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These are the notes I used for a talk I gave at the PhD students’ seminar from the Faculty
of Mathematics at the Complutense University of Madrid. These notes are not a compre-
hensive exposition of the topics covered; for detailed information, readers should consult the
references.

1 Contact transformations

Definition 1. (Lie) A contact element (or line element) of R2 is a point (x, z) ∈ R2 and a
line passing through that point. If the slope p of this line is finite, then the equation for the line
can be written as

dz − pdx = 0 , (1)

and the space of contact elements on R2 can be identified with R3 with coordinates (x, p, z).
Similarly, a contact element of Rn×R is a hyperplane passing through a point (x1, . . . , xn, z) ∈

Rn × R defined by the equation

dz −
n∑

i=1

pidx
i = 0 . (2)

The space of contact elements on Rn×R can be identified with R2n+1 with coordinates (xi, pi, z), i ∈
{1, . . . , n}.

Consider the ordinary differential equation

F
(
x, z(x), z′(x)

)
= 0 . (3)

A solution z = z(x) of (3) corresponds to an integral curve x 7→
(
x, z(x), z′(x)

)
of the plane field

given by (1). More generally, a solution

(x1, . . . , xn) 7→
(
x1, . . . , xn, z(x1, . . . , xn),

∂z

∂x1
, . . . ,

∂z

∂xn

)
of the partial differential equation

F

(
x1, . . . , xn, z(x1, . . . , xn),

∂z

∂x1
, . . . ,

∂z

∂xn

)
= 0 (4)

corresponds to an integral submanifold of the hyperplane field on R2n+1 given by (2).
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Definition 2. A transformation (xi, pi, z) 7→ (x̃i, p̃i, z̃) of R2n+1 is called a contact transfor-
mation if

dz̃ −
n∑

i=1

p̃idx̃
i = ρ

(
dz −

n∑
i=1

pidx
i

)
,

for some function ρ : R2n+1 → R \ {0}.

Contact transformations carry solutions of (4) into solutions of the transformed equation

F̃

(
x̃1, . . . , x̃n, z̃(x̃1, . . . , x̃n),

∂z̃

∂x̃1
,
∂z̃

∂x̃n

)
= 0 .

For more details on the use of contact transformations for studying differential equations see
[13, 18].

2 Basics on differential geometry and contact geometry

Let M be an n-dimensional differentiable manifold. Recall that the tangent bundle of M is the
space

TM =
⊔
x∈M

TxM ,

with the projection
τM : TM ∋ (x, v) 7→ x ∈ M .

A rank k distribution D on M is a smooth assignment of a rank k vector subspace Dx ⊆ TxM
for each x ∈ M . It is a vector bundle with the projection τM |D : D → M .

Theorem 1 (Frobenius). Let D be a distribution on M . Then, the following statements are
equivalent:

1. For every x ∈ M , there exists a submanifold N ⊆ M such that Dx = TxN (i.e., D is
integrable).

2. For each pair of vector fields X,Y ∈ X(M) such that X(x), Y (x) ∈ Dx for all x ∈ M we
have that [X,Y ](x) ∈ Dx (i.e., D is involutive).

A corank-1 vector subspace W from a real vector space V can be expressed as the kernel of
a covector, namely, W = kerα for some α ∈ V ∗. Consequently, a corank-1 distribution D on a
manifold M (i.e., a field of tangent hyperplanes on M) can be locally expressed as the kernel of
a local one-form, namely, Dx = kerαx for x ∈ U ⊆ M and α ∈ Ω1(U), with U an open subset of
M .

Let us recall that the exterior product (or wedge product) of a p-form α ∈ Ωp(M) and
a q-form β ∈ Ωq(M) is a (p+ q)-form

α ∧ β = (−1)pqβ ∧ α ∈ Ωp+q(M) .

Proposition 2. Let D be a corank-1 distribution on a manifold M . Suppose that D is locally
given by the kernel of a local one-form α. Then, D is integrable if and only if

α ∧ dα = 0 .
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Example 1. Consider M = R3 with canonical coordinates (x, y, z) and cylindrical coordinates
(r, ϕ, z). The distribution D = kerα for α = ydx− xdy is integrable. Indeed,

D =

〈
x
∂

∂x
+ y

∂

∂y
,
∂

∂z

〉
=

〈
r
∂

∂r
,
∂

∂z

〉
,

and thus Dp = TpN for all p ∈ N , where

N =
{
(r, ϕ, z) ∈ R3 | ϕ = const.

}
.

A distribution is called a contact distribution if it is “as far as possible” from being inte-
grable. More specifically, it is defined as follows.

Definition 3. Let M be a (2n+ 1)-dimensional manifold. A contact distribution ξ on M is
a corank-1 distribution locally given by ξ = kerα such that

α ∧ (dα)n = α ∧ dα ∧ · · · ∧ dα︸ ︷︷ ︸
n times

̸= 0 .

If there exists a global one-form such that ξ = kerα, then it is called a contact form and
ξ is called co-orientable. A pair (M, ξ) (respectively, (M,α)) is called a contact manifold
(respectively, co-oriented contact manifold).

Observe that a co-orientable contact distribution ξ on M defines an equivalence class of
contact forms

α ∼ β ⇐⇒ kerα = kerβ = ξ ⇐⇒ ∃f : M → R \ {0} such that α = fβ .

These equivalence classes are called conformal classes, and two contact forms belonging to the
same conformal class are said to be conformal to each other.

Example 2. Any odd-dimensional Euclidean space M = R2n+1 (where n ≥ 1) with canonical
coordinates (x1, . . . , xn, p1, . . . , pn, z) has a canonical contact form

α = dz − pidx
i . (5)

Example 3. Consider R2n with canonical coordinates (x1, . . . , xn, y1, . . . , yn). Then, the (n−1)-
sphere

S2n−1 =
{
x ∈ R2n+1 | ∥x∥ = 1

}
is endowed with a contact form

α = xidyi − yidx
i .

Example 4 (Not co-orientable contact distribution). Let M = Rn+1×RPn. Denote by (x0, . . . xn)
the coordinates in Rn+1 and by [y0 : · · · : yn] the homogeneous coordinates in RPn. Then,

ξ = ker

n∑
µ=0

yµdx
µ

is a contact distribution on M . Indeed, the one-form yµdx
µ is well-defined up to a scaling by a

non-zero real constant. On each open subset Uµ = {yµ ̸= 0} ⊂ M , we have the contact form

αµ = dxµ +
∑
ν ̸=µ

yν
yµ

dxν .

If n is even, then M is not orientable. This implies that there can be no volume form on M , so
in particular there exists no global contact form for ξ.

By a different argument, one can show that for n odd the contact distribution ξ is also not
co-orientable (see Proposition 2.1.13 in [12]).
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Theorem 3 (Darboux). Let (M,α) be a (2n + 1)-dimensional co-oriented contact manifold.
Then, around each point x ∈ M there is a chart (U ;xi, pi, z) such that α is written (5).

A contact distribution can be regarded as an atlas for the manifold M whose coordinate
changes are local contact transformations. This was the viewpoint until the 1960’s.

Proposition 4. Let M be a (2n + 1)-dimensional smooth manifold. A one-form α on M is a
contact form if and only if the map

♭α : TxM → (TxM)∗

v 7→ αx(v)α+ dαx(v, ·)

is an isomorphism of vector spaces.

This implies that we have a decomposition

TxM = kerαx ⊕ ker dαx = ξx ⊕ ker dαx , ∀x ∈ M .

Clearly, this decomposition depends on the choice of contact form.

Definition 4. Let (M,α) be a co-oriented contact manifold. The Reeb vector field is the
unique vector field R ∈ X(M) given by

R = ♭−1
α (α) ,

or, equivalently,
R ∈ ker dα and α(R) = 1 .

In Darboux coordinates,

R =
∂

∂z
.

The decomposition above can also be written as

TxM = ξx ⊕ ⟨Rx⟩ .

Definition 5. Let (M, ξ) be a (2n + 1) dimensional contact manifold. A submanifold N of M
is called isotropic if it is an integral submanifold of ξ, that is, if TxN = ξx for all x ∈ N . In
addition, if N is of maximal dimension (i.e., dimN = n), it is called Legendrian.

3 On the existence of contact distributions

A natural question one may ask is: given an odd-dimensional manifold M , there exists any
contact distribution on M? Essentially, the answer is “yes” for dimension 3, and “not necessarily”
for higher dimensions.

Theorem 5 (Martinet). Every compact orientable 3-manifold (without boundary) admits a con-
tact distribution.

Theorem 6 (Stong). The compact orientable manifold SU(3)/SO(4)×S2n−4, for n ≥ 2, admits
no contact distributions.
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4 Contact Hamiltonian systems and dissipative mechanics

Definition 6. Let (M,α) be a co-oriented contact manifold and let f ∈ C∞(M). The Hamil-
tonian vector field of f is given by

Xf = ♭−1
α (df)− (R(f) + f)R ,

or, equivalently,
α(Xf ) = −f , dα(Xf , ·) = df −R(f)α .

In Darboux coordinates (qi, pi, z),

Xf =
∂f

∂pi

∂

∂qi
−
(
∂f

∂qi
+ pi

∂f

∂z

)
∂

∂pi
+

(
pi

∂f

∂pi
− f

)
∂

∂z
.

In particular, observe that the Reeb vector field is the Hamiltonian vector field of f ≡ −1.
Conversely, if Xf is the Hamiltonian vector field of f with respect to α then, on the open subset
U = M \f−1(0), it is the Reeb vector field associated with the conformal contact form α̃ = − 1

fα.
On the zero level set of f the Hamiltonian vector field Xf may be written as the reparametrization
of the Liouville vector field associated with the exact symplectic form induced by the contact
form (refer to [3] for more details).

Definition 7. A contact Hamiltonian system is a triple (M,α, h) formed by a co-oriented
contact manifold (M,α) and a function h ∈ C∞(M) called the Hamiltonian function.

Physically, one can regard h as the total energy of the system. The dynamics of (M,α, h)
are given by the integral curves of Xh. In Darboux coordinates, an integral curve c : I ⊆ R →
M, c(t) = (qi(t), pi(t), z(t)) of Xh satisfies the contact Hamilton equations:

dqi

dt
(t) =

∂h

∂pi
◦ c(t) ,

dpi
dt

(t) = − ∂h

∂qi
◦ c(t)− pi(t)

∂h

∂z
◦ c(t) ,

dz

dt
(t) = pi(t)

∂h

∂pi
◦ c(t)− h ◦ c(t) .

These equations resemble the classical Hamilton equations. Indeed, the first of the equations is
identical. The second has an extra term on the right-hand side accounting for the dependence of
h on z. Note that the right-hand side of the third equation is like the “Lagrangian”. As a matter
of fact, contact Hamiltonian systems have a Lagrangian counterpart, where Lagrangian functions
depend on the action functional.

Very loosely, the Herglotz functional A is like the usual action functional, but instead of being
given by an integral is given by the ODE

d

dt
A
[
c(t)
]
= L

(
c(t), q̇(t),A

[
c(t)
])

.

One seeks for curves c : I ⊆ R → Q that are critical points of A.
Fixing two points q1 and q2 in Q, and an interval [a, b], the path space from q1 to q2 is the

following set of curves:

Ω(q1, q2, [a, b]) =
{
c ∈ C 2

(
[a, b] → Q

)
| c(a) = q1, c(b) = q2

}
.

It can be proven that Ω(q1, q2, [a, b]) is an infinite-dimensional smooth manifold. Its tangent
space TcΩ(q1, q2, [a, b]) at c is the set of maps v ∈ C 2

(
[a, b] → TQ

)
such that τq ◦ v = c and
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v(a) = v(b) = 0. A tangent vector v ∈ TcΩ(q1, q2, [a, b]) is called an infinitesimal variation of
the curve c subject to fixed endpoints.

Consider the operator

Z : Ω
(
q1, q2, [a, b]

)
→ C 2

(
[a, b] → R

)
that assigns to each curve c ∈ Ω(q1, q2, [a, b]) the function Z(c) that is the solution of the following
Cauchy problem:

dZ(c)(t)

dt
= L

(
c(t), ċ(t),Z(c)(t)

)
,

Z(c)(a) = za .

The quantity Z(c)(t) can be interpreted as the action of the curve c at time t. The Herglotz
action functional is the map A : Ω(q1, q2, [a, b]) → R that assigns to each curve the solution of
the Cauchy problem above evaluated at the endpoint, namely,

A : c 7→ Z(c)(b) .

The trajectories of the dynamical system described by (Q,L) are given by the following varia-
tional principle. A curve c ∈ Ω(q1, q2, [a, b]) satisfies the Herglotz variational principle if it
is a critical point of the Herglotz action functional, that is,

dA(c) = 0 .

A curve c ∈ Ω(q1, q2, [a, b]) is a critical point of A if and only if it satisfies the Herglotz–Euler–
Lagrange equations:

d

dt

∂L

∂vi
(
c(t), ċ(t),Z(c)(t)

)
− ∂L

∂qi
(
c(t), ċ(t),Z(c)(t)

)
− ∂L

∂vi
(
c(t), ċ(t),Z(c)(t)

)∂L
∂z

(
c(t), ċ(t),Z(c)(t)

)
= 0 .

Refer to [10, 15] for more details on the Herglotz variational principle.

Example 5 (The harmonic oscillator with linear damping). Consider the solution x : R → R of
the second-order ordinary differential equation

d2x

dt2
(t) = −x(t)− κ

dx

dt
(t) , (6)

where κ ∈ R. Defining p = dx/dt, we can reduce it to the system of first-order ordinary differential
equations

dx

dt
(t) = p(t) ,

dp

dt
(t) = −x(t)− κp(t) .

We can obtain this system as the two first contact Hamilton equations from the contact Hamilton
system (R3, α, h), where α = dz − pdx and

h =
p2

2
+

x2

2
+ κz .

Equivalently, we can obtain (6) as the Herglotz–Euler–Lagrange equation for the action-dependent
Lagrangian function

L(x, v, z) =
v2

2
− x2

2
− κz .
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Remark 1. The Hamiltonian function is not conserved, but dissipated in a certain manner,
namely,

Xh(h) = −R(h)h .

Similarly, the contact distribution is preserved along the flow of Xh, but the contact distribution
is not, namely,

LXh
α = −R(h)α .

Intuitively, the Lie derivative LXβ of a differential form β with respect to a vector field X
is the infinitesimal transformation resulting from performing an infinitesimal displacement of β
along the direction of X. More precisely, if ϕt denotes the flow of X, we have

LXβ = lim
t→0

ϕ∗
tβ − β

t
= lim

t→0

(βi ◦ ϕt) d(x
i ◦ ϕt)− βidx

i

t
,

where β = βidx
i.

Definition 8. Let (M,α, h) be a contact Hamiltonian system. A dissipated quantity (with
respect to (M,α, h)) is a solution f ∈ C∞(M) to the partial differential equation

Xh(f) = −R(h)f .

In particular, h is a dissipated quantity with respect to (M,α, h).

Definition 9. Let (M,α) be a co-oriented contact manifold. The Jacobi bracket is the map
{·, ·} : C∞(M)× C∞(M) → C∞(M) given by

{f, g} = Xf (g) + gR(f) .

The Jacobi bracket satisfies the following properties:

1. R-bilinearity,

2. skew-symmetry,

3. the Jacobi identity: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0,

∴ it is a Lie bracket,

4. the weak Leibniz rule: {f, gh} = {f, g}h+ {f, h}g − ghR(f).

Proposition 7. Let (M,α, h) be a contact Hamiltonian system. Then, a function f ∈ C∞(M)
is a dissipated quantity if and only if {f, h} = 0.

It is worth remarking that, unlike in the case of Poisson brackets, {f, h} = 0 does not imply
Xf is tangent to the level sets of g. In other words, the submanifolds g−1(λ) will, in general, no
longer be invariant by the flow of Xf .

Definition 10. A completely integrable contact system is a triple (M,α, F ), where (M,α)
is a co-oriented contact manifold and

F = (f0, . . . , fn) : M → Rn+1

is a map such that {fα, fβ} = 0 for all α, β ∈ {0, . . . , n} and rankTxF ≥ n for all x ∈ M .
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For each Λ ∈ Rn+1 \ {0}, let ⟨Λ⟩+ denote the ray generated by Λ, namely,

⟨Λ⟩+ = {x ∈ Rn+1 | ∃ r ∈ R+ : x = rΛ} .

Consider the subset

M⟨Λ⟩+ = F−1
(
⟨Λ⟩+

)
= {x ∈ M | ∃ r ∈ R+ : F (x) = rΛ}

Theorem 8 (Colombo, de León, Lainz, L. G., 2023). Let (M,α, F ) be a completely integrable
contact system, where F = (f0, . . . , fn), and let Λ ∈ Rn+1 \ {0}. Assume that the Hamiltonian
vector fields Xf0 , . . . , Xfn are complete. Then:

1. The submanifold M⟨Λ⟩+ is invariant by the flows of Xf0 , . . . , Xfn, and diffeomorphic to
Tk × Rn+1−k for some k ≤ n.

2. There exist coordinates (y0, . . . , yn, Ã1, . . . , Ãn) on U such that the integral curves of Xfβ

are given by
ẏα = Ωα(Ã1, . . . , Ãn) , α = 0, . . . , n ,
˙̃Ai = 0 , i = 1, . . . , n .

5 Thermodynamics

“Every mathematician knows that it is impossible to understand any elementary course in ther-
modynamics. The reason is that thermodynamics is based on a rather complicated mathematical
theory, on contact geometry.” V. I. Arnol’d.

Consider a thermodynamical system with energy U , temperature T , entropy S, pressure P
and volume V . Then, the states of equilibrium are determined by

dU = TdS − PdV ,

together with the equations of state (which depend on the substance considered). We can think
of a 5-manifold with coordinates (U, T, S, P, V ) and contact form

α = dU − TdS + PdV ,

and regard equilibrium states as Legendrian submanifolds (of dimension 2).

Example 6 (Ideal gas with constant number of particles). The equations of state are

PV = k1T , U = k2T ,

for some constants k1 and k2.

More generally, we could have k different types of substances with chemical potentials µ1, . . . , µk

and N1, . . . , Nk numbers of particles. In that case, the thermodynamical variables form a 5+ 2k
manifold with a contact form

α = dU − TdS + PdV +
k∑

i=1

µidNi .

Generally, we will have an odd-dimensional manifold whose coordinates are the pairs of conjugate
variables (temperature-entropy, pressure-volume, and so forth) together with the internal energy.
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6 Turing complete Euler flows and Reeb vector fields

This section is a very imprecise overview of a series of papers by Cardona, Miranda, Peralta–Salas
and Presas [5–7].

Let (M, g) be a Riemannian manifold. The stationary Euler equations on (M, g) read

∇XX = −∇p , divX = 0 ,

where p stands for the hydrodynamic pressure and X for the velocity field of the fluid. A vector
field X on M is called Eulerisable if there exists a Riemannian metric g on M such that X
satisfies the Euler equation for (M, g).

A vector field X on an odd-dimensional Riemannian manifold (M, g) is Beltrami if

divX = 0 , curlX = fX ,

for some f ∈ C∞(M). Beltrami fields are stationary solutions of the Euler equations with
constant Bernouilli function

B := p+
1

2
g(X,X) .

Theorem 9. Let (M, g) be an odd-dimensonal Riemannian manifold. Assume that X is a
nowhere-vanishing Beltrami field on M such that

curlX = fX , f > 0 .

Then, any smooth, nonsingular rotational Beltrami field on M is the Reeb vector field of some
contact form α on M .

Roughly speaking, a vector field X ∈ X(M) is Turing complete if, given a Turing machine
T , one can construct a point p ∈ M and an open subset U ⊂ M such that the trajectory of X
through p intersects U if and only if T halts.

From Turing machines to undecibility of Euler flows:

1. A generalized shift is a map ϕ : AZ → AZ for a finite alphabet A = {0, 1}. They can be
used to simulate any Turing machine [Moore, 1991].

2. Generalized shifts can be understood as maps of the square Cantor set C2 := C × C ⊂
[0, 1]× [0, 1], where C is the standard Cantor ternary set in the unit interval [0, 1].

3. Any bijective generalized shift, understood as a map φ : C2 → C2, can be extended as an
area-preserving diffeomorphism of the disk φ : D → D which is the identity in a neighbour-
hood of ∂D.

4. Let (M, ξ) be a co-orientable contact 3-manifold and φ : D → D an area-preserving diffeo-
morphism such that φ|∂D = id. Then, there is a contact form α whose Reeb vector field R
is associated to φ. (More precisely, there is a Poincaré section of R whose first-return map
is conjugate to φ.)

5. In particular, this implies that there exists a contact form α on (M, ξ) whose Reeb vector
field R is Turing complete.

∴ There exists a Eulerisable vector field on S3 that is Turing complete.
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