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Symplectic geometry

e |t is well-known that a symplectic manifold (M, w) is the natural
geometric framework for a Hamiltonian system.

e The Hamiltonian vector field X,, of a function h € €°°(M) is given
by w(Xp, -) = dh.

® In a neighbourhood of each point in M there are canonical (or
Darboux) coordinates (¢, p;) in which




Liouville-Arnol'd theorem

Theorem (Liouville-Arnol'd)

Letfy, ..., fn be independent functions in involution (i.e, {fi.f;} = 0 Vi,j) on
a symplectic manifold (M?", w). Let My = {x € M | f; = A} be a regular
level set.

@ Any compact connected component of My is diffeomorphic to T".
@ On a neighbourhood of My, there are coordinates (¢', J;) such that

w=d¢'Adj;,

and f; = fi()x, . . . .Jn), SO the Hamiltonian vector fields read
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Liouville-Arnol'd theorem

Let (M%7, w, h) be a Hamiltonian system. Suppose that fy, ..., [, are
independent conserved quantities (i.e. Xy(f;) = O Y i) in involution. Then, on
a neighbourhood of My there are Darboux coordinates (¢/, J;) such that

h = h(l1,...,Jn) So the Hamiltonian dynamics are given by

o _oho
dt 9, 6(,0’1
dj/' -
a—O.
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Definition

The tuple (M, w, (f1, ..., fn)) is called a (completely) integrable system.
Sometimes, we will refer to a Hamiltonian system (M2", w, h) that has n
independent first integrals in involution as a (completely) integrable
Hamiltonian system.

Definition

The coordinates (¢') are called angle coordinates (or angle variables),
and the coordinates (J;) are called action coordinates (or action
variables).
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The Liouville-Arnol'd theorem was extended to non-compact invariant
submanifolds by Fiorani, Giachetta and Sardanashvily (2002). One has
to assume that the Hamiltonian vector fields Xeo .. Xp, are complete,
which holds automatically in the compact case.




Example (The n-dimensional harmonic oscillator)

e Consider R?", with canonical coordinates 0pnie{1,...,n}
equipped with the symplectic form w and the Hamiltonian
function h,

W= dundp, b= (p/ XZ)
— i Adp;, Z =g
=1

e The functions f; = p’ +% are independent and involution, and
one can write h = Z,:qf

¢ Angle coordinates are ¢/ = arctan (
are f;.

e Hamilton's equations read

%) and action coordinates

athian Seminar



The explicit computation of action-angle coordinates for a detailed
physical model can be challenging and potentially worthy of
publication.
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the Hirota equation

Zhang, Yu; Tian, Shou-Fu

Z. Angew. Math. Phys. 74 (2023), no. 6, Paper No. 236, 18 pp.

MR4644726 - Action-angle formalism for extreme mass ratio
inspirals in Kerr spacetime
Kerachian, Morteza; Polcar, Lukas; Skoupy, Viktor; Efthymiopoulos,
Christos; Lukes-Gerakopoulos, Georgios
Phys. Rev. D 108 (2023), no. 4, Paper No. 044004, 22 pp.

MR4626427 - On the Poisson structure and action-angle
variables for the complex modified Korteweg-de Vries equation
Yin, Zhe-Yong; Tian, Shou-Fu

J. Geom. Phys. 192 (2023), Paper No. 104952, 19 pp.
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variables for the Fokas-Lenells equation

Gao, Yun-Zhi; Tian, Shou-Fu; Fan, Hai-Ning

J. Geom. Phys. 197 (2024), Paper No. 105099, 17 pp.




A crash course on contact geometry




Maximally non-integrable distributions

Definition
We will say that a distribution D ¢ TM on a manifold M is maximally
non-integrable if the bilinear map

Vp: D xyD 3 X, V) y([X, Y]) e TM/D

is non-degenerate. Here [+, -] denotes the Lie bracket of vector fields
with image in D, and y: TM — TM/D is the canonical projection.
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Contact distributions

Definition

Let M be a (2n + 1)-dimensional manifold. A contact distribution C on
M is a maximally non-integrable distribution of corank 1. The pair
(M, C) is called a contact manifold.
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Distributions as kernels of 1-forms

e Note that a distribution D of corank 1 on M can be locally written
as the kernel of a (local) 1-form a on M.

e |tis easy to see that D is integrable iff
anda=0

for any local 1-form a such that D = ker a.
e On the contrary, D is maximally non-integrable iff

andad” =andan---Ada+0
~—_————

ntimes

for any local 1-form a such that D = kera.




Contact forms

Definition

Let (M, C) be a contact manifold such that C can be globally written as
the kernel of a global 1-form rp on M. Then, C is said to be a
co-orientable contact distribution, n is called a contact form, and the
pair (M, n) is called a co-oriented contact manifold.
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Contact forms

Remark (Not existence and not uniqueness of contact forms)

e Not all contact manifolds are co-orientable. Nevertheless, there
always exists a co-orientable double covering space.

e A co-orientable contact distribution C does not fix the contact
form n, but rather the equivalence class

n~n<<kern=kern< 3f: M- R\{0} suchthatn =fn.
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Contact forms

Several authors refer to co-oriented contact manifolds as contact
manifolds. The term “contact structure” is used to refer either to the
contact distribution or to the contact form, so | will not use it in order
to avoid ambiguity.
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Example (Odd-dimensional Euclidean space)

n
n=dz- Zy’dx’, in R27*1 with canonical coordinates (x', )/, 2).
=1

Example (Trivial bundle over the cotangent bundle)

The cotangent bundle T*Q of Q is endowed with the tautological
1-form Bq. The trivial bundle Ty : T*Q x R — T*Q can be equipped with
the contact form g = dr - m*6g, with r the canonical coordinate of R.
If (¢') are coordinates in Q which induce bundle coordinates (¢, p;) in
T*Q and (¢', p;, r) in T*Q x R, we have

6o =pidg’, no=dr-pdqg'.
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Example (Projective space)
Let M = R” x RP™". Consider the open subsets

Ue = {0 ¥D) € M | y* + 0},

wherex = (x1,.. ., x"),y =0",...,y5...,y") € R". We have the local
contact forms o
me=dxk =Y Ly e QU
— Yk
ik
If a global contact form ) on M existed, then n A dn” would define an
orientation. Hence, M is not co-orientable if n -1 is even.
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Example (Projective cotangent bundle P(T*N))

This space is the set of equivalence classes [(x, a)] of points of T*N with
the equivalence relation

x.a~(y.p) iff x=y and IAeR\{0} st a=Ap.

Similarly to R” x RP™, it can be equipped with a contact distribution
which will not be co-orientable if N is odd-dimensional.




The Reeb vector field

Definition

Let (M, n) be a co-oriented contact manifold. The Reeb vector field of
(M, n) is the unique vector field R € X(M) such that

R € kerdn, n®R =1.
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The tangent bundle TM of a co-oriented contact manifold (M, n) can be
decomposed as the Whitney sum

TM =kern@kerdn =Ca®(R).

Note that the complement of the contact distribution C = kern
depends on the choice of contact form, or, equivalently, on the choice
of the Reeb vector field.




Proposition
Let nn be a 1-form on a manifold M. The map

by: E(M) — Q'(M),  by(X) = 70N + e

is a €>°(M)-module isomorphism iff n is a contact form.

Note that the Reeb vector field can be equivalently defined as
R =b:'(n).
n
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Darboux coordinates

Theorem

Let (M, n) be a (2n + 1)-dimensional co-oriented contact manifold. Around
each point x € M there exist local coordinates (q', p;, 2), i € {1...,n} such
that the contact form reads

n=dz-pdq.
Consequently, the Reeb vector field is written as

0

R=—.

These coordinates are called canonical or Darboux coordinates.

rdén (IM PAN) Integrable contact systems Trans-Carpathian Seminar




Jacobi structures

e Consider a manifold M endowed with a bivector field
A € Sec(\’ TM) and a vector field £ € X(M).

e Define the bracket {-,-}: €M) x €°°(M) — €>(M) by
{f.g} = A(df. dg) + fE(g) - 8E(f).
e Lichnerowicz (1977) showed that it is a Lie bracket iff
NE]I=0, [AAl=2EAA,

where [, -] denotes the Schouten-Nijenhuis bracket.

® Inthat case, (A E) is called a Jacobi structure on M, {-,-} is called a
Jacobi bracket, and (M, A, E) is called a Jacobi manifold.
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Jacobi structures

A Poisson structure A is a Jacobi structure with £ = 0.
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Jacobi structures

e AJacobi structure (A, £) defines a ¢°°(M)-module morphism
i Q' (M) — X(M), i) =ANa, ).

e This defines a so-called orthogonal complement D = §,(D°), for
a distribution D with annihilator D°.

e Asubmanifold N of M is called coisotropic if TN+ C TN.
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Jacobi structures

e Two Jacobi structures (A, E) and (A, E) on M are conformally
equivalent if there exists a nowhere-vanishing function f on M
such that

A=fA, E=tdf +/E.

The orthogonal complement coincides for conformally equivalent
Jacobi structures, namely, D = D*i for any distribution D.
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Jacobi structures

Definition

Let (M, A, E) be a Jacobi manifold with Jacobi bracket {-, -}. A collection
of functions fi, .. ., fx € €°°(M) will be said to be in involution if

{fify=0,vije {1, .k}

dén (IM PAN) S an athian Seminar



Jacobi structures

e For each function f € €°°(M), we can define a vector field
X = taldf) +fE,
or, equivalently,
Xr(g) = {f g} +gE(f), Vg e E=M).

e Following the nomenclature of Dazord, Lichnerowicz, Marle, et al.,
we will refer to Xy as the Hamiltonian vector field of /.

* However, Xr does not satisfy the properties of a usual Hamiltonian
vector field (w.r.t. a symplectic or Poisson structure). In particular,

{8} =0 <> Xi(g) = 0.
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Jacobi structure defined by a contact form

e A co-oriented contact manifold (M?"*1, ) is endowed with a Jacobi
structure (A, £) given by

(@ B) = -dn(b;'@,b;'(B), E=-R,

where R is the Reeb vector field.

e Any contact form 7 defining the same contact distribution, i.e.,
ker i) = ker n, defines a conformally equivalent Jacobi structure.
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Contact Hamiltonian vector field

e | et (M, n)be a co-oriented contact manifold. The Hamiltonian
vector field of f € €°°(M) is uniquely determined by

) =, Lxn =-REN.
e |n Darboux coordinates

o 9 (of o)\ 9 of .\ 9
%= apag (aqf* 'az)apﬁ(p'am &z
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Contact Hamiltonian vector field

® The Reeb vector field is the Hamiltonian vector field of f = -1.

e Every Hamiltonian vector field is an infinitesimal
contactomorphism (i.e., its flow preserves the contact distribution
C = kern). Conversely, if Y € X(M) is an infinitesimal
contactomorphism, then it is the Hamiltonian vector field of
f=-n.

® Knowing C = kern and Xy does not fix n nor f. As a matter of fact,
X is the Hamiltonian vector field of g = f/a with respect to
n = an, for any non-vanishing a € €*(M).
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Contact Hamiltonian systems

Definition

A contact Hamiltonian system (M, n, h) is a co-oriented contact
manifold (M, n) with a fixed Hamiltonian function h € €°°(M).

e The dynamics of (M, n, h) is determined by the integral curves of
the Hamiltonian vector field X, of hw.r.t. n.
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Contact Hamiltonian systems

e In Darboux coordinates, these curves c(t) = (§/(t), pi(t), z(t)) are
determined by the contact Hamilton equations:

dg'(ty  oh

T —a—p/oC(t),

d,O,'(f)_ oh e 0

d " og o c(t) p,(t)godt),
de) _ 0

i p/(l‘)a—p/ oc(t)-hoc(t).
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Example (The harmonic oscillator with linear damping)

Consider the solution x: R — R of the second-order ordinary
differential equation

d?x dx

where k € R. Defining p = dx/dt, we can reduce it to the system of
first-order ordinary differential equations

(0,

dx . dp
a(f)*,@(f), at

We can obtain this system as the two first contact Hamilton equations
from the contact Hamilton system (R3, n, h), where n = dz - pdx and

() = —x(6) - kp(?).
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Example (The parachute equation)

e Consider a particle of mass m falling in a fluid under the constant
gravitational acceleration g.

e The friction of the fluid is a drag force, namely, of the form myxz,
with y a positive constant.

e The equation of motion (2nd Newton's law)
X=yx*-g

can be obtained from the contact Hamilton equations of the
contact Hamiltonian system (RB,n = dz - pdx, h), with
b gm? (e?* - 1) . p-2y2y
2my 2m
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Exact symplectic manifolds and

homogeneous Liouville-Arnol'd theorem
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Exact symplectic manifolds

Definition
An exact symplectic manifold is a pair (M, 6), where 6 is a symplectic
potential on M, i.e., w = -d@ is a symplectic form on M. The Liouville

vector field V € X(M) is given by
lvw = -06.

Atensor field A on Pis called k-homogeneous (for k € Z) if

LyA=KA.
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Exact symplectic manifolds

Let (M, 6) be an exact symplectic manifold. Given a vector field Y € X(M),
the following statements are equivalent:

@ Y is an infinitesimal homogeneous symplectomorphism, i.e., £y0 = O;

® VY is an infinitesimal symplectomorphism (i.e., £yd6 = 0) and
commutes with the Liouville vector field ¥,

© Y is the Hamiltonian vector field of f = 6(Y) and f is a homogeneous
function of degree 1.
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Homogeneous integrable system

Definition

A homogeneous integrable system consists of an exact symplectic
manifold (M?",6) and a map F = (f;,...,f»): M — R” such that the
functions fy, . . ., f, are independent, in involution and homogeneous
of degree 1 (w.r.t. the Liouville vector field ¥ of 6) on a dense open
subset My C M. We will denote it by (M, 6, F).

For simplicity's sake, in this talk | will assume that My = M.
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Proposition

Let (M, 6, F) be a homogeneous integrable system. Then, for each A € R,
the level set My = F~'(\) is a Lagrangian submanifold, and

@Y (Mp) = My = F7' @),

where Y denotes the flow of the Liouville vector field .
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Some remarks

* Around each point of an exact symplectic manifold (M, 6), there is
a system of canonical coordinates (¢', p;) where

- d
8 = pidq’, V-p,ap/.

* Note that coordinates may be canonical for w = -df but not for 6.
For instance, in the coordinates §' = ¢/, p; = p; + e we have

6=5 (p-e")dd, w=dq Adp, vz(p,e@")a%.
i !

e |n particular, the Liouville-Arnol'd theorem provides coordinates
which are canonical for w, but not necessarily for 8 or V.
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Homogeneous Liouville - Arnol'd theorem

Theorem (Colombo, de Ledn, Lainz, L. G., 2023)

Let (M, 6, F) be a homogeneous integrable system with F = (f1, ..., [n).
Given A € R”, suppose that My = F~Y(A\) is connected. Assume that, in a
neighbourhood U of My, the Hamiltonian vector fields X are complete,
rankTF|, = nand F|,: U — FU) =V is a trivial bundle. Then,

U~ TK x R  x V and there is a chart (U C U; ', A) of M s.t.

QA= M/f where M’, are homogeneous functions of degree 0
depending only on fi,. .., fn

0= A/dy’,
© X; = Ny, with ( (N) the inverse matrix of (M,
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Let M be an n-dimensional manifold, and let X1, ..., X, € X(M) be linearly
independent vector fields. If these vector fields are pairwise commutative
and complete, then M is diffeomorphic to T x R for some k < n.
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Let (M?" .6, F) be a homogeneous integrable system, with F = (f1, ..., fn).
Assume that the Hamiltonian vector fields Xz are complete. Then, there

exists n functions g; = M, . f; € €M) such that
(M 6,(g1, .. ) is also a homogeneous integrable system,

® X......, Xo, areinfinitesimal generators of S'-actions and their flows
&1 8k
have period 1,
© X;.. ... Xg, areinfinitesimal generators of R-actions,

(4] /\/l/, fori,je,...,nare homogeneous functions of degree O, and they
depend onlyon f1,....[fn.
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Lett: P — M be a G-principal bundle over a connected and simply
connected manifold. Suppose there exists a connection one-form A such
that the horizontal distribution H is integrable. Then t: P — M is a trivial
bundle and there exists a global section y: M — P such that y*A = 0.
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Proof of the theorem

* W.lo.g, assume that Xz, ..., X, are infinitesimal generators of
S'-actions with period 1, and that Xg,,,, ..., Xg, are infinitesimal
generators of R-actions. Restrict V so that it is simply connected.

e We know that M, ~ T x R™k, so we have the trivial
(T x R™ )-principal bundle F: U~V x T x R"% — V C R".
e \We can endow U with a flat, and thus (T x R k)-invariant,
Riemannian metric g, and construct an integrable horizontal
distribution
H = (ker&n (X)) nker,

with connection one-form 6.

e Then, there exists a global section y of the principal bundle such
that y*8 = 0.




Proof of the theorem

e For each point x € My = F7'(/), the angle coordinates (y/(x)) are
determined by ,
(Y (), X(FX)) = x,

where @: TX x R"* x M — M denotes the action defined by the
flows of X¢. Thus, Xg = 0.

e In coordinates (f; /),
XA = (£,0) 8=Ay)dy + B, y)df.
e Contracting 6 with Xy yields A; = fi. Moreover,
0= £ 6= Lo, (fdy + Bf) = (;/Bjdﬁ —s 0 = fdy' + BI(f)df.

e Since y*6 = 0, we conclude that 6 = fidy'.

Q.E.D.




Liouville-Arnol'd theorem for

contact Hamiltonian systems
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Trivial symplectization of a co-oriented contact
manifold

Definition
Let (M, n) be a co-oriented contact manifold. Then, the trivial bundle
M MY™P =M x R — M, my(x,r) = x can be endowed with the

symplectic potential 8(x, r) = rn(x). The Liouville vector field reads
V = I’@r.

We will refer to (M»™P, 6) as the trivial symplectization of (M, n).

| will present a more general setting at the end of the talk.
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Trivial symplectization of a co-oriented contact
manifold

Proposition

There is a one-to-one correspondence between functions f(x) on M and
1-homogeneous functions fY™P(x, r) = -rf(x) on M¥™P such that the
symplectic Xesymp and contact Xe Hamiltonian vector fields are related as
follows:

T]T1 (stymp) = Xf .

Moreover, the Poisson {-,-}g and Jacobi {-, -} brackets have the
correspondence

symp
(fImP, gymPY — ({ffg}n) .
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Definition

A completely integrable contact system is a triple (M, n, F), where
(M?"*1 n)is a co-oriented contact manifold and
F=(o,....fn): M — R™" is a map such that
@ /o.....frareininvolution,ie, {fa.fg} =0Va B € {0,...,n},
@ rank TF > non a dense open subset My C M.




Proposition

Let (M, n) be a co-oriented contact manifold and F: M — R™" a smooth
map. Consider the trivial symplectization, i.e., M®¥™P = M x Ry endowed
with the symplectic potential 6(x, r) = rn(x), and the map

FYMP(x, r) = —rF(x). Then, (M®™P, 6, FY™P) js a homogeneous integrable

system iff (M, n, F) is a completely integrable contact system.
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e Foreach /A € R™1\ {0}, let (A). denote the ray generated by A,
namely,
M)+ = {XGR”” | 3 €R+2X=I’/\} .

e Consider the preimages M, of those rays by a map
F: M — R™, namely,

M. = F ()]
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Theorem (Colombo, de Ledn, Lainz, L. G., 2023)

Let (M,n, F) be a completely integrable contact system, where
F = (fo,....fn). Suppose that the contact Hamiltonian vector fields X are
complete. Given A € R\ {0}, assume that U is a neighbourhood of
My, s.t. Fly: U — Bis atrivial bundle. Then:
@ M. is coisotropic, invariant by the Hamiltonian flow of fa, and
diffeomorphic to T* x R™" for some k < n.

@ There exist coordinates (y°,...,y", A1, ..., As) on U such that the
Hamiltonian vector fields of the functions fq read

e
Xr, = NaXfB )

where N. are functions depending only on A1, .. ., An.

© There exists a nowhere-vanishing function Ay € ¢*°(U) and a
conformally equivalent contact form i = n/Aq = dy® - Ady’.
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Sketch of the proof

@ Translate the problem to the exact symplectic manifold
(MYMP =M x Ry, 0 = rn).
° {fa/f,B} =0= {f;ymprfgymp} =0.
® Xg, complete = Xsmo complete.
e rankdfy > n= rankd(rmify) > n+1.
——

fm
T ((FY™Y ) = {xeM | Is e R™: Fx) =4} = Myy,..
ngymp are tangent to (F¥™P) (/) = Xy, are tangent to M,
X¢, commute and are tangent to My, = My, ~ TK x R™1K,
® F: U — Bisatrivial bundle = F¥™°: ;"0 — Biis a trivial bundle.
. We can apply the theorem for exact symplectic manifolds to obtain
action-angle coordinates (y4., A" ") on ;" (U).
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Sketch of the proof

® |n these coordinates,

0= AP, AT = Maf™,

and 5
Xeomo = Ng—s— (N@) = (M3)"!
Due to the homogeneity, there are functions y%, Aq, mﬁ and Ng on
M such that
Asymp =-r (UTAC!) ' ygymp = ]-[Tya,

ME = e, NS =N




Sketch of the proof

@ Since r (min) = 6, the contact form is given by
/7 :Aad_ya.

and 5
P B
fa = MaA,Br Xfa = Naay/g ,

@ Since N + 0, there is at least one nonvanishing f,. Hence, there is

atvlgast one nonvanishing A,. W.l.o.g., assume that Ag # 0. Then,
(v, Ar = -AilAq, y°) are Darboux coordinates for

o .
f=-n=d/-Ady,
0
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Construction of action-angle coordinates

In order to construct action-angle coordinates in a neighbourhood U
of My, one has to carry out the following steps:

@ Fix a section y of F: U — V such that y*6 = 0.

X, I .
@® Compute the flows ¢,” of the Hamiltonian vector fields Xt

© Let &: R” x M — M denote the action of R” on M defined by the
flows, namely,

X
Otr, . trixX) = @ 00" ().
@ It is well-known that the isotropy subgroup
Gy = {g € R | @(g, x(N) = x(N)}, forms a lattice (that is, a
Z-submodule of R"). Pick a Z-basis {eq,...,en}, where mis the
rank of the isotropy subgroup.

© Completeitto abasis B = {ey,....em em+1,....en} OF R
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Construction of action-angle coordinates

0O Lect (M) denote the matrix of change from the basis {X:(x(/))} of
TymMp = R to the basis {e;}. The action coordinates are the

functions A; = M.f;.
@ The angle coordinates (y/) of a point x € M are the solutions of
the equation
X =@(yeixoFX).
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An example

Let M = R3\ {0} with canonical coordinates (g, p, z), and

n = dz-pdgq.

The functions h = p and f = z are in involution.

Let F = (h,f): M — R2.

rank TF = 2, and thus (M, n, F) is a completely integrable contact
system.




An example

e Hypothesis of the theorem are satisfied:
@ The Hamiltonian vector fields

0 0

Xhzi, sz—p%—25
are complete,

@ Since F: (g,p,2) — (p,2) is the canonical projection,
F:R3>\ {0} — R?\ {0} is a trivial bundle.
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An example

e Therefore, 6 = rdz - rpdg is the symplectic potential on
MYTP = M x Ry, and the symplectizations of h and f are
hYMP = —rp and f*Y™MP = —rz. Their Hamiltonian vector fields are

d G
thymp = %, stymp = —107 7+ r—

e Consider a section y: R? — MYMP of FYMP — (AYTP, fYMP) sych
that y*@ = 0. For instance, one can choose
XA A = (O, j\‘—; 1,/\2) in the points where A, + 0.

e The Lie group action @: R? x MY™P — MY™P defined by the flows
of Xpsymp @and Xgsymo is given by

CD(Z-’S’ Q’IO’Z’r) = (q+ t,pe*S’Ze*S’reS) I

whose isotropy subgroup is the trivial one.




An example

* The angle coordinates (yomp, Veymp) Of @ point x € MY™MP are
determined by

@ (ygympfygymer(F(X))) =X.
e [f the canonical coordinates of x are (g, p, z, r), then

0 1
ySymp = Qr ysymp == - |OgZ.

e Since the isotropy subgroup is trivial, the action coordinates
coincide with the functions in involution, namely,

Aéymp — hYMP — -, A?ymp :fsymp - —r7.

e Projecting to M yields the functions




An example

e The action coordinate is

In the coordinates (yO,y1,/Z\) the Hamiltonian vector fields reads

d d

Xo— 2 x— 2

and there is a conformal contact form given by

f=-Ln—dy'-Ady’.
A1
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An example

e Similarly,
/T“r 1/ /T“r/“
is a section of FY™P in the points where /Ay + 0.

e Performing analogous computations as above one obtains the
action-angle coordinates

/ /N
)((/\1//\2)=(2 2 )

A

0 Z o G 2
=qg-—, =-logp, A=-—,
Yy =q ;) Y gp ;)

such that
0 0 N RN B SY




Generalisation to not co-oriented

contact manifolds
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R*-principal bundles

e Consider the multiplicative group of non-zero real numbers
GL(1,R) =R* =R\ {0}.
e |etr: P — M be an R*-principal bundle, and denote the
R*-action by @, and the Euler vector field by V.
e In alocal trivialization ' (U) =~ U x R* of P, they read
9]

(x,s) = x, hex,s) = (x,ts), st&.
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Homogeneous symplectic forms

Definition
Let: P — M be an R*-principal bundle with Euler vector field V. A
tensor field A on Pis called k-homogeneous (for k € Z) if

LyA=KA.

Definition
A symplectic R*-principal bundle is an R*-principal bundle r: P — M

endowed with a 1T-homogeneous symplectic form w on P. We will
denote it by (P, 1, M, V, w)
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Contact manifolds and symplectic R*-principal

bundles

Theorem (Grabowski, 2013)

There is a canonical one-to-one correspondence between contact
distributions C C TM on M and symplectic R*-principal bundles

m. P— M over M.

More precisely, the symplectic R*-principal bundle associated with C is
(C°)* = C°\ Oy C T*M (i.e., the annihilator of C with the zero section
removed), whose symplectic form is the restriction to (C°)* of the canonical
symplectic form wy on T*Q. It is called the symplectic cover of (M, C).
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Every symplectic R*-principal bundle (P, 1, M, V, w) is an exact
symplectic manifold. Indeed, the 1-form 8 = -(yw is a symplectic
potential for w.

Conversely, an exact symplectic manifold (M, 8) is a symplectic
R*-principal bundle if the Liouville vector field V is complete.
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Contact Hamiltonian vector fields

Theorem (Grabowska and Grabowski, 2022)

Let (P, r, M, V, w) be the symplectic cover of (M, C). Then, the Hamiltonian
vector field X, of a 1-homogeneous function h € €°(P) is r--projectable.

The vector field X} .= Tri(X,) € X(M) is called the contact Hamiltonian
vector field of h.

don (IM PAN)
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Proposition
Let (P?", 11, M, ¥, w) be the symplectic cover of the contact manifold (M, C),
andlet F = (f1,...,fn): P — R" a map such that (M, 8 = -iyw, F)isa
homogeneous integrable system. Then:
O (F’1 (/\)) is coisotropic, invariant by the flows ofXﬁ, . ,X]En, and
diffeomorphic to T¥ x R"* for some k < n.
@ There exist coordinates (y',...,y", A1, ..., An1) such that

c _ N9

where NE are functions depending only on A+, . .., An-1.
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Intermezzo: other notions of contact

integrability
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Intermezzo: other notions of contact integrability

e Khesin and Tabachnikov, Liberman, Banyaga and Molino, Lerman,
etc. have defined notions of contact complete integrability which
are geometric but not dynamical, e.g. a certain foliation over a
contact manifold.

Miranda (2005, 2014) considered integrability of the Reeb
dynamics when R is the generator of an S'-action.

Boyer (2011) calls a contact Hamiltonian system (M?"*1, n, h)
completely integrable if there exist n+ 1 independent functions in
involution fo = h,f1, ..., fo such that Xp(f1) = - - - = Xy(fy) = 0. This
implies that R(h) = 0, what he calls a “good Hamiltonian”. Then,
the two first contact Hamilton equations are the classical
Hamilton equations ~ conservative dynamics:

Lth] =0, Xh(h) =0.
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Intermezzo: other notions of contact integrability

e B.Jovanovi¢ and V. Jovanovi¢ (2012, 2015) considered
noncommutative integrability for the flows of contact Hamiltonian
vector fields, assuming the functions in involution to be
Reeb-invariant.

e Recently (a month before this seminar), B. Jovanovi¢ submitted a
preprint in which he studies the non-commutative integrability of
contact systems on a contact manifold (M, C) using the Jacobi
structure on the space of sections of a contact line bundle L. In
this new work, he no longer assumes the contact Hamiltonian to
be Reeb-invariant.




Theorem (B. Jovanovi¢, 2025)

Consider a “contact Hamiltonian system” (M, C, h € Sec(L)) with
symmetries so = h, ..., Sp € Sec(L) s.t.

{sisa} =0, i=0,....r, a=0,...,p, p+r=2n,

and assume that Xs,, . . ., Xs, are complete. Let i: M\ My — RPP,
m(x) = [so(x), . .,sn(x)] be the associated momentum map and let
Mreg € M be an open subset in which rank Trt = p. Then,

ker T, = span{Xo(X), .. .. Xr(X)}, VX € Mreg.
A connected component M? of Mc =) N Mireg is diffeomorphic to

T/ x R There exist coordinates (¢, xx) of M2 in which the contact
dynamics read

Oy = Wy = const, X, = ay = const.
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Theorem (B. Jovanovi¢, 2025)

Furthermore, the contact symmetries span{Xo, ..., X;} are also tangent to
the zero locus Mg = {x € M | sp(x) = - - - = sp(x) = O}. Let Mg reg be an
open subset of Mg such that each point has a neighborhood U with local
sections Sou, - - ., Spu that are independent in a chart (U, ay):

Moreg N U = {x € U| soux) =0,...,Spulx) = 0, dSoy A - -- AdSpu | x # O}.

Then,
dimkerTmy=r, VX & Moeg

and a connected component M3 of Mo reg is diffeomorphic to T/ x R’
with linearized dynamics.
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Bi-Hamiltonian systems




Bi-Hamiltonian systems

Problem

Given a Hamiltonian system (M?", w, h), we would like to find n
independent conserved quantities in involution fu, ..., fa, in order to
construct action-angle coordinates (¢', J;).

Magri et al. developed a method for constructing such conserved
quantities by computing the eigenvalues of a (1, 1)-tensor field N
verifying certain compatibility conditions.
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Compatible Poisson structures

Definition
Let M be a manifold. Two Poisson tensors are A and A on M are said
to be compatible if A + A4 is also a Poisson tensor on M.

Definition
A vector field X € X(M) is called bi-Hamiltonian if it is a Hamiltonian
vector field w.r.t. two compatible Poisson structures, namely,

X =A(,dh) =/ (, dhn),

for two functions h, hy € €*°(M).
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Poisson - Nijehuis structures

e The linear map fix: Ti!M 2 a— A(;,a) € T(M is an isomorphism iff
/A comes from a symplectic structure w. In that case,
by = ﬁ;ﬂ V) = (w.

e |n that situation, we can define the (1, 1)-tensor field

/\/Zﬂ/\1 Oﬁ/_\W :Ij/\w oby.

thian Seminar



Poisson - Nijehuis structures

Theorem (Magri and Morosi, 1984)

Let (M, w) be a symplectic manifold and Ay a bivector. Consider the
(1, 1)-tensor field

N:ﬁ/\ﬂ Obw.

If A1 Is a Poisson tensor compatible with A\, then the Nijehuis torsion Ty of
N vanishes. In that case, the eigenvalues of N are in involution w.r.t. both
Poisson brackets.

The pair (A, N) is called a Poisson - Nijenhuis structure on M.

The Nijehuis torsion of N is the vector valued 2-form Ty on M given by

TlX, Y) == N2DX YT = NINX, YT = NDGNYT+ INX NYT, VXY € X(M).
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Poisson - Nijehuis structures

If a vector field X € X(M) is bi-Hamiltonian w.r.t. to w and /\; (i.e.,
X = twdh = #ix,dhn), then the eigenvalues of N form a family of conserved
quantities in involution w.r.t. both Poisson brackets.
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Compatible Jacobi structures

e The theory of compatible Jacobi structures and Jacobi-Nijenhuis
manifolds was developed by Iglesias, Monterde, Marrero, Nunes
da Costa, Padrdn and Petalidou in the 1990s and 2000s.

e Two Jacobi structures (A, £) and (A4, £1) on a manifold M are called
compatible if (A + A4, E + Eq) is also a Jacobi structure on M.

e Given aJacobi structure (A, £) on M, one can construct an
associated Poisson structure A = 1/rA+ 0, A E on M x R, which
by construction is homogeneous of degree -1 with respect to

= r0,.
® Nunes da Costa (1998) showed that (A, £) and (1, £1) are

compatible Jacobi structures iff A and A are compatible Poisson
structures.
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Theorem (Fernandes, 1994)

Consider a 2n-dimensional completely integrable Hamiltonian system
(M, w, H) with action-angle coordinates (s;, ¢') satisfying the following
conditions:

(ND) The Hessian matrix ( 3535 ) of the Hamiltonian with respect to
the action variables is non-degenerate in a dense subset of M.
(BH) The system is bi-Hamiltonian and the recursion operator N
has n functionally independent real eigenvalues Ay, . .., An.
Then, the Hamiltonian function can be written as

n

HA, - A) =) HY,

i=1

where each H; is a function that depends only on the corresponding A;.
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Proposition

Let (M, 6, H) be a homogeneous integrable Hamiltonian system satisfying
the assumption (ND). Denote by A the Poisson structure defined by

w = -d6, and by ¥V the Liouville vector field corresponding to 6. If there is
a Poisson structure Ay on M compatible with /, it cannot be
simultaneously (-1)-homaogeneous (i.e., L/ = -Aq) and satisfying (BH).
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Proposition

Let (M, 6, H) be a homogeneous integrable Hamiltonian system satisfying
the assumption (ND). Denote by A the Poisson structure defined by

w = -d6, and by ¥V the Liouville vector field corresponding to 6. If there is
a Poisson structure Ay on M compatible with /, it cannot be
simultaneously (-1)-homaogeneous (i.e., L/ = -Aq) and satisfying (BH).

If N'has n functionally independent eigenvalues, then H = Y, HiA)). If
A1 is (-1)-homogeneous, then N is 0-homogeneous, so its eigenvalues
are O-homogeneous as well. Hence,

H=V(H) =) HMVA)=0.
=1
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Corollary

Let (M, n, H) be a (2n + 1)-dimensional integrable contact Hamiltonian
system. If there is a second Jacobi structure (A1, E1) compatible with the
Jacobi structure (A, E) defined by n, then the recursion operator

N = ﬁ;h o ﬁ/i\1 relating the associated Poisson structures on M x Ry cannot
have (n + 1) functionally independent real eigenvalues.

v
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e Consequently, compatible Jacobi structures cannot be utilised to
construct a set of independent functions in involution for a
contact Hamiltonian system.

e Nevertheless, we can symplectise the contact Hamiltonian
system and obtain a second Poisson structure compatible with
the one defined by the exact symplectic structure.

e |f Nis 1-homogeneous and satisfies (BH), then its eigenvalues are
n functionally independent and 1-homogeneous functions in
involution, so they will project into n functions in involution with
respect to the Jacobi bracket.
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A toy example

Let M = R?, and consider its cotangent bundle T*M ~ R*
endowed with the canonical one-form Og..

In bundle coordinates (X, py), it reads 8y = p;dx’. It defines the
symplectic form wy = -dBy = dx’ A dp;, and the Poisson structure

d 0 d d

N= = A—Ft — A —.
ox' ' op1 ox?  dpa

In this case, the Liouville vector field is ¥V, = p;dp,, the
infinitesimal generator of homotheties on the fibers.

A Poisson structure compatible with A'is

a 9 , 0 0
N=pi=—=AN—+ — N =—.
1 =P 1 p2x Py
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A toy example

e The Nijenhuis tensor N = #y, o ' reads

9] 9] 5[ 0 0
N = p; (®dx a0 ®dp1)+p2x (az®dx a0; ®d,02) .
e The eigenvalues of N are Ay = py and A, = pox?, which are
homogeneous of degree 1, in involution with respect to both /A
and /A, and functionally independent on the dense subset

U=T"M\ ({p2 = 0} 1 {x* = 0}).
e The vector field
0,20 9
~ X! a2 Pap, op2

is bi-Hamiltonian. Indeed, it is the Hamiltonian vector field of

H = pq + pox? with respect to A, and the Hamiltonian vector field
of Hy = log(pyp>x?) with respect to Ay. Moreover, A; and A, are
first integrals of X.
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A toy example

e In the coordinates (¢/,A)),
2 2 2
7 Z i 7} 9 9 - A

=1 I=

X =0y +0,, H=MA+X.
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A toy example bis

e Consider the contact Hamiltonian system (M = R3,/7,h), with n
the canonical contact form, n = dz-pdg,and h=p-2z.

¢ |n bundle coordinates (g, p, z r), the trivial symplectisation
(R*, 6, H) of (M, n, h) reads

O@=rdz-rpdq, H=rz-rp,

and Liouville vector field is V = ro;.

e This is the system from the previous example, as it becomes
evident by performing the coordinate change

2

x'=q, x*=z, p1=-mp, pr=r.

e Thus, we have the functions A = p1 = -rp and A, = pox? = 1z,
which are homogeneous of degree 1, in involution, and
functionally independent on a dense subset.




A toy example bis

e Projecting them to M, we obtain A; = p and A, = -z, which are
functionally independent and {A,A} = {A&,h} = {A2,h} = 0.

e Moreover, the angle coordinates ¢' = x' = g and
¢? = logx? = logz are 0-homogeneous, so they project into M.
With a slight abuse of notation, we will also denote by @' and ¢
to the corresponding functions on M.

o LetA=-A/A; = p/z. Inthe chart (U = M\ {z = 0};¢", ¢?,A), the
contact Hamiltonian vector field reads Xj, = Oyt T 2.

2

e Moreover, i1 = dp? - Ady' is a contact form on U conformal to n
(i.e., kern = kern), and X, is the Hamiltonian vector field of

h =A-1 with respect to 7.
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Conclusions




Future research

¢ |nteresting examples

e A method for computing action-angle coordinates ~»
Hamilton-Jacobi equation?

e Delzant's theorem: classifying Hamiltonian actions by the image
of the associated moment map, which is a polytope
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