Introduction	Contact manifolds	Homogeneous symplectic manifolds	Homogeneous integrable systems	References
000000	00000	0000	000000 0	0

On integrable contact systems and bi-Hamiltonian structures

Asier López-Gordón

Jt. w/ Leonardo Colombo, Manuel de León, María Emma Eyrea Irazú, and Manuel Lainz

Session on Geometric Structures in Manifolds RSME's 7th Congress of Young Researchers

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES

1

Symplectic geometry

- Symplectic manifolds are the natural geometric frameworks for Hamiltonian mechanics.
- Let me recall that a symplectic manifold (M, ω) is a 2*n*-dimensional manifold endowed with a 2-form ω such that $d\omega = 0$ and $\omega^n \neq 0$.
- The Hamiltonian vector field X_h of a function $h \in \mathscr{C}^{\infty}(M)$ is given by $\omega(X_h, \cdot) = 0$.
- In a neighborhood of each point in *M* there are canonical (or Darboux) coordinates (qⁱ, p_i) in which

$$\omega = \mathrm{d} q^i \wedge \mathrm{d} p_i \,, \quad X_h = \frac{\partial h}{\partial p_i} \frac{\partial}{\partial q^i} - \frac{\partial h}{\partial q^i} \frac{\partial}{\partial p_i}$$

3

Liouville-Arnol'd theorem

Theorem (Liouville–Arnol'd)

Let f_1, \ldots, f_n be independent functions in involution (i.e., $\{f_i, f_j\} = 0 \ \forall i, j$) on a symplectic manifold (M^{2n}, ω) . Let $M_{\Lambda} = \{x \in M \mid f_i = \Lambda_i\}$ be a regular level set.

- **1** Any compact connected component of M_{Λ} is diffeomorphic to \mathbb{T}^n .
- **2** On a neighborhood of M_{Λ} there are coordinates (φ^i, J_i) such that

$$\omega = \mathrm{d}\varphi^i \wedge \mathrm{d}J_i\,,$$

and $f_i = f_i(J_1, ..., J_n)$, so the Hamiltonian vector fields read

$$X_{f_i} = rac{\partial f_i}{\partial J_j} rac{\partial}{\partial arphi^j} \,.$$

Homogeneous integrable systems

Liouville-Arnol'd theorem

Corollary

Let (M^{2n}, ω, h) be a Hamiltonian system. Suppose that f_1, \ldots, f_n are independent conserved quantities (i.e. $X_h(f_i) = 0 \forall i$) in involution. Then, on a neighborhood of M_Λ there are Darboux coordinates (φ^i, J_i) such that $h = h(J_1, \ldots, J_n)$, so the Hamiltonian dynamics are given by

$$\frac{\mathrm{d}\varphi^{i}}{\mathrm{d}t} = \frac{\partial h}{\partial J_{i}}\frac{\partial}{\partial\varphi^{i}},$$
$$\frac{\mathrm{d}J_{i}}{\mathrm{d}t} = 0.$$

troduction 0●000	Contact manifolds 00000	Homogeneous symplectic manifolds 0000	Homogeneous integrable systems	References 0

Problem

Given a Hamiltonian system (M^{2n}, ω, h) , we would like to find n independent conserved quantities in involution f_1, \ldots, f_n , in order to construct action-angle coordinates (φ^i, J_i) .

Magri *et al.* developed a method for constructing such conserved quantities by computing the eigenvalues of a (1, 1)-tensor field N verifying certain compatibility conditions.

Compatible Poisson structures

Definition

Let *M* be a manifold. Two Poisson tensors are Λ and Λ_1 on *M* are said to be **compatible** if $\Lambda + \Lambda_1$ is also a Poisson tensor on *M*.

Definition

A vector field $X \in \mathfrak{X}(M)$ is called **bi-Hamiltonian** if it is a Hamiltonian vector field w.r.t. two compatible Poisson structures, namely,

$$X = \Lambda(\mathrm{d} h, \cdot) = \Lambda_1(\mathrm{d} h_1, \cdot),$$

for two functions $h, h_1 \in \mathscr{C}^{\infty}(M)$.

Poisson – Nijehuis structures

- The linear map $\sharp_{\Lambda} \colon T_x^* M \ni \alpha \mapsto \Lambda(\alpha, \cdot) \in T_x M$ is an isomorphism iff Λ comes from a symplectic structure ω . In that case, $\sharp_{\omega} := \sharp_{\Lambda}^{-1}(v) = \iota_v \omega$.
- In that situation, we can define the (1,1)-tensor field

$$N = \sharp_{\Lambda_1} \circ \sharp_{\Lambda}^{-1}$$
.

Poisson – Nijehuis structures

Theorem (Magri and Morosi, 1984)

Let (M, ω) be a symplectic manifold and Λ_1 a bivector. Consider the (1, 1)-tensor field

$$\mathsf{N}=\sharp_{\mathsf{\Lambda}_1}\circ\sharp_\omega^{-1}.$$

If Λ_1 is a Poisson tensor compatible with Λ , then the Nijehuis torsion T_N of N vanishes. In that case, the eigenvalues of N are in involution w.r.t. both Poisson brackets.

The pair (Λ, N) is called a **Poisson – Nijenhuis structure** on M.

Homogeneous integrable systems

Poisson – Nijehuis structures

Corollary

If a vector field $X \in \mathfrak{X}(M)$ is bi-Hamiltonian w.r.t. to ω and Λ_1 (i.e., $X = \sharp_{\omega} dh = \sharp_{\Lambda_1} dh_1$), then the eigenvalues of N form a family of conserved quantities in involution w.r.t. both Poisson brackets.

Introduction	Contact manifolds	Homogeneous symplectic manifolds	Homogeneous integrable systems	References
00000	00000	0000	000000 0	0

Proposition (Magri et al., 1997)

Let (Λ, N) be a Poisson – Nijenhuis structure on M. Consider the functions

$$I_k = rac{1}{k} \operatorname{Tr} N^k$$
, $k \in \{1, \dots, n\}$.

In a neighbourhood of a point $x \in M$ such that $dI_1(x) \wedge \cdots \wedge dI_n(x) \neq 0$ there are coordinates (λ^i, μ_i) which are canonical both for Λ and N, namely,

$$\begin{split} \Lambda &= \frac{\partial}{\partial \lambda^{i}} \wedge \frac{\partial}{\partial \mu_{i}} \,, \\ N^{*} \mathrm{d} \lambda^{i} &= \lambda^{i} \mathrm{d} \lambda^{i} \,, \\ N^{*} \mathrm{d} \mu_{i} &= \lambda^{i} \mathrm{d} \mu_{i} \,. \end{split}$$

Contact geometry

Definition

A (co-oriented) **contact manifold** is a pair (M, η) , where M is an (2n + 1)-dimensional manifold and η is a 1-form on M such that the map

$$egin{aligned} eta_\eta\colon\mathfrak{X}(M)& o\Omega^1(M)\ X&\mapsto\iota_X\mathrm{d}\eta+\eta(X)\eta\end{aligned}$$

is an isomorphism of $\mathscr{C}^{\infty}(M)$ -modules.

There exists a unique vector field *R* on (*M*, η), called the **Reeb** vector field, given by *R* = b_η⁻¹(η), or, equivalently,

$$\iota_{\mathcal{R}} \mathrm{d} \eta = 0, \ \iota_{\mathcal{R}} \eta = 1.$$

• The Hamiltonian vector field of $f \in \mathscr{C}^{\infty}(M)$ is given by

$$X_f = \flat_{\eta}^{-1}(\mathrm{d}f) - (\mathcal{R}(f) + f) \mathcal{R},$$

Around each point on *M* there exist **Darboux coordinates** (qⁱ, p_i, z) such that

$$\begin{split} \eta &= \mathrm{d}z - p_i \mathrm{d}q^i, \\ \mathcal{R} &= \frac{\partial}{\partial z}, \\ X_f &= \frac{\partial f}{\partial p_i} \frac{\partial}{\partial q^i} - \left(\frac{\partial f}{\partial q^i} + p_i \frac{\partial f}{\partial z}\right) \frac{\partial}{\partial p_i} + \left(p_i \frac{\partial f}{\partial p_i} - f\right) \frac{\partial}{\partial z}. \end{split}$$

Homogeneous symplectic manifold 0000 Homogeneous integrable systems

Contact Hamiltonian systems

Definition

A contact Hamiltonian system (M, η, h) is a co-oriented contact manifold (M, η) with a fixed Hamiltonian function $h \in \mathscr{C}^{\infty}(M)$.

 The dynamics of (M, η, h) is determined by the integral curves of the Hamiltonian vector field X_h of h w.r.t. η. Homogeneous symplectic manifold

Homogeneous integrable systems

Contact Hamiltonian systems

In Darboux coordinates, these curves c(t) = (qⁱ(t), p_i(t), z(t)) are determined by the contact Hamilton equations:

$$\begin{split} \frac{\mathrm{d}q^{i}(t)}{\mathrm{d}t} &= \frac{\partial h}{\partial p_{i}} \circ c(t) \,, \\ \frac{\mathrm{d}p_{i}(t)}{\mathrm{d}t} &= -\frac{\partial h}{\partial q^{i}} \circ c(t) - p_{i}(t) \frac{\partial h}{\partial z} \circ c(t) \\ \frac{\mathrm{d}z(t)}{\mathrm{d}t} &= p_{i}(t) \frac{\partial h}{\partial p_{i}} \circ c(t) - h \circ c(t) \,. \end{split}$$

Example (The harmonic oscillator with linear damping)

Consider the solution $x \colon \mathbb{R} \to \mathbb{R}$ of the second-order ordinary differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2}(t) = -x(t) - \kappa \frac{\mathrm{d}x}{\mathrm{d}t}(t),$$

where $\kappa \in \mathbb{R}$. Defining p = dx/dt, we can reduce it to the system of first-order ordinary differential equations

$$\frac{\mathrm{d}x}{\mathrm{d}t}(t) = p(t), \quad \frac{\mathrm{d}p}{\mathrm{d}t}(t) = -x(t) - \kappa p(t).$$

We can obtain this system as the two first contact Hamilton equations from the contact Hamilton system (\mathbb{R}^3 , η , h), where $\eta = dz - pdx$ and

$$h = \frac{p^2}{2} + \frac{x^2}{2} + \kappa z$$

Jacobi manifolds

Definition

A **Jacobi structure** on a manifold M is a pair (Λ, E) where Λ is a bivector and E a vector field such that the composition rule $\{\cdot, \cdot\}$ on $\mathscr{C}^{\infty}(M)$ given by

$$\{f,g\} = \Lambda(\mathrm{d}f,\mathrm{d}g) + fE(g) - gE(f),$$

is a Lie bracket, called the **Jacobi bracket**. The triple (M, Λ, E) is called a **Jacobi manifold**.

In particular, $\{\cdot, \cdot\}$ is a Poisson bracket iff $E \equiv 0$.

Jacobi structure of a contact manifold

A contact manifold (M,η) is endowed with a Jacobi bracket determined by

$$\{f,g\}=X_f(g)+g\mathcal{R}(f).$$

$\mathsf{Contact} \cong \mathsf{homog}_{\mathsf{eneous}} \mathsf{symplectic}$

Remark

The most natural and efficient way to extend the theory of integrable systems (such as the Liouville–Arnold theorem, Magri's results, and others) to the realm of contact geometry is to utilise the equivalence between the categories of contact manifolds and homogeneous symplectic manifolds.

$\mathsf{Contact} \cong \mathsf{homogeneous} \mathsf{ symplectic}$

Remark

The notions and assumptions will be the same as for integrable systems in the usual sense, with the additional requirement of homogeneity in the corresponding structures. By projecting, we will derive the equivalent results in the contact category.

Homogeneous integrable systems

Exact symplectic manifolds

Definition

An exact symplectic manifold is a pair (M, θ) , where θ is a symplectic potential on M, i.e., $\omega = -d\theta$ is a symplectic form on M. The Liouville vector field $\nabla \in \mathfrak{X}(M)$ is given by

$$\iota_{\nabla}\omega=-\theta\,.$$

A tensor field A on P is called k-homogeneous (for $k \in \mathbb{Z}$) if

$$\mathcal{L}_{\nabla}A = kA$$
.

Trivial symplectization of a co-oriented contact manifold

Definition

Let (M, η) be a co-oriented contact manifold. Then, the trivial bundle $\pi_1: M^{\text{symp}} = M \times \mathbb{R}_+ \to M, \ \pi_1(x, r) = x$ can be endowed with the symplectic potential $\theta(x, r) = r\eta(x)$. The Liouville vector field reads $\nabla = r\partial_r$. We will refer to $(M^{\text{symp}}, \theta)$ as the **trivial symplectization** of (M, η) .

Trivial symplectization of a co-oriented contact manifold

Proposition

There is a one-to-one correspondence between functions f(x) on M and 1-homogeneous functions $f^{\text{symp}}(x, r) = -rf(x)$ on M^{symp} such that the symplectic $X_{f^{\text{symp}}}$ and contact X_f Hamiltonian vector fields are related as follows:

$$\mathsf{T}\pi_1(X_{f^{\mathrm{symp}}}) = X_f$$
.

Moreover, the Poisson $\{\cdot,\cdot\}_{\theta}$ and Jacobi $\{\cdot,\cdot\}_{\eta}$ brackets have the correspondence

$$\{f^{\mathrm{symp}}, g^{\mathrm{symp}}\}_{\omega} = \left(\{f, g\}_{\eta}
ight)^{\mathrm{symp}}$$

The non co-orientable case

Theorem (Grabowski, 2013)

There is a canonical one-to-one correspondence between contact distributions $C \subset TM$ on M and symplectic \mathbb{R}^{\times} -principal bundles $\pi \colon P \to M$ over M.

More precisely, the symplectic \mathbb{R}^{\times} -principal bundle associated with C is $(C^{\circ})^{\times} = C^{\circ} \setminus 0_{T^*M} \subset T^*M$ (i.e., the annihilator of C with the zero section removed), whose symplectic form is the restriction to $(C^{\circ})^{\times}$ of the canonical symplectic form ω_M on T^*Q . It is called the **symplectic cover** of (M, C).

Homogeneous integrable system

Definition

A homogeneous integrable system consists of an exact symplectic manifold (M^{2n}, θ) and a map $F = (f_1, \ldots, f_n) \colon M \to \mathbb{R}^n$ such that the functions f_1, \ldots, f_n are independent, in involution and homogeneous of degree 1 (w.r.t. the Liouville vector field ∇ of θ) on a dense open subset $M_0 \subseteq M$. We will denote it by (M, θ, F) .

For simplicity's sake, in this talk I will assume that $M_0 = M$.

Introduction	Contact manifolds	Homogeneous symplectic manifolds	Homogeneous integrable systems	References
000000	00000	0000		0

- Consider the exact symplectic manifold (M, θ), with Liouville vector field ∇.
- Around each point in M, there are canonical coordinates (q^i, p_i) where $\theta = p_i dq^i$.
- Then, a straightforward computation shows that $\nabla = p_i \frac{\partial}{\partial p_i}$.
- Note that coordinates may be canonical for $\omega = -d\theta$ but not for θ . For instance, in the coordinates $\tilde{q}^i = q^i$, $\tilde{p}_i = p_i + e^{q_i}$ we have

$$heta = \sum_i (ilde{p}_i - e^{ ilde{q}^i}) \mathrm{d} ilde{q}^i \,, \quad \omega = \mathrm{d} ilde{q}^i \wedge \mathrm{d} ilde{p}_i \,, \quad
abla = \left(ilde{p}_i - e^{ ilde{q}^i}
ight) rac{\partial}{\partial ilde{p}_i} \,.$$

• In particular, the Liouville–Arnol'd theorem provides coordinates which are canonical for ω , but not necessarily for θ or ∇ .

Homogeneous Liouville-Arnol'd theorem

Theorem (Colombo, de León, Lainz, L. G., 2023)

Let (M, θ, F) be a homogeneous integrable system with $F = (f_1, \ldots, f_n)$. Given $\Lambda \in \mathbb{R}^n$, suppose that $M_{\Lambda} = F^{-1}(\Lambda)$ is connected, and assume that, in an open neighbourhood U of M_{Λ} , the Hamiltonian vector fields X_{f_i} are complete, rank TF = n and $F \colon U \to V = F(U)$ is a trivial bundle. Then, $U \cong \mathbb{T}^k \times \mathbb{R}^{n-k} \times V$ and there is a chart $(\hat{U} \subseteq U; y^i, A_i)$ of M s.t.

• $A_i = M_i^j f_j$, where M_i^j are homogeneous functions of degree 0 depending only on f_1, \ldots, f_n ,

$$\mathbf{2} \ \theta = A_i \mathrm{d} y^i$$

3
$$X_{f_i} = N_i^j \frac{\partial}{\partial y^j}$$
, with (N_i^j) the inverse matrix of (M_i^j) .

Theorem (Magri's theorem for exact symplectic manifolds)

Let (Λ, N) be a Poisson–Nijenhuis structure on M such that $\Lambda = \omega^{-1}$ for an exact symplectic structure $\omega = -d\theta$. Consider the functions

$$I_k = rac{1}{k} \operatorname{Tr} N^k, \quad k \in \{1, \dots, n\}.$$

In a neighbourhood of a point $x \in M$ such that $dI_1(x) \wedge \cdots \wedge dI_n(x) \neq 0$ there are coordinates (λ^i, μ_i) which are canonical both for θ and N, namely,

$$\begin{split} \theta &= \mu_i \mathrm{d}\lambda^i \,, \\ N^* \mathrm{d}\lambda^i &= \lambda^i \mathrm{d}\lambda^i \,, \quad N^* \mathrm{d}\mu_i = \lambda^i \mathrm{d}\mu_i \,. \end{split}$$

Moreover, $\mathcal{L}_{\nabla}\lambda^{i} = 0$ and $\mathcal{L}_{\nabla}\mu_{i} = \mu_{i}$, where ∇ is the Liouville vector field w.r.t. θ .

Definition

A completely integrable contact system is a triple (M, η, F) , where (M^{2n+1}, η) is a co-oriented contact manifold and $F = (f_0, \ldots, f_n) \colon M \to \mathbb{R}^{n+1}$ is a map such that 1 f_0, \ldots, f_n are in involution, i.e., $\{f_\alpha, f_\beta\} = 0 \forall \alpha, \beta \in \{0, \ldots, n\}$, 2 rank T $F \ge n$ on a dense open subset $M_0 \subseteq M$.

Proposition

Let (M, η) be a co-oriented contact manifold and $F: M \to \mathbb{R}^{n+1}$ a smooth map. Consider the trivial symplectization, i.e., $M^{\text{symp}} = M \times \mathbb{R}_+$ endowed with the symplectic potential $\theta(x, r) = r\eta(x)$, and the map $F^{\text{symp}}(x, r) = -rF(x)$. Then, $(M^{\text{symp}}, \theta, F^{\text{symp}})$ is a homogeneous integrable system iff (M, η, F) is a completely integrable contact system.

- Let (M, η) be a contact manifold.
- Consider its trivial symplectization (M × ℝ₊, θ = rη), and let Λ denote the Poisson tensor defined by ω = −dθ.
- By construction, θ (resp. Λ) is homogeneous of degree 1 (resp. -1).
- Suppose that Λ_1 is a second Poisson tensor compatible with Λ and homogeneous of degree -1.
- Then, $N = \sharp_{\Lambda_1} \circ \sharp_{\Lambda}^{-1}$ is Nijehuis and homogeneous of degree 0.

• Utilizing Magri's theorem, we can find canonical coordinates (λ_i, μ_i) such that

$$\theta = \mu_i \mathrm{d}\lambda^i$$
, $N^* \mathrm{d}\lambda^i = \lambda^i \mathrm{d}\lambda^i$, $N^* \mathrm{d}\mu_i = \lambda^i \mathrm{d}\mu_i$.

- The coordinates λ^i are eigenvalues of N^* , and hence homogeneous of degree 0.
- The coordinates μ_i are homogeneous of degree 1, by the homogeneity of θ.

• Unhomogeneizing, we have 2n + 2 functions in *M*:

$$\overline{\lambda}^{i} = \lambda^{i} \circ \pi_{M}, \quad \overline{\mu}_{i} = \frac{\mu_{i}}{r} \circ \pi_{M},$$

where $\pi_M \colon M \times \mathbb{R}_+ \to M$ is the canonical projection and r the global coordinate of \mathbb{R}_+ .

• We have (n + 1) functions in involution w.r.t. the Jacobi bracket:

$$\{\overline{\mu}_i,\overline{\mu}_j\}_\eta=0$$
 .

Moreover, they lead to coordinates (λ
ⁱ, μ
_i) on M, where μ
_i = -μ
_i/μ
_j for i ∈ {0,...,n} \ {j}.

• In these coordinates,

$$\begin{split} \eta &= \mathrm{d}\overline{\lambda}^{j} - \sum_{i \neq j} \tilde{\mu}_{i} \mathrm{d}\overline{\lambda}^{i} \,, \\ X_{\overline{\mu}_{i}} &= \frac{\partial}{\partial \overline{\lambda}^{i}} \,. \end{split}$$

- V. I. Arnold. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics. Springer-Verlag, 1978.
- [2] L. Colombo, M. de León, M. Lainz, and A. López-Gordón. Liouville-Arnold theorem for contact Hamiltonian systems. 2023. arXiv: 2302.12061 [math.SG].
- [3] P. Dazord, A. Lichnerowicz, and C.-M. Marle. "Structure Locale Des Variétés de Jacobi". J. Math. Pures Appl. (9), 70(1), pp. 101–152 (1991).
- [4] E. Fiorani, G. Giachetta, and G. Sardanashvily. "An Extension of the Liouville-Arnold Theorem for the Non-Compact Case". *Nuovo Cimento Soc. Ital. Fis. B* (2003).

Main references

- [5] K. Grabowska and J. Grabowski. "A Geometric Approach to Contact Hamiltonians and Contact Hamilton–Jacobi Theory". J. Phys. A: Math. Theor., 55(43), p. 435204 (2022).
- [6] J. Grabowski. "Graded Contact Manifolds and Contact Courant Algebroids". J. Geom. Phys., 68, pp. 27–58 (2013).
- [7] J. Liouville. "Note sur l'intégration des équations différentielles de la Dynamique". J. Math. Pures Appl., pp. 137–138 (1855).
- [8] A. López-Gordón. "The geometry of dissipation". PhD thesis. Universidad Autónoma de Madrid, 2024. arXiv: 2409.11947 [math-ph].

Eskerrik asko!

☑ alopez-gordon@impan.pl☺ www.alopezgordon.xyz