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Liouville –Arnol’d theorem

Theorem (Liouville –Arnol’d)
Let f1, . . . , fn be independent functions in involution (i.e., {fi , fj} = 0 ∀i , j)
on a symplectic manifold (M2n, ω). Let MΛ = {x ∈ M | fi = Λi} be a
regular level set.

1 Any compact connected component of MΛ is diffeomorphic to Tn.
2 On a neighborhood of MΛ there are coordinates (φi , Ji) such that

ω = dφi ∧ dJi ,

and fi = fi(J1, . . . , Jn), so the Hamiltonian vector fields read

Xfi = ∂fi
∂Jj

∂

∂φj .
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Liouville –Arnol’d theorem

Corollary
Let (M2n, ω, h) be a Hamiltonian system. Suppose that f1, . . . , fn are
independent conserved quantities (i.e. Xh(fi) = 0 ∀ i) in involution. Then,
on a neighborhood of MΛ there are Darboux coordinates (φi , Ji) such that
H = H(J1, . . . , Jn), so the Hamiltonian dynamics are given by

dφi

dt = ∂H
∂Ji

∂

∂φi ,

dJi
dt = 0 .
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Problem
Given a Hamiltonian system (M2n, ω, h), we would like to find n
independent conserved quantities in involution f1, . . . , fn, in order to
construct action-angle coordinates (φi , Ji).

Magri et al. developed a method for constructing such conserved
quantities by computing the eigenvalues of a (1, 1)-tensor field N verifying
certain compatibility conditions.
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Compatible Poisson structures

Definition
Let M be a manifold. Two Poisson tensors are Λ and Λ1 on M are said to
be compatible if Λ + Λ1 is also a Poisson tensor on M.

Definition
A vector field X ∈ X(M) is called bi-Hamiltonian if it is a Hamiltonian
vector field w.r.t. two compatible Poisson structures, namely,

X = Λ(dh, ·) = Λ1(dh1, ·) ,

for two functions h, h1 ∈ C ∞(M).
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Poisson – Nijehuis structures

• The linear map ♯Λ : T∗
xM ∋ α 7→ Λ(α, ·) ∈ TxM is an isomorphism iff

Λ comes from a symplectic structure ω. In that case,
♯ω := ♯−1

Λ (v) = ιv ω.
• In that situation, we can define the (1, 1)-tensor field

N = ♯Λ1 ◦ ♯−1
Λ .
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Poisson – Nijehuis structures

Theorem (Magri and Morosi, 1984)
Let (M, ω) be a symplectic manifold and Λ1 a bivector. Consider the
(1, 1)-tensor field

N = ♯Λ1 ◦ ♯−1
ω .

If Λ1 is a Poisson tensor compatible with Λ, then the Nijehuis torsion TN
of N vanishes. In that case, the eigenvalues of N are in involution w.r.t.
both Poisson brackets.
The pair (Λ, N) is called a Poisson – Nijenhuis structure on M.
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Poisson – Nijehuis structures

Corollary
If a vector field X ∈ X(M) is bi-Hamiltonian w.r.t. to ω and Λ1 (i.e.,
X = ♯ωdh = ♯Λ1dh1), then the eigenvalues of N form a family of conserved
quantities in involution w.r.t. both Poisson brackets.
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Contact geometry

Definition
A (co-oriented) contact manifold is a pair (M, η), where M is an
(2n + 1)-dimensional manifold and η is a 1-form on M such that the map

♭η : X(M)→ Ω1(M)
X 7→ ιX dη + η(X )η,

is an isomorphism of C ∞(M)-modules.

• There exists a unique vector field R on (M, η), called the Reeb
vector field, given by R = ♭−1

η (η), or, equivalently,

ιRdη = 0, ιRη = 1.
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Contact geometry

• The Hamiltonian vector field of f ∈ C ∞(M) is given by

Xf = ♭−1
η (df )− (R(f ) + f ) R ,

• Around each point on M there exist Darboux coordinates (qi , pi , z)
such that

η = dz − pidqi ,

R = ∂

∂z ,

Xf = ∂f
∂pi

∂

∂qi −
(

∂f
∂qi + pi

∂f
∂z

)
∂

∂pi
+

(
pi

∂f
∂pi
− f

)
∂

∂z .
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Contact Hamiltonian systems

Definition
A contact Hamiltonian system is a triple (M, η, h) formed by a contact
manifold (M, η) and a Hamiltonian function h ∈ C ∞(M).

• The dynamics of (M, η, h) is determined by the integral curves of the
Hamiltonian vector field Xh of h w.r.t. η.
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Contact Hamiltonian systems

• In Darboux coordinates, these curves c(t) = (qi(t), pi(t), z(t)) are
determined by the contact Hamilton equations:

dqi(t)
dt = ∂h

∂pi
◦ c(t) ,

dpi(t)
dt = − ∂h

∂qi ◦ c(t) + pi(t)∂h
∂z ◦ c(t) ,

dz(t)
dt = pi(t) ∂h

∂pi
◦ c(t)− h ◦ c(t) .
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Jacobi manifolds

Definition
A Jacobi structure on a manifold M is a pair (Λ, E ) where Λ is a bivector
and E a vector field such that the composition rule {·, ·} on C ∞(M) given
by

{f , g} = Λ(df , dg) + fE (g)− gE (f ) ,

is a Lie bracket, called the Jacobi bracket. The triple (M, Λ, E ) is called
a Jacobi manifold.

In particular, {·, ·} is a Poisson bracket iff E ≡ 0.

Asier López-Gordón (ICMAT) Nijenhuis – Jacobi structures and contact integrability Summer School GDFT 13



Bi-Hamiltonian systems Integrable contact systems Jacobi – Nijenhuis structures References

Jacobi structure of a contact manifold

• A contact manifold (M, η) is endowed with a Jacobi bracket
determined by

{f , g} = −dη(♭−1
η df , ♭−1

η dg)− fR(g) + gR(f ).

• It can also be expressed as follows:

{f , g} = Xf (g) + gR(f ) .
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Jacobi brackets and dissipated quantities

Definition
Let (M, η, h) be a contact Hamiltonian system with Jacobi bracket {·, ·}.
A function f ∈ C ∞(M) is called a dissipated quantity if

{f , h} = 0 .
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Completely integrable contact system

Definition

A completely integrable contact system is a triple (M, η, F ), where
(M, η) is a contact manifold and F = (f0, . . . , fn) : M → Rn+1 is a map
such that

1 f0, . . . , fn are in involution, i.e., {fα, fβ} = 0 ∀α, β,
2 rank TF ≥ n on a dense open subset M0 ⊆ M.

The functions f0, . . . , fn are called integrals.

Asier López-Gordón (ICMAT) Nijenhuis – Jacobi structures and contact integrability Summer School GDFT 16



Bi-Hamiltonian systems Integrable contact systems Jacobi – Nijenhuis structures References

Liouville – Arnol’d theorem for contact systems

1 Given Λ ∈ Rn+1 \ {0}, let M⟨Λ⟩+ = {x ∈ M | ∃ r ∈ R+ : fα(x) = rΛα}.
2 Assume that the Hamiltonian vector fields Xf0 , . . . , Xfn are complete.
3 Let B ⊆ Rn+1 \ {0} be an open neighbourhood of Λ.
4 Let π : U → M⟨Λ⟩+ be a tubular neighbourhood of M⟨Λ⟩+ such that

F |U : U → B is a trivial bundle over a domain V ⊆ B.

Asier López-Gordón (ICMAT) Nijenhuis – Jacobi structures and contact integrability Summer School GDFT 17



Bi-Hamiltonian systems Integrable contact systems Jacobi – Nijenhuis structures References

Liouville – Arnol’d theorem for contact systems

Theorem (Colombo, de León, Lainz, L.-G., 2023)
Let

(
M, η, F

)
be a completely integrable contact system, where

F = (f0, . . . , fn). Consider the assumptions of the previous slide. Then:
1 M⟨Λ⟩+ is coisotropic, invariant by the Hamiltonian flow of fα, and

diffeomorphic to Tk × Rn+1−k for some k ≤ n.
2 There exists coordinates (y0, . . . , yn, Ã1, . . . , Ãn) on U such that the

equations of motion are given by

ẏα = Ωα(Ã1, . . . , Ãn) , ˙̃Ai = 0 .

3 There exists a nowhere-vanishing function A0 ∈ C ∞(U) and a
conformally equivalent contact form η̃ = η/A0 such that (y i , Ãi , y0)
are Darboux coordinates for (M, η̃), namely, η̃ = dy0 − Ãidy i .
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Our goal

• We would like to generalize Magri et al.’s constructions for integrable
contact systems.
• That is, given a contact Hamiltonian system (M, η, h), we want to

find a tensor N such that, if it satisfies certain compatibility conditions
with (η, h), one can compute dissipated quantities in involution for it.
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Compatible Jacobi structures

• Nunes da Costa (1998) introduced the notion of compatibility of
Jacobi structures.

Definition
Two Jacobi structures (Λ, E ) and (Λ1, E1) on a manifold M are said to be
compatible if (Λ + Λ1, E + E1) is also a Jacobi structure on M.

• She also proved several conditions which are equivalent to (Λ, E ) and
(Λ1, E1) being compatible.

Asier López-Gordón (ICMAT) Nijenhuis – Jacobi structures and contact integrability Summer School GDFT 20



Bi-Hamiltonian systems Integrable contact systems Jacobi – Nijenhuis structures References

Compatible Jacobi structures

• Nunes da Costa (1998) introduced the notion of compatibility of
Jacobi structures.

Definition
Two Jacobi structures (Λ, E ) and (Λ1, E1) on a manifold M are said to be
compatible if (Λ + Λ1, E + E1) is also a Jacobi structure on M.

• She also proved several conditions which are equivalent to (Λ, E ) and
(Λ1, E1) being compatible.

Asier López-Gordón (ICMAT) Nijenhuis – Jacobi structures and contact integrability Summer School GDFT 20



Bi-Hamiltonian systems Integrable contact systems Jacobi – Nijenhuis structures References

Jacobi – Nijenhuis structures

• A Jacobi –Nijenhuis structure (Λ, E , N) is a generalization of
Nijenhuis – Poisson structures.
• These structures were introduced by Marrero, Monterde and Padrón

(1999).
• Their relation with homogeneous Nijenhuis – Poisson structures was

studied by Petalidou and Nunes da Costa (2001).
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Jacobi – Nijenhuis structures

• The space X(M)× C ∞(M) can be endowed with the Lie bracket [·, ·]
given by [

(X , f ), (Y , g)
]

=
(
[X , Y ], X (g)− Y (f )

)
.

• Mutatis mutandis, the Nijenhuis torsion TN of a linear operator
N : X(M)× C ∞(M)→ X(M)× C ∞(M) is defined as usual:

TN
(
(X , f ), (Y , g)

)
:=

[
N(X , f ), N(Y , g)

]
− N

[
N(X , f ), (Y , g)

]
− N

[
(X , f ), N(Y , g)

]
+ N2

[
(X , f ), (Y , g)

]
,
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Jacobi – Nijenhuis structures

• Given a Jacobi structure (Λ, E ), we can define the C ∞(M)-modules
homomorphism ♯(Λ,E) : Ω1(M)× C ∞(M)→ X(M)× C ∞(M)

♯(Λ,E) : (α, f ) 7→
(
Λ(·, α) + fE , α(E )

)
.

• It is an isomorphism iff (Λ, E ) comes from a contact structure.
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Jacobi – Nijenhuis structures

Definition
A Jacobi – Nijenhuis structure on a manifold M is a triple (Λ, E , N)
where (Λ, E ) is a Jacobi structure and
N : X(M)×C ∞(M)→ X(M)×C ∞(M) is a C ∞(M)-linear map such that

N ◦ ♯(Λ,E) = ♯(Λ,E) ◦ N∗ ,

TN ≡ 0 ,

C
(
(Λ, E ), N

)
≡ 0 .

The 4-tuple (M, Λ, E , N) is calle a Jacobi – Nijenhuis manifold.
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Jacobi – Nijenhuis structures

• In the previous slide, C denotes the concomitant. Its expression
depends on N, (Λ, E ) and a quite involved Lie bracket on
Ω1(M)× C ∞(M).
• Let (Λ1, E1) be the Jacobi structure determined by

Λ1(β, α) =
〈
β, N1

(
Λ(·, α), 0

)〉
, E1 = N1(E , 0) ,

where N1 : X(M)× C ∞(M)→ X(M) is the projection of N on the
first component.
• If (Λ1, E1) is also coming from a contact structure, then

TN ≡ 0⇐⇒ C
(
(Λ, E ), N

)
≡ 0 .
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The correspondence between Jacobi – Nijenhuis and
homogeneous Nijenhuis – Poisson structures

Proposition (Petalidou and Nunes da Costa, 2001)
With any Jacobi – Nijenhuis manifold (M, Λ, E , N), we can associate a
homogeneous Nijenhuis – Poisson manifold, namely, a Nijenhuis – Poisson
manifold (M × R, Λ̃, Ñ) such that

L ∂
∂t

Λ̃ = −Λ̃ , L ∂
∂t

Ñ = 0 ,

where t denotes the canonical coordinate on the R component of M × R.
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Exact symplectic manifolds: Liouville geometry

Definition
An exact symplectic manifold is a pair (M, θ), where M is a manifold
and θ a one-form on N such that ω = −dθ is a symplectic form on M.

• The Liouville vector field ∆ of (M, θ) is given by

ι∆ω = −θ.

• A tensor T is called homogeneous of degree n if L∆T = nT .
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Symplectization of contact manifolds

Definition
Let (M, η) be a contact manifold and (MΣ, θ) an exact symplectic
manifold. A symplectization is a fibre bundle Σ: MΣ → M such that

σΣ∗η = θ,

for a function σ on MΣ called the conformal factor.
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Symplectization of contact manifolds

Category of contact manifolds
↕

Category of exact symplectic manifolds

• Contact distribution ker η ←→ symplectic potential θ

• Functions ←→ homogeneous functions
• Hamiltonian vector fields ←→ Hamiltonian vector fields
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Our result (under construction)

• Let (M, η) be a contact manifold with associated Jacobi structure
(Λ, E ).
• Suppose that there is another contact form η1 on M with Jacobi

structure (Λ1, E1).
• Let N = ♯(Λ1,E1) ◦ ♯−1

(Λ,E).
• (Λ, E ) and (Λ1, E1) are compatible iff TN ≡ 0.
• In that case, the eigenvalues of N are in involution w.r.t. the Jacobi

brackets of both (Λ, E ) and (Λ1, E1).
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Our result (under construction)

• Let (Λ1, E1) be the Jacobi structure determined by

Λ1(β, α) =
〈
β, N1

(
Λ(·, α), 0

)〉
, E1 = N1(E , 0) ,

where N1 : X(M)× C ∞(M)→ X(M) is the projection of N on the
first component.
• Consider a contact Hamiltonian system (M, η, h) such that Xh = Yh1

is the Hamiltonian vector field of h w.r.t. η and the Hamiltonian
vector field of h1 w.r.t. h1, namely,

Xh = Yh1 = Λ1(·, dh1) + h1E1 .

• It seems that the projection of the spectrum of Ñ on M can be used
to compute dissipated quantities in involution.
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Thanks for your kind attention!

� asier.lopez@icmat.es
www.alopezgordon.xyz
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