R}^{2n} , with canonical coordinates (x_i, p_i) , $i \in \{1, \ldots, n\}$, equipped with the symplectic form ω and the Hamiltonian function h,

$$
\omega = \sum_{i=1}^n \mathrm{d} x_i \wedge \mathrm{d} p_i \,, \quad h = \sum_{i=1}^n \left(\frac{p_i^2}{2} + \frac{x_i^2}{2} \right)
$$

- The functions $f_i = \frac{p_i^2}{2} + \frac{x_i^2}{2}$ are independent and involution, and one can write $h = \sum_{i=1}^{n} \bar{f_i}$.
- Angle coordinates are $\varphi^i = \arctan\left(\frac{x_i}{n}\right)$ pi) and action coordinates are $f_i.$
- Hamilton's equations read

$$
\frac{\mathrm{d}\varphi^i}{\mathrm{d}t}=1\,,\qquad \frac{\mathrm{d}f_i}{\mathrm{d}t}=0\,.
$$

Integrable distributions

• Given a differentiable manifold M, a **distribution** D of (co)rank k on M is a subbundle of the tangent bundle TM , i.e., a smoooth assignment of a k-(co)dimensional vector subspace $D_x \subseteq T_xM$ for each $x \in M$.

Theorem (Frobenius)

The following statements are equivalent:

- **1** For every $x \in M$, there exists a submanifold $N \subseteq M$ such that $D_x = T_x N$ (i.e., D is **integrable**).
- 2 For each pair of vector fields X*,* Y ∈ X(M) such that $X(x)$, $Y(x) \in D_x$ for all $x \in M$ we have that $[X, Y](x) \in D_x$ (i.e., D is **involutive**).

Maximally non-integrable distributions

• Grosso modo, a distribution D will be "as far as possible" from being integrable if

$$
X, Y \in D \Longrightarrow [X, Y] \notin D \text{ or } [X, Y] = 0.
$$

• More precisely, we will say that D is **maximally non-integrable** if the bilinear map

$$
\nu_D\colon D\times_M D\ni(X,Y)\mapsto \gamma\big([X,Y]\big)\in \mathsf{T}M/D
$$

is non-degenerate. Here $[\cdot, \cdot]$ denotes the Lie bracket of vector fields with image in D, and γ : TM \rightarrow TM/D is the canonical projection.

Contact distributions

Definition

Let M be a $(2n + 1)$ -dimensional manifold. A **contact distribution** C on M is a maximally non-integrable distribution of corank 1. The pair (M*,* C) is called a **contact manifold**.

Distributions as kernels of 1-forms

- Note that a codistribution D of corank 1 on M can be locally written as the kernel of a (local) 1-form α on M.
- It is easy to see that D is integrable iff

 $\alpha \wedge d\alpha = 0$

for any local 1-form α such that $D = \ker \alpha$.

• On the contrary, D is maximally non-integrable iff

$$
\alpha \wedge d\alpha^n = \alpha \wedge \underbrace{d\alpha \wedge \cdots \wedge d\alpha}_{n \text{ times}} \neq 0
$$

for any local 1-form α such that $D = \ker \alpha$.

Contact forms

Definition

Let (M, C) be a contact manifold such that C can be globally written as the kernel of a global 1-form *η* on M. Then, C is said to be a **co-orientable** contact distribution, *η* is called a **contact form**, and the pair (M*, η*) is called a **co-oriented contact manifold**.

Contact forms

Remarks

• A co-orientable contact distribution C does not fix the contact form *η*, but rather the equivalence class

 $\eta \sim \tilde{\eta} \Longleftrightarrow \ker \eta = \ker \tilde{\eta} \Longleftrightarrow \exists f : M \rightarrow \mathbb{R} \setminus \{0\}$ such that $\tilde{\eta} = f \eta$.

- Not all contact manifolds are co-orientable. Nevertheless, their double cover is always co-orientable.
- Several authors refer to co-oriented contact manifolds as contact manifolds. The term "contact structure" is used to refer either to the contact distribution or to the contact form, so I will not use it in order to avoid ambiguity.

Example (Odd-dimensional Euclidean space)

 $\eta={\rm d} z-\sum y^i{\rm d} x^i$, in \mathbb{R}^{2n+1} with canonical coordinates $(x^i,y^i,z).$

Example (Trivial bundle over the cotangent bundle)

The cotangent bundle $\mathsf{T}^*\mathcal{Q}$ of \mathcal{Q} is endowed with the tautological 1-form $\theta_{\bm{Q}}$. The trivial bundle $\pi_1 \colon \mathsf{T}^*\mathsf{Q} \times \mathbb{R} \to \mathsf{T}^*\mathsf{Q}$ can be equipped with the ϵ contact form $\eta_Q = \mathrm{d}r - \pi^*\theta_Q$, with r the canonical coordinate of $\mathbb R_+$ If (q^i) are coordinates in \emph{Q} which induce bundle coordinates (q^i, p_i) in $\textsf{T}^*\emph{Q}$ and (q^i, p_i, r) in $\mathsf{T}^*Q \times \mathbb{R}$, we have

$$
\theta_Q = p_i \mathrm{d} q^i \,, \quad \eta_Q = \mathrm{d} r - p_i \mathrm{d} q^i \,.
$$

Example (Projective space)

Let $M=\mathbb{R}^n\times \mathbb{R}\mathbb{P}^{n-1}.$ Consider the open subsets

$$
U_k = \{(x, [y]) \in M \mid y^k \neq 0\},\
$$

where $x=(x^1,\ldots,x^n),$ $y=(y^1,\ldots,y^k,\ldots,y^n)\in \mathbb{R}^n.$ We have the local contact forms

$$
\eta_k = \mathrm{d} x^k - \sum_{i \neq k} \frac{y_i}{y_k} \mathrm{d} x^i \in \Omega^1(U_k).
$$

If a global contact form *η* on M existed, then *η* ∧ d*η* ⁿ would define an orientation. Hence, M is not co-orientable if n is even.

The Reeb vector field

Definition

Let (M*, η*) be a co-oriented contact manifold. The **Reeb vector field** of (M, η) is the unique vector field $\mathcal{R} \in X(M)$ such that

 $\mathcal{R} \in \ker d\eta$, $\eta(\mathcal{R}) = 1$.

The tangent bundle TM of a co-oriented contact manifold (M*, η*) can be decomposed as the Whitney sum

$$
TM = \ker \eta \oplus \ker d\eta = C \oplus \langle \mathcal{R} \rangle.
$$

Note that the complement of the contact distribution $C = \ker \eta$ depends on the choice of contact form.

Proposition

Let *η* be a 1-form on a manifold M. The map

 $\flat_\eta \colon \mathfrak{X}(M) \to \Omega^1(M)\,, \quad \flat_\eta(X) = \eta(X)\eta + \iota_X \mathrm{d} \eta$

is a $\mathscr{C}^{\infty}(M)$ -module isomorphism iff η is a contact form.

Note that the Reeb vector field can be equivalently defined as $\mathcal{R} = \flat^{-1}_\eta(\eta).$

Darboux coordinates

Theorem

Let (M, η) be a $(2n + 1)$ -dimensional co-oriented contact manifold. Around each point $x \in M$ there exist local coordinates $(q^i, p_i, z),$ $i \in \{1 \ldots, n\}$ such that the contact form reads

$$
\eta = \mathrm{d} z - p_i \mathrm{d} q^i.
$$

Consequently, the Reeb vector field is written as

$$
\mathcal{R}=\frac{\partial}{\partial z}.
$$

These coordinates are called **canonical** or **Darboux** coordinates.

Jacobi structures

- Consider a manifold M endowed with a bivector field $\Lambda \in \mathsf{Sec}(\Lambda^2 \mathsf{T} M)$ and a vector field $E \in \mathfrak{X}(M)$.
- Define the bracket $\{\cdot,\cdot\}$: $\mathcal{C}^{\infty}(M) \times \mathcal{C}^{\infty}(M) \to \mathcal{C}^{\infty}(M)$ by

$$
\{f,g\}=\Lambda(\mathrm{d} f,\mathrm{d} g)+fE(g)-gE(f).
$$

• It is a Lie bracket iff

$$
[\Lambda,E]=0\,,\quad [\Lambda,\Lambda]=2E\wedge\Lambda\,,
$$

where [·*,* ·] denotes the Schouten–Nijenhuis bracket.

• In that case, (Λ*,* E) is called a **Jacobi structure** on M, {·*,* ·} is called a Jacobi bracket, and (M*,* Λ*,* E) is called a Jacobi manifold.

[Introduction](#page-1-0) [Contact manifolds](#page-5-0) [Homog. Liouville–Arnol'd theorem](#page-31-0) [Contact Liouville–Arnol'd theorem](#page-46-0) [References](#page-69-0)

Jacobi structures

Remark

A Poisson structure A is a Jacobi structure with $E \equiv 0$.

Jacobi structures

• A Jacobi structure (Λ, E) defines a $\mathscr{C}^{\infty}(M)$ -module morphism

$$
\sharp_{\mathsf{\Lambda}}\colon \Omega^1(M) \to \mathfrak{X}(M)\,, \qquad \sharp_{\mathsf{\Lambda}}(\alpha) = \mathsf{\Lambda}(\alpha,\cdot)\,.
$$

- \bullet This defines a so-called orthogonal complement $D^{\perp_\Lambda}=\sharp_\Lambda(D^\circ),$ for a distribution D with annihilator D° .
- A submanifold N of M is called **coisotropic** if $T N^{\perp}$

∴ TN.

Jacobi structures

• Two Jacobi structures $(Λ, E)$ and $(Λ, E)$ on *M* are **conformally equivalent** if there exists a nowhere-vanishing function f on M such that

$$
\tilde{\Lambda} = f\Lambda, \quad \tilde{E} = \sharp_{\Lambda} df + fE.
$$

Remark

The orthogonal complement coincides for conformally equivalent Jacobi structures, namely, $D^{\perp_\Lambda} = D^{\perp_{\tilde\Lambda}}$ for any distribution $D.$

[Introduction](#page-1-0) [Contact manifolds](#page-5-0) [Homog. Liouville–Arnol'd theorem](#page-31-0) [Contact Liouville–Arnol'd theorem](#page-46-0) [References](#page-69-0)

Jacobi structures

Definition

Let (M, Λ, E) be a Jacobi manifold with Jacobi bracket $\{\cdot, \cdot\}$. A collection of functions $f_1, \ldots, f_k \in \mathscr{C}^{\infty}(M)$ will be said to be **in involution** if

 $\{f_i,f_j\}=0\,,\forall\,i,j\in\{1,\ldots,k\}\,.$

Jacobi structures

• For each function $f \in \mathscr{C}^{\infty}(M)$, we can define a vector field

$$
X_f = \sharp_{\Lambda}(\mathrm{d} f) + fE,
$$

or, equivalently,

$$
X_f(g) = \{f,g\} + gE(f), \quad \forall g \in \mathscr{C}^{\infty}(M).
$$

- Following the nomenclature of Dazord, Lichnerowicz, Marle, et al., we will refer to X_f as the **Hamiltonian vector field of** f.
- However, X_f does not satisfy the properties of a usual Hamiltonian vector field (w.r.t. a symplectic or Poisson structure). In particular,

$$
\{f,g\}=0 \Leftrightarrow X_f(g)=0.
$$

Jacobi structure defined by a contact form

 $\bullet\,$ A co-oriented contact manifold (M^{2n+1},η) is endowed with a Jacobi structure (Λ*,* E) given by

$$
\Lambda(\alpha,\beta)=-\mathrm{d}\eta\left(\flat_{\eta}^{-1}(\alpha),\flat_{\eta}^{-1}(\beta)\right),\quad E=-\mathcal{R},
$$

where R is the Reeb vector field.

• Any contact form $\tilde{\eta}$ defining the same contact distribution, i.e., ker ˜*η* = ker *η*, defines a conformally equivalent Jacobi structure.

Contact Hamiltonian vector field

• Let (M, η) be a co-oriented contact manifold. The Hamiltonian vector field of $f \in \mathscr{C}^{\infty}(M)$ is uniquely determined by

$$
\eta(X_f)=-f\,,\quad \mathcal{L}_{X_f}\eta=-\mathcal{R}(f)\eta\,.
$$

In Darboux coordinates

$$
X_f = \frac{\partial f}{\partial p_i} \frac{\partial}{\partial q^i} - \left(\frac{\partial f}{\partial q^i} + p_i \frac{\partial f}{\partial z} \right) \frac{\partial}{\partial p_i} + \left(p_i \frac{\partial f}{\partial p_i} - f \right) \frac{\partial}{\partial z}.
$$

Contact Hamiltonian vector field

Remarks

- The Reeb vector field is the Hamiltonian vector field of $f \equiv -1$.
- Every Hamiltonian vector field is an infinitesimal contactomorphism (i.e., its flow preserves the contact distribution $C = \ker \eta$). Conversely, if $Y \in \mathfrak{X}(M)$ is an infinitesimal contactomorphism, then it is the Hamiltonian vector field of $f = -\eta(Y)$.
- Knowing $C = \ker \eta$ and X_f does not fix η nor f. As a matter of fact, X_f is the Hamiltonian vector field of $g=f/a$ with respect to $\tilde{\eta}=$ a $\eta,$ for any non-vanishing $a \in \mathscr{C}^{\infty}(M)$.

[Introduction](#page-1-0) [Contact manifolds](#page-5-0) [Homog. Liouville–Arnol'd theorem](#page-31-0) [Contact Liouville–Arnol'd theorem](#page-46-0) [References](#page-69-0)

Contact Hamiltonian systems

Definition

A **contact Hamiltonian system** (M*, η,* h) is a co-oriented contact manifold (M, η) with a fixed **Hamiltonian function** $h \in \mathscr{C}^{\infty}(M)$.

• The dynamics of (M, η, h) is determined by the integral curves of the Hamiltonian vector field X_h of h w.r.t. η .

Contact Hamiltonian systems

 $\bullet\,$ In Darboux coordinates, these curves $c(t)=(q^i(t),p_i(t),z(t))$ are determined by the **contact Hamilton equations**:

$$
\begin{aligned}\n\frac{\mathrm{d}q^{i}(t)}{\mathrm{d}t} &= \frac{\partial h}{\partial p_{i}} \circ c(t), \\
\frac{\mathrm{d}p_{i}(t)}{\mathrm{d}t} &= -\frac{\partial h}{\partial q^{i}} \circ c(t) - p_{i}(t) \frac{\partial h}{\partial z} \circ c(t), \\
\frac{\mathrm{d}z(t)}{\mathrm{d}t} &= p_{i}(t) \frac{\partial h}{\partial p_{i}} \circ c(t) - h \circ c(t).\n\end{aligned}
$$

Example (The harmonic oscillator with linear damping)

Consider the solution $x: \mathbb{R} \to \mathbb{R}$ of the second-order ordinary differential equation

$$
\frac{\mathrm{d}^2 x}{\mathrm{d}t^2}(t) = -x(t) - \kappa \frac{\mathrm{d}x}{\mathrm{d}t}(t),
$$

where $\kappa \in \mathbb{R}$. Defining $p = dx/dt$, we can reduce it to the system of first-order ordinary differential equations

$$
\frac{\mathrm{d}x}{\mathrm{d}t}(t)=p(t),\quad \frac{\mathrm{d}p}{\mathrm{d}t}(t)=-x(t)-\kappa p(t).
$$

We can obtain this system as the two first contact Hamilton equations from the contact Hamilton system (\mathbb{R}^3, η, h) , where $\eta = \mathrm{d}z - p \mathrm{d}x$ and

$$
h=\frac{p^2}{2}+\frac{x^2}{2}+\kappa z.
$$

Notions of integrability for contact manifolds

- Khesin and Tabachnikov, Liberman, Banyaga and Molino, Lerman, etc. have defined notions of contact complete integrability which are geometric but not dynamical, e.g. a certain foliation over a contact manifold.
- Boyer considers the so-called good Hamiltonians h, i.e., $\mathcal{R}(h) = 0 \rightsquigarrow$ no dissipation, "symplectic" dynamics.
- Miranda considered integrability of the Reeb dynamics when $\mathcal R$ is the generator of an \mathbb{S}^1 -action.
- We are interested in complete integrability of contact Hamiltonian dynamics.

Notions of integrability for contact manifolds

Instead, we will use the equivalence between the categories of contact manifolds and symplectic \mathbb{R}^{\times} -principal bundles, and proof a Liouville–Arnol'd theorem for homogeneous functions in involution.

Exact symplectic manifolds

Definition

An **exact symplectic manifold** is a pair (M*, θ*), where *θ* is a **symplectic potential** on M, i.e., $\omega = -d\theta$ is a symplectic form on M. The **Liouville vector field** $\nabla \in \mathfrak{X}(M)$ is given by

$$
\iota_{\nabla}\omega=-\theta.
$$

A tensor field A on P is called k-homogeneous (for $k \in \mathbb{Z}$) if

$$
\mathcal{L}_{\nabla}A=kA.
$$

Homogeneous integrable system

Definition

A **homogeneous integrable system** consists of an exact symplectic manifold (M^{2n},θ) and a map $\mathcal{F}=(f_1,\ldots,f_n)\colon M\to \mathbb{R}^n$ such that the functions f_1, \ldots, f_n are independent, in involution and homogeneous of degree 1 (w.r.t. the Liouville vector field ∇ of θ) on a dense open subset $M_0 \subset M$. We will denote it by (M, θ, F) .

For simplicity's sake, in this talk I will assume that $M_0 = M$.

Proposition

Let (M*, θ,* F) be a homogeneous integrable system. Then, for each $\Lambda \in \mathbb{R}^n$, the level set $M_\Lambda = \digamma^{-1}(\Lambda)$ is a Lagrangian submanifold, and

$$
\phi_t^{\nabla}(M_{\Lambda})=M_{t\Lambda}=F^{-1}(t\Lambda)\,,
$$

where ϕ_t^∇ denotes the flow of the Liouville vector field $\nabla.$

[Introduction](#page-1-0) [Contact manifolds](#page-5-0) [Homog. Liouville–Arnol'd theorem](#page-31-0) [Contact Liouville–Arnol'd theorem](#page-46-0) [References](#page-69-0)

- Consider the exact symplectic manifold (M, θ) , with Liouville vector field ∇ .
- \bullet Around each point in M , there are canonical coordinates (q^i, p_i) where $\theta = p_i \mathrm{d} q^i$.
- Then, a straightforward computation shows that ∇ = pⁱ *∂* $\frac{\partial}{\partial p_i}$.
- Note that coordinates may be canonical for $\omega = -d\theta$ but not for θ . For instance, in the coordinates $\tilde{q}^i = q^i,\, \tilde{p}_i = p_i + e^{q_i}$ we have

$$
\theta = \sum_i (\tilde{\rho}_i - e^{\tilde{\boldsymbol{q}}^i}) \mathrm{d}\tilde{\boldsymbol{q}}^i\,, \quad \omega = \mathrm{d}\tilde{\boldsymbol{q}}^i \wedge \mathrm{d}\tilde{\boldsymbol{p}}_i\,, \quad \nabla = \left(\tilde{\boldsymbol{p}}_i - e^{\tilde{\boldsymbol{q}}^i}\right) \frac{\partial}{\partial \tilde{\boldsymbol{p}}_i}\,.
$$

• In particular, the Liouville–Arnol'd theorem provides coordinates which are canonical for *ω*, but not necessarily for *θ* or ∇.

Homogeneous Liouville – Arnol'd theorem

Consider a homogeneous integrable system (M*, θ,* F). Let U be an open neighbourhood of the level set $\mathcal{M}_\Lambda = \mathcal{F}^{-1}(\Lambda)$ (with $\Lambda \in \mathbb{R}^n)$ such that:

- $\mathbf{0}$ f₁, ..., f_n have no critical points in U,
- \bullet the Hamiltonian vector fields $\mathcal{X}_{f_1},\ldots,\mathcal{X}_{f_n}$ are complete,
- \bullet the submersion $F\colon U\to \mathbb{R}^n$ is a trivial bundle over a domain $V\subseteq \mathbb{R}^n.$
Homogeneous Liouville – Arnol'd theorem

Theorem (Colombo, de León, Lainz, L. G., 2023)

Let (M, θ, F) be a homogeneous integrable system with $F = (f_1, \ldots, f_n)$. Given $\Lambda \in \mathbb{R}^n$, suppose that $M_{\Lambda} = F^{-1}(\Lambda)$ is connected, and assume the statements from the previous slide. Then, $U \cong \mathbb{T}^k \times \mathbb{R}^{n-k} \times V$ and there is a chart $(\hat{U} \subseteq U; y^i, A_i)$ of M s.t.

- **D** $A_i = M_i^j$ $\hat{g}^j_i f_j$, where M j_i are homogeneous functions of degree 0 depending only on f_1, \ldots, f_n .
- **2** $\theta = A_i dy^i$, $\mathbf{3}$ $X_{f_i} = N_i^j$ i *∂* $\frac{\partial}{\partial y^j}$, with (N^j_i) $\sigma^{ij}_i)$ the inverse matrix of (M^j_i) $\binom{j}{i}$.

Lemma

Let M be an n-dimensional manifold, and let $X_1, \ldots, X_n \in \mathfrak{X}(M)$ be linearly independent vector fields. If these vector fields are pairwise commutative and complete, then M is diffeomorphic to $\mathbb{T}^k \times \mathbb{R}^{n-k}$ for some $k\leq n$, where \mathbb{T}^k denotes the k-dimensional torus.

Lemma

Let (M^{2n}, θ, F) be a homogeneous integrable system, with $\mathcal{F} = (f_1, \ldots, f_n)$. Assume that the Hamiltonian vector fields \mathcal{X}_{f_i} are complete. Then, there exists n functions $g_i = M_i^j$ $g^j_i f_j \in \mathscr{C}^{\infty}(M)$ such that

- $\textbf{D} \, \left(M, \theta, (\textit{g}_1, \ldots, \textit{g}_n) \right)$ is also a homogeneous integrable system,
- \bm{Z} $X_{\bm{g}_1},\ldots,X_{\bm{g}_k}$ are infinitesimal generators of \mathbb{S}^1 -actions and their flows have period 1,
- $\mathbf{3}$ $X_{g_{k+1}},\ldots,X_{g_n}$ are infinitesimal generators of $\mathbb{R}% ^{3}$ -actions,
- \bullet M_i^j i for i*,* j ∈ 1*, . . . ,* n are homogeneous functions of degree 0, and they depend only on f_1, \ldots, f_n .

Lemma

Let π : $P \rightarrow M$ be a G-principal bundle over a connected and simply connected manifold. Suppose there exists a connection one-form A such that the horizontal distribution H is integrable. Then $\pi: P \to M$ is a trivial bundle and there exists a global section $\chi \colon M \to P$ such that $\chi^* A = 0$.

- $\bullet\,$ We know that M_Λ is diffeomorphic to $\mathbb{T}^k\times\mathbb{R}^{n-k}.$
- $\bullet\,$ W.l.o.g., assume that X_{f_1},\ldots,X_{f_k} are infinitesimal generators of \mathbb{S}^1 -actions with period 1 , and that $\lambda_{\mathcal{g}_{k+1}}, \ldots, \lambda_{\mathcal{g}_n}$ are infinitesimal generators of \mathbb{R} -actions.
- Let $\mathfrak{L} = \ker \theta$ and $\overline{U} = \{x \in U \mid f_i(x) \neq 0 \forall i \text{ and } \theta(x) \neq 0\}.$
- Since $\bar{F}\colon\bar{U}\to V$ is a trivial bundle, $\bar{U}\cong V\times \mathbb{T}^k\times \mathbb{R}^{n-k}$ can be endowed with a Riemannian metric g , given by the product of flat metrics in $V\subseteq\mathbb{R}^n,$ \mathbb{T}^k and $\mathbb{R}^{n-k},$ which is flat and invariant by the Lie group action of $\mathbb{T}^k\times \mathbb{R}^{n-k}.$

• The distribution

$$
\mathfrak{L}^{\theta}=\left(\mathfrak{L}\cap \langle X_{f_i}\rangle_{i=1}^n\right)^{\perp_{\mathcal{E}}}\cap \mathfrak{L}
$$

is

- \textbf{D} invariant by the Lie group action of $\mathbb{T}^k \times \mathbb{R}^{n-k},$
- \bullet contained in \mathfrak{L} ,
- **3** complementary to the vertical bundle:

$$
\mathfrak{L}^{\theta}_x\oplus \langle X_{f_i}(x)\rangle_{i=1}^n=\mathsf{T}_xM\,,\quad \forall x\in \overline{U}\,.
$$

- \bullet Moreover, $F\colon \overline{U}\to \overline{U}/(\mathbb{T}^k\times \mathbb{R}^{n-k})$ is a principal bundle and \mathfrak{L}^{θ} is a principal connection with connection one-form *θ*.
- The fact that $\theta \wedge d\theta = 0$ implies that $\mathfrak L$ is integrable.
- \bullet Since it is the orthogonal complement of $\mathfrak L$ w.r.t. a flat metric, $\mathfrak L^\theta$ is integrable.

- • Let $\hat{U} \subseteq \overline{U}$ be an open subset of \overline{U} such that $\hat{V} = F(\hat{U})$ is simply connected.
- \bullet Then, there exists a global section χ of $\digamma\colon\hat U\to\hat V\cong\hat U/(\mathbb{T}^k\times\mathbb{R}^{n-k})$ such that $\chi^*\theta = 0$.
- $\bullet\,$ Let $\Phi\colon\mathbb{T}^k\times\mathbb{R}^{n-k}\times M\to M$ denote the action defined by the flows of X_{f_i} .
- $\bullet\,$ For each point $x\in\mathcal{M}_\Lambda=F^{-1}(\Lambda),$ the angle coordinates $(y^i(x))$ are determined by

$$
\Phi(y^i(x), \chi(F(x))) = x.
$$

 $\bullet\,$ Notice that (y^i,f_i) are coordinates in $\hat U$ adapted to the foliation of M in M_Λ .

• In these coordinates.

$$
\theta = A_i \mathrm{d} y^i + B^i \mathrm{d} f_j \,, \quad X_{f_i} = \frac{\partial}{\partial y^i} \,,
$$

- Contracting θ with X_{f_i} yields $A_i = f_i$.
- Finally, notice that $\textsf{Im}\,\chi=\cap_{i=1}^n (y^i)^{-1}(\mu_i).$ Hence,

$$
0=\chi^*\theta=B^i\mathrm{d} f_i.
$$

• Since μ_i 's are arbitrary values of y^i , the functions B^i are identically zero on all the manifold M and $\theta = f_i \mathrm{d} y^i.$

Construction of action-angle coordinates

In order to construct action-angle coordinates in a neighbourhood U of M_A , one has to carry out the following steps:

- **1** Fix a section χ of F: $U \to V$ such that $\chi^* \theta = 0$.
- \bullet Compute the flows $\phi_t^{\mathsf{X}_{\mathsf{f}_i}}$ of the Hamiltonian vector fields $\mathsf{X}_{\mathsf{f}_i}.$
- **3** Let Φ : $\mathbb{R}^n \times M \to M$ denote the action of \mathbb{R}^n on M defined by the flows, namely,

$$
\Phi(t_1,\ldots,t_n;x)=\phi_{t_1}^{X_{f_1}}\circ\cdots\circ\phi_{t_n}^{X_{f_n}}(x).
$$

4 It is well-known that the isotropy subgroup $G_{\chi(\Lambda)(\Lambda)} = \{ g \in \mathbb{R}^n \mid \Phi(g, \chi(\Lambda)) = \chi(\Lambda) \}$, forms a lattice (that is, a \mathbb{Z} -submodule of $\mathbb{R}^n)$. Pick a \mathbb{Z} -basis $\{e_1,\ldots,e_m\}$, where m is the rank of the isotropy subgroup.

Construction of action-angle coordinates

- **5** Complete it to a basis $B = \{e_1, \ldots, e_m, e_{m+1}, \ldots, e_n\}$ of \mathbb{R}^n .
- $\textcolor{blue}{\mathbf{6}}$ Let $(\textcolor{blue}{M_i^j})$ $\mathcal{G}_i^{(l)}$ denote the matrix of change from the basis $\{\mathcal{X}_{\mathit{f}_i}(\chi(\mathsf{\Lambda}))\}$ of $\mathsf{T}_{\chi(\mathsf{\Lambda})} \mathsf{M}_{\mathsf{\Lambda}} \simeq \mathbb{R}^n$ to the basis $\{e_i\}.$ The action coordinates are the functions $A_i = M_i^j$ $\int_{i}^{j}f_{j}$.
- \bullet The angle coordinates (y^i) of a point $x\in M$ are the solutions of the equation

$$
x=\Phi(y^i e_i;\chi\circ F(x)).
$$

Trivial symplectization of a co-oriented contact manifold

Definition

Let (M*, η*) be a co-oriented contact manifold. Then, the trivial bundle π_1 : $M^{\text{symp}} = M \times \mathbb{R}_+ \to M$, $\pi_1(x, r) = x$ can be endowed with the symplectic potential $\theta(x, r) = r\eta(x)$. The Liouville vector field reads $\nabla = r \partial_r.$

We will refer to $(M^{\text{symp}}, \theta)$ as the **trivial symplectization** of (M, η) .

Remark

I will present a more general setting at the end of the talk.

Trivial symplectization of a co-oriented contact manifold

Proposition

There is a one-to-one correspondence between functions $f(x)$ on M and 1-homogeneous functions $f^{symp}(x, r) = -rf(x)$ on M^{symp} such that the symplectic $X_{f^{\mathrm{symp}}}$ and contact X_f Hamiltonian vector fields are related as follows:

$$
\mathsf{T}\pi_1\left(X_{f^{\mathrm{symb}}}\right)=X_f.
$$

Moreover, the Poisson {·*,* ·}*^θ* and Jacobi {·*,* ·} brackets have the correspondence

$$
\{f^{\mathrm{symp}}, g^{\mathrm{symp}}\}_{\omega} = \left(\{f, g\}_{\eta}\right)^{\mathrm{symp}}.
$$

Definition

A **completely integrable contact system** is a triple (M*, η,* F), where (M^{2n+1},η) is a co-oriented contact manifold and $\mathcal{F} = (f_0, \ldots, f_n) \colon M \to \mathbb{R}^{n+1}$ is a map such that **1 0** f₀, ..., f_n are in involution, i.e., $\{f_{\alpha}, f_{\beta}\} = 0 \ \forall \alpha, \beta \in \{0, ..., n\},$ **2** rank $TF \ge n$ on a dense open subset $M_0 \subseteq M$.

Proposition

Let (M,η) be a co-oriented contact manifold and F : $M\to \mathbb{R}^{n+1}$ a smooth map. Consider the trivial symplectization, i.e., $M^{\text{symp}} = M \times \mathbb{R}_+$ endowed with the symplectic potential $\theta(x, r) = r\eta(x)$, and the map $F^{symp}(x, r) = -rF(x)$. Then, $(M^{symp}, \theta, F^{symp})$ is a homogeneous integrable system iff (M, η, F) is a completely integrable contact system.

Some notation

 $\bullet\,$ For each $\Lambda\in\mathbb{R}^{n+1}\setminus\{0\},$ let $\langle\Lambda\rangle_+$ denote the ray generated by $\Lambda,$ namely,

$$
\langle \Lambda \rangle_+ := \left\{ x \in \mathbb{R}^{n+1} \mid \exists \in \mathbb{R}_+ \colon x = r \Lambda \right\}.
$$

 $\bullet\,$ Consider the preimages $M_{\langle\Lambda\rangle_+}$ of those rays by a map $F\colon M\to\R^{n+1}$, namely,

$$
M_{\langle \Lambda \rangle_+} \coloneqq F^{-1}\Big(\langle \Lambda \rangle_+\Big)\,.
$$

Assumptions

- $\, {\bf 0} \,$ Assume that the Hamiltonian vector fields X_{f_0}, \ldots, X_{f_n} are complete.
- $\textbf{2}$ Given $\Lambda \in \mathbb{R}^{n+1} \setminus \{0\}$, let $B \subseteq \mathbb{R}^{n+1} \setminus \{0\}$ be an open neighbourhood of Λ.
- $\, {\bf 3} \,$ Let $\pi \colon U \to M_{\langle \Lambda \rangle_+}$ be a tubular neighbourhood of $M_{\langle \Lambda \rangle_+}$ such that $\left. F\right\vert _{U}\colon U\to B$ is a trivial bundle over a domain $\,V\subseteq B.$

Theorem (Colombo, de León, Lainz, L. G., 2023)

Let (M, η, F) be a completely integrable contact system, where $F = (f_0, \ldots, f_n)$. Consider the assumptions of the previous slide. Then:

- \mathbf{D} $M_{\langle \Lambda \rangle_+}$ is coisotropic, invariant by the Hamiltonian flow of f_α , and diffeomorphic to $\mathbb{T}^k\times \mathbb{R}^{n+1-k}$ for some $k\leq n.$
- \bullet There exist coordinates $(\mathsf{y}^0,\ldots,\mathsf{y}^n,\tilde{\mathsf{A}}_1,\ldots,\tilde{\mathsf{A}}_n)$ on U such that the Hamiltonian vector fields of the functions f*^α* read

$$
X_{f_{\alpha}} = \overline{N}_{\alpha}^{\beta} X_{f_{\beta}}\,
$$

where $\overline{N}_{\alpha}^{\beta}$ are functions depending only on $\tilde{A}_1, \ldots, \tilde{A}_n.$

3 There exists a nowhere-vanishing function $A_0 \in \mathscr{C}^{\infty}(U)$ and a \vec{r} conformally equivalent contact form $\tilde{\eta} = \eta/A_0$ such that (y^i, \tilde{A}_i, y^0) are Darboux coordinates for $(M, \tilde{\eta})$, namely, $\tilde{\eta} = \mathrm{d} y^0 - \tilde{A}_i \mathrm{d} y^i$.

Sketch of the proof

- **1** Translate the problem to the exact symplectic manifold $(M^{\text{symp}} = M \times \mathbb{R}_+, \theta = r\eta).$
	- \bullet { f_{α}, f_{β} } = 0 \Rightarrow { $f_{\alpha}^{\text{symp}}, f_{\beta}^{\text{symp}}$ } = 0.
	- $X_{f_{\alpha}}$ complete $\Rightarrow X_{f_{\alpha}}^{symp}$ complete.
	- rank d $f_\alpha \geq n \Rightarrow$ rank d($r \pi_1^* f_\alpha$ $\widetilde{f_{\alpha}^{\rm{symp}}}$ $)\geq n+1.$
	- $\bullet \ \pi_1((F^{\text{symp}})^{-1}(\Lambda)) = \left\{ x \in M \mid \exists s \in \mathbb{R}^+ \colon \ F(x) = \frac{\Lambda}{s} \right\} = M_{\langle \Lambda \rangle_+}.$
	- $X_{f_\alpha^{\rm symp}}$ are tangent to $(F^{\rm symp})^{-1}(\Lambda) \Rightarrow X_{f_\alpha}$ are tangent to $M_{\langle\Lambda\rangle_+}.$
	- X_{f_α} commute and are tangent to $M_{\langle\Lambda\rangle_+}\Rightarrow M_{\langle\Lambda\rangle_+}\simeq \mathbb{T}^k\times \mathbb{R}^{n+1-k}.$
	- $\bullet\;\; F\colon\mathit{U}\to\mathit{B}$ is a trivial bundle $\Rightarrow\mathit{F}^{\mathrm{symp}}\colon\pi_1^{-1}\mathit{U}\to\mathit{B}$ is a trivial bundle.
	- ∴ We can apply the theorem for exact symplectic manifolds to obtain action-angle coordinates $(\mathsf{y}^{\alpha}_{\mathrm{symp}},\mathsf{A}^{\mathrm{symp}}_\alpha)$ on $\pi_1^{-1}(U)$.

Sketch of the proof

2 In these coordinates,

$$
\theta = \mathcal{A}_\alpha^{\rm symp} {\rm d} \mathsf{y}_{\rm symp}^\alpha \,, \qquad \mathcal{A}_\alpha^{\rm symp} = \mathcal{M}_\alpha^\beta \mathsf{f}_\beta^{\rm symp} \,,
$$

and

$$
X_{t_{\alpha}^{\text{symp}}} = \mathcal{N}_{\alpha}^{\beta} \frac{\partial}{\partial y_{\text{symp}}^{\beta}}, \quad (\mathcal{N}_{\beta}^{\alpha}) = (\mathcal{M}_{\beta}^{\alpha})^{-1}.
$$

Due to the homogeneity, there are functions $\mathsf{y}^\alpha, \mathsf{A}_\alpha, \overline{\mathsf{M}}_\alpha^\beta$ and $\overline{\mathsf{N}}_\alpha^\beta$ on M such that

$$
\begin{aligned} {\cal A}_\alpha^{\rm symp} & = -r \left(\pi_1^* {\cal A}_\alpha \right) \,, \qquad \qquad {\cal Y}_{\rm symp}^\alpha = \pi_1^* {\cal Y}^\alpha \,, \\ {\cal M}_\alpha^\beta & = \pi_1^* \overline{{\cal M}}_\alpha^\beta \,, \qquad \qquad {\cal N}_\alpha^\beta = \pi_1^* \overline{{\cal N}}_\alpha^\beta \,. \end{aligned}
$$

Sketch of the proof

3 Since $r(\pi_1^*\eta)=\theta$, the contact form is given by

$$
\eta = A_{\alpha} dy^{\alpha}.
$$

and

$$
f_{\alpha} = \overline{M}_{\alpha}^{\beta} A_{\beta} , \quad X_{f_{\alpha}} = \overline{N}_{\alpha}^{\beta} \frac{\partial}{\partial y^{\beta}} ,
$$

4 Since $\Lambda \neq 0$, there is at least one nonvanishing f_{α} . Hence, there is at least one nonvanishing A_{α} . W.l.o.g., assume that $A_0 \neq 0$. Then, $(y^{i}, \tilde{A}_{i} = -A_{i}/A_{0}, y^{0})$ are Darboux coordinates for

$$
\tilde{\eta} = \frac{1}{A_0} \eta = \mathrm{d} y^0 - \tilde{A}_i \mathrm{d} y^i \,,
$$

- • Let $M = \mathbb{R}^3 \setminus \{0\}$ with canonical coordinates (q, p, z) , and $n = dz - pdq$.
- The functions $h = p$ and $f = z$ are in involution.
- Let $F = (h, f) : M \to \mathbb{R}^2$.
- rank $TF = 2$, and thus (M, η, F) is a completely integrable contact system.

• Hypothesis of the theorem are satisfied:

1 The Hamiltonian vector fields

$$
X_h = \frac{\partial}{\partial q}, \quad X_f = -p\frac{\partial}{\partial p} - z\frac{\partial}{\partial z}
$$

are complete,

2 Since $F: (q, p, z) \mapsto (p, z)$ is the canonical projection, $F: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^2 \setminus \{0\}$ is a trivial bundle.

• Therefore, $\theta = r dz - r p dq$ is the symplectic potential on $M^{\text{symp}} = M \times \mathbb{R}_+$, and the symplectizations of h and f are $h^{\rm{symp}}=-r p$ and $f^{\rm{symp}}=-r z$. Their Hamiltonian vector fields are

$$
X_{h^{\text{symp}}} = \frac{\partial}{\partial q}, \quad X_{f^{\text{symp}}} = -p\frac{\partial}{\partial p} - z\frac{\partial}{\partial z} + r\frac{\partial}{\partial r}.
$$

• Consider a section $\chi: \mathbb{R}^2 \to M^{\text{symp}}$ of $F^{\text{symp}} = (h^{\text{symp}}, f^{\text{symp}})$ such that $\chi^*\theta=0.$ For instance, one can choose $\chi(\Lambda_1,\Lambda_2)=\left(0,\frac{\Lambda_1}{\Lambda_2}\right)$ $\frac{\Lambda_1}{\Lambda_2}, 1, \Lambda_2\Bigl)$ in the points where $\Lambda_2 \neq 0$.

 $\bullet\,$ The Lie group action $\Phi\colon \mathbb{R}^2\times M^{\text{symp}}\to M^{\text{symp}}$ defined by the flows of $X_{h^{\mathrm{symp}}}$ and $X_{f^{\mathrm{symp}}}$ is given by

$$
\Phi(t, s; q, p, z, r) = (q + t, p e^{-s}, z e^{-s}, r e^{s}),
$$

whose isotropy subgroup is the trivial one.

 $\bullet\,$ The angle coordinates $({\rm yo\rm _{symp}^0},{\rm y}_{\rm symp}^1)$ of a point ${\rm x}\in M^{\rm symp}$ are determined by

$$
\Phi\left(y^0_{\rm{symp}},y^1_{\rm{symp}},\chi(F(x))\right)=x.
$$

• If the canonical coordinates of x are (q*,* p*,* z*,*r), then

$$
y^0_{\rm{symp}}=q\,,\quad y^1_{\rm{symp}}=-\log z\,.
$$

• Since the isotropy subgroup is trivial, the action coordinates coincide with the functions in involution, namely,

$$
A_0^{\text{symp}} = h^{\text{symp}} = -rp \,, \quad A_1^{\text{symp}} = f^{\text{symp}} = -rz \,.
$$

• Projecting to M yields the functions

$$
y^0 = q
$$
, $y^1 = -\log z$, $A_0 = h = p$, $A_1 = f = z$.

• The action coordinate is

$$
\tilde{A} = -\frac{A_0}{A_1} = -\frac{p}{z}
$$

In the coordinates (y^0,y^1,\tilde{A}) the Hamiltonian vector fields reads

$$
X_h = \frac{\partial}{\partial y^0} \, , \quad X_f = \frac{\partial}{\partial y^1} \, ,
$$

and there is a conformal contact form given by

$$
\tilde{\eta} = -\frac{1}{A_1} \eta = dy^1 - \tilde{A} dy^0.
$$

• Similarly,

$$
\chi(\Lambda_1,\Lambda_2)=\left(\frac{\Lambda_2}{\Lambda_1},1,\frac{\Lambda_2}{\Lambda_1},\Lambda_1\right)
$$

is a section of $F^{\rm{symp}}$ in the points where $\Lambda_1 \neq 0.$

• Performing analogous computations as above one obtains the action-angle coordinates

$$
\hat{y}^0 = q - \frac{z}{p}, \quad \hat{y}^1 = -\log p, \quad \hat{A} = -\frac{z}{p},
$$

such that

$$
X_h = \frac{\partial}{\partial \hat{y}^0}, \quad X_f = \frac{\partial}{\partial \hat{y}^1}, \quad \hat{\eta} = -\frac{1}{\rho}\eta = d\hat{y}^0 - \hat{A}d\hat{y}^1.
$$

 \mathbb{R}^{\times} -principal bundles

- Consider the multiplicative group of non-zero real numbers $\text{GL}(1,\mathbb{R}) = \mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}.$
- Let $\pi \colon P \to M$ be an \mathbb{R}^{\times} -principal bundle, and denote the \mathbb{R}^{\times} -action by Φ , and the Euler vector field by ∇ .
- $\bullet\,$ In a local trivialization $\pi^{-1}(U)\simeq U\times\mathbb{R}^\times$ of P , they read

$$
\pi(x, s) = x
$$
, $h_t(x, s) = (x, ts)$, $\nabla = s \frac{\partial}{\partial s}$.

[Introduction](#page-1-0) [Contact manifolds](#page-5-0) [Homog. Liouville–Arnol'd theorem](#page-31-0) [Contact Liouville–Arnol'd theorem](#page-46-0) [References](#page-69-0)

Homogeneous symplectic forms

Definition

Let $\pi\colon P\to M$ be an \mathbb{R}^\times -principal bundle with Euler vector field $\nabla.$ A tensor field A on P is called k-homogeneous (for $k \in \mathbb{Z}$) if

 $\mathcal{L} \nabla A = kA$.

Definition

A **symplectic** R [×]**-principal bundle** is an R [×]-principal bundle *π* : P → M endowed with a 1-homogeneous symplectic form *ω* on P. We will denote it by $(P, \pi, M, \nabla, \omega)$

Contact manifolds and symplectic \mathbb{R}^{\times} -principal bundles

Theorem (Grabowski, 2013)

There is a canonical one-to-one correspondence between contact distributions $C \subset TM$ on M and symplectic \mathbb{R}^\times -principal bundles $\pi \colon P \to M$ over M.

More precisely, the symplectic \mathbb{R}^{\times} -principal bundle associated with C is $(\mathcal{C}^{\circ})^{\times} = \mathcal{C}^{\circ} \setminus 0_{\mathsf{T}^* M} \subset \mathsf{T}^* M$ (i.e., the annihilator of $\mathcal C$ with the zero section removed), whose symplectic form is the restriction to $(\mathsf{C}^\circ)^\times$ of the canonical symplectic form $ω_M$ on T^{*}Q. It is called the **symplectic cover** of (M*,* C).

Remark

Every symplectic \mathbb{R}^{\times} -principal bundle $(P, \pi, M, \nabla, \omega)$ is an exact symplectic manifold. Indeed, the 1-form $\theta = -i\sigma\omega$ is a symplectic potential for *ω*.

Conversely, an exact symplectic manifold (M*, θ*) is a symplectic \mathbb{R}^\times -principal bundle if the Liouville vector field ∇ is complete.

Contact Hamiltonian vector fields

Theorem (Grabowska and Grabowski, 2022)

Let $(P, \pi, M, \nabla, \omega)$ be the symplectic cover of (M, C) . Then, the Hamiltonian vector field X_h of a 1-homogeneous function $h \in \mathscr{C}^{\infty}(P)$ is π -projectable. The vector field $X_h^c\coloneqq \mathsf{T}\pi(X_h)\in \mathfrak{X}(M)$ is called the **contact Hamiltonian vector field** of h.

Proposition

Let $(P^{2n}, \pi, M, \nabla, \omega)$ be the symplectic cover of the contact manifold $(\mathcal{M},\mathcal{C})$, and let $\mathcal{F}=(f_1,\ldots,f_n)\colon P\to\mathbb{R}^n$ a map such that $(M, \theta = -\iota_{\nabla}\omega, F)$ is a homogeneous integrable system. Then: \textbf{D} $\pi\Big(F^{-1}(\Lambda)\Big)$ is coisotropic, invariant by the flows of $X_{f_1}^c,\ldots,X_{f_n}^c,$ and diffeomorphic to $\mathbb{T}^k\times \mathbb{R}^{n-k}$ for some $k\leq n.$ **∂** There exist coordinates $(\mathsf{y}^1, \ldots, \mathsf{y}^n, \tilde{\mathsf{A}}_1, \ldots, \tilde{\mathsf{A}}_{n-1})$ such that

$$
X_{\mathsf{f}_\alpha}^\mathsf{c} = \overline{\mathsf{N}}_\alpha^\beta \frac{\partial}{\partial \mathsf{y}^\beta} \,,
$$

where $\overline{N}_{\alpha}^{\beta}$ are functions depending only on $\tilde{A}_1, \ldots, \tilde{A}_n.$

Main references

- [1] V. I. Arnold. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics. Springer-Verlag, 1978.
- [2] L. Colombo, M. de León, M. Lainz, and A. López-Gordón. Liouville-Arnold theorem for contact Hamiltonian systems. 2023. arXiv: [2302.12061 \[math.SG\]](https://arxiv.org/abs/2302.12061).
- [3] P. Dazord, A. Lichnerowicz, and C.-M. Marle. "Structure Locale Des Variétés de Jacobi". J. Math. Pures Appl. (9), **70**(1), pp. 101–152 (1991).
- [4] E. Fiorani, G. Giachetta, and G. Sardanashvily. "An Extension of the Liouville-Arnold Theorem for the Non-Compact Case". Nuovo Cimento Soc. Ital. Fis. B (2003).

Main references

- [5] K. Grabowska and J. Grabowski. "A Geometric Approach to Contact Hamiltonians and Contact Hamilton–Jacobi Theory". J. Phys. A: Math. Theor., **55**(43), p. 435204 (2022).
- [6] J. Grabowski. "Graded Contact Manifolds and Contact Courant Algebroids". J. Geom. Phys., **68**, pp. 27–58 (2013).
- [7] J. Liouville. "Note sur l'intégration des équations différentielles de la Dynamique". J. Math. Pures Appl., pp. 137–138 (1855).
- [8] A. López-Gordón. "The geometry of dissipation". PhD thesis. Universidad Autónoma de Madrid, 2024. arXiv: [2409.11947](https://arxiv.org/abs/2409.11947) [\[math-ph\]](https://arxiv.org/abs/2409.11947).

Dziękuję za uwagę!

 \boxtimes alopez-gordon@impan.pl [www.alopezgordon.xyz](https://alopezgordon.xyz)