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Symplectic geometry

• Symplectic geometry is the natural framework for classical mechanics.
• Recall that a symplectic form ω on M is a 2-form such that dω = 0

and TM ∋ v 7→ ιv ω ∈ T∗M is an isomorphism.
• Given a function f on M, its its Hamiltonian vector field Xf is given by

ιXf ω = df .

• The Poisson bracket {·, ·} is given by

{f , g} = ω(Xf , Xg).
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Theorem (Liouville–Arnold theorem)
Let f1, . . . , fn be independent functions in involution (i.e., {fi , fj} = 0 ∀i , j)
on a symplectic manifold (M2n, ω). Let MΛ = {x ∈ M | fi = Λi}.

1 Any compact connected component of MΛ is diffeomorphic to Tn.
2 On a neighborhood of MΛ there are coordinates (φi , Ji) such that

ω = dφi ∧ dJi ,

and the Hamiltonian dynamics are given by

dφi

dt = Ωi(J1, . . . , Jn),

dJi
dt = 0.
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Contact geometry

Definition
A (co-oriented) contact manifold is a pair (M, η), where M is an
(2n + 1)-dimensional manifold and η is a 1-form on M such that η ∧ (dη)n

is a volume form.

• The contact form η defines an isomorphism

♭ : X(M)→ Ω1(M)
X 7→ ιX dη + η(X )η,

• There exists a unique vector field R on (M, η), called the Reeb
vector field, such that ♭(R) = η, that is,

ιRdη = 0, ιRη = 1.
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Contact geometry

• The Hamiltonian vector field of f ∈ C∞(M) is given by

♭(Xf ) = df − (R(f ) + f ) η,

• Around each point on M there exist Darboux coordinates (qi , pi , z)
such that

η = dz − pidqi ,

R = ∂

∂z ,

Xf = ∂f
∂pi

∂

∂qi −
(

∂f
∂qi + pi

∂f
∂z

)
∂

∂pi
+

(
pi

∂f
∂pi
− f

)
∂

∂z .
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Contact geometry

• The Jacobi bracket is given by

{f , g} = −dη(♭−1df , ♭−1dg)− fR(g) + gR(f ).

• This bracket is bilinear and satisfies the Jacobi identity.
• However, unlike a Poisson bracket, it does not satisfy the Leibniz

identity:
{f , gh} ≠ {f , g}h + {f , h}g .
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Dissipated quantities

• In contact Hamiltonian dynamics dissipated quantities are akin to
conserved quantities in symplectic dynamics.
• Energy (Hamiltonian function) is no longer conserved, but dissipated

in a certain manner:

XH(H) = −R(H)H .
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Dissipated quantities

Example (linear dissipation)
Let

M = R3, η = dz − pdq, H = p2

2 + V (q) + κz .

Then XH(H) = −κH, so

H ◦ c(t) = e−κtH ◦ c(0) ,

along an integral curve c of XH .

M. Lainz and A. López-Gordón Integrability of contact Hamiltonian systems deLeonfest 9



Introduction Main theorem Exact symplectic Symplectization Proof Example Other notions Toric manifolds References

Dissipated quantities

Definition
An H-dissipated quantity is a solution f ∈ C∞(M) to the PDE

XH(f ) = −R(H)f .

• A function f is H-dissipated iff

{f , H} = 0.

• Noether’s theorem: symmetries ↔ dissipated quantities.
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• Let M⟨Λ⟩+ = {x ∈ M | ∃ r ∈ R+ : fα(x) = rΛα}.

Theorem (Colombo, de León, L., L.-G., 2023)
Let (M, η) be a (2n + 1)-dimensional contact manifold. Suppose that
f0, f1, . . . , fn are functions in involution such that (dfα) has rank at least n.
Then, M⟨Λ⟩+ is invariant by the Hamiltonian flow of fα and diffeomorphic
to Tk × Rn+1−k .
Moreover, there is a neighborhood U of M⟨Λ⟩+ such that

1 There exists coordinates (y0, . . . , yn, Ã1, . . . , Ãn) on U such that the
equations of motion are given by

ẏα = Ωα(Ãi) , ˙̃Ai = 0 , α ∈ {0, . . . , n} , i ∈ {1, . . . , n} .

2 There exists a conformal change η̃ = η/A0 such that (y i , Ãi , y0) are
Darboux coordinates for (M, η̃), i.e. η̃ = dy0 − Ãidy i .
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Steps of the proof

1 Symplectize (M, η) and fα, obtaining an exact symplectic manifold
(MΣ, θ) and homogeneous functions in involution f Σ

α .
2 Prove a Liouville–Arnold theorem for exact symplectic manifolds with

homogeneous functions in involution.
3 “Un-symplectize” the action-angle coordinates (yα

Σ , AΣ
α) on MΣ,

yielding functions (yα, AΣ) on M.
4 Introduce action-angle coordinates (yα, Ãi) on M, where Ãi = − Ai

A0
.
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Exact symplectic manifolds: Liouville geometry

Definition
An exact symplectic manifold is a pair (M, θ), where M is a manifold
and θ a one-form on N such that ω = −dθ is a symplectic form on M.

• The Liouville vector field ∆ of (M, θ) is given by

ι∆ω = −θ.

• A tensor T is called homogeneous of degree n if L∆T = nT .
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Symplectization of contact manifolds

Definition
Let (M, η) be a contact manifold and (MΣ, θ) an exact symplectic
manifold. A symplectization is a fibre bundle Σ: MΣ → M such that

σΣ∗η = θ,

for a function σ on MΣ called the conformal factor.
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Symplectization of contact manifolds

Category of contact manifolds
↕

Category of exact symplectic manifolds

• Contact distribution ker η ←→ symplectic potential θ

• Functions ←→ homogeneous functions of degree 1
• Hamiltonian vector fields ←→ Hamiltonian vector fields,

homogeneous of degree 0
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Symplectization of contact manifolds

Theorem

Given a symplectization Σ: (MΣ, θ)→ (M, η) with conformal factor σ,
there is a bijection between functions f on M and homogeneous functions
of degree 1 f Σ on MΣ such that

Σ∗ (Xf Σ) = Xf .

This bijection is given by
f Σ = σΣ∗f .

Moreover, one has {
f Σ, gΣ

}
θ

= {f , g}Ση .
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Symplectization of contact manifolds

Example
Σ = π1 : (M × R+, θ = rη)→ (M, η) is a symplectization with conformal
factor σ = r , for r the global coordinate on R+.
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Liouville–Arnold theorem for exact symplectic manifolds

• We want to obtain action-angle coordinates (φα
Σ, JΣ

α ) on (MΣ, θ) in
order to define functions (φα, Jα) on (M, η)
• We need homogeneous objects on (MΣ, θ) so that they have a

correspondence with objects on (M, η).
• However, the classical Liouville–Arnold theorem does not take into

account the homogeneity of θ and f Σ
α .

• Moreover, we need to consider non-compact level sets of f Σ
α .
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Liouville–Arnold theorem for exact symplectic manifolds

Theorem (Colombo, de León, Lainz, L.-G., 2023)

Let (M, θ) be an exact symplectic manifold. Suppose that the functions
fα, α = 1, . . . , n, on M are independent, in involution and homogeneous
of degree 1. Let U be an open neighborhood of MΛ such that:

1 fα have no critical points in U,
2 the Hamiltonian vector fields of Xfα are complete,
3 the submersion (fα) : U → Rn is a trivial bundle over V ⊆ Rn.

Then, U ≃ Rn−m × Tm × V , provided with action-angle coordinates
(yα, Aα) such that

θ = Aαdyα,
dyα

dt = Ωα,
dAα

dt = 0.
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Sketch of proof

• Since Xfα are n vector fields tangent to MΛ, linearly independent and
pairwise commutative, they generate the algebra Rn and
MΛ ≃ Rn/Zk .
• Thus there are coordinates yα = Mβ

αsβ, where Xfα(sβ) = δβ
α.

• The values of fα define coordinates (Jα) on V .
• Since MΛ is Lagrangian, θ = Aα(J)dyα + Bα(y , J)dJα.
• Since fα are homogeneous of degree 1, θ(Xfα) = fα.
• By construction, ∆(yα) = 0.
• With additional contractions with θ and ω, one concludes that

θ = Aαdyα, where Jβ = Mα
β Jα.
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Definition

A completely integrable contact system is a triple (M, η, F ), where
(M, η) is a contact manifold and F = (f0, . . . , fn) : M → Rn+1 is a map
such that

1 f0, . . . , fn are in involution, i.e., {fα, fβ} = 0 ∀α, β,
2 rank TF ≥ n on a dense open subset M0 ⊆ M.

The functions f0, . . . , fn are called integrals.
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Assumptions

1 Assume that the Hamiltonian vector fields Xf0 , . . . , Xfn are complete.
2 Given Λ ∈ Rn+1 \ {0}, let B ⊆ Rn+1 \ {0} be an open neighbourhood

of Λ.
3 Let π : U → M⟨Λ⟩+ be a tubular neighbourhood of M⟨Λ⟩+ such that

F |U : U → B is a trivial bundle over a domain V ⊆ B.
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Theorem (Colombo, de León, L., L.-G., 2023)
Let

(
M, η, F

)
be a completely integrable contact system, where

F = (f0, . . . , fn). Consider the assumptions of the previous slide. Then:
1 M⟨Λ⟩+ is coisotropic, invariant by the Hamiltonian flow of fα, and

diffeomorphic to Tk × Rn+1−k for some k ≤ n.
2 There exists coordinates (y0, . . . , yn, Ã1, . . . , Ãn) on U such that the

equations of motion are given by

ẏα = Ωα ˙̃Ai = 0 .

3 There exists a nowhere-vanishing function A0 ∈ C∞(U) and a
conformally equivalent contact form η̃ = η/A0 such that (y i , Ãi , y0)
are Darboux coordinates for (M, η̃), namely, η̃ = dy0 − Ãidy i .
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Sketch of the proof

1 Symplectize (M, η) and fα, in order to apply the Liouville–Arnold
theorem for exact symplectic manifolds
• {fα, fβ} = 0⇒ {f Σ

α , f Σ
β } = 0.

• Xfα
complete ⇒ Xf Σ

α
complete.

• rank dfα ≥ n⇒ rank d(σΣ∗fα︸ ︷︷ ︸
f Σ
α

) ≥ n + 1.

• Σ
(
(F Σ)−1(Λ)

)
=

{
x ∈ M | ∃s ∈ R+ : F (x) = Λ

s
}

= M⟨Λ⟩+ .
• Xfα commute and are tangent to M⟨Λ⟩+ ⇒ M⟨Λ⟩+ ≃ Tk × Rn+1−k .

2 “Un-symplectize” the action-angle coordinates (yα
Σ , AΣ

α) on Ũ,
yielding functions (yα, Aα) on U.

3 Introduce action-angle coordinates (yα, Ãi) on U
• Since Λ ̸= 0, ∃Aα ̸= 0. W.l.o.g., assume A0 ̸= 0.
• Then

(
yα, Ãi = − Ai

A0

)
are coordinates on U.
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Sketch of the proof

• By construction, yα are linear combinations of flows of Xfα , namely,

Xfα = Mα
β

∂

∂sβ
.

• Therefore, the dynamics are given by

dyα

dt = Ωα,
dÃi
dt = 0.

• θΣ = AΣ
αdyα

Σ ; η = Aαdyα, so

η̃ = 1
A0

η = dy0 − Ãidy i .
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An example

• Let M = R3 \ {0} with canonical coordinates (q, p, z), and
η = dz − pdq.
• The functions h = p and f = z are in involution.
• Let F = (h, f ) : M → R2.
• rank TF = 2, and thus (M, η, F ) is a completely integrable contact

system.
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An example

• Hypothesis of the theorem are satisfied:
1 The Hamiltonian vector fields

Xh = ∂

∂q , Xf = −p ∂

∂p − z ∂

∂z

are complete,
2 Since F : (q, p, z) 7→ (p, z) is the canonical projection,

F : R3 \ {0} → R2 \ {0} is a trivial bundle.
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An example

The invariant submanifolds are given by

M⟨Λ⟩+ = {(q, p, z) ∈ M | ∃r ∈ R+ : p = rΛ1 , z = rΛ2} ,

or, equivalently,

M⟨Λ⟩+ = {(q, p, z) ∈ M | ∃r ∈ R+ : p = r sin φ , z = r cos φ} ,

where ⟨Λ⟩+ = ⟨(sin φ, cos φ)⟩+ for some φ ∈ [0, 2π).
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An example

Consider the chart (U; ξ, ζ, φ), where

U = M \ {z = 0} , ξ = q , ζ = z , φ = arctan
(p

z

)
(mod 2π) ,

Suppose that ⟨Λ⟩+ ̸= ⟨(1, 0)⟩+. Then, one can write

M⟨Λ⟩+ =
{

(ξ, ζ, φ) | φ = arctan
(Λ1

Λ2

)}
.
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An example

In the chart (U; ξ, ζ, φ), the Hamiltonian vector fields read

Xh = ∂

∂ξ
, Xf = −ζ

∂

∂ζ
.

Therefore, the action Φ: R2 → M defined by their flows is given by

Φ(t, s; ξ, ζ, φ) =
(
ξ + t, ζe−s , φ

)
.
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An example

• Consider a reference point x0 ∈ M⟨Λ⟩+ with coordinates (ξ0, ζ0, φ0).
• The angle coordinates (y0, y1) of a point x ∈ M⟨Λ⟩+ with coordinates

(ξ, ζ, φ0) are given by

(ξ, ζ, φ0) = Φ(y0, y1; ξ0, ζ0, φ0) = (ξ0 + y0, ζ0e−y1
, φ0) ,

that is

y0 = ξ − ξ0 = q − q0 , y1 = log ζ0 − log ζ = log z0 − log z .
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An example

• We know that the contact form can be written as

η = A0dy0 + A1dy1 .

• Therefore,

A0 = η

(
∂

∂y0

)
= η

(
∂

∂q

)
= −p = −h ,

A1 = η

(
∂

∂y1

)
= η

(
−z ∂

∂z

)
= −z = −f .

• The action coordinate is

Ã = −A1
A0

= −h
f = −p

z .
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An example

• To sum up, we have a chart
(
M \ {z = 0}; y0, y1, Ã

)
, where

y0 = q − q0 , y1 = log z0 − log z Ã = −p
z .

• In this chart,
Xh = ∂

∂y0 , Xf = ∂

∂y1

• It is a Darboux chart for the contact form

η̃ = 1
A0

η = dy0 − Ãdy1 .

• Notice that Xh is the Reeb vector field of η̃ and Xf is the Hamiltonian
vector field of Ã w.r.t. η̃.
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Other notions of integrability

• Khesin and Tabachnikov, Liberman, Banyaga and Molino, Lerman,
etc. have defined notions of contact complete integrability which are
geometric but not dynamical, e.g. a certain foliation over a contact
manifold.
• Boyer considers the so-called good Hamiltonians H, i.e., R(H) = 0 ;

no dissipated quantities, “symplectic” dynamics.
• Miranda considered integrability of the Reeb dynamics when R is the

generator of an S1-action.
• We are interested in complete integrability of contact Hamiltonian

dynamics.
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Toric manifolds

A toric manifold is a (compact) symplectic manifold (M, ω), a smooth
effective Hamiltonian Lie group action of Tn and a moment map
J = (Ji)i : M → g∗ ≃ Rn that satisfies ξM = X⟨J,ξ⟩ for all ξ ∈ g.
Note that, choosing a basis of the Lie algebra we obtain an integrable
system (Ji)i .
Conversely, an integrable system provides the structure of a toric manifold.
The flow of the Hamiltonian vector fields provides a Hamiltonian effective
action of Tn and a the the action variables provide a moment map.
By the theorem of Atiyah, Guillemin and Sternberg, if M is compact,
J(M) is a convex polytope.
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The moment map and integrable systems

In the contact case, we may equivalently define a moment map
Ĵ = ⟨(Jα)α⟩+ : M → Sn, having coisotropic level sets.
Here Sn can be seen as Rn \ {0} modulo multiplication by positive integers.

MΣ Rn+1 \ {0}

M Sn

Σ

J

πS

Ĵ

The flow of the Hamiltonian vector fields also provides an effective action,
which can be related using Σ to the symplectic one.
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Happy birthday, Manolo!
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