An introduction to integrable systems

Asier Lopez-Gorddn

Instituto de Ciencias Matematicas (ICMAT-CSIC), Madrid (Spain)

Geometry and Applications: Modern

Mathematical Approaches Seminar
May 11, 2023

Financially supported by Grants CEX2019-000904-S and
P1D2019-106715GB-C21 funded by MCIN/AEI/10.13039/501100011033

"CSIC

INSTITUTO DE CIENCIAS MATEMATICAS

An introduction to integrable systems Gamma Seminar 1



Outline of the presentation

@ Introduction

@ Liouville integrability

© Hamilton—Jacobi theory
O KAM theory

© Generalizations

An introduction to integrable systems Gamma Seminar 2



Introduction
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Introduction

® Roughly speaking, a completely integrable system is a mechanical
system with n independent and “compatible” constants of the
motion, where n is the number of degrees of freedom.

® |n such systems, the equations of motion can be completely “solved”,
being reduced to quadratures.
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Preliminary concepts

® Let (M,w) be a symplectic manifold.

® Recall that the Poisson bracket {-,-}: C*®(M) x C*(M) — C>*(M)
is given by

{f g} = w(Xr, Xg)-

Definition

A collection of functions fi,...,f, € C°°(M) are said to be in involution
if {fi,fj} =0foreachi,j=1,...,n.

Proposition

Let (M,w, h) be a Hamiltonian system. A function f € C*°(M) is a
conserved quantity iff it is in involution with h.
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Preliminary concepts

Definition

A submanifold N C M of a symplectic manifold (M?",w) is called
Lagrangian if dim N = n and w|, = 0.

Proposition

Let T*Q be the cotangent bundle of Q and let 6 denote its tautological
one-form. A one-form o € Q*(Q) is closed iff Im « is a Lagrangian
submanifold of (T*Q,d#).
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Definition

A Hamiltonian system (M, w, h) is called completely integrable (or
Liouville integrable) if there exists n functions fi, f, ..., f, € C*(M)
such that

® h, 1, f, ..., f, are in involution,
@® they are functionally independent (i.e. dfy A --- A df, # 0) almost
everywhere,
The functions fi, f, ..., f, are called integrals. |
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Theorem (Liouville—Arnold theorem)

Let (M,w, h) be a completely integrable system. Let My be a regular level
set of the integrals f1,...,f,, ie.

My={xeM|fi=N}, deiA---ANdef Z0Vx E Mp.
Then
@® M, is a Lagrangian submanifold of (M, w).
® M) is invariant w.r.t. the flow of X, and Xg.

©® Any compact connected component of My is diffeomorphic to T".

© On a neighborhood of M there are coordinates (', s;) such that
0O w=dy Ads;,
® the action coordinates s; are functions of the integrals fy, ..., f,,
@ the integral curves of Xy, are given by

Sbi:Qi(sla"'asn), 5 =0.
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Proof of @ and @

® Since X¢fi = {fi,fi} =0 Vi,j and T, My = ker{df;}, the vector fields
Xr are tangent to Ma. In other words, their flows leave Mj invariant.

® Since dfy,...,df, are linearly independent and v — ¢, w is an
isomorphism, X, ..., Xg, are linearly independent.

® Hence, {Xf,(x),..., X, (x)} is a basis of T,Mp for each x € N.

® Using that w(X¢, X¢) = {fi, f;} = 0 for each i, j, we conclude that My
is Lagrangian.
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Sketch of the proof of @

Let N be an n-dimensional connected manifold and let Xi, ..., X, € X(N)
be linearly independent complete vector fields. If these vector fields are
pairwise commutative, then N is diffeomorphic to T x R"~% for some

k < n. In particular, if N is compact then N ~ T".

® Under the hypotheses of the lemma, the flows of X; define a Lie
group action ®: R" x N — M of R" on M given by

O(t1, .., ta)(x) = ¢2t 0 -+ 0 ¢%7(x).

® Since X; are linearly independent, for each x € N the mapping
As: (t1,. .., tn) = ®(t1,...,ts)(x) is an immersion.
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Sketch of the proof of @

Hence, O(x) = Im Ay is open in N.
® Since N is connected, O(x) = N.

Every orbit O(x) is the quotient space of R” by the isotropy subgroup
Gx.

Since Ay is a local diffeomorphism, G, is discrete.

One can show that G is a lattice Z¥ for some k < n.
We conclude that N ~ R"/Zk ~ Tk x R"=k,
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Sketch of the proof of @

® Llet F=(f,...,f): M= R".

® For each point y € R”, there exists a neighborhood D of a such that
F~1(D) is diffeomorphic to D x F~1(y). Moreover,
F: D x F~1(y) — D is a trivial bundle.

e Consider a neighborhood U = D x My of M = F~1(A) as above.

® The integrals fi,..., f, are coordinates on D.
e Let (¢1,...,%") be angular coordinates of the torus T" ~ Mj.
® The integrals f1,..., f, are coordinates on D.

® In coordinates (¢, f;), the symplectic form is given by
w = agdip’ A Ay + ddy’ A df; + bUAf A dF

® Since M, is Lagrangian, 0 = w|MA = a,-jdq,l)i A dy.
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Sketch of the proof of @

e One can show that ¢ and b¥ do not depend on ¢!, ... 4",
® Hence,
w=dy’ A (df) + bIdf A dfy = dy' Aw; + 8.
B
e Since they do not depend on (¥), w; € QY(D), B € Q?(D).
® The fact that w is closed implies that w; and 3 are closed.
® Thus they are exact, namely, w; = ds; and 8 = d~.

® The functions s3 = s1(f1,...,fn),...,Sn = sn(f1, ..., fy) are
independent, so (¢, s;) are coordinates on U.

o Let o = +7/(s1,...5,), where v = v/ds;.
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Sketch of the proof of @

® Geometrically, this means that we change the initial points of
reference for the angle coordinates on the torus.

® Hence,
de' Ads; =dy' Ads; +dy = w.

® Observe that 8%" = X, so

Oh
X (h) = {si(,.... f), A} =0,
o = Xalh) = LA £). B}
and we have h = f(s1,...,5p).
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Sketch of the proof of @

® Moreover,
_oh 0
T 0si 0p
~
QI

where the frequencies Q' depend only on the action coordinates.
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Explicit expression for angle variables

Choose a point x € M and consider the solutions of the equation

d(e)(x) = x.

Then {e1,... ey} is a basis of the lattice Z".

By the implicit function theorem, e; will depend on x smoothly.

If y = ®(a)x, where a = ale; +--- + a"e, € R", define the angle
coordinates by

Y =2ra’ (mod2n).
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Explicit expression for action variables

Fixing the basis {ey,...e,} uniquely determines the set of basis cycles
Y1, --.,7n in the fundamental group m1(T") = Z".

Let o € QY(U) such that da = w.

To each torus, assign the number

Then s1(f,...,f),...,sn(f1,..., ) are smooth functions on U.

They coincide (up to a constant) with the action variables.
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Example: the n-dimensional harmonic oscillator

e Consider the Hamiltonian system (R2"w, h), where

N (P X _
h—z ?—F? s W—dX,'/\dp,'.

i=1
® |t is completely integrable. Indeed, the functions

2

p? X

f=ri T
2 + 2

are integrals, i.e. {fi,h} =0and dff A--- Adf, #0 a.e.

® The level sets Mp are given by

Mp = {(X1,- -, Xn, P1,- -, pn) € R?" | p? +x? =2A; } ~ T".
N—————

circles
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Example: the n-dimensional harmonic oscillator

® We can write
® Let ¢ = arctan <§) Then,

w=dy' Adf;.

® Thus (¢', ;) are action-angle coordinates.
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Example: the n-dimensional harmonic oscillator

® The Hamiltonian vector fields are given by

0

8 n
Xf; = S Xh == T .
¢! ; O¢'

® Hamilton's equations are given by
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Hamilton—Jacobi equation from canonical transformations

® Suppose that (¢, p;) and (Q', P;) are two sets of Darboux
coordinates for (R2",w), namely,

w=dq Adp; = dQ' A dP;
N—— ——
—d(pidq’) —d(PidQ’)

® Then, on an open subset U C M,
pidg’ — PdQ" = dF,

for some F € C*>(U).
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Hamilton—Jacobi equation from canonical transformations

® Assume that, on some neighbourhood V C U, the Jacobian matrix

2(Q.q)

d(p, q)

is not singular.

® Then, we can express F(q,p) = S(q, Q), where S is called the
generating function of the canonical transformation

(g,p) — (Q, P).
® \We have
; ; 05(q, Q) 05(q, Q)
dS = p;dg’ — P;d @’ = —0 Y p= X
pidq Q' ~np g PIe]
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Hamilton—Jacobi equation from canonical transformations

® Assume that the canonical transformation is such that the
Hamiltonian function in the new coordinates is given by h = k(P),

namely,
hl{q,———— | =k(P;).
(q ) aq, ( )
® Then, Hamilton's equations are given by
. Ok .
= Pi=0.
Q oP;’ 0

® Since P; are constants of the motion, by fixing initial conditions we
have h(P) = E = const., obtaining the Hamilton—Jacobi equation:

. 0S
h ’7. :E
(q’é’q’>
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Action-angle coordinates from the generating function

® Recall that action variables cab be obtained as

1 1 )
i 9 = — d
S = oy 2r ), Pj 7.

® |f the generating function S is separable, i.e.

then we can take

S,':S,'(Ql,...,Qn):f
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Action-angle coordinates from the generating function

® \We can now regard the action coordinates s; as “the new Q.
e Let W = W(q',s;) be the generating function of the transformation
(a', pi) = (si,¢")-
® Then, angle coordinates are given by
; ow
== Os;
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Example: the n-dimensional harmonic oscillator

® The Hamilton—Jacobi equation takes the form

Z((w,) -2>:E.

® With the ansatz S = S1(x1, E1) + - - - + Sn(xn, En) and
E=E; +---+ E,, the Hamilton—Jacobi equation is reduced to

N2
(gil) +X,-2 = 2E,' .
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Example: the n-dimensional harmonic oscillator

® The solutions of these equations are given by

1 .
.S‘,'(X,'7 E,) =+— | x;\/2E; — Xi2 + 2E; arctan S
2 2E — x2

® Action coordinates are given by

V2E;
\/2E — x2dx' = =
ax’ 27T / %i X!

S,'_
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Example: the n-dimensional harmonic oscillator

® The new generating function is thus
n
1 X;
W(x,s) = Z 5 | X4 - x? + 4s; arctan ﬁ
i=1 Si Xi
® Angle coordinates are given by

) , ,
¢ = 95 = 2arctan | ——— | = 2arctan <X') .

Si 4s; — Xi2 pi

® Up to multiplicative constant factors, these are the action-angle
coordinates we obtained before.
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Hamilton—Jacobi equation: the geometric approach

¢ Consider the Hamiltonian system (T*Q, w, h)
® We want to find a section v on g : T*Q — Q which maps integral
curves of X := Tmg o Xj, 07 into integral curves of Xj, namely,

X oo(t) = %O‘(t) = Xpo(yoo(t)) = % (voo(t)).

® The 1-form 7 satisfies this condition iff X and X}, are y-related, i.e.
Xpoy=TyoX].

® |n other words, the following diagram commutes:

T™Q — X, TT*Q

o[ | Trg| )Ty

Q#TQ
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Hamilton—Jacobi equation: the geometric approach

® Assuming that dy = 0, the y-related condition is equivalent to
d(hov)=0. (1)

® This can be easily shown by computations in fibred coords. (¢', p;).

® Since 7 is closed, locally ¥ = dS and equation (1) can be written as

for some (local) constant E.
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Hamilton—Jacobi equation: the geometric approach

Theorem (Hamilton—Jacobi theorem)

Let v be a closed 1-form. Then, the following assertions are equivalent:

® /fo:R — Q is an integral curve of X,/ then ~ o o is an integral curve
Oth.

® d(hov) =0,
® Im~ is a Lagrangian submanifold of (T*Q,w) invariant by Xp,
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[elele] lele}

Hamilton—Jacobi equation: the geometric approach

@ & @ follows from an straightforward computation in fibered
coordinates.
& @ Since + is closed, Im is Lagrangian. Moreover,

Xpoy=T(yomg)oXpoy=TyoTrgoXyo07,
id
ido

so Xj, is tangent to Im~ iff X; and X, are y-related, i.e. iff v maps every
integral curve of X,y onto an integral curve of Xj,. [
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Complete solutions

Definition

A solution of the Hamilton—Jacobi problem for h is a 1-form
v € Q(Q) such that

® dy=0,
® d(hovy)=0.

Definition

A complete solution of the Hamilton—Jacobi problem for h is a local
diffeomorphism ®: Q x R” — T*Q such that, for each A € R”",
&) = d(-, A) is a solution of the Hamilton—Jacobi problem for h.
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Complete solutions

® |et  be a complete solution of the Hamilton—Jacobi problem for h.

e Let m;: @ x R" — R denote the projection m;: (', \) — A;.

Proposition

The functions f; = ;o ®~1: T*Q — R are constants of the motion in
involution.
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Complete solutions

We know that X} is tangent to Im ®, for each A € R”, but we can write
Im®y = {x € T"Q| fi(x) = A} ,

and hence Xj(f;) = 0.

Since Im &, is Lagrangian and X¢(x) € Tx(Im @),

{fi, i} = we(Xs, X¢) = 0.
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Example: the n-dimensional harmonic oscillator

® A complete solution of the Hamilton—Jacobi problem for h is

¢E:d52ii\/2E,'*X,-2dX,'.
i=1

® Its inverse is given by ®~1: (x;, pi;) = (xi, Ei(xi, pi)), so the
associated constants of the motion are

ﬁ:WiOq)_l:Ei—% Xi

® The Lagrangian tori are given by

Mp=Imdy={xeM|f=A}.
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KAM theory

¢ The KAM (Kolmogorov—Arnold—Moser) theorem concerns the
stability of completely integrable systems.

® Essentially it says that, under sufficiently small perturbations of the
Hamiltonian function of the system, “most” Liouville tori persist.
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KAM theory

An n-tuple Q € R" is called
@ Rationally dependent if 2 - k = 0 for some k € Z",
® Rationally independent otherwise,

© Diophantine if there exist L, > 0 such that

L

Q- k| > =,
(i kil)?

for all k € Z".
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KAM theory

Theorem (KAM)

Let H(y, s) = h(s) be an analytic function on T" x R". Assume that
0= %(so) is Diophantine, where sy € R",

. . 2 . .
® the Hessian matrix ( a?f ah si) is non-singular,

© P is an analytic function on T" x R".
Then, for sufficiently small € > 0, the perturbed system H. = H + P

admits an invariant torus T close to T" x {so} such that the flow ' of
the perturbed system on T is given by

Yoyt o9 (o) = o + Qt,

where 1. T" — T is a diffeomorphism.
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Generalizations of Liouville—Arnold theorem

Liouville=Arnold theorem for non-compact My (Fiorani et al.)

Liouville=Arnold—Nekhoroshev theorem: partially integrable systems,
i.e. with kK < n constants of the motion in involution

Non-abelian integrable systems: {f;,f;} # 0
Singularities: x € M such that rank dF(x) < n
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