An introduction to integrable systems Asier López-Gordón Instituto de Ciencias Matemáticas (ICMAT-CSIC), Madrid (Spain) Geometry and Applications: Modern Mathematical Approaches Seminar May 11, 2023 Financially supported by Grants CEX2019-000904-S and PID2019-106715GB-C21 funded by MCIN/AEI/10.13039/501100011033 # Outline of the presentation - Introduction - 2 Liouville integrability - 3 Hamilton-Jacobi theory - 4 KAM theory - Generalizations Liouville integrability Hamilton–Jacobi theory KAM theory Generalizations References #### Introduction Introduction - Roughly speaking, a completely integrable system is a mechanical system with n independent and "compatible" constants of the motion, where n is the number of degrees of freedom. - In such systems, the equations of motion can be completely "solved", being reduced to quadratures. ### Preliminary concepts - Let (M, ω) be a symplectic manifold. - Recall that the Poisson bracket $\{\cdot,\cdot\}$: $C^{\infty}(M) \times C^{\infty}(M) \to C^{\infty}(M)$ is given by $$\{f,g\}=\omega(X_f,X_g).$$ #### Definition Introduction A collection of functions $f_1, \ldots, f_n \in C^{\infty}(M)$ are said to be **in involution** if $\{f_i, f_i\} = 0$ for each i, j = 1, ..., n. #### Proposition Let (M, ω, h) be a Hamiltonian system. A function $f \in C^{\infty}(M)$ is a conserved quantity iff it is in involution with h. ## Preliminary concepts #### Definition Introduction A submanifold $N \subset M$ of a symplectic manifold (M^{2n}, ω) is called **Lagrangian** if dim N = n and $\omega|_N = 0$. #### **Proposition** Let T^*Q be the cotangent bundle of Q and let θ denote its tautological one-form. A one-form $\alpha \in \Omega^1(Q)$ is closed iff Im α is a Lagrangian submanifold of $(T^*Q, d\theta)$. #### Definition A Hamiltonian system (M, ω, h) is called **completely integrable** (or **Liouville integrable**) if there exists n functions $f_1, f_2, \ldots, f_n \in C^{\infty}(M)$ such that - \bullet h, f_1, f_2, \ldots, f_n are in involution, - **2** they are functionally independent (i.e. $\mathrm{d}f_1 \wedge \cdots \wedge \mathrm{d}f_n \neq 0$) almost everywhere, The functions f_1, f_2, \ldots, f_n are called **integrals**. #### Theorem (Liouville–Arnold theorem) Let (M, ω, h) be a completely integrable system. Let M_{Λ} be a regular level set of the integrals f_1, \ldots, f_n , i.e. $$M_{\Lambda} = \{ x \in M \mid f_i = \Lambda_i \}, \quad d_x f_1 \wedge \cdots \wedge d_x f_n \neq 0 \ \forall x \in M_{\Lambda}.$$ #### Then - **1** M_{Λ} is a Lagrangian submanifold of (M, ω) . - **2** M_{Λ} is invariant w.r.t. the flow of X_h and X_{f_i} . - **3** Any compact connected component of M_{Λ} is diffeomorphic to \mathbb{T}^n . - **4** On a neighborhood of M_{Λ} there are coordinates (φ^i, s_i) such that - $\mathbf{A} \ \omega = \mathrm{d}\varphi^i \wedge \mathrm{d}s_i,$ - **B** the action coordinates s_i are functions of the integrals f_1, \ldots, f_n , - \bullet the integral curves of X_h are given by $$\dot{\varphi}^i = \Omega^i(s_1,\ldots,s_n), \qquad \dot{s}_i = 0.$$ # Proof of $\bigcirc{1}$ and $\bigcirc{2}$ - Since $X_{f_j}f_i=\{f_i,f_j\}=0\ \forall\ i,j\ \text{and}\ T_xM_{\Lambda}=\ker\{\mathrm{d}f_i\}$, the vector fields X_{f_i} are tangent to M_{Λ} . In other words, their flows leave M_{Λ} invariant. - Since $\mathrm{d} f_1,\ldots,\mathrm{d} f_n$ are linearly independent and $v\mapsto\iota_v\omega$ is an isomorphism, X_{f_1},\ldots,X_{f_n} are linearly independent. - Hence, $\{X_{f_1}(x), \dots, X_{f_n}(x)\}$ is a basis of $T_x M_{\Lambda}$ for each $x \in N$. - Using that $\omega(X_{f_i}, X_{f_j}) = \{f_i, f_j\} = 0$ for each i, j, we conclude that M_{Λ} is Lagrangian. # Sketch of the proof of (3) #### Lemma Let N be an n-dimensional connected manifold and let $X_1, \ldots, X_n \in \mathfrak{X}(N)$ be linearly independent complete vector fields. If these vector fields are pairwise commutative, then N is diffeomorphic to $\mathbb{T}^k \times \mathbb{R}^{n-k}$ for some $k \leq n$. In particular, if N is compact then $N \simeq \mathbb{T}^n$. • Under the hypotheses of the lemma, the flows of X_i define a Lie group action $\Phi \colon \mathbb{R}^n \times N \to M$ of R^n on M given by $$\Phi(t_1,\ldots,t_n)(x)=\phi_{t_1}^{X_1}\circ\cdots\circ\phi_{t_n}^{X_n}(x).$$ • Since X_i are linearly independent, for each $x \in N$ the mapping $A_x : (t_1, \ldots, t_n) \mapsto \Phi(t_1, \ldots, t_n)(x)$ is an immersion. # Sketch of the proof of (3) - Hence, $O(x) = \operatorname{Im} A_x$ is open in N. - Since N is connected, O(x) = N. - Every orbit O(x) is the quotient space of \mathbb{R}^n by the isotropy subgroup G_{\times} . - Since A_x is a local diffeomorphism, G_x is discrete. - One can show that G_x is a lattice \mathbb{Z}^k for some k < n. - We conclude that $N \simeq \mathbb{R}^n/\mathbb{Z}^k \simeq \mathbb{T}^k \times \mathbb{R}^{n-k}$. # Sketch of the proof of (4) - Let $F = (f_1, \ldots, f_n) \colon M \to \mathbb{R}^n$. - For each point $y \in \mathbb{R}^n$, there exists a neighborhood D of a such that $F^{-1}(D)$ is diffeomorphic to $D \times F^{-1}(y)$. Moreover, $F: D \times F^{-1}(y) \to D$ is a trivial bundle. - Consider a neighborhood $U = D \times M_{\Lambda}$ of $M_{\Lambda} = F^{-1}(\Lambda)$ as above. - The integrals f_1, \ldots, f_n are coordinates on D. - Let (ψ^1, \ldots, ψ^n) be angular coordinates of the torus $\mathbb{T}^n \simeq M_{\Lambda}$. - The integrals f_1, \ldots, f_n are coordinates on D. - In coordinates (ψ^i, f_i) , the symplectic form is given by $$\omega = a_{ij} d\psi^i \wedge d\psi^j + c_i^j d\psi^i \wedge df_j + b^{ij} df_i \wedge df_j.$$ • Since M_{Λ} is Lagrangian, $0 = \omega|_{M_{\Lambda}} = a_{ij} d\psi^{i} \wedge d\psi^{j}$. # Sketch of the proof of 4 - One can show that c_i^j and b^{ij} do not depend on ψ^1, \ldots, ψ^n . - Hence, $$\omega = \mathrm{d}\psi^i \wedge \underbrace{\left(c_i^j \mathrm{d}f_j\right)}_{\omega_i} + \underbrace{b^{ij} \mathrm{d}f_i \wedge \mathrm{d}f_j}_{\beta} = \mathrm{d}\psi^i \wedge \omega_i + \beta.$$ - Since they do not depend on (ψ^i) , $\omega_i \in \Omega^1(D)$, $\beta \in \Omega^2(D)$. - The fact that ω is closed implies that ω_i and β are closed. - Thus they are exact, namely, $\omega_i = \mathrm{d} s_i$ and $\beta = \mathrm{d} \gamma$. - The functions $s_1 = s_1(f_1, \ldots, f_n), \ldots, s_n = s_n(f_1, \ldots, f_n)$ are independent, so (ψ^i, s_i) are coordinates on U. - Let $\varphi^i = \psi^i + \gamma^i(s_1, \dots s_n)$, where $\gamma = \gamma^i ds_i$. # Sketch of the proof of 4 - Geometrically, this means that we change the initial points of reference for the angle coordinates on the torus. - Hence, $$d\varphi^{i} \wedge ds_{i} = d\psi^{i} \wedge ds_{i} + d\gamma = \omega.$$ ullet Observe that $rac{\partial}{\partial arphi^i} = X_{s_i}$, so $$\frac{\partial h}{\partial \varphi^i} = X_{s_i}(h) = \{s_i(f_1,\ldots,f_n),h\} = 0,$$ and we have $h = f(s_1, \ldots, s_n)$. # Sketch of the proof of (4) • Moreover, $$X_h = \underbrace{\frac{\partial h}{\partial s_i}}_{\Omega^i} \frac{\partial}{\partial \varphi^i} ,$$ where the frequencies Ω^i depend only on the action coordinates. # Explicit expression for angle variables • Choose a point $x \in M_{\Lambda}$ and consider the solutions of the equation $$\Phi(e_i)(x) = x.$$ - Then $\{e_1, \dots e_n\}$ is a basis of the lattice \mathbb{Z}^n . - By the implicit function theorem, e_i will depend on x smoothly. - If $y = \Phi(a)x$, where $a = a^1e_1 + \cdots + a^ne_n \in \mathbb{R}^n$, define the angle coordinates by $$\psi^i = 2\pi a^i \pmod{2\pi}.$$ - Fixing the basis $\{e_1, \dots e_n\}$ uniquely determines the set of basis cycles γ_1,\ldots,γ_n in the fundamental group $\pi_1(\mathbb{T}^n)=\mathbb{Z}^n$. - Let $\alpha \in \Omega^1(U)$ such that $d\alpha = \omega$. - To each torus, assign the number $$s_i = rac{1}{2\pi} \oint_{\gamma_i} lpha \, ,$$ - Then $s_1(f_1,\ldots,f_n),\ldots,s_n(f_1,\ldots,f_n)$ are smooth functions on U. - They coincide (up to a constant) with the action variables. • Consider the Hamiltonian system $(\mathbb{R}^{2n}, \omega, h)$, where $$h = \sum_{i=1}^n \left(\frac{p_i^2}{2} + \frac{x_i^2}{2} \right), \qquad \omega = \mathrm{d}x_i \wedge \mathrm{d}p_i.$$ It is completely integrable. Indeed, the functions $$f_i = \frac{p_i^2}{2} + \frac{x_i^2}{2}$$ are integrals, i.e. $\{f_i, h\} = 0$ and $\mathrm{d} f_1 \wedge \cdots \wedge \mathrm{d} f_n \neq 0$ a.e. • The level sets M_{Λ} are given by $$M_{\Lambda} = \{(x_1,\ldots,x_n,p_1,\ldots,p_n) \in \mathbb{R}^{2n} \mid \underbrace{p_i^2 + x_i^2 = 2\Lambda_i}_{\text{circles}}\} \simeq \mathbb{T}^n.$$ • We can write $$h=h(f_1,\ldots,f_n)=\sum_{i=1}^n f_i.$$ • Let $\varphi^i = \arctan\left(\frac{x_i}{p_i}\right)$. Then, $$\omega = \mathrm{d}\varphi^i \wedge \mathrm{d}f_i.$$ • Thus (φ^i, f_i) are action-angle coordinates. The Hamiltonian vector fields are given by $$X_{f_i} = \frac{\partial}{\partial \varphi^i}, \quad X_h = \sum_{i=1}^n \frac{\partial}{\partial \varphi^i}.$$ Hamilton's equations are given by $$\dot{\varphi}^i = 1$$, $\dot{f}_i = 0$. $$\dot{f}_i = 0$$ ### Hamilton-Jacobi equation from canonical transformations • Suppose that (q^i, p_i) and (Q^i, P_i) are two sets of Darboux coordinates for $(\mathbb{R}^{2n}, \omega)$, namely, $$\omega = \underbrace{\mathrm{d}q^i \wedge \mathrm{d}p_i}_{-\mathrm{d}(p_i\mathrm{d}q^i)} = \underbrace{\mathrm{d}Q^i \wedge \mathrm{d}P_i}_{-\mathrm{d}(P_i\mathrm{d}Q^i)}$$ • Then, on an open subset $U \subseteq M$, $$p_i \mathrm{d} q^i - P_i \mathrm{d} Q^i = \mathrm{d} F,$$ for some $F \in C^{\infty}(U)$. ### Hamilton-Jacobi equation from canonical transformations Assume that, on some neighbourhood $V \subseteq U$, the Jacobian matrix $$\frac{\partial(Q,q)}{\partial(p,q)}$$ is not singular. - Then, we can express F(q,p) = S(q,Q), where S is called the generating function of the canonical transformation $(q,p)\mapsto (Q,P).$ - We have $$\mathrm{d}S = p_i \mathrm{d}q^i - P_i \mathrm{d}Q^i \leadsto p_i = \frac{\partial S(q,Q)}{\partial q^i}, \quad P_i = -\frac{\partial S(q,Q)}{\partial Q^i}.$$ ### Hamilton–Jacobi equation from canonical transformations • Assume that the canonical transformation is such that the Hamiltonian function in the new coordinates is given by h = k(P), namely, $$h\left(q^i, \frac{\partial S(q,Q)}{\partial q^i}\right) = k(P_i).$$ • Then, Hamilton's equations are given by $$\dot{Q}^i = -\frac{\partial k}{\partial P_i}, \qquad \dot{P}_i = 0.$$ • Since P_i are constants of the motion, by fixing initial conditions we have h(P) = E = const., obtaining the **Hamilton–Jacobi equation**: $$h\left(q^{i}, \frac{\partial S}{\partial q^{i}}\right) = E.$$ # Action-angle coordinates from the generating function Recall that action variables cab be obtained as $$s_i = rac{1}{2\pi} \oint_{\gamma_i} \theta = rac{1}{2\pi} \oint_{\gamma_i} p_j \mathrm{d}q^j \,,$$ If the generating function S is **separable**, i.e. $$S(q^i; Q^i) = S_1(q^1; Q^1, \ldots, Q^n) + \cdots + S_n(q^n; Q^1, \ldots, Q^n),$$ then we can take $$s_i = s_i(Q^1, \dots, Q^n) = \frac{1}{2\pi} \oint_{\sigma_i} \frac{\partial S_i}{\partial q^i} dq^i$$. # Action-angle coordinates from the generating function - We can now regard the action coordinates s_i as "the new Q^i ". - Let $W = W(q^i, s_i)$ be the generating function of the transformation $(q^i, p_i) \mapsto (s_i, \varphi^i).$ - Then, angle coordinates are given by $$\varphi^i = -\frac{\partial W}{\partial s_i}.$$ The Hamilton-Jacobi equation takes the form $$\frac{1}{2}\sum_{i=1}^{n}\left(\left(\frac{\partial S}{\partial x_{i}}\right)^{2}+x_{i}^{2}\right)=E.$$ • With the ansatz $S = S_1(x_1, E_1) + \cdots + S_n(x_n, E_n)$ and $E = E_1 + \cdots + E_n$, the Hamilton–Jacobi equation is reduced to $$\left(\frac{\partial S_i}{\partial x_i}\right)^2 + x_i^2 = 2E_i.$$ • The solutions of these equations are given by $$S_i(x_i, E_i) = \pm \frac{1}{2} \left(x_i \sqrt{2E_i - x_i^2} + 2E_i \arctan\left(\frac{x_i}{\sqrt{2E_i - x_i^2}}\right) \right)$$ Action coordinates are given by $$s_i = \frac{1}{2\pi} \oint_{\gamma_i} \frac{\partial S_i}{\partial x^i} dx^i = \frac{1}{2\pi} \int_{-\sqrt{2E_i}}^{\sqrt{2E_i}} \sqrt{2E_i - x_i^2} dx^i = \frac{E_i}{2}$$ • The new generating function is thus $$W(x,s) = \sum_{i=1}^{n} \frac{1}{2} \left(x_i \sqrt{4s_i - x_i^2} + 4s_i \arctan\left(\frac{x_i}{\sqrt{4s_i - x_i^2}}\right) \right).$$ Angle coordinates are given by $$\varphi^i = \frac{\partial S}{\partial s_i} = 2 \arctan\left(\frac{x_i}{\sqrt{4s_i - x_i^2}}\right) = 2 \arctan\left(\frac{x_i}{p_i}\right).$$ Up to multiplicative constant factors, these are the action-angle coordinates we obtained before. - Consider the Hamiltonian system (T^*Q, ω, h) - We want to find a section γ on $\pi_Q : \mathrm{T}^*Q \to Q$ which maps integral curves of $X_h^{\gamma} := \mathrm{T}\pi_Q \circ X_h \circ \gamma$ into integral curves of X_h , namely, $$X_h^{\gamma} \circ \sigma(t) = \frac{\mathrm{d}}{\mathrm{d}t} \sigma(t) \Longrightarrow X_h \circ (\gamma \circ \sigma(t)) = \frac{\mathrm{d}}{\mathrm{d}t} (\gamma \circ \sigma(t)).$$ • The 1-form γ satisfies this condition iff X_h^{γ} and X_h are γ -related, i.e. $$X_h \circ \gamma = \mathrm{T}\gamma \circ X_h^{\gamma}.$$ • In other words, the following diagram commutes: $$\begin{array}{ccc} \mathbf{T}^*Q & \xrightarrow{X_h} & \mathbf{T}\mathbf{T}^*Q \\ \gamma \Big(\downarrow^{\pi_Q} & & \mathbf{T}\pi_Q \downarrow \tilde{)} \tau_{\gamma} \\ Q & \xrightarrow{X_h^{\gamma}} & \mathbf{T}Q \end{array}$$ Assuming that $d\gamma = 0$, the γ -related condition is equivalent to $$d(h \circ \gamma) = 0. \tag{1}$$ - This can be easily shown by computations in fibred coords. (q^i, p_i) . - Since γ is closed, locally $\gamma = \mathrm{d}S$ and equation (1) can be written as $$h\left(q^{i}, \frac{\partial S}{\partial q^{i}}\right) = E,$$ for some (local) constant E. #### Theorem (Hamilton–Jacobi theorem) Let γ be a closed 1-form. Then, the following assertions are equivalent: - **1** If $\sigma: \mathbb{R} \to Q$ is an integral curve of X_h^{γ} then $\gamma \circ \sigma$ is an integral curve of X_h . - $2 d(h \circ \gamma) = 0,$ - 3 Im γ is a Lagrangian submanifold of (T^*Q, ω) invariant by X_h , #### Proof. - $(1) \Leftrightarrow (2)$ follows from an straightforward computation in fibered coordinates. - $(1) \Leftrightarrow (3)$ Since γ is closed, Im γ is Lagrangian. Moreover, $$X_h \circ \gamma = \mathrm{T}(\underbrace{\gamma \circ \pi_Q}_{\mathrm{id}_Q}) \circ X_h \circ \gamma = \mathrm{T}\gamma \circ \mathrm{T}\pi_Q \circ X_h \circ \gamma,$$ so X_h is tangent to Im γ iff X_h^{γ} and X_h are γ -related, i.e. iff γ maps every integral curve of $X_h \gamma$ onto an integral curve of X_h . ## Complete solutions #### Definition A **solution of the Hamilton–Jacobi problem** for *h* is a 1-form $\gamma \in \Omega^1(Q)$ such that - $\mathbf{0} \ \mathrm{d}\gamma = \mathbf{0}$ - $2 d(h \circ \gamma) = 0.$ #### Definition A complete solution of the Hamilton–Jacobi problem for h is a local diffeomorphism $\Phi: Q \times \mathbb{R}^n \to \mathrm{T}^*Q$ such that, for each $\lambda \in \mathbb{R}^n$, $\Phi_{\lambda} = \Phi(\cdot, \lambda)$ is a solution of the Hamilton–Jacobi problem for h. ## Complete solutions - Let Φ be a complete solution of the Hamilton–Jacobi problem for h. - Let $\pi_i: Q \times \mathbb{R}^n \to \mathbb{R}$ denote the projection $\pi_i: (q^i, \lambda) \mapsto \lambda_i$. #### Proposition The functions $f_i = \pi_i \circ \Phi^{-1} : T^*Q \to \mathbb{R}$ are constants of the motion in involution. ## Complete solutions #### Proof. We know that X_h is tangent to Im Φ_{λ} for each $\lambda \in \mathbb{R}^n$, but we can write $$\operatorname{Im} \Phi_{\lambda} = \{ x \in \mathrm{T}^* Q \mid f_i(x) = \lambda_i \} ,$$ and hence $X_h(f_i) = 0$. Since Im Φ_{λ} is Lagrangian and $X_f(x) \in T_x(\operatorname{Im} \Phi_{\lambda})$, $$\{f_i,f_j\}=\omega_Q(X_{f_i},X_{f_j})=0.$$ ### Example: the *n*-dimensional harmonic oscillator A complete solution of the Hamilton–Jacobi problem for h is $$\Phi_E = \mathrm{d}S = \pm \sum_{i=1}^n \sqrt{2E_i - x_i^2} \mathrm{d}x_i.$$ • Its inverse is given by Φ^{-1} : $(x_i, p_i) \mapsto (x_i, E_i(x_i, p_i))$, so the associated constants of the motion are $$f_i = \pi_i \circ \Phi^{-1} = E_i = \frac{p_i^2}{2} + \frac{x_i^2}{2}$$. The Lagrangian tori are given by $$M_{\Lambda} = \operatorname{Im} \Phi_{\Lambda} = \{ x \in M \mid f_i = \Lambda_i \}.$$ - The KAM (Kolmogorov–Arnold–Moser) theorem concerns the stability of completely integrable systems. - Essentially it says that, under sufficiently small perturbations of the Hamiltonian function of the system, "most" Liouville tori persist. #### Definition An *n*-tuple $\Omega \in \mathbb{R}^n$ is called - **1** Rationally dependent if $\Omega \cdot k = 0$ for some $k \in \mathbb{Z}^n$, - 2 Rationally independent otherwise, - **3 Diophantine** if there exist $L, \gamma > 0$ such that $$|\Omega \cdot k| \geq \frac{L}{\left(\sum_{i=1}^{n} |k_i|\right)^{\gamma}},$$ for all $k \in \mathbb{Z}^n$. #### Theorem (KAM) Let $H(\varphi, s) = h(s)$ be an analytic function on $\mathbb{T}^n \times \mathbb{R}^n$. Assume that - **1** $\Omega = \frac{\partial h}{\partial s}(s_0)$ is Diophantine, where $s_0 \in \mathbb{R}^n$, - 2 the Hessian matrix $\left(\frac{\partial^2 h}{\partial s^i \partial s^j}\right)$ is non-singular, - **3** P is an analytic function on $\mathbb{T}^n \times \mathbb{R}^n$. Then, for sufficiently small $\varepsilon > 0$, the perturbed system $H_{\varepsilon} = H + \varepsilon P$ admits an invariant torus \mathcal{T} close to $\mathbb{T}^n \times \{s_0\}$ such that the flow γ^t of the perturbed system on \mathcal{T} is given by $$\psi^{-1} \circ \gamma^t \circ \psi (\varphi_0) = \varphi_0 + \Omega t,$$ where $\psi \colon \mathbb{T}^n \to \mathcal{T}$ is a diffeomorphism. #### Generalizations of Liouville–Arnold theorem - Liouville-Arnold theorem for non-compact M_{Λ} (Fiorani et al.) - Liouville–Arnold–Nekhoroshev theorem: partially integrable systems, i.e. with k < n constants of the motion in involution - Non-abelian integrable systems: $\{f_i, f_i\} \neq 0$ - Singularities: $x \in M$ such that rank dF(x) < n - [1] V. I. Arnold. Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics). New York: Springer-Verlag, 1978. - [2] M. Audin, Torus Actions on Symplectic Manifolds. Basel: Birkhäuser Basel, 2004. - [3] A. V. Bolsinov and A. T. Fomenko, *Integrable Hamiltonian Systems:* Geometry, Topology, Classification. Boca Raton, Fla: Chapman & Hall/CRC, 2004, 730 pp. - [4] E. Fiorani, G. Giachetta, and G. Sardanashvily, "An extension of the Liouville-Arnold theorem for the non-compact case," Nuovo Cimento Soc. Ital. Fis. B, vol. 118, no. 3, pp. 307–317, 2003. - [5] E. Fiorani, G. Giachetta, and G. Sardanashvily, "The Liouville—Arnold—Nekhoroshev theorem for non-compact invariant manifolds," J. Phys. A: Math. Gen., vol. 36, no. 7, p. L101, Feb. 2003. References - [6] A. Kiesenhofer, E. Miranda, and G. Scott, "Action-angle variables and a KAM theorem for b-Poisson manifolds," Journal de Mathématiques Pures et Appliquées, vol. 105, no. 1, pp. 66-85, Jan. 1, 2016. - [7] J. Liouville, "Note sur l'intégration des équations différentielles de la Dynamique," *J. Math. Pures Appl.*, pp. 137–138, 1855. - [8] E. Miranda, "Integrable systems and group actions," Open Mathematics, vol. 12, no. 2, pp. 240–270, Feb. 1, 2014. - S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems [9] and Chaos (Texts in Applied Mathematics 2), 2nd ed. New York: Springer, 2003, 843 pp. # Dziękuję bardzo! # Moltes gràcies! □ asier.lopez@icmat.es