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Symplectic geometry

Symplectic geometry is the natural framework for classical mechanics.

Recall that a symplectic form w on M is a 2-form such that dw =0
and v — t,w is an isomorphism.

Given a function f on M, its its Hamiltonian vector field Xr is given by

tx,w = df.

The Poisson bracket {-, -} is given by

{f. g} = w(Xr, Xg)-
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Theorem (Liouville-Arnold theorem)

Let fi,...,f, be independent functions in involution (i.e., {f;, fi} =0 Vi, j)
on a symplectic manifold (M?",w). Let My = {x € M | f; = \;}.

@ Any compact connected component of My is diffeomorphic to T".
@® On a neighborhood of My there are coordinates (', J;) such that

w=de¢' AdJj,

and the Hamiltonian dynamics are given by

dgoi .

= Q'
=),
dJ;
a =
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Contact geometry

Definition

A (co-oriented) contact manifold is a pair (M, n), where M is an

(2n 4 1)-dimensional manifold and 7 is a 1-form on M such that n A (dn)”
is a volume form.

® The contact form n defines an isomorphism
b: X(M) — QY(M)
X = uxdn +n(X)n,

® There exists a unique vector field R on (M, n), called the Reeb
vector field, such that b(R) = 7, that is,

trdn =0, 1gn =1.
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Contact geometry

® The Hamiltonian vector field of f € C>°(M) is given by
b(Xf) = df — (R(f)+ f)n,

® Around each point on M there exist Darboux coordinates (q', p;, 2)

such that
n=dz— pidq’,
B
R=.
o _ Of 0 _<8f+ .8f> ) +(_8f_f>6
= 9pog  \oqg  Paz)ap " \Pop 8z
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Contact geometry

® The Jacobi bracket is given by
{f,g} = —dn(>"1df,b"'dg) — FR(g) + gR(f).

® This bracket is bilinear and satisfies the Jacobi identity.

® However, unlike a Poisson bracket, it does not satisfy the Leibnitz
identity:

{f.gh} # {f,gth+{f, h}g.
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Dissipated quantities

® |n contact Hamiltonian dynamics dissipated quantities are akin to
conserved quantities in symplectic dynamics.

® Energy (Hamiltonian function) is no longer conserved, but dissipated
in a certain manner:
Xu(H) = —R(H)H
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Dissipated quantities

Example (linear dissipation)

Let )
M=R3, n=dz—pdg, H=2 1V(q)+rz

2
Then Xy(H) = —kH, so

H(q(t), p(t), 2(t)) = e ""H(q(0), p(0), 2(0))-

Definition

An H-dissipated quantity is a function f on M such that

Xu(f) = —R(H)f.
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Dissipated quantities

® A function f is H-dissipated iff
{f,H} =0.

® Noether's theorem: symmetries <+ dissipated quantities.
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® Let Mipy, = {x e M|3reR": f(x) = rAq}.

Theorem (Colombo, de Ledn, Lainz, L.-G., 2023)

Let (M,n) be a (2n + 1)-dimensional contact manifold. Suppose that
fo,fi,..., Ty are functions in involution such that (df,) has rank at least n.
Then, My is invariant by the Hamiltonian flow of f, and diffeomorphic
to Tk x R+1-k

Moreover, there is a neighborhood U of M< A+ such that

© There exists coordinates (y°,...,y" A1,...,A,) on U such that the
equations of motion are given by

“=QA), A =0,

@® There exists a conformal change ij = 1/Aq such that (y', A;, y°) are
Darboux coordinates for (M, 7}), i.e. fj = dy® — A;dy’.
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Steps of the proof

@ Symplectize (M, n) and f,, obtaining an exact symplectic manifold
(M%,6) and homogeneous functions in involution .

® Prove a Liouville-Arnold theorem for exact symplectic manifolds with
homogeneous functions in involution.

© “Un-symplectize” the action-angle coordinates (yg, AZ) on M*,
yielding functions (y*, Ax) on M.

© Introduce action-angle coordinates (y®, A;) on M, where A; = —%.
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Exact symplectic manifolds: Liouville geometry

Definition

An exact symplectic manifold is a pair (M, ), where M is a manifold
and 0 a one-form on N such that w = —d#é is a symplectic form on M.

® The Liouville vector field A of (M, 0) is given by
iaw = —0.

® A tensor T is called homogeneous of degree n if LAT = nT.
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Symplectization of contact manifolds

Definition
Let (M, n) be a contact manifold. A symplectization is a fibre bundle
Y : M* — M, where (M*,0) is an exact symplectic manifold, such that

oX'n=20,

for a function o on M* called the conformal factor. )
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Symplectization of contact manifolds

Contact geometry <— Liouville geometry

Contact form n <— symplectic potential 6

Functions <— homogeneous functions of degree 1

Hamiltonian vector fields <+— Hamiltonian vector fields,
homogeneous of degree 0
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Symplectization of contact manifolds

Given a symplectization ¥ : (M*,0) — (M, n) with conformal factor o,
there is a bijection between functions f on M and homogeneous functions
of degree 1 f= on M* such that

Y. (Xez) = Xy

This bijection is given by
> = o%*f.

Moreover, one has

{F.g%}, =1f.ehy.
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Symplectization of contact manifolds

Y =m: (MxR" 6 =rn)— (M,n) is a symplectization with conformal
factor o = r, for r the global coordinate on R™.
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Liouville=Arnold theorem for exact symplectic manifolds

® \We want to obtain action-angle coordinates (¢, JX) on (M*,0) in
order to define functions (¢%, J,) on (M, n)

® We need homogeneous objects on (M*, ) so that they have a
correspondence with objects on (M, 7).

® However, the classical Liouville—Arnold theorem does not take into
account the homogeneity of 6 and f.

® Moreover, we need to consider non-compact level sets of faz.
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Liouville=Arnold theorem for exact symplectic manifolds

Theorem (Colombo, de Ledn, Lainz, L.-G., 2023)

Let (M,0) be an exact symplectic manifold. Suppose that the functions
fo, a=1,...,n, on M are independent, in involution and homogeneous
of degree 1. Let U be an open neighborhood of My such that:

@ 1, have no critical points in U,
@® the Hamiltonian vector fields of X¢, are complete,
© the submersion (f,): U — R" is a trivial bundle over V C R".

Then, U ~R"™™ x T™ x V, provided with action-angle coordinates
(y*, Ay) such that

o Aa
e dAa

0 = Ady®, —qr, La_,
4 dt dt
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Sketch of proof

® Since X, are n vector fields tangent to Mj, linearly independent and
pairwise commutative, they generate the algebra R” and
My ~ R"/Zk.

® Thus there are coordinates y* = MZs”, where X¢, (s7) = 62.

® The values of f, define coordinates (J,) on V.

® Since My is Lagrangian, 0 = A, (J)dy® + B%(y, J)dJ,.

® Since f, are homogeneous of degree 1, §(X¢,) = f,.

® By construction, A(y®) = 0.

e \With additional contractions with # and w, one concludes that
0 = A,dy®, where Jg = I\/Ig‘Ja.
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From conditions on faZ to conditions on f,

® |n order to apply the Liouville—Arnold theorem for exact symplectic
manifolds, we need to translate the conditions on f, to conditions on
fx.

® Let Mipy, ={xeM|3IrecR": F(x) = rA}.

® |et F): (f¥) and My = (FE)L(A).

® Given the functions fy, f1,...,f,: M = R, let F = (f,) and

F=SoF: M—S",

where S: R™1\ {0} — S" denotes the projection on the sphere.
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From conditions on £¥ to conditions on f;

Given (N); € S", let B C S" be an open neighborhood of (N4 and let
m: U — M, be a tubular neighborhood of My, such that Fiy: U — B

is a submersion with diffeomorphic fibers. Define B = S~1(B) and
U=3x"YU) and #t = ZAT/II owoZ Then, 7: U — My is a tubular
neighborhood of l\/l/\ such that F
diffeomorphic fibers.

|U - U — B is a submersion with

Liouville-=Arnold theorem for contact Hamiltonian systems Young Researchers GMC 22



Introduction Main theorem Exact symplectic manifolds Symplectization Proof Final comments Refe
0000 00 o 000 000 o o

Theorem (Colombo, de Ledn, Lainz, L.-G., 2023)

Let (M,n) be a (2n + 1)-dimensional contact manifold. Suppose that

fo, fi, ..., fy are functions in involution such that (df,) has rank at least n.
Assume that the Hamiltonian vector fields X¢, are complete. Given

A € R™1\ {0}, let B C S" be an open neighborhood of (A) and let

m: U — My, be a tubular neighborhood of My, such that I:_|U: U— B
is a submersion with diffeomorphic fibers. Then

@ M, is invariant by the Hamiltonian flow of f, and diffeomorphic to
Tk % Rn—i—l—k'

@® There exists coordinates (y°,...,y", A, ... ,74,,) on U such that the
equations of motion are given by

© There exists a conformal change ij = 1/Aq such that (y', A;, y°) are
Darboux coordinates for (M, ij).
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Sketch of the proof

@ Symplectize (M, n) and f,, in order to apply the Liouville-Arnold
theorem for exact symplectic manifolds
* {fu,fz} =0= {fX,f7}=0.
® Xr, complete = Xz complete.
® rankdf, > n= rankd(cX*f,) > n+1.
~——

£

e T((FF)Y(N) ={xeM|IseR: F(x)=2}=My,,.

® X;, commute and are tangent to Mpy, = M), ~ Tk x Rk,
® "Un-symplectize” the action-angle coordinates (yg,AE) on U,

yielding functions (y“, A,) on U.

© Introduce action-angle coordinates (y®, A;) on U

® Since A # 0, dA, #0. W.l.o.g., assume Ay # 0.

® Then (y”‘,A,- = f%) are coordinates on U.
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Sketch of the proof

® By construction, y“ are linear combinations of flows of X , namely,

9]
Xr, = Mg —.
fo P osh
® Therefore, the dynamics are given by
dy® dA;
_— = Qa == 0.
dt ’ de

® 0 = AZdyg ~ 1 = Andy®, so

1 ~ .
i=—n=dy°—Ady"
== y
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Final comments
°

Other notions of integrability

® Khesin and Tabachnikov, Liberman, Banyaga and Molino, Lerman,
etc. have defined notions of contact complete integrability which are
geometric but not dynamical, e.g. a certain foliation over a contact
manifold.

® Boyer considers the so-called good Hamiltonians H, i.e., R(H) =0~
no dissipated quantities, “symplectic” dynamics.

® Miranda considered integrability of the Reeb dynamics when R is the
generator of an Sl-action.

® \We are interested in complete integrability of contact Hamiltonian
dynamics.
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