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Hybrid systems

• A hybrid dynamical system is one which combines continuous and
discrete transitions.

• The dynamics of such systems are continuous “most of the time”,
except at some instants at which abrupt changes occur.

• This framework may be used to model mechanical systems with
impacts.
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Hybrid systems
Definition
A hybrid system is a 4-tuple H = (M, X , S, ∆), formed by

1 a manifold M,
2 a vector field X ∈ X(M),
3 a submanifold S ⊂ M of codimension 1 or greater,
4 an embedding ∆: S → M.

The dynamics generated by H are the curves c : I ⊆ R → M such that

ċ(t) = X (c(t)) , if c(t) /∈ S ,
c+(t) = ∆(c−(t)) , if c(t) ∈ S ,

where
c±(t) = lim

τ→t±
c(τ) .
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Hybrid Hamiltonian systems

Definition
A hybrid dynamical system (M, X , S, ∆) is said to be a hybrid
Hamiltonian system and denoted by HH if

1 M ⊆ T∗Q is a zero-codimensional submanifold of the cotangent
bundle T∗Q of a manifold Q,

2 S projects onto a codimension-one submanifold πQ(S) of Q,
3 πQ ◦ ∆ = πQ,
4 X = XH is the Hamiltonian vector field of H ∈ C ∞(T∗Q) w.r.t. ωQ.
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Hybrid Hamiltonian systems

Physically,
• Q represents the space of positions,
• T∗Q the phase space,
• XH the dynamics between the impacts,
• πQ(S) the hypersurface where impacts occur, and
• ∆ the change of momenta on the impacts.
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Hybrid Lie group action

Definition
A Lie group action Φ: G × Q → Q is called a hybrid action for HH if its
cotangent lift ΦT∗ : G × T∗Q → T∗Q satisfies the following conditions:

1 H is ΦT∗-invariant, namely, H ◦ ΦT∗
g = H for all g ∈ G ,

2 the restriction ΦT∗
∣∣∣
G×S

is a Lie group action of G on S,

3 the impact map is equivariant w.r.t. this action, i.e.,

∆ ◦ ΦT∗
g

∣∣∣
S

= ΦT∗
g ◦ ∆ , ∀ g ∈ G .
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Hybrid momentum map

Definition

Let Φ: G × Q → Q be a hybrid action for HH . A momentum map
J : T∗Q → g∗ for the cotangent lift action ΦT∗ is called a generalized
hybrid momentum map if, for each connected component C ⊆ S and for
each regular value µ− of J, there is another regular value µ+ such that

∆
(
J|C

−1(µ−)
)

⊂ J−1(µ+) .

In particular, if µ− = µ+ it is called a hybrid momentum map.
A hybrid regular value of J is a regular value of both J and J|S .
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Hybrid momentum map

In other words, J is a generalized hybrid momentum map if, for every point
in the connected component C of the switching surface S such that the
momentum before the impact takes a value of µ−, the momentum will
take a value µ+ after the impact.

It is a hybrid momentum map if its value does not change with the
impacts.

Asier López-Gordón (ICMAT) Hybrid dynamical systems Geometrical aspects of material modelling 8



Introduction Reduction Liouville – Arnol’d theorem Hamilton – Jacobi theory References

Hybrid reduction

• There is a natural action of a Lie group G on the dual g∗ of its Lie
algebra, called the coadjoint action.

• The isotropy subgroup Gµ at µ ∈ g∗ is the Lie subgroup given by
those elements of G whose coadjoint action leaves µ invariant,
namely,

Gµ = {g ∈ G | g · µ = µ} .

• In the case of an Abelian Lie group, Gµ = G .
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Hybrid reduction

Proposition
If µ− and µ+ are regular values of J such that ∆

(
J|S

−1(µ−)
)

⊂ J−1(µ+),
then the isotropy subgroups in µ− and µ+ coincide, that is, Gµ− = Gµ+ .
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Hybrid reduction

Theorem (Colombo, de León, Eyrea Irazú, and L. G., 2022)
Let Φ: G × Q → Q be a hybrid action on HH . Assume that G is
connected and that ΦT∗ : G × T∗Q → T∗Q is free and proper. Consider a
sequence {µi}i∈I⊆N of hybrid regular values of J, such that
∆
(
J|S

−1(µi)
)

⊂ J−1(µi+1). Let Gµi = Gµ0 be the isotropy subgroup in µi
under the co-adjoint action. Then, the reduction leads to a sequence of
reduced hybrid forced Hamiltonian systems

H µi
H =

(
J−1(µi)/Gµ0 , XHµi

, J|S
−1(µi)/Gµ0 , (∆)µi

)
.
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Hybrid reduction

· · · J−1(µi ) J|S
−1(µi ) J−1(µi+1) · · ·

· · · J−1(µi )
Gµ0

J|S
−1(µi )/Gµ0

J−1(µi+1)
Gµ0

· · ·

∆|J−1(µi )

(∆)µi
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Nonholomic systems

• Roughly speaking, a nonholonomic constraint is a constraint in the
velocities which cannot be reduced to a constraint in the positions.

• Geometrically, this is expressed by the fact that the phase space is a
(co)distribution of the (co)tangent bundle.

• Let L : TQ → R be a mechanical Lagrangian function, namely,

L(q, v) = 1
2gq(v , v) − V (q) ,

where g is a Riemannian metric on Q.
• The Hamiltonian counterpart of L is H : T∗Q → R, where

H(q, p) = 1
2g−1

q (p, p) + V (q) .
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Nonholomic systems
• Suppose that the system is subject to the (linear) nonholonomic

constraints given by the distribution

D = {v ∈ TQ | µa(v) = 0, a = 1, . . . , k} ,

where µa = µa
i (q)dqi are constraint one-forms.

• Denote by C = ♭g(D) the associated codistribution.
• The nonholonomic vector field Xnh

H of H is given by

ιXnh
H

ωQ = dH − λa µa ,

with the constraint
TπQ

(
Xnh

H

)
∈ Γ(D) .

• Here, ωQ = dqi ∧ dpi denotes the canonical symplectic form, and λa
are Lagrange multipliers.
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Example: Rolling disk hitting walls

• Consider a homogeneous circular disk of radius R and mass m moving
freely in the plane.

• The configuration space is Q = R2 × S1.
• The Hamiltonian function H : T∗Q → R of the system is

H = 1
2m (p2

x + p2
y ) + 1

2mk2 p2
θ ,

where (x , y , θ, px , py , pθ) are the bundle coordinates in T∗(R2 × S1).
• The coords. (x , y) represent then position of the center of the disk,

and θ represents the angle between a fixed reference point of the disk
and the y -axis.

• Here m is the mass of the disk and k is a constant such that mk2 is
the moment of inertia of the disk.
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Example: Rolling disk hitting walls

• There are two rough walls situated at y = 0 and at y = h > R.
• Assume that the impact with a wall is such that the disk rolls without

sliding and that the change of the velocity along the y -direction is
characterized by an elastic constant e.

• The switching surface is S = C1 ∪ C2, where

C1 = {(x , y , ϑ, px , py , pϑ) | y = R, px = Rpϑ/k2 and py < 0} ,

C2 = {(x , y , ϑ, px , py , pϑ) | y = h − R, px = Rpϑ/k2 and py > 0} ,

and the impact map ∆: S → T∗Q is given by

∆:
(
p−

x , p−
y , p−

θ

)
7→
(

R2p−
x + Rp−

θ

k2 + R2 , −ep−
y , k2 Rp−

x + p−
θ

k2 + R2

)
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Example: Rolling disk hitting walls

• The condition px = Rpϑ/k2 comes from the nonholonomic constraint
of the walls.

• The conditions on the sign of py ensure that the y -component of the
momenta points towards corresponding the wall.
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Example: Rolling disk hitting walls

• Consider polar coordinates (r , φ) in the plane, namely,

x = r cos φ , y = r sin φ .

• Let (r , φ, θ, pr , pφ, pθ) be the induced bundle coordinates in T∗Q.
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Example: Rolling disk hitting walls

• In these coordinates,

H = 1
2mp2

r + 1
2mr2 p2

φ + 1
2mk2 p2

θ ,

C1 =
{

r sin φ = R , pr cos φ − pφ sin φ

r = Rpθ

k2

and pr sin φ + pφ cos φ

r < 0
}

,

C2 =
{

r sin φ = h − R , pr cos φ − pφ sin φ

r = Rpθ

k2

and pr sin φ + pφ cos φ

r > 0
}

.
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Example: Rolling disk hitting walls

• The impact map ∆: (p−
r , p−

φ , p−
θ ) 7→ (p+

r , p+
φ , p+

θ ) is given by

p+
r = (2 cos2 φ − 1)p−

r − 2 sin φ cos φ
p−

φ

r ,

p+
φ = −p−

φ ,

p+
θ = p−

θ .

• Consider the Lie group action

Φ: T2 × Q → Q
(α, β; r , φ, θ) 7→ (r , φ + α, θ + β) .

• It is clear that H is invariant under the cotangent lift action
ΦT∗ : T2 × T∗Q → T∗Q.
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Example: Rolling disk hitting walls

• The associated momentum map is J = (pφ, pθ).
• Notice that it is a generalized hybrid momentum map but not a

hybrid momentum map, namely, ∆
(
J|C

−1(µ−)
)

⊂ J−1(µ+) but
J−1(µ+) ̸= J−1(µ−).

• Let µ = (µφ, µθ) be a hybrid regular value of J.
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Example: Rolling disk hitting walls

• The reduced connected components of the switching surface can be
written as

C1,µ− =
{

r sin γ = R , pr cos γ − µφ sin φ

r = Rµθ

k2

and pr sin φ + µφ cos γ

r < 0 for some γ ∈ [0, 2π)
}

,

C2,µ− =
{

r sin γ = h − R , pr cos γ − µφ sin γ

r = Rµθ

k2

and pr sin γ + µφ cos γ

r > 0 for some γ ∈ [0, 2π)
}

.
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Example: Rolling disk hitting walls

• The reduced impact map reads

∆µ− : p−
r 7→ (2 cos2 γ − 1)p−

r − 2 sin γ cos γ
µ−

φ

r ,

where γ is determined by the relation between v−
r , µ−

φ and µ+
θ .
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Integrable hybrid Hamiltonian systems

• A particular case of hybrid reduction is when we have the Abelian Lie
group action Φ: Rn × T∗Q → T∗Q generated by the Hamiltonian
flows of n functions f1, . . . , fn in involution.

• In that case, we can identify the momentum map with
F = (f1, . . . , fn) : T∗Q → Rn.

• We may obtain action-angle coordinates for each time interval
between impacts. The action-angle coordinates before and after the
impact will be related by ∆.
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Liouville –Arnol’d theorem

Theorem (Liouville –Arnol’d)
Let f1, . . . , fn be independent functions in involution (i.e., {fi , fj} = 0 ∀i , j)
on a symplectic manifold (M2n, ω). Let MΛ = {x ∈ M | fi = Λi} be a
regular level set.

1 Any compact connected component of MΛ is diffeomorphic to Tn.
2 On a neighborhood of MΛ there are coordinates (φi , Ji) such that

ω = dφi ∧ dJi ,

and fi = fi(J1, . . . , Jn), so the Hamiltonian vector fields read

Xfi = ∂fi
∂Jj

∂

∂φj .
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Liouville –Arnol’d theorem

Corollary
Let (M2n, ω, h) be a Hamiltonian system. Suppose that f1, . . . , fn are
independent conserved quantities (i.e. Xh(fi) = 0 ∀ i) in involution. Then,
on a neighborhood of MΛ there are Darboux coordinates (φi , Ji) such that
H = H(J1, . . . , Jn), so the Hamiltonian dynamics are given by

dφi

dt = ∂H
∂Ji

∂

∂φi ,

dJi
dt = 0 .
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Definition
Let (M, S, X , ∆) be a hybrid dynamical system. A function f : M → R is
called a generalized hybrid constant of the motion if

1 Xf = 0,
2 For each connected component C ⊆ S and each a ∈ Im f , there exists

a b ∈ Im f such that

∆
(
f |C

−1(a)
)

⊆ f −1(b) .

In particular, f is called a hybrid constant of the motion if, in addition,
b = a for each a ∈ Im f .
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Definition
Let Q be an n-dimensional manifold. A completely integrable hybrid
Hamiltonian system is a 5-tuple
(T∗Q, S, XH , ∆, F ), formed by a hybrid Hamiltonian system
(T∗Q, S, XH , ∆), together with a function F = (f1, . . . , fn) : T∗Q → Rn

such that:
1 rank TxF = n a.e.,
2 the functions f1, . . . , fn are generalized hybrid constant of the motion
3 {fi , fj} = Xfj (fi) = 0 ∀ i , j ∈ {1, . . . , n}.
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Theorem (L. G. and Colombo, 2024)
Consider a completely integrable hybrid Hamiltonian system
(T∗Q, S, XH , ∆), with F = (f1, . . . , fn), where n = dim Q. Let MΛ be a
regular level set of F . Then:

1 For each regular level set MΛ and each connected component C ⊆ S,
there exists a Λ′ ∈ Rn such that ∆(MΛ ∩ C) ⊂ MΛ′ = F −1(Λ′).

2 On a neighbourhood Uλ of MΛ there are coordinates (φi , si) s.t.
1 ωQ = dφi ∧ dsi ,
2 the action coordinates si are functions depending only on the integrals

f1, . . . , fn,
3 the continuous part hybrid dynamics are given by

φ̇i = Ωi(s1, . . . , sn), ṡi = 0 .

4 In these coordinates, for each connected component C ⊆ S, the impact
map reads ∆: (φi

−, s−
i ) ∈ MΛ ∩ C 7→ (φi

+, s+
i ) ∈ MΛ′ , where

s+
1 , . . . , s+

n are functions depending only on s−
1 , . . . , s−

n .
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Rolling disk with a harmonic potential hitting fixed walls

• Consider the example from before with the addition of an oscillatory
potential to the Hamiltonian function:

H = 1
2m (p2

x + p2
y ) + 1

2mk2 p2
θ + 1

2Ω2(x2 + y2) .

• Recall that the switching surface is S = C1 ∪ C2, where

C1 =
{(

x , R, θ, px , py ,
k2

R px

)
| x , px , py ∈ R, θ ∈ S1

}
,

C2 =
{(

x , h − R, θ, px , py ,
k2

R px

)
| x , px , py ∈ R, θ ∈ S1

}
,
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Rolling disk with a harmonic potential hitting fixed walls

and the impact map ∆: S → T∗Q is given by

(
p−

x , p−
y , p−

θ

)
7→
(

R2p−
x + k2Rp−

θ

k2 + R2 , −ep−
y ,

Rp−
x + k2p−

θ

k2 + R2

)
.
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Rolling disk with a harmonic potential hitting fixed walls

• For simplicity’s sake, let us hereafter take m = R = k = Ω = 1.
• The functions

f1 = p2
x + x2

2 , f2 =
p2

y + y2

2 , f3 = p2
θ

2 ,

are conserved quantities with respect to the Hamiltonian dynamics of
H.

• Moreover, {fi , fj} = 0 and df1 ∧ df2 ∧ df3 ̸= 0 a.e.
• Let F = (f1, f2, f3) : T∗(R2 × S) → R3.
• It is clear that, for Λ ̸= 0, the level sets F −1(Λ) are diffeomorphic to
S × S × R.
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Rolling disk with a harmonic potential hitting fixed walls

• In the intersection of their domains of definition, the functions

ϕ1 = arctan
( x

px

)
, ϕ2 = arctan

(
y
py

)
, ϕ3 = θ

pθ

are coordinates on each level set F −1(Λ) for Λ ̸= 0.
• Additionally, ωQ = dϕi ∧ dfi .
• In these coordinates, the Hamiltonian function reads

H = f1 + f2 + f3 .

• Hence, its Hamiltonian vector field is simply

XH = ∂

∂ϕ1 + ∂

∂ϕ2 + ∂

∂ϕ3 .
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Rolling disk with a harmonic potential hitting fixed walls

• In the action-angle coordinates (ϕi , fi), the connected components of
the impact surface read

C1 =
{(

ϕi , fi
)

| 2f2 sin2 ϕ2 = R2 and f3 = 2k4f1 cos2 ϕ1

R2

}
,

C2 =
{(

ϕi , fi
)

| 2f2 sin2 ϕ2 = (h − R)2 and f3 = 2k4f1 cos2 ϕ1

R2

}
.
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Rolling disk with a harmonic potential hitting fixed walls

• The relations between the coordinates before, (ϕi
−, f −

i ), and after,
(ϕi

+, f +
i ), are

ϕ1
+ = ϕ1

− , ϕ2
+ = − arctan

(
tan ϕ2

−
e

)
, ϕ3

+ = ϕ3
− ,

f +
1 = f −

1 , f +
2 = e2f2 + 1−e2

2 a2 , f +
3 = f −

3 ,

where a = R or a = h − R depending on the wall where the impact
takes place.

Asier López-Gordón (ICMAT) Hybrid dynamical systems Geometrical aspects of material modelling 35



Introduction Reduction Liouville – Arnol’d theorem Hamilton – Jacobi theory References

Hamilton – Jacobi equation
Consider a Hamiltonian function h : T∗Q → R. Given a closed one-form
γ ∈ Ω1(Q), the following assertions are equivalent:

1 γ is a solution of the Hamilton – Jacobi (HJ) equation

γ∗dh = 0 ,

2 the following diagram is commutative:

T∗Q TT∗Q

Q TQ

Xh

πQ TπQ

Xγ
h

γ Tγ ,

3 c : I ⊆ R → Q integral curve of Xγ
h =⇒ γ ◦ c integral curve of Xh;

4 Xh is tangent to Im γ.
Asier López-Gordón (ICMAT) Hybrid dynamical systems Geometrical aspects of material modelling 36
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Hybrid HJ equation

Definition
Let Hh = (T∗Q, Xh, S, ∆) be a hybrid Hamiltonian system. A solution of
the Hamilton – Jacobi (HJ) problem for Hh is a sequence {γi}i of
closed one-forms γi ∈ Ω1(Q) such that:

1 each γi is a solution of the HJ equation for h, namely, γ∗
i dh = 0;

2 they satisfy the compatibility condition

Im(∆ ◦ γi) ⊂ Im γi+1 .
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Hybrid HJ equation
Theorem (Clark, 2020)

Consider a hybrid Hamiltonian system HH = (M, XH , S, ∆). Let {γi}i be
a sequence of closed one-forms γi ∈ Ω1(Q). Then, the following
statements are equivalent:

1 The sequence {γi}i is a solution of the hybrid HJ problem for Hh.
2 For every continuous and piecewise smooth curve c : R → Q s.t.

1 c intersects πQ(S) at {ti}i ,
2 c satisfies the equations

ċ(t) = TπQ ◦ XH ◦ γi ◦ c(t), ti < t < ti+1,

γi+1 ◦ c(ti+1) = ∆ ◦ γi ◦ c(ti+1),

the curve c̃ : R → T∗Q given by c̃(t) = γi ◦ c(t) for t ∈ [ti , ti+1) is an
integral curve of the hybrid dynamics.
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Example: Rolling disk hitting walls

• Consider the example from the reduction section:

H = 1
2m (p2

x + p2
y ) + 1

2mk2 p2
θ ,

C1 = {(x , y , ϑ, px , py , pϑ) | y = R, px = Rpϑ/k2 and py < 0} ,

C2 = {(x , y , ϑ, px , py , pϑ) | y = h − R, px = Rpϑ/k2 and py > 0} ,

∆:
(
p−

x , p−
y , p−

θ

)
7→
(

R2p−
x + Rp−

θ

k2 + R2 , −ep−
y , k2 Rp−

x + p−
θ

k2 + R2

)
.
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Example: Rolling disk hitting walls

• A general solution of the HJ equation for H is

γi = aidx + bidy + cidy ,

where ai , bi , ci are constants.
• The relation between these constants before and after an impact is

determined by the compatibility condition:

ai+1 = R2ai + Rci
k2 + R2 , bi+1 = −ebi , and ci+1 = k2 Rai + ci

k2 + R2 .

• The initial values (a0, b0, c0) correspond with the initial values
(px (0), py (0), pϑ(0)) of the momenta at time zero.
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Example: Rolling disk hitting walls

• Each one-form γi determines a Lagrangian submanifold of
T∗(R2 × S1), namely,

Im γi =
{

(x , y , ϑ, px , py , pϑ) ∈ T∗(R2 × S1) | px = ai , py = bi , pϑ = ci
}

.
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Theorem (Ohsawa and Bloch, 2009)

Assume that D is a completely nonholonomic distribution, that is,

TQ = ⟨{D, [D, D], [D, [D, D]], . . .}⟩ .

Let γ be a one-form on Q such that Im γ ⊂ C and dγ(v , w) = 0 for any
v , w ∈ Γ(D). Then, the following statements are equivalent:

1 For every integral curve c of TπQ ◦ XH ◦ γ, the curve γ ◦ c is an
integral curve of Xnh

H .
2 The one-form γ satisfies the nonholonomic Hamilton–Jacobi equation:

H ◦ γ = E ,

where E is a constant.
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Definition
Let h : T∗Q → R be a Hamiltonian function and D ⊆ TQ a nonholonomic
distribution. A hybrid system (T∗Q, Xnh

H , S, ∆) is called a nonholonomic
hybrid system and denoted by Hnh.
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Definition
A sequence {γi}i of one-forms γi ∈ Ω1(Uk) is called a solution of the
hybrid Hamilton–Jacobi problem for Hnh if, for each index i ,

1 Im γi ⊂ C = ♭g(D),
2 dγi(v , w) = 0 for each v , w ∈ Γ(D),
3 γi is a solution of the nonholonomic HJ equation, namely,

H ◦ γi = Ei ;

4 the compatibility condition is satisfied:

Im(∆ ◦ γi) ⊂ Im γi+1 .

Asier López-Gordón (ICMAT) Hybrid dynamical systems Geometrical aspects of material modelling 44



Introduction Reduction Liouville – Arnol’d theorem Hamilton – Jacobi theory References

Theorem (Colombo, de León, Eyrea Irazú, and L. G., 2024)

Consider a hybrid nonholonomic system Hnh = (T∗Q, Xnh
H , S, ∆) with

underlying nonholonomic Hamiltonian system (Q, H, C). Let {γi}i be a
sequence of one-forms γk ∈ Ω1(Uk) such that Im γk ⊂ C and
dγk(v , w) = 0 for each v , w ∈ Γ(D). Then, the following statements are
equivalent:

1 The sequence {γi}i is a solution of the hybrid HJ equation for Hnh.
2 For every continuous and piecewise curve c : R → Q such that

1 c intersects πQ(S) at {tk}k ,
2 c satisfies the equations

ċ(t) = TπQ ◦ Xnh
H ◦ γk ◦ c(t), tk < t < tk+1,

γk+1 ◦ c(tk+1) = ∆ ◦ γk ◦ c(tk+1),

then the curve c̃ : R → C given by c̃(t) = γk ◦ c(t) for t ∈ [tk , tk+1)
is an integral curve of the hybrid dynamics.
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Example: the generalized rigid body

• Consider a mechanical system with a Lie group as configuration
space, namely Q = G .

• Let g denote the Lie algebra of G and g∗ its dual.
• Its Lagrangian is the left-invariant function L : TG ≃ G × g → R

given by L(g , vg) = ℓ(g−1vg), where ℓ : g → R is the reduced
Lagrangian, defined by

ℓ(ξ) = 1
2 Iijξiξj ,

for ξ = (ξ1, . . . , ξn) ∈ g, where Iij are the components of the
(positive-definite and symmetric) inertia tensor I : g → g∗.
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Example: the generalized rigid body

• The Hamiltonian function H : G × g∗ → R is

H = 1
2 I ijηi ηj ,

where I ij are the components of the inverse of I, and
η = (η1, . . . , ηn) ∈ g∗.

• The constrained generalized rigid body is subject to the left-invariant
nonholonomic constraint

Dµ =
{

(g , ξ) ∈ G × g | ⟨µ, ξ⟩ = µi ξi = 0
}

,

where µ = (µ1, . . . , µn) is a fixed element of g∗ and ⟨·, ·⟩ denotes the
natural pairing between a Lie algebra and its dual.
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Example: the generalized rigid body

• The associated codistribution is

Cµ =
{

(g , η) ∈ G × g∗ | ηi I ijµj = 0
}

.

• A solution of the nonholonomic HJ problem is a one-form
γ : G → G × g∗, g 7→ (g , γ1(g), . . . , γn(g)) satisfying

H ◦ γ = 1
2 I ijγiγj = E ,

I ijγiµj = 0 ,

dγ|D×D = 0 .

• Hereinafter, consider the lie group G = SO(3).
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Example: the generalized rigid body

• Let {e1, e2, e3} be the canonical basis of so(3) ≃ R3, whose Lie
brackets are

[e1, e2] = e3 , [e1, e3] = −e2 , [e2, e3] = e1 ,

and let {e1, e2, e3} be its dual basis.
• For simplicity’s sake, assume that

I = Ie1 ⊗ e1 + Ie2 ⊗ e2 + Ie3 ⊗ e3 ,

and thus
H(g , η) = 1

2I2

(
η2

1 + η2
2 + η2

3

)
.

Asier López-Gordón (ICMAT) Hybrid dynamical systems Geometrical aspects of material modelling 49



Introduction Reduction Liouville – Arnol’d theorem Hamilton – Jacobi theory References

Example: the generalized rigid body

• The nonholonomic distribution is given by

Dµ =
{

(g , ξ) ∈ SO(3) × so(3) | µiξ
i = 0

}
= ⟨{µ2e1 − µ1e2, µ3e1 − µ1e3}⟩ .

• A solution of the HJ problem is given by

γ = λ1e1 + µ3λ2 − µ1µ2λ1
µ2

2 + µ2
3

e2 + µ2λ2 − µ1µ3λ1
µ2

2 + µ2
3

e3 ,

where λ2 = ±
√

2EI2 (µ2
2 + µ2

3
)

− λ2
1
(
µ2

1 + µ2
2 + µ2

3
)
.

• The Euler angles (α, β, φ) can be used as a coordinate system for
SO(3).
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Example: the generalized rigid body

• The switching surface is the codimension-1 submanifold S of
SO(3) × so(3)∗ given by

S = {(α, β, φ, η1, η2, η3) ∈ SO(3) × so(3)∗ | α = 0} .

• The impact map ∆: S → SO(3) × so(3)∗ is

∆: (0, β, φ, η1, η2, η3) 7→ (0, β, φ, εη1, η2, η3) ,

for s constant ε.
• Let γ− and γ+ denote the solutions to the Hamilton–Jacobi equation

before and after the impact, respectively, where

γ± = λ±
1 e1 + µ3λ±

2 − µ1µ2λ±
1

µ2
2 + µ2

3
e2 + µ2λ±

2 − µ1µ3λ±
1

µ2
2 + µ2

3
e3 .
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Example: the generalized rigid body

• Then,

λ+
1 = ελ−

1 ,

λ+
2 = λ−

2 + (ε − 1)µ1µ2
µ3

λ−
1 ,

λ+
2 = λ−

2 + (ε − 1)µ1µ3
µ2

λ−
1 ,

which has solutions if µ3 = ±µ2 or if ε = 1.
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Thanks for your kind attention!
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