LIOUVILLE-ARNOLD THEOREM FOR CONTACT HAMILTONIAN SYSTEMS Asier López-Gordón (asier.lopez@icmat.es)

Institute of Mathematical Sciences (ICMAT), Madrid, Spain Joint work with Leonardo Colombo, Manuel de León and Manuel Lainz

Scan the QR code to check the paper \square

arXiv:2302.12061

Introduction

- Roughly speaking, a completely integrable system is a Hamiltonian system with as much independent and "compatible" constants of the motion as degrees of freedom.
- A symplectic form ω on a manifold M is a 2-form on M such that $d\omega = 0$ and $\omega(v, \cdot) = 0 \text{ iff } v = 0.$
- Given a function f on M, its Hamiltonian vector field X_f is given by

 $\omega(X_f, \cdot) = \mathrm{d}f.$

• The Poisson bracket $\{\cdot, \cdot\}$ is given by

 $\{f,g\} = \omega(X_f, X_g).$

Theorem 1: Liouville–Arnold theorem

Let f_1, \ldots, f_n be independent functions in involution (i.e., $\{f_i, f_j\} = 0 \ \forall i, j$) on a symplectic manifold (M^{2n}, ω) . Let $M_{\Lambda} = \{x \in M \mid f_i = \Lambda_i\}$.

i) Any compact connected component of M_{Λ} is diffeomorphic to a torus \mathbb{T}^n . ii) On a neighbourhood of M_{Λ} there are coordinates (φ^i, J_i) such that

 $\omega = \mathrm{d}\varphi^i \wedge \mathrm{d}J_i,$

and the Hamiltonian dynamics are given by

 $\frac{\mathrm{d}\varphi^i}{\mathrm{d}t} = \Omega^i(J),$

 $\frac{\mathrm{d}J_i}{\mathrm{d}t} = 0.$

Our approach

- Let (M, η) be a contact manifold with Jacobi bracket $\{\cdot, \cdot\}$.
- Consider n+1 independent functions $f_0, \ldots, f_n \colon M \to \mathbb{R}$ in involution, i.e. $\{f_i, f_j\} = 0 \forall i, j$. • Then, $X_{f_i}(f_j) = f_j \mathcal{R}(f_i)$.
- Therefore, X_{f_i} in general is not tangent to $M_{\Lambda} = \{x \in M \mid f_{\alpha} = \Lambda_{\alpha}\}.$
- Other authors, such as Boyer and Jovanović, assume that $\mathcal{R}(f_{\alpha}) = 0 \ \forall f_{\alpha}$ so that X_{f_i} is tangent to M_{Λ} .
- However, this leads to contact Hamiltonian dynamics without dissipation \sim "symplectic dynamics".
- Instead of considering level sets M_{Λ} we consider preimages of rays:

 $M_{\langle \Lambda \rangle_{+}} = \{ x \in M \mid \exists r \in \mathbb{R}^{+} \colon f_{\alpha}(x) = r\Lambda_{\alpha} \} .$

Completely integrable contact systems

Theorem 2: Colombo, de León, Lainz, L.-G., 2023

Let (M, η) be a (2n+1)-dimensional contact manifold. Suppose that f_0, f_1, \ldots, f_n are functions in involution such that (df_{α}) has rank at least n. Then, $M_{\langle \Lambda \rangle_+}$ is invariant by the Hamiltonian flow of f_{α} and diffeomorphic to $\mathbb{T}^k \times \mathbb{R}^{n+1-k}$.

Contact Hamiltonian systems

Definition 1

A (co-oriented) contact manifold is a pair (M, η) , where M is an (2n + 1)dimensional manifold and η is a 1-form on M such that $\eta \wedge (\mathrm{d}\eta)^n$ is a volume form.

• There exists a unique vector field \mathcal{R} on (M, η) , called the **Reeb vector field**, such that

 $d\eta(\mathcal{R}, \cdot) = 0, \qquad \eta(\mathcal{R}) = 1.$

• The **Hamiltonian vector field** of $f \in C^{\infty}(M)$ is given by

 $\eta(X_f) = -f, \qquad \mathrm{d}\eta(X_f, \cdot) = \mathrm{d}f - \mathcal{R}(f)\eta.$

• Around each point on M there exist **Darboux coordinates** (q^i, p_i, z) such that

$$\eta = \mathrm{d}z - p_i \mathrm{d}q^i, \qquad \mathcal{R} = \frac{\partial}{\partial z},$$
$$X_f = \frac{\partial f}{\partial p_i} \frac{\partial}{\partial q^i} - \left(\frac{\partial f}{\partial q^i} + p_i \frac{\partial f}{\partial z}\right) \frac{\partial}{\partial p_i} + \left(p_i \frac{\partial f}{\partial p_i} - f\right) \frac{\partial}{\partial z}$$

• The **Jacobi bracket** is given by

Moreover, there is a neighborhood U of $M_{\langle \Lambda \rangle_+}$ such that

i) There exists coordinates $(y^0, \ldots, y^n, \tilde{A}_1, \ldots, \tilde{A}_n)$ on U, where $\tilde{A}_i = \tilde{A}_i(f_0, \ldots, f_n)$, such that the equations of motion are given by

$$\frac{\mathrm{d}y^{\alpha}}{\mathrm{d}t} = \Omega^{\alpha}(\tilde{A}_i),$$

$$\frac{\mathrm{d}\tilde{A}_i}{\mathrm{d}t} = 0.$$

ii) There exists a conformal change $\tilde{\eta} = \eta/A_0$ such that (y^i, \tilde{A}_i, y^0) are Darboux coordinates for $(M, \tilde{\eta})$, i.e. $\tilde{\eta} = \mathrm{d}y^0 - A_i \mathrm{d}y^i$.

Definition 2

A completely integrable contact system is a triple (M, η, F) , where (M, η) is a contact manifold and $F = (f_0, \ldots, f_n) \colon M \to \mathbb{R}^{n+1}$ is a map such that the functions f_0, \ldots, f_n are in involution and dF has rank at least n on a dense open subset $M_0 \subseteq M$.

Example 1: Damped harmonic oscillator

- Let $M = \mathbb{R}^3$ with coordinates (q, p, z). Let $\eta = dz pdq$.
- The functions $f = z \frac{pq}{2}$ and $h = \frac{p^2}{2} + \frac{q^2}{2} + \kappa z$ are in involution. They are independent a.e.
- Hence, (M, η, F) is a completely integrable contact Hamiltonian system, where F = (f, h).
- The integral curves of X_h ,

 $\{f,g\} = X_f(g) + g\mathcal{R}(f) \,.$

• This bracket is bilinear and satisfies the Jacobi identity. • However, unlike a Poisson bracket, it does not satisfy the Leibnitz identity: ${f,gh} \neq {f,g}h + {f,h}g.$

 $\frac{\mathrm{d}q}{\mathrm{d}t} = p , \qquad \frac{\mathrm{d}p}{\mathrm{d}t} = -q - \kappa p , \qquad \frac{\mathrm{d}z}{\mathrm{d}t} = \frac{p^2}{2} - \frac{q^2}{2} - \kappa z ,$ correspond to the dynamics of a harmonic oscillator with a linear damping:

$$\frac{\mathrm{d}^2 q}{\mathrm{d}t} = -q - \kappa \frac{\mathrm{d}q}{\mathrm{d}t}$$

References

[1] V. I. Arnold. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics. New York: Springer-Verlag, 1978.

- [2] A. V. Bolsinov and A. T. Fomenko. Integrable Hamiltonian Systems: Geometry, Topology, Classification. Boca Raton, Fla: Chapman & Hall/CRC, 2004.
- [3] L. Colombo, M. de León, M. Lainz, and A. López-Gordón. Liouville-Arnold Theorem for Contact Hamiltonian Systems. Feb. 23, 2023. arXiv: 2302.12061 [math.SG]. preprint.
- [4] E. Fiorani, G. Giachetta, and G. Sardanashvily. "An Extension of the Liouville-Arnold Theorem for the Non-Compact Case". In: Nuovo Cimento Soc. Ital. Fis. B 118.3 (2003), pp. 307–317.
- [5] J. Liouville. "Note sur l'intégration des équations différentielles de la Dynamique". In: J. Math. Pures Appl. (1855), pp. 137–138.