On the integrability of hybrid Hamiltonian systems

Asier López-Gordón Joint work with Leonardo J. Colombo

Institute of Mathematical Sciences (ICMAT), CSIC, Madrid, Spain

8th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control

Financially supported by Grants CEX2019-000904-S, PID2022-137909NB-C21 and RED2022-134301-T, funded by MCIN/AEI/10.13039/501100011033

Symplectic geometry

- Symplectic geometry is the natural framework for classical mechanics.
- Recall that a symplectic form ω on M is a 2-form such that dω = 0 and T_xM ∋ v → ω_x(v, ·) ∈ T^{*}_xM is an isomorphism of vector spaces.
- Given a function f on M, its its Hamiltonian vector field X_f is given by

$$\omega(X_f,\cdot)=\mathrm{d}f.$$

• The Poisson bracket $\{\cdot,\cdot\}$ is given by

$$\{f,g\} \coloneqq \omega(X_f,X_g) = X_g(f) = -X_f(g).$$

Theorem (Liouville – Arnol'd theorem)

Let f_1, \ldots, f_n be independent functions in involution (i.e., $\{f_i, f_j\} = 0 \ \forall i, j$) on a symplectic manifold (M^{2n}, ω) . Let $M_{\Lambda} = \{x \in M \mid f_i = \Lambda_i\}$.

- **1** Any compact connected component of M_{Λ} is diffeomorphic to \mathbb{T}^n .
- **2** On a neighborhood of M_{Λ} there are coordinates (φ^{i}, J_{i}) such that

$$\omega = \mathrm{d}\varphi^i \wedge \mathrm{d}J_i,$$

and the Hamiltonian dynamics are given by

$$\frac{\mathrm{d}\varphi^{i}}{\mathrm{d}t} = \Omega^{i}(J_{1}, \ldots, J_{n}),$$
$$\frac{\mathrm{d}J_{i}}{\mathrm{d}t} = 0.$$

Hybrid systems

Definition

A hybrid system is a 4-tuple $\mathscr{H} = (M, X, S, \Delta)$, formed by

- 1 a manifold M,
- **2** a vector field $X \in \mathfrak{X}(M)$,
- **3** a submanifold $S \subset M$ of codimension 1 or greater,
- **4** an embedding $\Delta : S \to M$.

The dynamics generated by \mathscr{H} are the curves $c\colon I\subseteq\mathbb{R} o M$ such that

$$\begin{split} \dot{c}(t) &= X(c(t)), & \text{if } c(t) \notin S, \\ c^+(t) &= \Delta(c^-(t)), & \text{if } c(t) \in S, \end{split}$$

where

$$c^{\pm}(t) = \lim_{\tau o t^{\pm}} c(\tau)$$
.

Hybrid Hamiltonian systems

Definition

A hybrid dynamical system (M, X, S, Δ) is said to be a **hybrid Hamiltonian system** and denoted by \mathscr{H}_h if

• $M \subseteq T^*Q$ is a zero-codimensional submanifold of the cotangent bundle $\pi_Q \colon T^*Q \to Q$ of a manifold Q,

2 S projects onto a codimension-one submanifold $\pi_Q(S)$ of Q,

- **④** $X = X_h$ is the Hamiltonian vector field of $h \in C^{\infty}(T^*Q)$ w.r.t. the canonical symplectic form ω_Q , namely,

$$\omega_Q(X_h) = \mathrm{d}h.$$

Hybrid Hamiltonian systems

Physically,

- Q represents the space of positions,
- T*Q the phase space,
- X_h the dynamics between the impacts,
- $\pi_Q(S)$ the hypersurface where impacts occur, and
- Δ the change of momenta on the impacts.

Hybrid Lie group action

Definition

A Lie group action $\Phi \colon G \times Q \to Q$ is called a **hybrid action for** \mathscr{H}_h if its cotangent lift $\Phi^{\mathsf{T}^*} \colon G \times \mathsf{T}^*Q \to \mathsf{T}^*Q$ satisfies the following conditions:

- $\textbf{1} \ h \text{ is } \Phi^{\mathsf{T}^*}\text{-invariant, namely, } h \circ \Phi_g^{\mathsf{T}^*} = h \text{ for all } g \in \mathcal{G},$
- **2** the restriction $\Phi^{\mathsf{T}^*}\Big|_{G \times S}$ is a Lie group action of G on S,
- the impact map is equivariant w.r.t. this action, i.e.,

$$\Delta \circ \Phi_g^{\mathsf{T}^*} \Big|_{\mathcal{S}} = \Phi_g^{\mathsf{T}^*} \circ \Delta \,, \quad \forall \, g \in \, \mathcal{G} \,.$$

Hybrid momentum map

Definition

Let $\Phi: G \times Q \to Q$ be a hybrid action for \mathscr{H}_h . A momentum map $\mathbf{J}: \mathsf{T}^*Q \to \mathfrak{g}^*$ for the cotangent lift action Φ^{T^*} is called a **generalized** hybrid momentum map if, for each connected component $C \subseteq S$ and for each regular value μ_- of \mathbf{J} , there is another regular value μ_+ such that

$$\Delta(\mathbf{J}|_{\mathcal{C}}^{-1}(\mu_{-})) \subset \mathbf{J}^{-1}(\mu_{+}).$$

In particular, if $\mu_{-} = \mu_{+}$ it is called a **hybrid momentum map**. A **hybrid regular value** of **J** is a regular value of both **J** and **J**|_S.

Hybrid momentum map

In other words, **J** is a generalized hybrid momentum map if, for every point in the connected component *C* of the switching surface *S* such that the momentum before the impact takes a value of μ_{-} , the momentum will take a value μ_{+} after the impact; and it is a hybrid momentum map if its value does not change with the impacts.

Hybrid reduction

Proposition

If μ_{-} and μ_{+} are regular values of **J** such that $\Delta(\mathbf{J}|_{S}^{-1}(\mu_{-})) \subset \mathbf{J}^{-1}(\mu_{+})$, then the isotropy subgroups in μ_{-} and μ_{+} coincide, that is, $G_{\mu_{-}} = G_{\mu_{+}}$.

Hybrid reduction

Theorem (Colombo, de León, Eyrea Irazú, L. G., 2022)

Let $\Phi: G \times Q \to Q$ be a hybrid action on \mathscr{H}_h . Assume that G is connected and that $\Phi^{\mathsf{T}^*}: G \times \mathsf{T}^*Q \to \mathsf{T}^*Q$ is free and proper. Consider a sequence $\{\mu_i\}_{i \in I \subseteq \mathbb{N}}$ of hybrid regular values of **J**, such that $\Delta \left(\mathbf{J} |_{\mathcal{S}}^{-1}(\mu_i) \right) \subset \mathbf{J}^{-1}(\mu_{i+1})$. Let $G_{\mu_i} = G_{\mu_0}$ be the isotropy subgroup in μ_i under the co-adjoint action. Then, the reduction leads to a sequence of reduced hybrid forced Hamiltonian systems

$$\mathscr{H}_{h}^{\mu_{i}} = \left(\mathbf{J}^{-1}(\mu_{i})/G_{\mu_{0}}, X_{h_{\mu_{i}}}, \mathbf{J}|_{S}^{-1}(\mu_{i})/G_{\mu_{0}}, (\Delta)_{\mu_{i}} \right).$$

Hybrid reduction

Integrable hybrid Hamiltonian systems

- A particular case is when we have the Abelian Lie group action
 Φ: ℝⁿ × T^{*}Q → T^{*}Q generated by the Hamiltonian flows of n functions f₁,..., f_n in involution.
- In that case, we can identify the momentum map with $F = (f_1, \ldots, f_n)$: $T^*Q \to \mathbb{R}^n$.
- We may obtain action-angle coordinates for each time interval between impacts. The action-angle coordinates before and after the impact will be related by Δ .

Introduction 00	Theory 000000●00	Example 00

Definition

Let (M, S, X, Δ) be a hybrid dynamical system. A function $f: M \to \mathbb{R}$ is called a **generalized hybrid constant of the motion** if

1 Xf = 0,

2 For each connected component $C \subseteq S$ and each $a \in \text{Im } f$, there exists a $b \in \text{Im } f$ such that

$$\Delta\left(f|_{\mathcal{C}}^{-1}(a)\right)\subseteq f^{-1}(b)\,.$$

In particular, f is called a **hybrid constant of the motion** if, in addition, b = a for each $a \in \text{Im } f$.

Definition

Let Q be an *n*-dimensional manifold. A **completely integrable hybrid Hamiltonian system** is a 5-tuple $(T^*Q, S, X_H, \Delta, F)$, formed by a hybrid Hamiltonian system (T^*Q, S, X_H, Δ) , together with a function $F = (f_1, \ldots, f_n)$: $T^*Q \to \mathbb{R}^n$ such that:

- 1 rank $T_x F = n$ a.e.,
- **2** the functions f_1, \ldots, f_n are generalized hybrid constant of the motion
- **3** $\{f_i, f_j\} = X_{f_j}(f_i) = 0 \quad \forall i, j \in \{1, ..., n\}.$

Theorem (L. G., Colombo, 2024)

Consider a completely integrable hybrid Hamiltonian system (T^*Q, S, X_H, Δ) , with $F = (f_1, \ldots, f_n)$, where $n = \dim Q$. Let M_{Λ} be a regular level set of F. Then:

- For each regular level set M_{Λ} and each connected component $C \subseteq S$, there exists a $\Lambda' \in \mathbb{R}^n$ such that $\Delta(M_{\Lambda} \cap C) \subset M_{\Lambda'} = F^{-1}(\Lambda')$.
- **2** On a neighbourhood U_{λ} of M_{Λ} there are coordinates (φ^{i}, s_{i}) s.t.

$$\mathbf{1} \ \omega_{\boldsymbol{Q}} = \mathrm{d}\varphi^{i} \wedge \mathrm{d}\boldsymbol{s}_{i},$$

- **2** the action coordinates s_i are functions depending only on the integrals f_1, \ldots, f_n ,
- the continuous part hybrid dynamics are given by

$$\dot{\varphi}^i = \Omega^i(s_1,\ldots,s_n), \qquad \dot{s}_i = 0.$$

④ In these coordinates, for each connected component $C \subseteq S$, the impact map reads Δ : $(\varphi_{-}^{i}, s_{i}^{-}) \in M_{\Lambda} \cap C \mapsto (\varphi_{+}^{i}, s_{i}^{+}) \in M_{\Lambda'}$, where $s_{1}^{+}, \ldots, s_{n}^{+}$ are functions depending only on $s_{1}^{-}, \ldots, s_{n}^{-}$.

- Consider a homogeneous circular disk of radius *R* and mass *m* moving in the plane.
- The configuration space is $Q = \mathbb{R}^2 \times \mathbb{S}^1$, with canonical coordinates (x, y, θ) .
- The coordinates (x, y) represent then position of the center of the disk, while the coordinate θ represents the angle between a fixed reference point of the disk and the y-axis.

• The Hamiltonian function $H \colon \mathsf{T}^*Q \to \mathbb{R}$ of the system is

$$H = \frac{1}{2m}(p_x^2 + p_y^2) + \frac{1}{2mk^2}p_{\theta}^2 + \frac{1}{2}\Omega^2(x^2 + y^2),$$

where $(x, y, \theta, p_x, p_y, p_\theta)$ are the bundle coordinates in $T^*(\mathbb{R}^2 \times \mathbb{S}^1)$.

- Suppose that there are two rough walls situated at y = 0 and at y = h > R.
- Assume that the impact with a wall is such that the disk rolls without sliding and that the change of the velocity along the *y*-direction is characterized by an elastic constant *e*

• Then, the switching surface is $S = C_1 \cup C_2$, where

$$C_{1} = \left\{ \left(x, R, \theta, p_{x}, p_{y}, \frac{k^{2}}{R} p_{x} \right) \mid x, p_{x}, p_{y} \in \mathbb{R}, \theta \in \mathbb{S}^{1} \right\},\$$

$$C_{2} = \left\{ \left(x, h - R, \theta, p_{x}, p_{y}, \frac{k^{2}}{R} p_{x} \right) \mid x, p_{x}, p_{y} \in \mathbb{R}, \theta \in \mathbb{S}^{1} \right\},\$$

and the impact map $\Delta \colon S \to \mathsf{T}^*Q$ is given by

$$\left(p_{x}^{-}, p_{y}^{-}, p_{\theta}^{-}\right) \mapsto \left(\frac{R^{2}p_{x}^{-} + k^{2}Rp_{\theta}^{-}}{k^{2} + R^{2}}, -ep_{y}^{-}, \frac{Rp_{x}^{-} + k^{2}p_{\theta}^{-}}{k^{2} + R^{2}}\right)$$

- For simplicity's sake, let us hereafter take $m = R = k = \Omega = 1$.
- The functions

$$f_1 = rac{p_x^2 + x^2}{2}\,, \quad f_2 = rac{p_y^2 + y^2}{2}\,, \quad f_3 = rac{p_ heta}{2}\,,$$

are conserved quantities with respect to the Hamiltonian dynamics of H.

- Moreover, $\{f_i, f_j\} = 0$ and $df_1 \wedge df_2 \wedge df_3 \neq 0$ a.e.
- Let $F = (f_1, f_2, f_3) \colon \mathsf{T}^*(\mathbb{R}^2 \times \mathbb{S}) \to \mathbb{R}^3$.
- It is clear that, for $\Lambda \neq 0$, the level sets $F^{-1}(\Lambda)$ are diffeomorphic to $\mathbb{S} \times \mathbb{S} \times \mathbb{R}$.

Example

• In the intersection of their domains of definition, the functions

$$\phi^1 = \arctan\left(rac{x}{p_x}
ight) \,, \quad \phi^2 = \arctan\left(rac{y}{p_y}
ight) \,, \quad \phi^3 = rac{ heta}{p_ heta}$$

are coordinates on each level set $F^{-1}(\Lambda)$ for $\Lambda \neq 0$.

- Additionally, $\omega_Q = \mathrm{d}\phi^i \wedge \mathrm{d}f_i$.
- In these coordinates, the Hamiltonian function reads

$$H = f_1 + f_2 + f_3$$
.

Hence, its Hamiltonian vector field is simply

$$X_H = rac{\partial}{\partial \phi^1} + rac{\partial}{\partial \phi^2} + rac{\partial}{\partial \phi^3} \,.$$

Example

 In the action-angle coordinates (φⁱ, f_i), the connected components of the impact surface read

$$C_{1} = \left\{ \left(\phi^{i}, f_{i}\right) \mid 2f_{2} \sin^{2} \phi^{2} = R^{2} \text{ and } f_{3} = \frac{2k^{4}f_{1} \cos^{2} \phi^{1}}{R^{2}} \right\},\$$

$$C_{2} = \left\{ \left(\phi^{i}, f_{i}\right) \mid 2f_{2} \sin^{2} \phi^{2} = (h - R)^{2} \text{ and } f_{3} = \frac{2k^{4}f_{1} \cos^{2} \phi^{1}}{R^{2}} \right\}.$$

24

Rolling disk with a harmonic potential hitting fixed walls

• The relations between the coordinates before, (ϕ^i_-, f^-_i) , and after, (ϕ^i_+, f^+_i) , are

$$\phi^1_+ = \phi^1_- \,, \qquad \phi^2_+ = - \arctan\left(rac{ an \phi^2_-}{e}
ight) \,, \qquad \phi^3_+ = \phi^3_- \,,$$

$$f_1^+ = f_1^-, \qquad f_2^+ = e^2 f_2 + \frac{1-e^2}{2} a^2, \qquad \qquad f_3^+ = f_3^-,$$

where a = R or a = h - R depending on the wall where the impact takes place.

Merci pour votre attention!

isier.lopez@icmat.es
 www.alopezgordon.xyz