

Asier López-Gordón

Instituto de Ciencias Matemáticas (ICMAT-CSIC), Madrid (Spain)

Joint work with Leonardo Colombo, Manuel de León and Manuel Lainz

17th International Young Researchers Workshop on Geometry, Mechanics and Control Department of Mathematics, KU Leuven (Belgium) March, 2023

Financially supported by Grants CEX2019-000904-S and PID2019-106715GB-C21 funded by MCIN/AEI/10.13039/501100011033

Outline of the presentation

- Introduction
- 2 Main theorem
- **3** Exact symplectic manifolds
- O Symplectization
- 6 Proof
- 6 Final comments

Symplectic geometry

- Symplectic geometry is the natural framework for classical mechanics.
- Recall that a symplectic form ω on M is a 2-form such that $d\omega = 0$ and $v \mapsto \iota_v \omega$ is an isomorphism.
- Given a function f on M, its its Hamiltonian vector field X_f is given by

$$\iota_{X_f}\omega=\mathrm{d}f.$$

• The Poisson bracket $\{\cdot, \cdot\}$ is given by

$$\{f,g\}=\omega(X_f,X_g).$$

Introduction	Main theorem	Exact symplectic manifolds	Symplectization	Proof	Final comments	References
○●00	00	O		000	0	0

Theorem (Liouville–Arnold theorem)

Let f_1, \ldots, f_n be independent functions in involution (i.e., $\{f_i, f_j\} = 0 \ \forall i, j$) on a symplectic manifold (M^{2n}, ω) . Let $M_{\Lambda} = \{x \in M \mid f_i = \Lambda_i\}$.

- **1** Any compact connected component of M_{Λ} is diffeomorphic to \mathbb{T}^n .
- **2** On a neighborhood of M_{Λ} there are coordinates (φ^{i}, J_{i}) such that

$$\omega = \mathrm{d}\varphi^i \wedge \mathrm{d}J_i,$$

and the Hamiltonian dynamics are given by

$$rac{\mathrm{d}arphi^i}{\mathrm{d}t} = \Omega^i(J), \ rac{\mathrm{d}J_i}{\mathrm{d}t} = 0.$$

Contact geometry

Definition

A (co-oriented) **contact manifold** is a pair (M, η) , where M is an (2n+1)-dimensional manifold and η is a 1-form on M such that $\eta \wedge (d\eta)^n$ is a volume form.

• The contact form η defines an isomorphism

$$egin{aligned} arphi : \mathfrak{X}(M) &
ightarrow \Omega^1(M) \ X &\mapsto \iota_X \mathrm{d}\eta + \eta(X)\eta \end{aligned}$$

,

There exists a unique vector field R on (M, η), called the Reeb vector field, such that b(R) = η, that is,

$$\iota_{\mathcal{R}} \mathrm{d}\eta = 0, \ \iota_{\mathcal{R}} \eta = 1.$$

Introduction Main theorem Exact symplectic manifolds Symplectization Proof OOO Final comments References OOO Coordinate Contact geometry

• The Hamiltonian vector field of $f \in C^{\infty}(M)$ is given by

$$\flat(X_f) = \mathrm{d}f - (\mathcal{R}(f) + f)\eta,$$

• Around each point on *M* there exist **Darboux coordinates** (q^i, p_i, z) such that

$$\begin{split} \eta &= \mathrm{d}z - p_i \mathrm{d}q^i, \\ \mathcal{R} &= \frac{\partial}{\partial z}, \\ X_f &= \frac{\partial f}{\partial p_i} \frac{\partial}{\partial q^i} - \left(\frac{\partial f}{\partial q^i} + p_i \frac{\partial f}{\partial z}\right) \frac{\partial}{\partial p_i} + \left(p_i \frac{\partial f}{\partial p_i} - f\right) \frac{\partial}{\partial z}. \end{split}$$

Contact geometry

• The Jacobi bracket is given by

$$\{f,g\} = -\mathrm{d}\eta(\flat^{-1}\mathrm{d}f,\flat^{-1}\mathrm{d}g) - f\mathcal{R}(g) + g\mathcal{R}(f).$$

- This bracket is bilinear and satisfies the Jacobi identity.
- However, unlike a Poisson bracket, it does not satisfy the Leibnitz identity:

$${f,gh} \neq {f,g}h + {f,h}g.$$

Dissipated quantities

- In contact Hamiltonian dynamics dissipated quantities are akin to conserved quantities in symplectic dynamics.
- Energy (Hamiltonian function) is no longer conserved, but dissipated in a certain manner:

$$X_H(H) = -\mathcal{R}(H)H$$

Dissipated quantities

Example (linear dissipation)

Let

$$M = \mathbb{R}^3$$
, $\eta = \mathrm{d}z - p\mathrm{d}q$, $H = \frac{p^2}{2} + V(q) + \kappa z$.

Then $X_H(H) = -\kappa H$, so

$$H(q(t), p(t), z(t)) = e^{-\kappa t} H(q(0), p(0), z(0)).$$

Definition

An H-dissipated quantity is a function f on M such that

$$X_H(f) = -\mathcal{R}(H)f.$$

Dissipated quantities

• A function *f* is *H*-dissipated iff

 $\{f,H\}=0.$

• Noether's theorem: symmetries ↔ dissipated quantities.

Introduction Main theorem Exact symplectic manifolds Symplectization Proof Final comments References \circ • Let $M_{\langle \Lambda \rangle_+} = \{ x \in M \mid \exists r \in \mathbb{R}^+ : f_{\alpha}(x) = r\Lambda_{\alpha} \}.$

Theorem (Colombo, de León, Lainz, L.-G., 2023)

Let (M, η) be a (2n + 1)-dimensional contact manifold. Suppose that f_0, f_1, \ldots, f_n are functions in involution such that (df_α) has rank at least n. Then, $M_{\langle \Lambda \rangle_+}$ is invariant by the Hamiltonian flow of f_α and diffeomorphic to $\mathbb{T}^k \times \mathbb{R}^{n+1-k}$.

Moreover, there is a neighborhood U of $M_{\langle \Lambda \rangle_+}$ such that

1 There exists coordinates $(y^0, \ldots, y^n, \tilde{A}_1, \ldots, \tilde{A}_n)$ on U such that the equations of motion are given by

$$\dot{y}^{\alpha} = \Omega^{\alpha}(\tilde{A}_i), \quad \dot{\tilde{A}}_i = 0.$$

There exists a conformal change η̃ = η/A₀ such that (yⁱ, Ã_i, y⁰) are Darboux coordinates for (M, η̃), i.e. η̃ = dy⁰ - Ã_idyⁱ.

Steps of the proof

- Symplectize (M, η) and f_{α} , obtaining an exact symplectic manifold (M^{Σ}, θ) and homogeneous functions in involution f_{α}^{Σ} .
- Prove a Liouville–Arnold theorem for exact symplectic manifolds with homogeneous functions in involution.
- **③** "Un-symplectize" the action-angle coordinates $(y_{\Sigma}^{\alpha}, A_{\alpha}^{\Sigma})$ on M^{Σ} , yielding functions (y^{α}, A_{Σ}) on M.
- **4** Introduce action-angle coordinates $(y^{\alpha}, \tilde{A}_i)$ on M, where $\tilde{A}_i = -\frac{A_i}{A_0}$.

on Proof

Final comments 0 References 0

Exact symplectic manifolds: Liouville geometry

Definition

An exact symplectic manifold is a pair (M, θ) , where M is a manifold and θ a one-form on N such that $\omega = -d\theta$ is a symplectic form on M.

• The Liouville vector field Δ of (M, θ) is given by

$$\iota_{\Delta}\omega = -\theta.$$

• A tensor T is called **homogeneous of degree** n if $\mathcal{L}_{\Delta}T = nT$.

Symplectization of contact manifolds

Definition

Let (M, η) be a contact manifold. A **symplectization** is a fibre bundle $\Sigma: M^{\Sigma} \to M$, where (M^{Σ}, θ) is an exact symplectic manifold, such that

$$\sigma \Sigma^* \eta = \theta,$$

for a function σ on M^{Σ} called the **conformal factor**.

Introduction Main theorem Exact symplectic manifolds Symplectization Proof Final comments References

Symplectization of contact manifolds

- Contact geometry \longleftrightarrow Liouville geometry
- Contact form $\eta \iff$ symplectic potential θ
- Functions \longleftrightarrow homogeneous functions of degree 1
- Hamiltonian vector fields \longleftrightarrow Hamiltonian vector fields, homogeneous of degree 0

Introduction Main theorem Exact symplectic manifolds Symplectization Proof Final comments References 0000 000 0 0 0 0 000 0 0 0

Symplectization of contact manifolds

Theorem

Given a symplectization $\Sigma: (M^{\Sigma}, \theta) \to (M, \eta)$ with conformal factor σ , there is a bijection between functions f on M and homogeneous functions of degree 1 f^{Σ} on M^{Σ} such that

$$\Sigma_*(X_{f^{\Sigma}})=X_f.$$

This bijection is given by

$$f^{\Sigma} = \sigma \Sigma^* f.$$

Moreover, one has

$$\left\{f^{\Sigma},g^{\Sigma}\right\}_{\theta}=\left\{f,g\right\}_{\eta}^{\Sigma}.$$

Introduction Main theorem Exact symplectic manifolds Symplectization Proof Final comments References

Symplectization of contact manifolds

Example

 $\Sigma = \pi_1 : (M \times \mathbb{R}^+, \theta = r\eta) \to (M, \eta)$ is a symplectization with conformal factor $\sigma = r$, for r the global coordinate on \mathbb{R}^+ .

Liouville–Arnold theorem for exact symplectic manifolds

Symplectization

000

Proof

References

- We want to obtain action-angle coordinates (φ^α_Σ, J^Σ_α) on (M^Σ, θ) in order to define functions (φ^α, J_α) on (M, η)
- We need homogeneous objects on (M^{Σ}, θ) so that they have a correspondence with objects on (M, η) .
- However, the classical Liouville–Arnold theorem does not take into account the homogeneity of θ and f_{α}^{Σ} .
- Moreover, we need to consider non-compact level sets of f_{α}^{Σ} .

Liouville–Arnold theorem for exact symplectic manifolds

Symplectization

O C

Proof

References

Theorem (Colombo, de León, Lainz, L.-G., 2023)

Let (M, θ) be an exact symplectic manifold. Suppose that the functions f_{α} , $\alpha = 1, ..., n$, on M are independent, in involution and homogeneous of degree 1. Let U be an open neighborhood of M_{Λ} such that:

- **1** f_{α} have no critical points in U,
- **2** the Hamiltonian vector fields of $X_{f_{\alpha}}$ are complete,

3 the submersion $(f_{\alpha}): U \to \mathbb{R}^n$ is a trivial bundle over $V \subseteq \mathbb{R}^n$. Then, $U \simeq \mathbb{R}^{n-m} \times \mathbb{T}^m \times V$, provided with action-angle coordinates

 (y^{lpha}, A_{lpha}) such that

$$\theta = A_{\alpha} \mathrm{d} y^{\alpha}, \qquad \frac{\mathrm{d} y^{\alpha}}{\mathrm{d} t} = \Omega^{\alpha}, \qquad \frac{\mathrm{d} A_{\alpha}}{\mathrm{d} t} = \mathbf{0}.$$

Introduction Main theorem Exact symplectic manifolds Symplectization Proof OOO Final comments References OOO Sketch of proof

- Since $X_{f_{\alpha}}$ are *n* vector fields tangent to M_{Λ} , linearly independent and pairwise commutative, they generate the algebra \mathbb{R}^n and $M_{\Lambda} \simeq \mathbb{R}^n / \mathbb{Z}^k$.
- Thus there are coordinates $y^{\alpha} = M^{\beta}_{\alpha}s^{\beta}$, where $X_{f_{\alpha}}(s^{\beta}) = \delta^{\beta}_{\alpha}$.
- The values of f_{α} define coordinates (J_{α}) on V.
- Since M_{Λ} is Lagrangian, $\theta = A_{\alpha}(J)dy^{\alpha} + B^{\alpha}(y, J)dJ_{\alpha}$.
- Since f_{α} are homogeneous of degree 1, $\theta(X_{f_{\alpha}}) = f_{\alpha}$.
- By construction, $\Delta(y^{\alpha}) = 0$.
- With additional contractions with θ and ω , one concludes that $\theta = A_{\alpha} dy^{\alpha}$, where $J_{\beta} = M^{\alpha}_{\beta} J_{\alpha}$.

From conditions on f_{α}^{Σ} to conditions on f_{α}

• In order to apply the Liouville–Arnold theorem for exact symplectic manifolds, we need to translate the conditions on f_{α}^{Σ} to conditions on f_{α}^{Σ} .

Proof

000

References

- Let $M_{\langle \Lambda \rangle_+} = \{ x \in M \mid \exists r \in \mathbb{R}^+ \colon F(x) = r\Lambda \}.$
- Let $F^{\Sigma} = (f^{\Sigma}_{\alpha})$ and $\tilde{M}_{\Lambda} = (F^{\Sigma})^{-1}(\Lambda)$.
- Given the functions $f_0, f_1, \ldots, f_n \colon M \to \mathbb{R}$, let $F = (f_\alpha)$ and

$$\hat{F} = S \circ F \colon M \to \mathbb{S}^n,$$

where $S: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{S}^n$ denotes the projection on the sphere.

From conditions on f_{α}^{Σ} to conditions on f_{α}

Lemma

Given $\langle \Lambda \rangle_+ \in S^n$, let $\hat{B} \subseteq S^n$ be an open neighborhood of $\langle \Lambda \rangle_+$ and let $\pi \colon U \to M_{\langle \Lambda \rangle_+}$ be a tubular neighborhood of $M_{\langle \Lambda \rangle_+}$ such that $\hat{F}_{|U} \colon U \to \hat{B}$ is a submersion with diffeomorphic fibers. Define $B = S^{-1}(\hat{B})$ and $\tilde{U} = \Sigma^{-1}(U)$ and $\tilde{\pi} = \Sigma^{-1}_{\tilde{M}_{\Lambda}} \circ \pi \circ \Sigma$. Then, $\tilde{\pi} \colon \tilde{U} \to \tilde{M}_{\Lambda}$ is a tubular neighborhood of \tilde{M}_{Λ} such that $F_{|\tilde{U}}^{\Sigma} \colon \tilde{U} \to B$ is a submersion with diffeomorphic fibers.

Proof

000

References

Symplectization

Proof

Final comments

References 0

Theorem (Colombo, de León, Lainz, L.-G., 2023)

Let (M, η) be a (2n + 1)-dimensional contact manifold. Suppose that f_0, f_1, \ldots, f_n are functions in involution such that (df_α) has rank at least n. Assume that the Hamiltonian vector fields X_{f_α} are complete. Given $\Lambda \in \mathbb{R}^{n+1} \setminus \{0\}$, let $\hat{B} \subseteq S^n$ be an open neighborhood of $\langle \Lambda \rangle_+$ and let $\pi \colon U \to M_{\langle \Lambda \rangle_+}$ be a tubular neighborhood of $M_{\langle \Lambda \rangle_+}$ such that $\hat{F}_{|U} \colon U \to \hat{B}$ is a submersion with diffeomorphic fibers. Then

- $M_{\langle \Lambda \rangle_+}$ is invariant by the Hamiltonian flow of f_{α} and diffeomorphic to $\mathbb{T}^k \times \mathbb{R}^{n+1-k}$.
- **2** There exists coordinates $(y^0, \ldots, y^n, \tilde{A}_1, \ldots, \tilde{A}_n)$ on U such that the equations of motion are given by

$$\dot{y}^{lpha} = \Omega^{lpha}, \quad \dot{\tilde{A}}_i = 0.$$

3 There exists a conformal change $\tilde{\eta} = \eta/A_0$ such that (y^i, \tilde{A}_i, y^0) are Darboux coordinates for $(M, \tilde{\eta})$.

- **1** Symplectize (M, η) and f_{α} , in order to apply the Liouville–Arnold theorem for exact symplectic manifolds
 - $\{f_{\alpha}, f_{\beta}\} = 0 \Rightarrow \{f_{\alpha}^{\Sigma}, f_{\beta}^{\Sigma}\} = 0.$
 - $X_{f_{\alpha}}$ complete $\Rightarrow X_{f_{\alpha}^{\Sigma}}$ complete.
 - rank $\mathrm{d} f_{\alpha} \geq n \Rightarrow$ rank $\mathrm{d} (\sigma \Sigma^* f_{\alpha}) \geq n+1$.
 - $\Sigma((F^{\Sigma})^{-1}(\Lambda)) = \{x \in M \mid \exists s \in \mathbb{R}^+ : F(x) = \frac{\Lambda}{s}\} = M_{\langle \Lambda \rangle_+}.$
 - $X_{f_{\alpha}}$ commute and are tangent to $M_{\langle \Lambda \rangle_+} \Rightarrow M_{\langle \Lambda \rangle_+} \simeq \mathbb{T}^k \times \mathbb{R}^{n+1-k}$.
- **2** "Un-symplectize" the action-angle coordinates $(y_{\Sigma}^{\alpha}, A_{\alpha}^{\Sigma})$ on \tilde{U} , yielding functions (y^{α}, A_{α}) on U.

③ Introduce action-angle coordinates $(y^{\alpha}, \tilde{A}_i)$ on U

• Since
$$\Lambda \neq 0$$
, $\exists A_{\alpha} \neq 0$. W.I.o.g., assume $A_{0} \neq 0$.

• Then
$$\left(y^{\alpha}, \tilde{A}_{i} = -\frac{A_{i}}{A_{0}}\right)$$
 are coordinates on U .

Introduction Main theorem Exact symplectic manifolds Symplectization Proof Sketch of the proof

• By construction, y^{lpha} are linear combinations of flows of $X_{f_{lpha}}$, namely,

$$X_{f_{\alpha}} = M^{\alpha}_{\beta} \frac{\partial}{\partial s^{\beta}}.$$

• Therefore, the dynamics are given by

$$\frac{\mathrm{d}y^{\alpha}}{\mathrm{d}t} = \Omega^{\alpha}, \qquad \frac{\mathrm{d}\tilde{A}_{i}}{\mathrm{d}t} = 0.$$

•
$$\theta^{\Sigma} = A^{\Sigma}_{\alpha} \mathrm{d} y^{\alpha}_{\Sigma} \rightsquigarrow \eta = A_{\alpha} \mathrm{d} y^{\alpha}$$
, so

$$\tilde{\eta} = \frac{1}{A_0} \eta = \mathrm{d} y^0 - \tilde{A}_i \mathrm{d} y^i.$$

Other notions of integrability

- Khesin and Tabachnikov, Liberman, Banyaga and Molino, Lerman, etc. have defined notions of contact complete integrability which are geometric but not dynamical, e.g. a certain foliation over a contact manifold.
- Boyer considers the so-called good Hamiltonians H, i.e., R(H) = 0 → no dissipated quantities, "symplectic" dynamics.
- Miranda considered integrability of the Reeb dynamics when \mathcal{R} is the generator of an S^1 -action.
- We are interested in complete integrability of contact Hamiltonian dynamics.

Introduction	Main theorem	Exact symplectic manifolds	Symplectization	Proof	Final comments	References
00 00		0	000	000	O	0

- [1] V. I. Arnold, *Mathematical Methods of Classical Mechanics* (Graduate Texts in Mathematics). Springer-Verlag, 1978.
- [2] L. Colombo, M. de León, M. Lainz, and A. López-Gordón, Liouville–Arnold theorem for contact manifolds, Feb. 23, 2023. arXiv: 2302.12061 [math.SG].
- [3] E. Fiorani, G. Giachetta, and G. Sardanashvily, "An extension of the Liouville-Arnold theorem for the non-compact case," *Nuovo Cimento Soc. Ital. Fis. B*, 2003.
- [4] J. Liouville, "Note sur l'intégration des équations différentielles de la Dynamique," J. Math. Pures Appl., pp. 137–138, 1855.

Introduction 00 00	Main theorem 00	Exact symplectic manifolds 0	Symplectization 000	Proof 000	Final comments 0	References •
	Thar	ake for ve	our ot	ton	tion	
	ı IIdi	INS IUL YU	Jui al	LEII		

☑ asier.lopez@icmat.es● www.alopezgordon.xyz